The Definition and Validation
of the Radix Sorting Technique
John A. N. Lee
Department of Computer and Information Science

Technical Report 71B-1

University of Massachusetts
Amherst, Mass. 01002

(January, 1972)

Paper presented at the Conference:

"Proofs of Assertions about Programs"
New Mexico State University
January, 1972

THE DEFINITION AND VALIDATION OF THE RADIX SORTING TEQINIQUE

John A,

Lee

Visiting Professor of Mathematics
University of Denver®

Absitracet

Based on the formal definition techniques
of Lucas et allll which have been applied to
the description of programming languages, this
paper defines the alporithm of radix sorting
and develops a proof of its validity,

Introduction

The techniques of formal definition as
developed by Lucas and Walkll] have, in genaral,
been applied to the definfition or programning
languages 2,3 » although formal proofs of
validity or equivalence have been applied to
specific algorithmic methods of representation
of the elements of the language or its conpilers.
For example, Lucas 4] showed the equivalence of
tie realization of Llock concepts as initially
employed in the formal definfition of PL/I,
Related to the same definitional project, Lin(5)
proved the equivalence of two versions of the
update and search nechanisms, Both of these
proofs utilized the nutho? ?f Recursive Induc=-
tion proposed by !lcCarthy o .

Based on the premise that the method of
definition 1s applicable over the whole domain
of algorithms, since a definicion of a progran=
ming language is fundamentally a co-ordinated
system of algorithnic definfitions, this paper
presents the formal description of a simple
algorithm and f{ts validation on the basis of
formal logic rather than the previously usad
technique of Recursive Induction. It is assumed
that the reader is fam{liar uith the lanpuage
of formal definition developed by Lucas and
Walk*#* as wall as the fundamental elements of
that system, That 1s, the definition of objects,
predicates, conditional expressions, the muta-
tion operator and tiie scarch function. Herein,
we shall pive formal definitions of those ele-
ments of tie definitional system necessary for
tiids example and some of tiie properties of these
elements witihout preoof, the dJevelopnent of those
proofs being left to the reader.

The Tecinique of Sorting bv the Radix Method

o et

The method of sorting a list of character
strings (wiiicih correspond to the kevs of a set
of records) Ly the techmique of radix sorting,
predates electronic conmputers by almost half a
century, being one of the techniques used by the
Bureau of the Census on the carly punched card
equipment. The technique is totally mechanical
and is not nccessarily a technique which should
have been carried over for use in computers as
we know them today. It ia interesting to note

*low at the University of Mass., Dept. of Com-
puter Scienca,

**Variously known as Universal Language Descrip=-
tor (ULD) or Vienna Uefinition Language (VDL)

that the first program developed by Von Neumanal71}
for a stored program conputer was a program for
sorting a list of intepers, and that the scandard
afainst wiidch he was able to judpe the efficiency
of the stcred propram would have been a mechani-
cal sorter using the technique of sorting
described here,

First let us describe the mechanical sorter
and the sorting technique which has been fash-
ioned for use on the available equipment., A typ-
ical sorter consists of a collection of indexed
peckets (or stacks) which are fed records from a
hopper by a serics of selectable chutes. The
sclection of a particular chute, and hence the
particulsr pocket into which a record from the
hopper will be fed, 18 triggered by the sensing
of a representation of the key in the record
corresponding to the particular pocket. However,
tile sorting machiine is capable of sensing only
one character at a time in each record from the
hopper. llence the developnment of a sorted order
from a set of clenents in which the key consists
of more than one character, requires scveral
passcs througa the machine. If the pockets are
indexed 0 through Y, and the keys over which
sorting is to be performecd are purely numeric
(digical), then a sinple pass through the machine
of the sct of records to be sorted will develop
at least a partial sorting. For example, 1f the
key consists of n digits, d1d2d3...dpayd,, then
sorting with respect to the i-th digit would
place in the samo pocket each element in which
dy=p where p L3 che index of the pocket. From
this destrcbution phase of the sorting process,

a partially ordercd list may be organized by
collecting the contents of cachh pocket in such a
manner as to preserve the relationsiiips between
the {-th digit of cach record. Thus if an ascend-
ing ordering {s required, a new 1{st may be
formed Ly collcctdng tie elements of the pockets
in the order 0 through Y, whilst at the same time
maintaining any order already existing in the
pocketed elements, It can be shown by example,
that when the key 1s a positional number repre-
sentation, then Jdistributing according to the low
order dizit, collecting back {nto a single 1lisc,
and continuing to distribute and collect accord-
ing to successibely higher order digits until
all digits have been utilized, will develop a
conpletely sorted list, For exanple, consider
the list of keys

<39,42,16,53,49,12>
which are to be sorted into ascending order (left
to right on the page). Distributing according to
the lov order digit in the kevs as shown in Fig.
1, will develop 10 sublists corresponding to
each pocket in the machine, or which 4 are non-
empty;

L »
42,12} 53

-
16 39,49

P°°k°t 0 1 2 3

Fig. 1. Distribution according to low order digit

Collecting these clements into a single list
whilst maintaining the partial order of the dis-
tribuction by pocket number and the order of
arrival in the pocket (significd by left to right
ordering above), a mew list <42,12,53,16,39,49>
is constructed. Distributing next with respect
to the higih order digit (Fig. 2), and collecting
80 as to maintain both the order of arrival and
the ordering amongat pocketed clements, the list
<12,106,39,42,49,53> is obtained. Since all dig-
its in the keys have been uscd in successive
distribution and collection phases, the list nust
now be in the required order.

