A STUDY OF THE CONSTRAINTS UPON THE PARALIEL
DISPATCHING AND EXECUTION OF MACHINE
CODE INSTRUCTIONS

Caxton C. Foster
Edward M. Riseman :
Department of Computer and Information Science
Technical Report 72A-1 .
University of Massachusetts
Amherst, Mass. 01002

This work was supported in part by
Control Data Corporation

TABLE OF CONTENTS

Abstract
I. INTRODUCTION
II. MAXTMUM PARALLELISM

III. EFFECT OF STACKS AND SOFTWARE PERCOLATION
ON PARALLELISM
Blocking on Conditional Jumps
Parallel Decode Stacks
Software Percolation
Experimental Results

Discussions and Conclusions

IV. EFFECT OF BYPASSING CONDITIONAL JUMPS
ON PARALLELISM
Our Experiment
Discussion
Conclusions

References

PAGE

12
12
13

13

17
21

25
26
31
34

35

ABSTRACT

An infinite machine, one with an infinite instruction stack,
infinite registers and memory, and infinite numbers of fgnctional
units is defined. This paper investigates the increase in paral-
lel execution rate as a function of the size of an instruction
decode stack with look-ahead hardware. Seven programs written for
a CDC-3600 were "run" on this machine. Under the constraint that
instructions are not dispatched until all preceding conditional
jumps are resolved, stack sizes as small as 2 or 4 achieve most of
the parallelism that a hypothetically infinite stack would. The
improvement . over a standard machine is only 1.72:1.

An algorithm is described which can be used to replace the
look-ahead hardware of the stack by reordering the sequence of
instructions prior to execution. The transformed sequence has the
property that if the instruction at the top of the stack cannot be
dispatched immediately, there will be no instruction below it that
is ready for dispatching. Experimental results demonstrate that
this method achieves 93.5% of the parallelism obtained if an infi-
nite decode stack were available under the assumption that it takes
zero time to dispatch an instruction.

If it was assumed that the manner in which conditional jumps
are resolved is known, then instructions could be dispatéhed before
the jumps are executed. Under these assumptions the infinite machine
on the average ran 51 times as fast as they did on a standard 3600.

To reach ten times the speed of a "one-instruction at-a-time" machine,

sixteen jumps must be "by-passed" in an actual machine which would

imply 65K paths in simultaneous execution.

I. INTRODUCTION

The problem of detecting and utilizing parallelism in programs
has been extensively studied. Many techniques have been»developed
to detect parallelism in higher level languages, particularly in
arithmetic expressions [1], [2]. There have been a number of pro-
posals for FORK and JOIN type instructions for the programmer him-
self to specify where and how two or more sequences of instructions
are executed simultaneously [3]. The huge Illiac IV has been imple-
mented to take advantage in hardware of array operations that can be
executed in parallel [4]. However, this type of machine is used
effectively only on a restricted class of problems.

A different approach is the design of a general purpose computer
to automatically detect when more than one instruction in the instruc-
tion stream can be executed simultaneously in parallel. In the case
of a single instruction stream - single data stream.machine, Flynn
pointed out in 1966 that the bottleneck is the decoding and dispatch-
ing of a single instruction per machine cycle [5]. Thus, instruc-
tions may be executed in parallel but they are dispatched sequentially
as in a number of current computers: IBM 360/85, 91, 195 and CDC 6600
and 7600.

Recently, Tjaden and Flynn [6] have examined the payoff in using
a hardware stack to dispatch as well as execute instructions in
parallel. They determined the increase in execution rate as a func-

tion of the size of the stack. Simulations show an 86% increase

~4-

with a decode étack of 51ze‘10. One problem in using such a stack
1s that the cost of theAlook-ahead hardware goes up as the square
of the stack size; each instruction must be compared with all
instructions preceding it in the decode stack.

The process of dispatching instructions at the maximum rate
is complicated fur%her by the presence of conditional branches.
Until the conditional is resolved, it is not known which of the
two instruction paths proceeding from the conditional should be
fetched and executed. The Stretch computer [7] - [9] involved an
attempt to partially overcome this problem by allowing the program-
mer to guess at the path that will be taken. This sequence of
instructions was fetched and dispatched. If the guess is later
determined to be wrong, the system must abort and reconstruct the
state of the machine back at the branch. This process required
considerable effort so that there was no improvement in execution
speed unless the guess was correct 90% of the time. The result
was an expensive failure. The 360/91 and 360/195 avoided this dif-
ficulty by pre-fetching the two instruction sequences but no exe-
cution until the conditional is resolved [10] - [11]. We could
discover no one who has proposed deeper excursions into the unde-
cided future.

