Abstract,

AUTOMATA WITH RANKED STATE SETS -

Dieter Schiitt1
Technical Report 71-B4
Department of Computer and Information Science

University of Massachusetts, Amherst 01002

The notion of finite state automaton is extended to systems
which process directed ordered acyclic graphs. The general-

ization is mainly achieved by associating two ranking relations

- with the state set of an automaton. 'Ranked automata' can be

considered as pattern-generating systems or as control devices
for finite state automata. 'As was done for tree automata,
closure properties of ranked automaton definable sets and

languages induced by such automata are investigated.
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0. Preliminaries

Let V be an alphabet (i.e. a non-empty,finite set).

A directed ordered graph (DOG) is amap I' : V » V%,

A node v 6f I'y 1.e. an element of V, is called
(1) a leaf of T 1f T'(v) = A
(2) an input node for v'eV if v' is a symbol in I'(v)
(3) a root of T if v is not an input node for any v'e V.
Note that our concept of DOGs differs from that given by Arbib and

Give'on [1] in that we reverse the edges.

A sequence ViseeesVy of nodes of T is

(1) an undirected path of T if for 1 = 1,...,n-1 either vy is an

input node for v or v is an input node for A

i+1 i+l
(2) a directed path of T' if for i = 1,...,n-1 v

1 is an input

note for Vit
A DOG is connected 1f every pair of nodes are joined by an undirected

path. A DOG which has no directed path that begins and ends with the

same node is called acyclic.

Henceforth, all DOGs considered will be connected, acyclic DOGs
T : V> V* with the property that I'(v) = I'(v') for any two nodes v,v'

which are.input nodes for the same node v".

A tree is a DOG for which each node has at most one input node.

A linear ordered DOG (LOG) is a pair (I',<) where I' : V + V* is a DOG
and < is a linear order on V such that

(1) 1f T(v) = v, oo v, (2 > 1) then v < vy e v
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(2) if v' is an 1input node for v, v" is not an input node for
v, and v' < v" (v < v') then v < v" (v"' < v).
Clearly, there are DOGs for which no linear order of that kind exists.

However, every tree is a LOG.

If (I'y<) 1s a LOG then
(1) a root of T is the smallest element of V
(2) if vev' <v" and T(v) = I'(v") then I'(¥v') = I'(v)
(3) 1f v <« v' < v" and v, v" have the same input node v'eV

then so has v'.

Example 1. V = {1,...,8}

v ' 1 2 3 4 5 6 7 8

rv)| 2345 67 67 8 A A 8 A

The (unique) linear order < on V such that (I',<)

is a LOG is given by the sequence
1, 2, 3, 6, 7, 4, 8, 5.

For the pictorical representation of a LOG we choose the same method
as used in [2], that is we gather together the 'outputs' of all nodes
which 'feed' the same sequences of nodes.

Thus we get:




Let I be an alphabet.

A I-LOG is a triple D = (T',<,u) where (I',<) is a LOG and u : V > I

is a labelling function.
- By iz we denote the set of I-LOGs.
Note that I-LOGs are derivation structures in the sense of Buttelmann [2].

For a I-LOG D and the sequence ViseeosVy of all its leaves in

increasing order, the frontier of D is defined by

fr(D) = u(vl) se u(vn).

This completes our introduction to the graphs we shall be using.

Now we shall continue with some definitions about automata.

An alphabet Q is ranked if a finite relation r Q x N (N is the
set of positive integers) is specified. The set {q|(q,n)er} of

n-ary elements is denoted by Q;.

A ranked (finite state) automaton (RA) is a 7-tuple
A= (Q, ¥, %, z, ¢, QO’ F)

where Q,Z are (finite) alphabets,

Q,, F =Q,
v, * are finite subsets of Q@ x N, and

k -9 ¥ - 4
(0) § ={(q .xk, q7) | quk A qul A XeZ} or
4 k =k + - 4
(0" 8 ={(a"yx, q) | qeQ; » qeQ a xeL}.
In the first case (0) A is a topdown ranked automaton (T-RA), in

the second case (0') a bottomup ranked automaton (B~RA) 1

lConvention: (1) and (1') indicate the topdown and bottomup case,
respectively. . .



Q is the set of states, Qo the set of initial states, F the set
of final states, I the set of input symbols, and § the transition

relatdion of A.
Note that 8§ is a finite set.