IThe Environment and Properties of Objects in the

Environment

The mothod of formal definition developed
by Lucas and Walk, assumes that thero exists an
environment over which the algorithn operatas,
and which is part of am abstract machine uhich
executes (or interprets) the algorithm, We shall
define the enviromnment E as part of tho state §
such that E {9 sclected from the state of theo
abstract machine by the sclector function s-E,
The structure of the environnent is then definod
by the structured predicate

is-L = (<g-A:i8=A>,<g=-P:ig=P>)

wnere the s-A-component of the environnent rapro-
seats the hopper of ths mechanical sortur and is
represented by a simple list of elemants, and
where tiw s-P-compencent represents the ten pock-
ets of the sorter (numbered O through 9) which
is a collection of lists of eclements, That {s,

(1) f1g=A = is-number-list
and

(2) 1a-P = ({<3(1):is-nunber-1list>|

0<i<9)

where = =

(3) 1s-punber = is-digit-liat

42 12

02,16 39

42,49 |53

This definition of the components of the environe
ment 1{s based on the following simplification and
assunption;

a) the records to be sorted are represented
only by the keys which conform to the predicate
is-number, and

b) cthe pockets may contain empty lists and
hence the s-P-conponent cannot be represented by
a list (as defined by lLucas and Walk), since a
list i3 composod only of non-null elements and
the referencing indices of the elements of a list
are required to be greater than 0. See defini-
tion (4) below,

(4) is-list = ({<clem(i)tnot-null>|

l<1<n}) v ig-<>
whera

(5) 1is-null = 18- v ig=-<> v ig=(},
and vhere 5 {s the null object, <> is the empty
list, and {} is the empty set. Since, in the
object which conforms to the predicate 1s-P, we
require that the conponents may be empty lists
(corresponding to enpty pockets), we introduce
tile object conforming to the predicate
({<s(i) 1is-nunber-1ist> | 0 < 1 < 9)). Such an
object is not constrained by the previously
defined attributes of an object which conforms to
the predicate is~list,

is-nunber-1ist 1s a predicate which defines
not only the structure of an objcet but also the
structure of tie components of that list, Thus
we define

(b) f{s-number-lisc(X) = {s-1ist(X) &

(¥1) (is-number(elem(1.X)))*t
Although definition (3) defines che predicate
is-nunber as a list of objects conforming to the
predicate is-digit, the alporithm which {s defined
later assumes that each element (key) of the list
to be sorted is of a common length. That is,
each element contains the same number of digits,
with zero lefc (high order) fill if necessary.
Thus thoe definition of the predicate is-number

telen(1) (X) 1s also written elen({,X)
16 9 49

pocket 0 1 2 3

number

Pig. 2. Distribution according to high order digit

may be revised to the forng

(3a) 1is-number = ({<elem(i):is-digic> |

l<4<m))

where m i3 a constant to Le predefined in the
environment. On this assumption, the length of
each element {s determined within the algorithm
by the function expression length(head(A)) whero
A is the list of elements being sorted.

Similarly it is assumed that the list of
objects which compose an object conforming to the
predicate is-number represent a positional repre~-

" sentation of a nunmeric value such that the clen
(1)-component contains the low order digit and
the elem(lengti(head(A)))-component contains the
igh order digit. All numbers are assumed to be
positive integers for the purposes of this algor-
ithm definition.

If the following definitions are asgumed;

(7) head(list) = elem(1,1list)

(8) 1lasct(list) = elen(lengeth(list),list)

(9) cail(list) = py({<elen(1)relom(i+l,

list)< | 1 <1 < length(list) - 1))
where
(10) length(list) = ig-1ist(list) -+
(1s-<>(1l1st) = O,
T+(11) (not~null(elem
(1,1ist))
& is-null(elen(i+l,
liet))))
and the following property of a structuraed pred-
icate i3 assumed;

(11) is-pred = ((<K1:ls-pred1>))=

Ri(ia-ptcd)-is-predi
then {t may be shown that

(12) is-nunber(head(is-number-1iat))

(13) ts-number(last(f{s-number-1iat))

(14) fs-nunber-list(tail(is-number-1ist))
Furtner based on the definition of the function
length over an object conforming to the predicate
is-1ist,

(15) 1s-118t(X)D length(tail(X)) = length(X)