This paper is a continuation of the examination that Tjaden and
Flynn [6] started. The absolute limit of the payoff of the decode
stack will be investigated by considering a hypothetically infinite

decode stack. First, the concept of a program executing with maxi-

mum parallelism is developed; this is a program in which it is
assumed that it is known a priori how all conditional branches
will be resolved. Then the analysis will be modified to treat
conditionals in a realistic manner. An algorithm will also be
described to replace the lock-ahead hardware of the stack by
reordering the sequence of instructions prior to execution. We
refer to this process as "percolation'. The transformed sequence
will have the property that if the instruction at the top of the

stack cannot be dispatched immediately,

IT. MAXIMUM PARALLELISM

Consider the stream of instructions presented to the control
unit of a conventional CPU. There will be loads, stores, adds,
multiplys, unconditional and conditional jumps etc. Examples of
such streams may be collected by tracing actual programs with a
suitable interpreter. What factors limit the rate of execution of
such an instruction stream?

In the simplest type of CPU, the time required to fetch
instructions and operands will limit the rate. Let us add a very
large (unlimited) stack or cache to the machine so that, for all
practical purposes, memory access time goes to zero. Still the
program takes a finite non-zero time to execute. This is because
it consists of a sequence of instructions each consuming some time.
Let us, therefore, allow as many instructions to be executed in par-
allel (at the same time) as we can. Since at any given moment we
may wish to have several adds going on or several multiplys, let
us expand the CPU so it has very many (as many as necessary) func-
tional units. That is to say we will never delay the dispatching
of an instruction because of lack of a piece of hardware; thus each
instruction will be dispatched at the earliest possible moment.

We still do not achieve complete parallelism because of the
inherently sequential nature of parts of the instruction stream. For
example, the triplet: "load accumulator, add, store accumulator”
must be executed sequentially. Each instruction in a computer (with

the exception of no-ops) has a set of sources and a set of destina-

tions, not necessarily disjoint. Thus:

Instruction Meaning Sources Destinations
LDA o load acc. memory location a acc.
ADD B add to acc. acc. and memory location 8 acc.
STA v store acc. ace. : memory location y

The registers (both "high speed" and "storage") containing the
information that will be-needed during execution of the instruc-

tion will be referred to as the sources of the instruction; the
registers that must be available to store the results of the instruc-
tion are called the destinations. An instruction that has a destina-
tion which is not at the same time a source with respect to that

instruction is said to be an open effects on that destination [61,[107.

Thus, LDA is opén effects on the accumulator and STA ¢ is open effects
on 6.

In keeping with ouf previous approach we will say that each
open effect creates a new destination. Under this assumption con-
sider the following string of instructions:

LDA o
ADD B Chunk 1
STA vy
LDA §
MPY ¢ Chunk 2
STA =

This set of instructions could be executed in any of three ways:
a. as shown - first chunk 1, then chunk 2
b. in parallel - chunk 1 at the same time as chunk 2

or c. in reverse order - first chunk 2, then chunk 1

The parallel execution, case b), can take place because the
LDA § and the LDA a are both open effects on the accumulator and
each creates a new accumulator for use by that chunk independently
of the one used by the other.

We still have a limit on the speed of the program. Clearly,
we cannot dispatch (begin to execute) an instruction until all its
sources are available. The ADD B instruction above must await the
completioﬁ of the LDA o and whatever instruction it was that put
data into B. Even after all its sources are available the ADD will
take a non-zero time to execute.

We are considering a program not as a set of instructions that
must be executed in any particular order; rather, we will be look-
ing at a program after it has executed as the set of instructions
executed, each one having some earliest dispatch time. Thus, the
sequentially executed program is just one possibility in which many
instructions are not dispatched as early as they can be. The program
executed with the maximum parallelism (minimum execution time) is the
one that dispatches each instruction at the earliest moment.

There still remains the difficulty of the conditional branch.
Should an instruction be dispatched before a conditional is resolved
since it is not known whether the instruction will be executed? For
the development of the concept of maximum parallelism, we are look-
ing at the program a posteriori, after it has executed. Under these
conditions, we know in advance how every conditional instruction, in
the entire sequence of instructions executed, is resolved. Certainly

this is an absurd assumption but it will determine the limit on the

payoff due to parallelism by any of the hardware that was discussed
earlier. In effect, a conditional instruction is being viewed as
nothing more than another instruction whose execution is dependent
upon certain information.