Remarks. (1) A B-RA is a genefalized finite aut§maton defined Sy
Buttelmann [2]. Since we restrict ourselves to transitions
of the form (qk,xk,az) rather than (ql"'qk’xl"’xk’al"‘az)
the converse is not true. A T-RA is a generalized finite
automaton if (qk,xk,al)eG implies k = 2.

(2) If ¢ is a map and Q; = Q then A is a topdown or
bottomup tree automaton.
(3) If +,% are maps and Qi = Qi = Q then A is a finite state

automaton.

A RA A is called

(1) (total) left-deterministic (LT - RA or LB - RA)

if for EeQ; and xk(xez, kelN s.t. Q; 4 @) there is
exactly one qeQ s.t.'(qk,xk,az)ed

or for ECQ; and xk(xcz) there is exactly one qeQ and
2eN s.t. (qm,xk,ak)ed

(2)- (total) right-deterministic (RT-RA or RB-RA) if for

chi and xk(xez) there is exactly one qeQ
and feN s.t. (qk,xk,ag)cd
or for qu; and xk(er, keN s.t. Q; $+ @) there is

exactly one qeQ s.t. (ql,xk,ak)eé.



The finite state automaton induced by the RA A is a 5-tuple

A= (Q, £, 6, Q F) where § € Q x £ x Q is defined by

(q,%x,q) €8 iff (qk,xk,q Yed or (qz,xk,q )e§ for some k,feN.

Clearly, determinism of A generally does not imply determinism of A.

In order to compute upon a I-LOG D with a RA A we introduce the

notion of a 'run' (cf.[6]).

A run of AonD = (T,¢,u) is a map p : V + Q such

that (1) if v is a root of T then p(v)er

(2) if ViseeesVp is a maximal sequence of nodes of T ordered

_ '
- by < such that P(vl) = ,,, = F(vk) = cee Y, (2 >1)

|
v,
1 ]
then (o(vl)...p(vk), u(vl)...u(vk), p(vl)...p(vz))ed
or (1') if v is a leaf of T then there is a qeQ, such that
(q,u(v), p(v))es

(2') if ViseeesVy is a maximal sequence of nodes of T ordered

1
then (p(vl)...p(v ) WV e (v), o(vl)...o( ))es.

1
by < such that F(vl) = .. = P(v ) = cer Yy (2 > 1)

Thus a run is an assignment of states to nodes of I in conformity

with the transition relation of A.

The automaton A accepts D if there exists a run of A on D such that
(3) if v is a leaf of I then there is a qeF such that

(p(v), u(v),q)ed

(3') 1f v is a root of T then p(v)eF.
T(A) denotes the set of I-LOGs accepted by A.

A subset T of i,z is RA-definable if for some RA A, T = T(A).

The language of A is defined by L(A) = {fr(D)|DeT(a)}.




6.
Remark. A hierarchy of generalized automata anélogous to the familiar
hierarchy of generative grammars may be introduced as in [2].

Note that in [2], acceptance of I-LOGs means acceptance of

DOGs with only one root.

Example 2. Q = Q,=F-= {q}

v = {(e,D), (6,2}
+ = {(q,1), (q,i), (q,4)}
L = {a,b}
§ = {(q,2,9),
(a,2,9%),
(q,b,9),
(qz,az.qz),
@?,%,9)}

It can easily be checked that the DOG of example 1 is accepted

by the T - RAA= (Q, %, +, I, &, Q, F) if we define u as follows

v 1 2 3 4 5 6 7 8

u(v)l a a a b a a b b

Note that T(A) is not definable by any RA for which the relations +,+ are maps.



1. Comparison of T — RA and B - RA

The main result of this section will be that the classes of T - RA
and B - RA are comparable whereas the classes of RT - RA and
LT - RA (LB - RA and RB - LA) are incomparable with respect to

definable sets.

A consequence of this result is that the classes of tree automata

and ranked automata are incomparable with respect to definable sets.

Theorem 1. A subset of L, is T - RA definable iff it is B - RA
definable.

Proof: Let A = (Q, +, +, I, &, Qs F) be a T - RA or B - RA.

Define Q; =F

F o=Q

8 = {(@"x5,d% ] (x5, 7hes)
or .5 = {(ak,xk’qz)l(qlpxk’ak)€6}°

| ' ]

1]
Then A = (Q, ¥, ¢, I, & , Qo’ F ) is a B - RA or T - RA such

that T(A') = T(A).