-1

Toe fundamental operation over lists is the oper—
ation of concatenation represented by ~ uhich we
shall define by the conditional expression:

(16) X~ Y = ie=lige(X) & is-list(Y) -~
u(X;{<elen(length(X) + 1):
elen(1,Y)>[1 < £ < lengeh(Y) })

from which we may deduce:

(17) 13-1i8t(X) & 18-118c(Y)D {is-1list(X~Y)

and

(18) 1s-list(X) & is-1ist(Y)> length(X™Y)

= leagth(X) + length(Y)

Properties of Instructions in the State of the

Macnine

The definition of the algorithn of radix
sorting wiich is given here uses an extended ver=-
sion of the defimitional syatem(8) over ¢hat
developed by Lucas and Walk. Imn this version
the component of the state over which mutations
are to be performed is explicitly defined. This
component 1s known as tiwe subject argument of the
instruction,

Definitions of instructions in the defi-
nitional language take the form of macro expan-
sion groups, which define the set of instructions
which are to ba executed (interpreted) as a means
of executing a particular instruction, or consist

of a list of mutations over the subject argument.*
A group of instructions wiich define an instruce
tion, replace the instruction in the control part
of the state of the nmachine, thercby performing
the macro expansion. ‘lutations defined over the
subject argument consist of a set of sclector-
object pairs wvhich are to be the arguments of a
mutation operator expression. Arguments within
these instructions must depend directly on the
argunents of the instruction being exccuted or on
the scate of thie machine., Uithin the extremely
linited set” of instructions utilized in the defi-
nition of the radix sorting method the following
properties of the state of the machine can be
developed,

If T defines a mapping from state £, to state

r

Eps €4 = Eps DY the execution of a single instruc—
t?on contained in the state £, as the K-component
then it may be shown that:

a) If that instruction is defined by a macro
expansion group X, then

(19) ¢y, = u(g 5<Kreval(x,K(£,))>)

where eval(X,K({)) represents the macre

instruction proup X in which the parameter

expressions of che cnbedded instructions

have been evaluated with respect to the argu-

nents of the {nstruction K(f,).

b) 1f the instruction is defined by a muta-

tion proup of pairs ({sy:exp;}), where k s

the sclector over the state £, of the sub-

Jjeet argunent of the instruction being exe-

cuted, then

20) ¢ = u(&a;<K:ﬂ>,{<si.k:eva1'(expi,

£(52))>1)

vhere eval'(exp, ,K({,)) ylelds the value of

the expression exp; with respect to the

arpunents of tie instruction K(Ca).
low exanmination of tiie nutate operator u will show
that the following properties hold;
Where is-pred, = ({<K1:13-pted1>)) such that
<Kgiis-predy> ¢ is-pred, then

(21) 1is-pred,(u(A;<Kg:B>))
Further,

(22) is-number-1ist(X) & is-number(Y) &

1 <1 < lengeh(X) + 1 @ is~number-1ist

(u(X;<elen(i) 1Y>))
and

(23) is-1ist(Y) > fs-list(u(X;<I:Y>))
Consider the exccution of a macro expansion defi-
nition of a recursively defined instruction;

inst(X;Y) =

;;'* inse(£(X);8(X,¥));
group(h(X,Y))

*For a detailed description of instruction defi-
nition groups, see Nef, .

*That is, macro expansion definition groups con-
tain no values to be passed from one instruction
to the argument list of another, mutation defi-
nition groups contain no PASS: line and no muta-
tionr are defined uhich delete an element of a
list, altiiough the deletion of a complete list

is {ncluded,

where X is the subject argument of the instruction
inst being exccuted, and Y 15 a list of arguments.
lne instruction group has an argunent list which
is a function h over the arguments X and Y. It is
required 8) that the function f {s an elcment of
the get S* (vhere S is the sct of selector func-
tions) since the subject argument must be a dir-
ect component of the state. Function 5 is not
restricted in the samc manner., Then it may be
shown that, so long as p; = T and for all § < {,
Pi = F, the exccution of the instruction inst
with the arguments X and Y is equivalent to the
group of instructions

(24) py > Anat(£2(X) ;5" (X,¥));

group (h(g™1(x) g™ 1(x,10));
group (h(£72(xX),g""2(X,¥)));

g;oug(h(fl(x)nsl(xpy));
. group (h(£0(%) ,50(xX,¥)))
vhere £Y(2) = Z and gV(s,T) = T and £n(Z) = f.f.f.
ceeo£(Z) = £CE(£Cuaaf(Z)00d)))

Similarly, the definitions (chosen at a particular

instant in the process of transition between states

such that the conditions, under which the macro-
expansion groups are chosen, do not change)

inse(X;Y) =
1ns:-2(fz(x)582(X,Y):
inst=1(f) (X) ;81 (X,¥))
and
inse-1(A;8) =
1nat=12(f;,(A);8)2(A0));
inst=11(£)1(A) 3813 (A,B))
are equivalent to the single definition
(25) A4inst(X;Y) =
oo
inst=-2(£2(X);8,(X,Y));
inst=12(f1q.0y x);glz(fl(x).
P,]_(X.Y)))3
1nst-11(f,1.£1(X) 58y, (£;(X),
— atuhyn
provided that none of tie functions fy and g4 are
dependent on the state of tiie machine or compo-
nents theraof.