We will examine,in a more fprmal fashion, the constraints
upon the dispatching of an instruction. The set of sources and

th

destinations of the i~ instruction, I (numbered in the sequence

in which they were originally executed), will be denoted by S; and
th

D., respectively. There are three ways in which the i~ instruction

can involve the jth register, Py
1. rj is a source but not a destination (rjeSi,rjéDi).
The contents of rj will be used but not changed by
Ii'

2. Pj is both a source and a destination (rjeS

The contents of rj are used and changed by Ii. Thus,

i,rjeDi).
the new contents of Pj are dependent upon the old con-
tents of Pj'

3. rj is a destination but not a source (rj¢Si,rjeDi).

The contents of rj are changed by I, independently of
the previous value stored in rs. This case is the
opened-effects mentionea earlier.

It is clear that an instruction Ii cannot begin execution
until all its sources are available. Additionally, Ii cannot com-
plete execution until its destinations are free (storing information
that will be required no longer). The following assumption is not

unreasonable and shall be made: I, cannot be dispatched until all

its sources and destinations are available.

-10-

Let Td; = earliest dispatch time of I,

T(Si) max (times at which sources in Si are available)

T(D;)

max (times at which destinations in D; are avail-
able)
Then, Tdi = max [T(Si),T(Di)]

It is possible to improve on this dispatch time if additional
resources are allocated in the open-effects case cited earlier. It
is possible that the lack of availability of a register as a destina-
tion can delay the dispatching of an instruction. All delays due to
open-effects instructions can be removed by Providing as many copies
of registers as are needed, both high speed and memory registers.
Since we are developing an upper limit on parallel execution speed
here, we will assume that we have infinite such resources. Now, the
program exhibiting maximum parallel execution is the one that dis-
patches each instruction the moment its sources are available; Td; =
T(S;) for all I; in the program. The program is finished when all
instructions complete execution.

The machine that was simulated by Tjaden and Flynn [6] was an
IBM 7094 with the following characteristics:

a. there is a stack of finite length

b. there are infinitely many copies of the special registers

such as the accumulator.

c. no instruction will be dispatched earlier than any condi-

tional instruction preceding it in the stack.

-11-

The machine that has been described here and which was simulated is

a CBC 3600:

a.

there is a stack of infinite length; i.e. the entire
sequence of instructions is in the stack at once.

there are infinite resources; thus, there are infinitely
many copies of both special registers and storage registers,
and no instruction is delayed due to the availability of any
hardware. |
conditionals do not block the dispatching of other instruc-
tions since the mammer in which they will resolve is assumed

to be known.

~12-

III. EFFECT OF STACKS AND SOFTWARE PERCOLATION ON PARALLELISM

Blocking on Conditional Jumps

In the previous section, we defined the concept of maximum per-
colation which, of course, can never be reached in practice. Each of
the three assumptions about the hypothetical machines are unrealistic.
Stack sizes are finite and functional units are limited in number,
as are central registers and memory locations. An even more severe
limit is the effect of conditional branching on the parallel execu-
tion of instructions. In the above, we were looking at traces of
instruction streams, at the a posteriori history of a program. There,
the choice of which path to take from a conditional jump was already
made. But in reality when we come up to a choice point inan instruc-
tion stream (a conditional branch) we don't know which of the two pos-
sible paths the program is going to take until the data on which the
choice is to be made (the sources of the conditional jump) become
available and the instruction is actually executed - until the condi-
tional is resolved.

Suppose we decide to accept this limitation. Then no instruc-
tion can be dispatched for execution until all conditional jumps
preceding it have been resolved and its own sources are available.

It is a trivial matter to modify the previous analysis to handle
conditionals in this fashion. Modifying the dispatch time of an
instruction, so that it is blocked by the last conditional, we have

Td; = max [T(S;),J;]

1

where Ji = completion time of the last conditional jump preceding I;.

-13-

PARALLEL DECODE STACKS

Two factors that limit the length of the decode stack involve
the look-ahead hardware: the square law increase of the circuitry
and the increasing delay due to the increasing number of logical
levels as fan-in and fan-out limits are exceeded.