Corollary 1. A subset of i.z is RT - RA (LT - RA) definable

iff it is LB - RA (RB - RA) definable.

Theorem 2. There are subsets of i,z which are T - RA (B - RA)
definable but not RT - RA (LB - RA) definable.
The proof of this theorem is based on an example given by Magidor

and Moran [6].



Proof:

Define the T - RA A by

Q= {q19q29Q30q4}

QO = {ql’qz}
= {q4}
Z = {a,b}
() a b
2 2
ql quqsz4 Q3
2 2
93 i3 | 9

T(A) is the set of I-LOGs which are trees with the property that each

node which is not a leaf is an input node for exactly two other nodes

and that any two nodes which have the same input node are labelled with

the same element of Z.

Note that any run upon a I-LOG not in T(A) is trapped into the

absorbing state q3-

From the fact that we treat RA with finite state sets it follows that

a RT -

RA A' such that T(A') 2 T(A) must accept a tree which has at

least one node which is an input node for two nodes labelled with

different elements of L.

Remark.

Magidor and Moran [6] have shown that there are finite sets
of trees which are not definable by any deterministic sinking
(i.e. topdown tree) automaton., However, that does not hold
for RT ~ RA because a deterministic RA is allowed to have

more than one initial state.



Theorem 3. There are subsets of i'z which are RT - RA (LB - RA)

definable but not LT - RA (RB - RA) definable.

Proof: Define the RT - RA A by

Q = {q;,95,95}

Qo = {ql}

F = {qz}

Z = {a,bl}

8 a b
i1 9|9
1 93| 0
43 | 95 | 494

Clearly, T(A) = {a" b" | m >0 an > 1} is not LT - RA definable.

Remark. Buttelmann [2] proved that sets which are definable by
generalized finite automata are also definable by right-
deterministic ones. By theorems 3 and 4 however, B - RA

definable sets need not be RB - RA definable.

Theorem 4. There are subsets of iﬁ which are LT - RA (RB - RA)

definable but not RT - RA (LB - RA) definable.

Proof: Define the LT - RA A by

Q:Q nF:{q}

(o)

{a}

™~
n

One readily checks that T(A) is not RT - RA definable.
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Corollarz'Z. The classes of RT - RA and LT - RA (LB - RA and RB - RA)

are incomparable.

Thus, for the different classes of ranked automata we have the following

hierarchy with respect to definable sets.

RT - RA=1B - LT - RA = RB - RA
RT — RAn LT -

=ILB - RAn RB - RA

Moreover, since the above diagram is still true for ranked automata
which are tree automata, but tree automaton definable sets are

definable by deterministic bottdmup tree automata [9], it follows

Corollary 3. vThere are tree automaton definable sets which are not

RA - definable.

As a consequence, we get a hierarchy of automata with respect to

definable sets of DOGs with only one root.

generalized finite automata [2]

_——”"——”—’—'

tree automata [9,10] bottomup ranked automata

/

tree automata n bottomup RA

finite state automata
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2. Closure Properties of RA definable sets

In this section it will be shown that RA definable sets are closed
under union, intersection, projection, and inverse projection but

not under complementation and product.

Theorem 1. If T and T' are RA definable subsets of i‘):’ then so are

TuT' and Ta T'.

Proof: Let A and A' be T - RA such that T(A) = T and T(A') = T'.

Assume that QaQ' = @.

Now define the T - RA A" = (Q", +", +", I, &", ;, F") by

Q" = QuQ' Q" =QxQq'

G -oue o Q=g

F" = FyF' F' = F x F'

T +" = {((q,9"),n) | (g,n)e+ ~ (q',n)e+'}
M= py ot " = {((q,9"),0) | (g,n)et ~ (q',n)et"}
6" = 6y s’ S8 = (e, #, @Y

@, %5,ahes ~ (a'K,x%,3"Yes").

Then T(A") = Ty T' or T(A") = TnT'.

Corollary 1. LT - RA and RT - RA definable subsets of i,z are closed

under union and intersection.

Obviously, RA definable sets are not closed under complementation. Even
if we restrict ourselves to a certain subset of f,z and to the class of
ranked automata which are tree automata we cannot prove a complementation
closure theorem. To be more precise, if we specify a finite relation

0 € X xN and define a T - RA A(J = (Q, +, 4, Z, 6, Qo’ F) as follows



12,

Q = QQ = F = {q}
t = {(q,1)}
+ = {(q,2)|3 xez : (x,2)e0}

§ = {(q,x,0Y) | (x,2)e0} ,

[}

then we get (cf. [9])

Theorem 2. There is a relation o and a tree RA definable subset

T of T(Ab) such that T(Ab)-T is not tree RA definable.