Tac Algorithnm

Following the description of the algorithm
given earlier, let us define the problem of for-
mal definition as that of defining a mapping,

L oax

(26) A0 - An
such that A* is an ordered list of elements
developed from the unordered 1ist A .. The dofi-
nition of the mapping 1s to be dLviged into 2n
intermediate moppings

d c d c d e

rnorpoT2 I re Mo A,

- - - -
27) Ay PO - A1 Py = eee An-l - Pn-l

The composite napping [y = r?-r‘ is a single “pass”
or "cycle” through the set of elemcnts, I' is the

mapping of the elements in the hopper (object A,
or the s-A-component of the environment) into the
pockets of the sorter (the s-P-component) accord-
ing to the i-th digic in the element, and r: is

the napping of the ten lists in the pockets into
a single list in the hopper. The mapping ri is

represented by the exccution of the definitional
instructions distribute and the ri mapping by the

execution of the instructions collect,

Assuming that the control part of the state
of the machine contains the instruction distribute
(s=P{E);s=A(E),1) initially, ve define the follow-
ing instructions as the definition of the sorting
technique or algorithm

distribute(P;A,1) =

1 > length(head(A))~ null
1s-<>(A) = collect(s=A(E);P,0,1)
T -+ distribute(P;cail(A) 1)}
pocset(P;head(A), 1)
pocket(P;value,i) =
s(elen(i,value)) 1s(elem(1,value) ,P)"
<value>

collect(A;P,],8) =
§ » 9 ~ diatribute(s=-P(E);A,1+1)
T » collect (AP, J+1,1);
collect-2(s(j,8-P(E)););
collect=1(A;8(3,P),)

collect-1(A;list,j) =
=0~ 1I:linc
T - 1:A" 148t

collect-2(p3) =
l:<>

The inatruction distribute initially has the
subject argument of the s-P-component of the
environnment, into which the elements of the argu-
ment A are to be placed. Initially the argument
A is identical to the object s-A(E), but in suc~
cessive executions of the distribute instruction
this parameter value is replaced by the tail of
the arpunent A in the previous exccution. The
argunent 1 is the index of the selector of the
digit in an elanent of the arpgument A over which
the distribution pass is to Le cxecuted. Ini-

‘tially the value of the object i is 1, since it

is assumed that the low order digit of each ele~-
ment is contained in the elem(l)-component of the
elenent, Similarly it is assumed that the number
of digits in each element is a constant, equal to
the lenpth of any element in the s-A-component of
tiie environment. lience the high order digit of
each element is contained in the elem(length
(head(A)))-component of the element.

The distribute instruction is defined as a
conditional expression with the ordered proposi-
tiona; 1 > length(head(A)), is =<>(A) and T, The
first proposition is true only vhen the index to
be applied to the eclenents being sorted is
greater than the number of digits in the elements,

This proposition terminates* the exccution of the
algorithm, The proposition 1s-<>(A) tests for
the completion of a pass through the elements of
the argument A. Vhen this proposition is true
then all the elements of the s=A-component of the
environment have been distributed to the pockats
of the s-P-component. In this case, the clements
are to be re-assembled into a new list in the
s-A-component by the execution of collect instruc-
tions. Othervise, (the proposition T) the
instruction distribute is replaced by the group

distribute(P;tail(A),1);
pocket(P;head(A),1)

The instruction pocket is a value raturning
instruction and tiws has no effect on the control
part of the state of the machine (other than its
own removal) during or after its execution. This
instruction operates over the subject argument P
with the arguments value and 1, value was selccted
from the argument A of the instruction distribute
and {s an eclement of s-A(E). The argument 1 is
passed directly from the ingtruction distribute
and is the index of the digit in the elenents of
8-A(E) over which cthis pass of the sort is being
accomplisied, By the above definition, the list
<value> 1s appended to the list s(elem(i,valua),
P), vhich 1s the pocket in the subject argument
P which has the index elem(i,value). That is,
the index corrusponding to tie i-th digit in the
argument value. This augmented list is then
returned to the state as the s(elem(i,value))~
component of the subject argument P,

The collect instruction contains only two
definitions, corresponding to the propositions
J > v and T, Tie value of the argument § vas
passed from the exccution of the instruction dis-
tribute under tie condition is-<>(A), and has an
initial value of U. This argument (1) 13 used
as an index over the compounents of P, correspond-
ing to the pocket indices in the machanical
sorter. So loug as j i3 less than 9, then the
execution of the instruction collect is achieved
by replacing the instruction in the control part
of the state of. the machine by the group.