The look-ahead hardware in the decode stack is necessary to
determine dependencies in the instruction stack. If an instruction
has a source that is a destination of an instruction above it in the
stack, this instruction must be delayed until the instruction it is
dependent upon completes execution. Similarly, if single copies of
registers are all that is available, an instruction must be delayed
if it has a destination that is a source of an instruction above it.
However, suppose the instructions are reordered into the sequence in
which they become ready to be dispatched. If we assume that the time
it takes to dispatch an instruction is zero, the next instruction
which is to be dispatched will be at the top of the stack. If the
top instruction of the stack is‘not ready, there is no need for look
ahead hardware to see if any other instruction is ready; all other
instructions in the stack must have an earliest dispatch time that
is greater than or equal to the top one. Thus, if the dispatch time
of an instruction can be kept negligible, the equivalent of an infi-

nite decode stack can be obtained by using the following algorithm.

SOFTWARE PERCOLATION

The following algorithm determines the time at which each

instruction can be dispatched. It is then a simple matter to reorder

14—

instructions by the size of these values. One can think of this
as letting instructions percolate by each other until they reach
instructions they are dependent upon.

At any point in the execution of a sequence of instructions,
say when I, is executing, let each register, 3, in the machine
have a last changed time, C(rj). This time will be defined to be
the last time at which the contents of register ry were altered.
This is equivalent to the last time that Ty appeared as a destina-
tion. Therefore, the time at which all sources become available
for I; is

Td; = T(S;) = max (C(r'j)lr'jeSi).

Each instruction has its own execution time, Te, , which
depends on the type of the instruction. The time at which an instruc-
tion finishes execution is termed the completion time, Te;s it is
determined by Te; = Td; + Te;. This completion time defines the
time at which the destinations D, become available as sources for
any instructions appearing after I, in the instruction sequence. We
will store all these values and keep updating them in a "last changed"
table. Hence, all registers in D; have their entries in the last
changed table updated with Te; : C(rj) = Te; for all rjeDi. In addi-
tion, the completion time of the last conditional branch will be saved
and updated whenever a new conditional branch is encountered. Modi-
fying the dispatch time of instructions to block on conditionals, we
have Td; = max [T(S;), J] = max [max[C(rj)IrjeSi], J; 1.

Thus, by making one pass on the sequence of executed code,

updating one table, and renaming registers when necessary, the dis-

-15-

patch times of all instructions are determined. There is one signifi-
cant difficulty; the preceding discussion assumed that the entire
sequence of instructions is available beforehand. All conditionals
are not resolved prior to execution. Therefore, if this algorithm

is to be applied to code in a meaningful way, it should be applied

to the static code as it is written. This implies that an instruc-
tion in the original sequence of code cannot be percolated by any
conditional that appears before it in the code. Thus, blocking on
conditionals, we can think of the sequence of instructions as a set
of segments, each segment being the condition instruction and the

code that follows up to, but not including, the next conditional. One
must only determine the dispatch times for the set of instructions
between a pair of conditionals. The instructions within a segment can
then be statically reordered into the sequence in which they would be
dispatched dynamically by the decode stack if one difficulty is over-
come. In the case of the stack, instructions are being fetched and
the dispatching order is determined dynamically. Suppose the case
shown in Figure 1(a) is encountered.

Even under the assumption of a zero dispatching interval, the
percolation algorithm still only approximates an infinite stack. In
a stack the conditional beginning segment 2 might be resolved before
all the instructions of segment 1 have completed execution. This
might allow the instructions in segment 2 to be dispatched in paral-
lel with the remaining instructions of segment 1. However, the per-

colation algorithm must reorder instructions prior to execution.

-16-

Thus, the conditional must not be percolated ahead of any instructions
in segment 1 lest the logic of the program be altered. Consequently,
this reordering will prevent the partial parallelism of segments 1
and 2 when the second conditional branch could be resolved early.

Nevertheless, it appears that much of the parallelism should be

realized.

——— Cond. Branch Cond. Branch
Segment 1 | Segment 1

+—— Cond. Branch —— Cond. Branch

2a ¢

Segment 2 % Segment 2

—— Cond. Branch ——— Cond. Branch ¢—7m——
Segment 3 Segment 3 ?f%;_?_ (Uncond.

Seg. 7b removed)
' Uncond. Branch — L Uncond. Branch——

(a))

FIGURE 1
When segment 2 is in the decode stack, instructions from parts 2a
and 2b can be dispatched simultaneously and in a reordered sequence.
Similarly, when segment 3 and the unconditional are encountered, seg-
ment 2b can be fetched and the instructions dispatched and executed
in parallel with those of segment 3. Now examine the static perco-
lation algorithm. Instructions in segment 2 may be reordered but then
the program may not be logically correct because segment 2b is no
longer defined to follow segment 3; parallelism between segments 2b
and 3 is also prevented. Figure 1(b) shows that this is overcome by
duplicating the code of 2b so that complete parallelism in 2a and 2b
as well as in 3 and 2b can take place. Consequently, with some modest

increase in the size of the code one can remove the look-ahead hardware.