Proof: Let I = {a,bl, ¢ = {(a,l),(a,2),(b,1),(b,2)},
and A be the tree RA in the proof of theorem 2 of section 1.

Clearly, T(A) S T(Ao) .

Suppose Ais a tree T - RA s.t. T(K)E'T(AO) - T(A).

Then A accepts the following element of T(Ab) - T(A)

- -2

Thus (qlﬁa!qz) - -

(1 ¥ § does not necessarily imply q + qj)
P

(qz,b,qa) are transitions of § where qlcQo and q3,q4cF.

But then A accepts also a tree which is in T(A):

z

(M
&



Hence, T(Ao) - T(A) is not tree RA definable.
Now let D = (T,<,u)e f,z, D' = (T',<,u'")e &z,, and m : L > 1",

D' is called the projection of D w.r.t., 7 if u'(v) = wu(v) for

all nodes v of .

For T € iz, ?(T) denotes the set of elements of ix, which are

projections of elements of T w.r.t. 7.

For T'S iz., P -1(T') denotés the set of all De &Z for which
there is at least one D'eT' such that D' is the projection of D

w.r.t, m,

Theorem 3. If T is a RA definable subset of iz and m : I > L',

then 7(T) is a RA definable subset of ﬂz,.

Proof: Let A= (Q, +, +, I, 6, Qo’ F) be a T - RA s.t. T(A) = T.

Define §' = {(qk,n(X)k,ER)l(qk,xk.ER)CG}

Clearly, the T - RA A' = (Q, ¥, 4, L', &', Q,» F) defines T(T).

Conversely, we get:
Theorem 4. If T' is a RA definable subset of £2' and 7: L > I',

then 7 -l(T') is a RA definable subset of £’Z'

13.

Proof: Let A' = (Q, +, 4, Z', &', Qo’ F) be a T - RA s.t. T(A') = T'.

Define § = {(qk,xk,ag')IB xel : (qk,w(x)k,az)ed'}.
One easily checks that the T - RAA = (Q, +, 4, I, S, Qs F)

defines = _l(T')-

Remark. As a projection means simply relabelling of a DOG it 1is not

surprising to find that RA definable sets are closed under



'projection’ and 'inverse projection'. The corresponding

for tree automata can be found in [9].

Now let D and D' be elements of iq? acZ+, Viseeesv @ segment

14.

theorems

of

the sequence of leaves of D ordered by < s.t. u(vl)...u(vn) = o, and

Vi,...,V; a segment of the sequence of roots of D' ordered by <'

s.t. u(vi)...u(v;) = o, Assume that Va V' = @,

An o-composition of D with D' is a I-LOG D" with the property that

(1) V" = vy (V' - {vi,...,vé})
r(v) if veV - {vl,...,vn}
") = F'(vi) ifvevw

I'(v) otherwise

(2)
uv) if veV
u'"(v) =
u'(v) otherwise

(3) its linear order preserves < and <'.

T' at ¥

For subsets T, T' of i,z and 'E'EZ+ the (weak) product of T and
is the set T°T T' of I-LOGs which can be obtained by composing

element of T with some elements of T' w.r.t. elements of ¥ .

Remark. Our concept of composition differs slightly from that
Buttelmann [2], in that we don't specify the location
composition and we don't require that vi,...v& is the
of all roots of D'. The weak product is the analogue

given by Magidor and Moran [6] for sets of trees.

an

given by
of a
sequence

of that



Theorem 5. RA definable subsets of ﬁLz are not closed under product.

Proof: Let the T - RA be given by

Q= {ql’qZ’q3}

Q, {ql}

{95595}

™
0

{a,b}

2 2
= {(ql’a !qg)’

o
|

(9,,3,9,),
(q%’b29q§)s
(44,2,94)}
Suppose A is a T - RA s.t. T(A) = T(A) °{a2} T(A).

Then A accepts the following element of T(A) o{aZ}T(A)

15.