collect(A;P,3+1,1);

collect-2(s($,3-P(E)););
collece-1(A;8(3,P),3)

The latter instructions in this nroup (to be exe-
cuted pAlor to tie execution of the embedded col-
lect ingtruction) are value returning instruc-
tions acting over the state of the machina.
collect-]l (wiich is alvays executed prior to the
coilect-. instruction) takes the argument list
wity the value s(4,P) and eitier replaces totally
tne subject argument A (vhich 1s the 8=-A-conpo-
nent of the environment) whien j = 0 or augriants
the subject argument by list, llence, the cal~
lect-1 instruction executed successively over the
range of 0 < §J < Y, assenbles the components of

P into a single list as the new s=A=conponent of
tue environment. The instruction collcct-2
initializes the j-th pocket in the s-P-componcnt
in preparation for the next pass.

*The final state of the machine is defined as
that in wiiich tie control part of the statec con-
tains no candidate instructions for execution,

Vhen the collect instructions have been exe~
cuted over the ranpe 0 < J < 9, then it assumed
that a nev s~A-component has been created and the
next pass may be commenced by the execution of the
instruction distribute(s=-P(E);A,1+1), 1In the
argunent list of this instruction, the index of
the sclector to the digit position {n each element
of the 1list being sorted has been incremented by
one over that for the last pass. llence, the pasa
being initiated will occur over the next higher
order digit,

The Definition of Ordering

In order to provide a basis for the valida-
tion of tiie mapping function from A, to An
(eqn. 26) it is necessary for us to definé the
qualitics of the predicate which has the value
T vien a list of numbers is ordered, Let us firat
define an ordering relation over the domain of
objects which conform to the predicate is-number,
based on the assunption that the relations of
"less than", “greater than" and "equal” are pre-
defined over the domain of digits;

(28) rel(a,b,i) =
is-number(a) & is-number(b) &
lenpth(a) = length(b)) -
(120 v elen(i,a) < elem(i,b) =+ T,
elen(i,a) = elem(i,b) ~ rel(a,
b,1-1), T+ F)
This definition of relation is defined only over
the { low order digits of the two arguments a
and b. Thus when 1 = lenpth(a) the function rel
is equivalent to the usual 'less than or equal
to” relationship betueen two numeric values., In
particular, we have chosen to define that when
i = 0 the two nuneric values are {n the correct
relationship with each other, Further, when the
i-th digits of tihe two arpguments are equal then
the function rel is dependent of the relation=-
ships over the (i-l) low order digits. The fole
lowing properties of the rel function may be
derived;
(29) rel(a,b,1)> (34, § < 1) (rel(<eclem(],a)>,
<elem(4,b)>,1))
(30) rol(a,b,i) & rel(<elem(i+l,a)>,<elem
(1+1,b)>,1)> rel(a,b,1+1)
Having established a relationship over the domain
of pairs of nunmbers in our representation, let us
now extend the concept to that of orderedness;
(31) ordercd(A,i) =
is-number-1ist(A) -~

length(A)
(length(A) > 1 - Et
J=2
rel(elen(j-1,A),elen(y,A),1), T+ T)
n
where;?; pj =Py Epppy & .00 & Pn-1 & Pa

This definition of the function ordered, in com=
mon with our definitton of the function rel,
defines partial ordering over the low order 1
dipits of the elements of the list A, and only
when 1 = lenpth(head(A)) does the function con=-
form wich cthe notion of "complete ordering™. In
particular the function is not defined if the
arpunent A is not a list or its components
(olen(i,A)) are not in conformance with the

predicate ig-number. Where the list is an empty
list or contains only one elemont (length(A) = 1),
then the list is said to be ordered.
Tne properties of this function include;
(32) ordered(A,1)2 (¥3,2<9<lengch(A))
(Vk,k<j)(rel(elem(k,A),nlem(j,A).i))
which follows from the transitive property of the
rel funccion;
(33) rel(a,b,i) & ral(b,c,i)d rel(a,c,1)
and
(34) ordercd(A,1) & ordered(B,1) & rel
(last(A) shead (B) ,1) Dordered (A" B,1)

The LExecution of the Algorithm

Initially the control part of the state of
the machine contains the instruction distribute
(s=P(E) ;3-A(E),1) where the s-P~-conponent of the
environment is preset to be a collection of empty
lists and where the s~A-component contains the
list of elements which are to be sorted. llence
the dumny parameters P and A of the definition of
distribute iave the values of a collection of
empty lists and the list of elements to be sorted
respectively, Additionally, the subject argument
P is sclected from the atate by the composite
selector a-P.s-E,

By the definition of an equivalent inatruc-
tion group (24), it may be shown that the def{~
nition of the instruction distribute may be
replaced by the group