-17-

EXPERIMENTAL RESULTS

<+

Data was collected by tracing seven programs which included
both compiled code and hand-generated code and amounted to almost
2 million instructions. The compiled code consisted of the object
code of three Fortran programs to calculate means and variances
(BMO1D), analyze patterns of symbols in text strings (CONCORDANCE),
and eigenvalues of matrices (EIGENVALUE). The hand coded programs
included the COMPASS assembler for the CDC-3600 translating a short
program, the FORTRAN compiler translating a short program, analysis-
of patterns of op-codes in programs (DECALIZE), and finally our
interpreter itself (INTERIT).

First, we examined the increase in-the execution rate as a
function of stack size. The amount of parallelism will be defined
to be the ratio of the normal sequential execution rate to the
parallel execution time. Thus, if on the average, two instructions
are executing at the same time, the parallel execution time would
be half that of the sequential time, and the parallelism would be
2. Figure 2 is a graph presenting the relationship of increasing
stack size on parallelism with the limit being the maximum paral-
lelism achievable. All of these results were derived knowing how
all conditionals would resolve and thereby allows us to examine the
effect of stack size as an independent factor. One can see that
the size of the stack is a critical factor in determining the amount
of parallelism gained and that fairly large stacks are necessary

to obtain all the potential parallelism.

Speed up Factor

50 —

40

30

20 —

10
Q
8 -

7-—

B B

Figure 2 - Average speed as a function of stack length
assuming all conditional jumps can be by-passed.

N wannd

I
16 32

QO

|
u

Stack Length

8'[

-19-

Table 1

Parallelism as a Function of Various Stack Sizes

Stack Sizes

>

2 4y 8 16 32 64 a0
BMIPOL 1.368 401 1.417 1.u23 1.430 1.431 1.431
CONC. 1.431 .500 1.516 1.523 1.527 1.527 1.527
EIG. 1.5u45 .655 1.695 1.710 1.720 1.722 1.722
COMPASS 1.208 .215 1.219 1.220 1.220 1.220 1.220
FIN. COMP. 1.376 .390 1.392 1.392 1.392 1.392 1.392
DECALIZE 1.610 .708 1.752 1.775 1.781 1.781 1.781
INTERIT 2.440 .6u8 2.882 2.975 2,975 '2.975 - 2.975
AVE. 1.568 .645 1.696 1.718 1.721 1.721 1.721

20~

Table 2
Stack sizes necessary to achieve various percentages of the

parallelism in an infinite stack.

100% 99% 90%
EMDO1 64 8 2
CONC. 32 8 2
FIG. o 16 4
COMPASS 32 2 2
FIN. COMP. >BY4 l 2
DECALIZE 32 % 4

INTERIT 16 16 8

-21-

With instructions blocking on conditionals, Table 1 presents
the resultant parallelism for stack sizes varying from 0 to 64. The
parallelism that would be obtained from an infinite size stack is
also included. This data is not graphed in Figure 2 because of the
very slight increase in parallelism as a function of stack size.

On the average, a sizeable portion of the parallelism obtained with
an infinite stack is realized by a stack of size two: almost all the
parallelism is obtained by a stack of size 8. Stack sizes that would
be necessary to achieve 90, 99 and 100% of the parallelism of an infi-
nite stack are given in Table 2.

All of the experimental results just discussed were carried
out under the assumption that there are as many extra copies of all
types of registers as needed. Experiments were run to determine
whether this was a necessary assumption by examining the effect upon
parallelism of limiting registers to a single copy each. There was
an insignificant decrease in the resultant parallelism if memory
registers were limited to a single copy each. If the number of spe-
cial high speed registers (A, Q and D registers in the CDC 3600) are
limited to a single copy of each type, the parallelism was reduced

by slightly more than 10% with a stack of size 32.