-2 2 -
Thus (ql.a ,qg)-

(Eg,bz,ag) (1 ¥ j does not necessarily imply q, + Ej)

=2 2 -3
(a;,a%,493)
(52:3’34)

(q3,a,q5) are transitions of 6§ where qlcQO and q4,q5eF.

But then A accepts a I-LOG which is not in T(A) o{aZ}T(A):

Hence, T(A) o{aZ}T(A) is not RA definable.

Remark. As a consequence of theorem 5, we cannot prove a Kleene
characterization theorem for RA definable sets as it was done
by Thatcher and Wright [9] for tree automaton definable sets.
A more promising approach could be that one recently given by

Helton [3].

16.
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3. Languages induced by ranked automata

In this section we intend to study formal languagesl induced by sequences
of leaves or by certain paths in RA definable graphs, The notion of a

control language for ranked automata yields some new problems.

It is well-known that tree automaton definable sets are exactly projections
of sets of derivation trees of context-free grammars [10]. That does

not hold for ranked automata which are tree automata since the class

of languages defined by tree RA is a proper subclass of the class of
context-free languages (hint: the regular language {ambnlm, nelN}

is not the language of any tree RA).

However, if we associate with a tree T-RA A a finite set M of 'matrices'
of transitions of A and require in addition of a run p of A upon a tree
that, for any maximal sequence ViseresVy of nodes in increasing order

which have the same input node, the matrix

[(o(vl).u(vl).p(\ri’l)- .-p(Vi’zl)), ceoslp (vv),u(vv).o(v\')’l). . .p(v\',’lv))]

is in M then we get:

Theorem 1. For each context-free language L there is a tree T - RA A

and a set M such that the language defined by A w.r.t. M is L.

Proof: Let L be a context-free language and G = (VN’ VT’ P, S) be
a context-free grammar generating L for which the start symbol S does

not appear on the right of any production of G.

1For definitions of grammars and languages we refer to Chapter 2.2 and
2.3 of [4].



Define the T - RA A by:

Q= {qoaqloqz}

Q, = {q}

F = {q,}

L= VNuVT

v = {(q_,1),(q;,1),(q,,1)}

t = {(qp, 2| 3 gevy : (£,weP}u (q,, D}
6 = 10450850y ™) | (5,WeP} u {(ay,8,0,) |2}

((ay,6,a] ™) | F gevy - 18 & (5,wyep).
Let M consist of all matrices of the form
[(ql,vl,ail),...,(ql,vv,agv)] where v,...v s a string appearing on
the right of any production of G and
(ail,...,atv) is a v-tuple with the property that for i = 1,...,v

24. -
azi ) ay if vieVN and 24 2(w) for some w s.t. (vi,w)eP
i

q, if vieVT.

Then the language defined by A w.r.t. M is L.

Now we will investigate sets of strings of labels induced by certain

paths of RA definable graphs.

Let A be an arbitrary T - RA and D = (I',<,u)eT(A) with exactly one

root and one leaf.

A directed path VisesesV of T that starts with the root and ends
with the leaf is called central if
for each veV - {vl,...,vn} there is an ie{l,...,n} such that

vy is an input node for v.

18.
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Denote by ch(A) the set of strings of labels induced by central paths

in I-LOGs with exactly one root and one leaf defined by A.

Remarks, (1) If VisesesVy is a central path of T
then a run p of A on D is completely determined
by n - 1 transitions of the form
(p(vl)’ U(Vl)’--tp(vz)---)

Ceep(vy))eee, H(v,)),euin(vy).l L)
2 2 3 L

CRRLYCAD PRPE TC A RPN 2 PO

2 ch(A) € T(A), i.e. ch(A) is a (not necessarily regular)
subset of the regular language defined by the finite state

automaton A induced by A.

If ¥, ¢+ are maps and QI = QI = Q then ch(A) = T(A).
Thus the class of regular languages is a subclass of
the class of languages of .the form ch(A).

As the next theorem shows, this inclusion is proper.

Theorem 2. There is a T - RA A such that ch(A) is context-free.
There is also a context-free language L for which no

RA A exists such that ch(A) = 1,

"Proof: To prove the first sentence define the T - RA A by

Q = {q,d)
Q, = {q}

F = {q}

Z = {a,b,#}
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-
fl

{(chl), (q,2)}
{(q,1), (q,2), (q,1)}

= { (Q.a.qz) » (qzsbzyq) 1] (Q-#;a)}

->
n

o
|

Then ch(A) = {a"l p"1 ,,, 2"k p"k #]k,mi,n > am ot m.k.= n, +...m} v {#}

i
1s a context-free language (the proof of this statement is tedious

but elementary and left to the reader).