(35) distribute(P;A,1) =

1 > length(head(A)) + null
is=<>(A) = collect(s-A(E);P,0,1)
T - diseribute(P;<>,1);
pocket(P;last(A),1);
pocket(P;head(tail(A)),1);
pocket(Pihead(A) ,{)

It 15 {mportant to notc that the groups cor-
responding to the propositions is-<>(A) and T
cannot be combined since the instant of assigning
values to tiie parameters would not develop the
same values., That is, the value of the parameter
P would be a collection of empty lists i3 the
definition of distribute were to bo changed to

distribute(P;A,1) =
1 > length(head(A))—> null
T =+ collect(s-A(E);P,0,1);
pocket(P;last(A),1);

eee

since arguments are evaluated at the instant the
instruction is placed in the control part of the
state of the machiine. However, in the equiva-
lent group given previously, the value of the
parameter P in the collect instruction would be
that at the instant that the collect instruction
were added to the control part; that is, the
s~P-component of the state updated by the pre~
viously executed pocket instructions,

Tie value of the parameter value in the
definition of the pocket inastruction 1s success-
ively head(A), head(tail(A)),...,last(A); that
is, elem(li,A), elen(2,A),...clem(length(A) ,A).
Thls succession of elements is not directly
related to the ordering of the clements over the
function rel, but rather will depend on any pre=-
veious history of the argument A, Inictially,

the object P 1s a collection of empty lists, and

hence by our definition of ordered, each component

of P is an osdered list.

Since tne inatruction group in definition (35)
is a linear group, (that is, a degenerate tree
containing but a single branch), then the order of
exacution of the pocket instructions is fixed, being
scquential from bottom to top in that definition.
Thus the order in which the arguments elem(k,A) are
applied to the subject argument P 15 similarly
fixed,

The s-P=-component is defined to be a collec~
tion of lists (def. (2)) each of which is preset
to be an empty list, prior to execution of the
distribute instruction. Execution of a single
pocket instruction maintains the ordering of the
s(elen(i,value))~conponent of P provided that cone
dition (34) is met. Then by execcution of suc-
cessive pocket instructions, the list of elements
in s(elen(i,valuc))-component of P 18 such that

(36) (¥k, 0 < k < 9)(¥), 1 < J < length

(s(k,P))) (elem(i,elen(],s(k,P))) = k)
since the argument valuc is only appended to that
sublist in which the i-th digit of each element
aquals the i-th digit of value.

The condition (36) may be proved by examina-
tion of the sequence of instructions

pocket(P;last(A) ,1);

LR}

pocket(Pshead(tail(A)),1);
pocket(P;head(A),1)

and their definition is terms of the mutate oper-

ator (20). Let .

X(a) = s(elen(i,a))+s=~P.g-E,

Then the exccution of the sequence of pocket

instructions above is equal to the evaluation of

the compound mutate expression, the result of which
is the new atate;

(e, u(u(€;<X(haad) (A)) :X(head (A)) (£) <head(A)>>);
<X(head(tail(A))) :x(head(tail(A))) ({)~ <head
(tai1l(A))>>);...)5
<X(last(A)) :X(last(A)) (£)™ <last(A)>>)

vherc nutations over the control part of the atate

have been onitted. From (17) it nay be shown that

each newly formed conponent X(a)(f) conforms to

the predicate is-list. That is, is-list(s(k,s-P

(L*))), vhere E' is the nutated object E after

exccution of the sequence of pocket instructions,

liow 1f the list in the s(k)-component of P
is ordered with respect to the (i-1) low order
digits of the clements of the 1list, that {s

ordered(s(k,P),i-1)

then by property (30),

(37) ordered(s(k,P),i-1) &

(¥4, 1 < 1 < length(a(k,p)))(elem
(1,0lem(],s(k,P))) = constant)=>
ordered(s(k,P),1)

Let us assunc that at the instant that the distrib-

ute instruction is placed into the control part of

the state of the machine, ordered(A,i-1) then, any

sublist formcd from the elements of A

(38) <clen(m,A),elem(n,A),...,elen(r,A)>
such that m < n < ,,, < r, i8 also ordered with
respect to the i-1 low order digits of each ele-
ment, since

ordercd(A,i-1) 2 (¥m < n)(rel(elem(m,A),

i-1))

But we have alrondy shown that the order im which

elenents are formed into sublists which are the

components of P, is the order of appearance of the

™

elements in A, Further since the execution of a
pocket instruction creates a sublist such that
the new element is appended as the last element
(in the scnse of the last function), then the
ordering specified in (38) is maintained. Thus
the mapping rd
r
A1 * Piay

where orderod(As_j,1i-1), develops a collection of
lists Py_y, where for each component s(k,P),
ordered(s(k,P),1)

After execution of the sequence of pocket
instruction defined in (35), the control part of
the state of the machine will contain the instruce
tion dfscribute(P;<>,1i) which will be the only
candidate for execution., Definicion (35), under
the condition that 1 > length(hcad(A)) 13 not
true while is-<>(A) is true defines that the
instruction distribute(P;<>,1) 1a to be replacad
in the control part of the state of the machine
by the instruction

collect(s-A(E);P,0,1)
Note that the value of the function expression
length(head{A)) is undefined under the condition
15=-<>(A) and hence the proposition 1 > length
(head(A)) 1s not true.