DISCUSSION AND CONCLUSIONS

This section has examined the use of a decode stack which dis-
patches each instruction as early as possible. Under the constraint

that conditional branches delay instructions until they are resolved,

-29-

very little of the maximum parallelism is obtained. The limit on
the parallelism that is achieved with an infinitely large stack was
found to be slightly more than 1.7; this means that the usual
sequential machines would take 70% longer to execute the set of 7
test programs than this parallel machine. These results are some-
what worse than those given by Tjaden & Flynn [6], 86% for a stack
size of 10. Most of the parallelism is achieved with very short
stacks. In all but one case, a stack size of 4 would achieve 90%
of the parallelism of an infinite stack. Little parallelism is
gained by supplying extra copies of registers. These results imply
that parallelism between conditional branches is quite limited in
the object and hand code of typical programs run on current machines.
Under the assumption of a zero dispatching interval, we have
determined the upper bound on the parallelism derived for various
stack sizes. One should note the implications of this assumption.
Suppose we have 10 instructions in a row which could be dispatched
and executed in parallel and a stack of size one: all the instruc-
tions would be executed in parallel because they would be sequenti-
ally brought into the stack and dispatched in zero time. Neverthe-
less, it is a desirable goal to approach this assumption by decreas-
ing the dispatch time and we do determine a limit on the parallel
execution speed in this structure. Given the relatively small
amount of parallelism obtained even with zero dispatch time, this
assumption does not appear to affect any of the conclusions.

One may still feel that there are cases in which the addi-

-23-

Table 3
The speed of percolated programs relative to the speed of

unpercolated programs with an infinite dispatching stack.

Program Name Relative Speed
BMDOL | .955
CONC. o 947
EIG. E .835
COMPASS : .978
FIN. COMP. .955
DECALIZE .937

AVERAGE .935

T

tional expense that is required to achieve this parallelism is
justified. This paper has described an alternative to achieving

this parallelism strictly in hardware. The percolation algorithm

- presented in this paper approximates the decode stack by reorder-

ing instructions prior to execution. This method achieves 93.5%
of the parallelism of an infinite stack; results for individual
programs is presented in Table 3. Thus, one can effectively replace
the hardware stack by additional processing during compilation.

The critical factor in the limitation of parallelism is not
the stack size or multiple copies of functional units and registers.
Rather, the limiting factor to be focussed upon is the problem of

conditional branches.

-25-

IV. EFFECT OF BYPASSING CONDITIONAL JUMPS ON PARALLELISM

Since it has been established that conditional jumps inhibit
parallelism, let us consider ways to overcome this problem. Suppose
we built a machine which could "get by" one conditional jump by
beginning execution down both paths leading out of the jump. Once
the jump is resolved the untaken path is discarded. Conditionals
that can be decided on the spot cause no complications since they
have only one path of successors. Thus, we can keep going down at
most two paths. Such programs may be said to "by-pass" one condi-
tional jump.

Let us generalize this concept so that up to j conditional jumps
may be unresolved along the ancestoral path of an instruction. We

define Lj{kc%to be the j+lth largest element of the set x. For

example,
19(1,2,3,4,5} = 5
11(1,2,3,4,5) = u
etec.

Let the set of completion times of all conditional jumps preceding*

th

the execution of the i instruction be J;, then the earliest possi-

th

ble completion time of the i~ instruction will be

0 _ 0
Ti - Ei + MaX {Sl, 82, e e 0y L {Ji}}

where the superscript 0 on T indicates that no conditional jumps are
bypassed. Using this algorithm we can compute the running time, R,

of a program which blocks on all conditional jumps to be:

_ 0
R = ?ax {Ti} .

*"preceding" refers to the original code - as it would be executed by
a one-at-a-time machine .

~26-

That is, the running time will be equated to the completion time of

the last instruction completed. Expanding to bypass j conditional

Jumps
Ti = E; + Max {Sy, Sy, ..., L {3;))
and
-]

where Rj is the running time of a program on an infinite machine
which can by-pass j conditional jumps. One should note that the num-
ber of paths that must be maintained may be as large as Zj, if the
program can by-pass j conditional jumps. Since the complexity of a
CPU must grow at least linearly with the number of paths maintained,
we hope to find dramatic improvements in speed for small j, since

even a j as small as 8 implies up to 256 paths executing simultaneously.

OUR EXPERIMENT

We traced seven programs written for the CDC-3600. These
included compilers, compiled code, hand generated code, numeric pro-
grams and symbol manipulating programs. A total of 1,884,898 instruc-
tions were traced representing very nearly seven seconds of real 3600
time. We found no significant differences between hand and compiler
generated code, nor between numeric and symbolic programs. Since the
analysis of these seven programs consumed some forty hours of machine
time, we decided to bring the data collection phase of our studies to
a halt.