It is a much easier task to find an example proving the second
sentence of the theorem. Almost any non-regular linear language
considered in the literature is such a language, so for example

the language {a® p" #n > 1},

Remark: It is still an open question whether a language of the form

LCP(A) can be context-sensitive,

In order to generalize this concept we introduce the notion of a

control language (cf. [7]1).

A control language for a T - RA A is a subset C of (N x N)+.

To apply C, let D = (I',<,u)eT(A) with exactly one root and one leaf.

Assume ViseeesVy is a central path of T and p is a run of A on D

which is determined by n - 1 transitions of the form (x). Then, by

definition, u(v;) ... u(v ) is in L (A) 1f the word

(1,2’(0000(‘72)0lo))(z(ooop(vz)-oc)’ 2(.-.0(\73)...))...(2(-..D(Vn_1)...)‘,2,(...D(Vn)...))

is in C.

Remarks. (1) Obviously, if C = {(k,2)|3J q,qeQ : (q,k)e+ (6,2)e+}+

then LC(A) = ch(A)°
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Consequently, each regular language can be represented

in the form LC(A).
(2) In analogy to developmental systems [5] a ranked automaton
A may be considered as a pattern-generating system, the

control language C as a set of environmental inputs for A.

Two natural questions arise:

Which language L can be represented in the form L =‘LC(A)?

If L is such a language what can we say about the complexity of C?

In what follows, we give some first results.

Theorem 3. Let A be a ranked automata such that +, + are maps and

¥ +
Ql—Ql-Q.
If Ce {(1,1)}+ is regular then so is LC(A).

Proof: Let C € {(l,l)}+ be a regular language. Then
Cs= {ch+|:3 w'eC : 2(w') = 2(w)}is also regular. Hence, the

intersection of C with the regular language ch(A) = T(A) is regular.

Theorem 4. There is a T - RA A and a linear language C such that

Q

LC(A) is context-sensitive.

Proof: Define A by

Q = {q,q}

o = {q}

F = {q}

£ = {a,b,c,#}

v = (@1, (3,2)}

t = {(q,1), (q,2), (q,1)}

5 = {(a,2,0%), (a5,b,0), (q,¢,), (q,#,D)}.
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Let C = {(1,2‘)“‘(1,1)“(2',1)}’“|m,n >1}. |

Then C is linear and L.(8) = {a" b" c® #|n > 0} context—éensiti&e{*””

‘ Acknowledgement
‘Thg.auﬁhor would like to thank Michael A. Arbib for-heipfﬁl SUggesfibns'

on this work.

C e



1.

9.

10.

H.

J.

23.
References

A. ARBIB and Y. GIVE'ON, Algebra Automata I: Parallel Programming
as a Prolegomenon to the Categorical Approach, Information and
Control 12 (1968), 331-345,

W. BUTTELMANN, On Generalized Finite Automata and Unrestricted
Generative Grammars, Proceedings of the ACM Symposium on Theory
of Computing (1971), 63-77.

J. HELTON, Algebra Automata, Stack Automata, and Operator Semigroups,
Ph.D. thesis, Mathematics Department, Stanford University (1969).

E. HOPCROFT and J. D. ULLMAN, Formal Languages and their Relation
to Automata, Addison-Wesley, Reading, Mass. (1969).

LINDENMAYER and G. ROZENBERG, Developmental Systems and Languageé,
Proceedings of the ACM Symposium on Theory of Computing (1972),
214-221.

MAGIDOR and G. MORAN, Finite Automata over Finite Trees, Technical
Report No. 30, The Hebrew University of Jerusalem (1969).

SALOMAA, On Grammars with Restricted Use of Productions, Ann. Acad.
Sci. Fennicee Ser. A.I. 454 (1969).

SCHﬁTT, Baumautomaten, ITAS - Seminarbericht Nr. 36, Gesellschaft
fir Mathematik und Datenverarbeitung mbH Bonn (1971).

W. THATCHER and J. B. WRIGHT, Generalized Finite Automata Theory
with an Application to a Decision Problem of Second-Order Logic,
Math, Systems Theory 2 (1968), 57-81.

W. THATCHER, Generalized2 Sequential Machine Maps, J. Comput. System
Sei. 4 (1970), 339-367.