At the instant that the instruction collect
(s-A(L);P,0,1) is placed in the control part of
the state of the machine, we know the following
conditions hold;

(39a) (¥k, 0 < k < 9) (ordered(s(k,P),1))

(39b) (¥k, 0 < k < 9)(¥j, 1 < J £ length

(s(k,P))) (elen(d,elen(§,8(k,P))) = k)

where the value of the arpument i is that in the
argument 118t of the collect instruction.

By the cquivalence relacion (24) and the
relation (25), we may siiow that the definition
of the inscruction collect may be expanded to the
form:

collect(A;P,§,1) =

J > 9 -+ distribute(s=P(E);A,1+1)

T + collect(A;P,10,4);
collect-2(3(9,8=P(E));)}
collect-1(A;8(9,P),9);
collect~2(a(1,8~P(E)););
collect-1(A) ;8(1,P),1);
collect=-2(s(0,3-P(E)););
collect~1(A;s(0,P),0)

vhere
collect-1(A;1ist,3) =
3 =0~ I:list
T+ 1:A™ liae
and

collect=2(p;) =
L:<>

It can be sean from the sequence of instructions
in the group corresponding to the proposition T
in the definition of the instruction collect
that the execution of instructions is order
dependent since the argument 8(k,P) in a collect-1
instruction is the subject argument in the sequen=
tially following collect=-2 instruction. Similarly,
the order of execution of collect~2;collect-1
pairs is order dependent since tiie definition of
the collect-l instruction organizes a new objact
(which couforms to the predicate is-list) which
1s composed of the arguments s(k,P) in the order

0 <k <9, By the definition of value returning
instruction groups (def, 20), the sequence of
collect-2;collccet=1 instructions which define the
collcct instruction are executed by the evalua-
tion of the mutation expression
Blewouluu(u(Eeab(0) (£)>);<b(0) 1<>>) ;<aza(f) ™ b
(1) (£)>) 3<b(L)1<>>)5.,.)

wvhere a = a-A+s-E and b(k) = s(k)+8-Peg-E and
vhere the mutations over the control part of the
state of the machine have been omitted, From this
expression, it i3 possible to construct the state
of the machine at the instant that the condition
3} > 9 is true. That is, the s-A-component of the
environnent is the list s(0,P)~ s(1,P) ~s(2,P)~
+0e™8(9,P) uhera P is the s-P-component of the
environnent at the instant the instruction col-
lece(A;P,0,1) was placed into the control part of
the state of the machine by the execution of the
distribute instructiom,

Fron the conditions (39a) and (39b) we may
investinate the properties of this new list, We
know from condition (39b) that elem(i,lasc(s
(k,P))) = k and further that elen(i,head(s(k+1,P)))
= k+l. Hence from the definition of the rel func-
tion

rel(last(s(k,P)),head(s(k+1,P)),1)
and further from condition (34)

ordered(s(k,P),i & ordered(s(k+1,P),{) & rel(last
(s(k,P)) ,head(s(k+1,P)4) >
ordered(s(k,P) s(k+1,P),1)
llence over the set of compound concatenations in
the fornaticn of the s-A-component of the enviroan=
ment, we nayv conclude
ordered(a(0,P) ™ 8(1,P)" .., a(0,P),1)

At this point in the execution of the algor-
ithm, the instruction collect(A;P,10,1) is the
instruction wiilch is the candidate for execution.
Obviously, the parancter j, in the definition of
this instruction is assigned a value which is
preater than Y and hance the oxecution of this
instruction results in its replacement by the
instruction distribute(s-P(E);A,1+1). This com-
pletes tha operation of mapping from P1_1 to Ag;

re
i
Pi1 ™ A

and further completes the mapping cyecle Tys

Ty
Al A

The conditions which existed at the beginning of
the cycle have been re-established in part;

the s-P-component of the environment is a col-
lection of empty lists

the s-A-component is a partially ordered list

the control part of the state of the machine
contains the instruction

distribute(P;A,1)

with the following variations;

the s-A-component is ordered over the low
order { digits whereas at the beginning of the
cvcle ordered(A,1-1), and the value of the para-
meter {4 is the distribute inastruction has been
increnented by 1,
lence, over the mapping T'y the ordering of the
s=A-component of the environnent has been improved
by one digit.

That is,

ordered(A;_y,1-1)> ordered (T (Aq_1),1)

but we defined that the mapping from A, to A 1s
composed of a series of cycles Fye Further e
specified that complete ordering of a list of
multidigit keys is accomplished when the order-
ing covers all the digits of a key., That {ia,
ordered (A, length(head(A))).