The seven programs we traced were as follows:

1. BMDO1D. A FORTRAN program for the calculation of means and

-27-

variances.
2. CONCORDANCE. A FORTRAN program written to analyze text strings
fer repetitions of patterns of symbols.
3. EIGENVALUE. A FORTRAN program to compute EIGENVALUES of matrices.
4. COMPASS. The COMPASS assembler itself translating a short pro-
gram. An example of hand-coded symbol manipulation.
5. FORTRAN. The FORTRAN compiler itself translating a program.
Another example of hand-coded symbol manipulating program.
6. DECALIZE. A hand-coded program to analyze patterns of op-codes
up to ten-tuples.
7. INTERIT. Our interpreter itself. Hand-coded.
Since we had to choose some set of execution times, we chose those
of the 3600 itself. Table 4 shows that their ratios are not far
from the 360/91 or the CDC 6600, two of the fastest computers cur-
rently available.
Tjaden and Flynn [6] showed that for code written for the 7090,
a relative improvement of 1.86:1 could be achieved with a stack length
of eight and blocking on all conditional jumps. This was consider-
ably less than the 51:1 improvement found with maximum percolating so
we decided to let the stack length (and other parameters) go to
infinity and examine the effects of getting by various numbers of
conditional jumps.
For zero jumps by-passed, we found an average improvement of 1.72
to 1 (see Figure 3 and Table 5). That is, the average program ran

1.72 times as fast with infinite stack, infinite registers, infinite

-28-

TABLE 4

Relative -Speed of Various Instructions in Various Machines

Fixed Point Add Taken as Unity for each Machine

Instruction . CDhC-~3600 IBHM-360/91 CNC-6600
Fixed Add | ' 1 1 1

Fixed Multiply - 3-4 7-11 no such inst,
Fixed Divide . 7-8 36-37 no such inst,
Eloating Add 2-3 2 - 1.3
Fﬁoating,‘ Multiply 3~4 3 3.3
Floating Divide 6-7 4 19,6

Speed of Factor 3%

50—
40—

30 4

20 ~

—20-

Figure 3 - Average speed as a
function of number of conditional jumps that
are by-passed. (infinite stack machine)

((

I — T)
8 32 128 /.

Number of Conditional Jumps By-passed

-30-

TABLE 5

Speed Up of Seven Programs as a Function of

the Number of Conditional Jumps Passable

(Speed up is defined as the average nu&ber of instructions
being executed in parallel)

Ld

Program 0 jump 1 jump 2 jumps 8 jumps 32 jumps 128 jumns © jumps
FORTRAN 1.40 2.03 2.38 3.14 4,02 5.86 32.4
¢M“ COMPASS 1.22 2.10 2.74 4.28 5.55 7.17 27.2
CONCORDANCE 1.53 2,27 3.45 8.50 20.20 47.30 100.3
INTERIT 2.98 5.11 6.60 15.10 36.70 37.70 39.8
EIGENVALUE 1.72 2.40 . 3.34 6.64 14,20 22.40 29.7
DECALIZE 1.79 2.76 3.44 5.23 6.15 6.53 7.8
BMDO1D 1.43 2.38 3.32 7.56 A16.80 43.50 39.5
AVERAGE 1.72 2.72 3.62 7.21 14.8 24.4 51.2

-31-

storage, infinite functional units as it did in an ordinary everyday
3600. Clearly, conditional jumps were preventing any substantial
amounts of parallelism. If we allow by-passing of one conditional
the average program runs 2.72 times as fast as when run sequenti-
ally.

From here on out, the relative speed increases as the V3 where
j is the number of jumps by-passed. That is, if we by-pass four
jumps, the program runs twice as fast as if we by-pass only one jump.
Similarly, sixteen jumps by-passed is twice as fast as four jumps .
The square root relation holds quite well up to 32 jumps (some foﬁr
billion paths). We have no theoretical justification of this relation-

ship at the present time.

DISCUSSION

The relative speed of execution goes up only as the square root
of j and the number of paths that must be maintained simultaneously
goes up as 2j. Hence, it does not appear that this is the proper
approach to designing general purpose high speed CPU's unless mini-
mum response time is the only criterion considered.

Naturally, the reader may be concerned with the fact that the
code we examined was written for a sequential machine and not a
‘parallel one. But we have provided for as much rgnaming as is neces-
sary and, aside from recasting the algorithm completely, the only real
improvement that could be made would be to eliminate conditional jumps.
But Flynn [12] has mentioned an unpublished study in which fewer than

half of the conditional jumps were removable even after extensive hand

-32-

tailoring.

One mechanical aid in this direction would be to implement a
repeat instruction for those loops where the number of iterations is
known before entry (non-data dependent exits) which would not be
"conditional" in the normal sense of the word.