Examination of the definition of the algor=
ithm will show that we nay vewrite the definftion
of the distrilbute instruction as two definitions;

distribute(P;A,1) =
i > length(head(A)) + null
T = repeat(P;A,1)

repeat(P;A,1) =
ig~<>(A) + collect(s-A(E);P,0,1)
T -+ repeat(l';eail(A),1);
pocket(P;head(A),1)

Inicially, the valuc of the parameter 1 is set to
1, and as can be shown from the definition of
the collect instruction is incremented by L before
the distribute instruction {is placed into the
control part of the state of the machine again,
Thus the instruction repeat is exccuted suc-
cessively uith the parameter i taking the suc-
cessive values 1,2,3,...,length(head(A)). When
the value of {, rcturned from the execution of
tiie repeat instruction is greater than
length(head(A)), the contral part of the state
of the machine contains no further candidates
for execution and hence the execution of the
algorithm is complete, ’

If at the initiation of execution of the
algorithm, the s-A-component of the environment
contains a list of elements such that

ordered(A,0)
the s-P-component contains a collection of cmpty
lsts, and the control part of the state of the
machine contain: tiwe instruction
discribute(spP(L);s-A(E),1)
then after one mapping operation over the envi~
ronment T,
ordered(A,1).
By induction we may casily see that following
wapping Tlength(inead(A)) then it is true that
ordercd(A, length(head(A))).
That is, the algoritim defined 1s validated to
develop an ordered list provided that the ini-
. tial conditions specified above are met,

where

Conclusions

Previous validations of algorithms which
were defined in terms of the nethod of defini-
tion developed by Lucas and Walk were based on
the proof of equivalence of two functions by the
method of recursive induction, This proof shows
that where a predicate can be developed to
describe the attributes of the final state of
the abstract machine, then the method of predi=-
cate or quantitative calculus is applicable,

Tihe example choseun is that of a sinple sorting
algorithn vhere there is no indcterminacy with
respect to the order of execution of instruc-

tions,

In the case of the definition of an algor-
ithm in which thure exists a number {presumably
finite) orders of execution of instructions, it
may be necessary to establish the equivalence
of all possible permutations of execution orders
before the question of validity of the algorithm
can be tested,

References

(1)

{2)

(3}

[4)

(s}

(6]

{71

(8}

Lucas, P. and Walk, K., On the Formal
Description of PL/I, Ammual Review in Auto-
matic Programning, Vol, 6, Part 3, 1969,
Pergammon Press, Oxford, U, K.

Formal Defnition of PL/I:

Fleck, ¥, and Necuhold, L., Formal Definition
of the PL/I Compile Tine Facilities. IBM
Laboratory Vienna, Techn. Report TR 25,080,
1968,

Walk, K., Alber, K., Bandat, K., Bekic, H,,
Chroust, G., Kudielka, V,, Oliva, P. and
Zeisel, (., Abstract Syvntax and Interpreta-
tion of PL/I, IB!M Laboratory Vienna, Techn.
Report TR 25,082, 1968,

Lucas, P., Alber, K., Bandat, K., Bekie, H.,
Oliva, P., Walk, K. and Zeisel, G., Informal
Introduction to the Abstract Syntax and
Interpretation of PL/I. IB!l Laboratory
Vienna, Techn. Report TR 25,083, 1968,

Alber, K., Oliva, P, and Urachler, G., Con-
crete Syntax of PL/I. IB!f Laboratory Viemna,
Techn. Report TR 25.084, 1968,

Albez, K, and Oliva, P., Translation of PL/I
into Abstract Text. IB!f Laboratory Vienna,
Techn, Report TR 25,086, 1968.

Lucas, P., Lauer, P. and Stigleitner, H,
Mechod and ilotation for the Formal Definition
of Propranming Languages. 1B Laboratory
Vienna, Techn, Report TR 25,087, 1968.

Lee, J. A. N., The Formal Def{nition of
BASIC (to be published).

Lucas, P., Two Constructive Realizations of
the Block Concept and their Equivalence,
Techn. Rep. TR 25,085, IBM Laboratory Vienna,
1968,

Linn, A. L., Proof of Equivalence of the
Update and Soarch Mochanisms by Recursive
Induction, Techn. Note, LN 25,3,047, IBM
Laboratory Vienna, 1968,

MeCarthy, J., A Basis for a Mathematical
Theory of Computatinn in Computer Programming
and Formal Sygtems, (Braffort, P, and
Hirachber, D., eds.), North-llolland Publ.
Co., Amsterdam, lolland, 1963.

Knuth, D. E., Von Neumann's First Computer
Progran, Computing Surveys, Vol. 2, No. 4,
1970,

Lee, J. A. N, and Wu, D,, Vienna Definition
Language-—A Generalization of Instruction
Definitions, Techn. Note TN/CS/0C01l, Com~
puter Science Program, University of Massa-
chusetts, Amherst, Mossachusetts, 1969,