In a very brief examination of this approach, we flagged all
the "loop ending jumps" in BMDOl as being "non-conditional" and reran
the program on our hypothetical machine with infinite resources but
blocking on conditional jumps. We found that with DO-1loop generated
jumps eliminated, it ran almost exactly 1% faster than with them
left in. Thus, we conclude on the basis of this experiment, that
this approach does not appear to offer much help.

We, then, decided to find out how long a stack would be reauired
to reach the theoretical speed-up of 51 times if we ignored the pro-
blem of conditionél jumps.

Figure 2 and Table 6 show the average speed up of our seven
programs as a function of decode/dispatch stack length under the
assumption that any number of conditional jumps may be by-passed. The
important things to be noted in Figure 2 are, first, that even with
a stéck length as short as 2 by-passing all conditional jumps allows
a program to run twice as fast as if it had an infinite stack and
blocked on conditionals (see below). Second, we should note that even
with a stack of length 64, we are still a factor of 4 slower than an
infinite stack. This implies that instructions must percolate a long
distance (past more than 64 instructions) in order to achieve maximum

speed.

-33-

Table 6

Speed Up of Seven Programs as a Function of the Length of the decode/

dispatch Stack when all Conditional Jumps are fassable.

Program Stack Length

2 4 8 16 32 64
FORTRAN 2.44 2,71 2.81 3.26 3.63 4.08
COMPASS 3.24 3.78 4.00 4.59 5.06 5.64

CONCORDANCE 4,22 6.50 9.33 11.95 15.80 20.0

INTERIT 4,43 5.63 7.39 10.59 15.80 24.8

EIGENVALUE 2.46 3.17 4.16 5.46 7.94 11.91

DECALIZE 2.66 3.46 4.33 4.85 5.28 5.78
:€§“ BﬁDOlp 4.70 5.54 6.59 8.30 10.91 15.20

AVERAGE 3.45 4.40 5.52 7.00 9.20 12.49

-34—

CONCLUSIONS

Lurking within an average program, there is a potential paral-
lelism of 50:1. Even given all the resources it might conceivably
need, this average program will be severely inhibited by the presence
of conditional jumps. Limiting ourselves to by-passing no more than
two conditionals, we can extract less than a 4:1 improvement in speed.
To run ten times as fast as a one~instruction-at-a-time machine, we
need to get by sixteen jumps. This implies 64K paths being explored
simultaneously. Obviously, a machine with 65,000 instructions exe-
cuting at once is a bit impractical.

Should other studies confirm our conclusions, it would appear
.that the way to gain higher speed CPU's is bv the brute force tech-
nique of making each.instruction run faster; not by providing look
ahead stacks of multiple functional units.

The only alternative seems to be tailoring of algorithms to

take advantage of the parallel machine or the use of costly compilers.

~35-

References

[1] H. Hellerman, '"Parallel Processing of Algebraic Expressions",
IEETEC, February, 1966, pp. 82-91.

[2] H.5. Stone, "One-Pass Compilation of Arithmetic Expressions for
A Parallel Processor', Communications of ACM, April, 1967,
Pp. 220-223,

[3] M.E. Conway, "A Multi-processor System Design', 1963 Proceedings
of FJCC, pp. 139-146.

[4] G.H. Barnes, R.M. Brown, M.Kato, D.J. Kuck, D.L. Slotnick &
R.A. Stokes, ''The ILLIAC IV Computer", IEEETC, August, 1968,
pp. 746-757,

[5] M.J. Flynn, '"Very High Speed Computing Systems'", Proceedings of
IEE, December, 1966, pp. 1901-1909.

(6] G.S. Tjaden & M.J. Flynn, "Detection & Parallel Execution of
Independent Instructions", IEETC, October, 1970, pp. 889-895.

[7] E. Bloch, "The Engineering Design of the Stretch Computer', 1959,
Proc. Eastern Joint Computer Conference. pp. 48,

(8] R.T. Blosk, "The Instructions Unit of the Stretch Computer", 1960,
Proc. Eastern Joint Computer Conference, pp. 299-325.

[9] J. Cocke and H.G. Kolsky, "The Virtual Memory of the Stretch
Computer", 1959, Eastern Joint Computer Conference, pp. 82-94,

(10] R.M. Tomasulo, D.W. Anderson & F.J. Sparacio, '""The Model 91:
Machine Philosophy & Instruction Handling', IBM Journal of Research
& Development, Vol. 10., November, 1966.

[11] D.W. Anderson, "The IBM System/360 Model 91", IBM Journal of
Research & Development, Vol. 11, January, 1967.

{12] M.J. Flynn, Personal Communication with the Authors.

