*

THE FCRMAL DEFINITION OF THE BASIC LANGUAGE

John A. N. Lee
Department of Computer and Information Science
Technical Report 72B-1

University of Massachusetts
Amherst, Massachusetts 01002

The formal definition of the BASIC language®

J. A, N. Lee

Department of Compuler Science, Universily of Massachuselts, Amherst, Massachuselts

01002, USA

This paper presents a proposal for the formal definition of the Basic Language (Dartmouth College,
1970), based on the nicthiod of definition developed by Lucas er al. (1968) and as extended by Lee
and \Wu (1969). This version of the formal definition of the Basic Language does not include
censideration of either the semantics or syntax of MAT statements. Similarly, the definitions of
some of the more esoteric features of certain implementations have been omitted pending the
resolution of the fundamental features of the language.

In summary, the definition is divided into three parts:

1. The concrete syntax, the definition of the syntactic form of the language as used by the

programnier,

2. The abstract syntax, the definition of the essential structural form of the language which is to be

used as input to the interpreter, and

3. The definitiuns of instructions and functions which are used by the interpreter to ‘execute’ a

Basic program.
(Received March 1971)

The method of definition

The block diagram shown in Fig. 1 indicates the relationships
between the three parts of the formal definition of a language
and the abstract machine which operates over these definitions.
The abstract machine consists of three processors named
specifically-as the analyser, the translator and the interpreter.
These processors, the definitions, a set of default conditions,
the original text and the data are sufficient to represent the
execution of a Basic program. The overall concept is similar to
that reported by Lucas for the formal definition of PL/I.
However, a distinction has been made between the interpreter
(which may be regurded as a state transition function) and the
definjtion of the instructions and functions which are used by
the interpicter. Further, the definition of the abstract syntax is
used as an input to both the translator and the interpreter. The
original Lucas scheme did not relate the abstract syntax to the
interpreter. 1t is felt by the author that this relationship is
necessary since the predicates defined in the abstract syntax
are used in the definitions of instructions and functions as the
propositions in McCarthy conditional expressions.

The analyser

Using the concrete syntax, the analyser verifies the validity
of the concrete text and generates a parsed text which may be
represented as cither a syntactic tree or a phrase marker of the
concrete text. Irrespective of the form of this parsed text, it is
required that all of the phrases of the concrete text have been
identified and are associated with their syntactic metacom-
ponent symbols. Since the concept of a syntactic analyser is not
peculiar to either the language or this method of formal
definition, but is a well established process within the state of
the art of computing (Cheatham and Sattley, 1964; Ingerman,
1966), such a processor is not described here.

The translator

The translator which transforms the parsed text into the
abstract text (that is, a text which conforms to the abstract
syntax and takes into account the default conditions) is peculiar
10 the language in the Lucas system but has not been developed
here since it is the author's opinion that a general translator
may be developed which is applicable to all languages.

The default rules for Basic are:

1. All subscriptors of an array variable are assumed to have the
limits

lower bound—scalar 0
upper bound—scalar 10

unless the upper bound has been explicitly specified in a DIM
statement.

These bounds are inserted into the s-data-component of the
state of the machine. Each variable in the program text has a
corresponding component in this s-data-component which
contains the attributes of that variable. Besides a pointer to the
storage component of the state of the machine, in which the
current value assigned to the variable is stored, the attributes of
an array variable also contain the dimensions of the array.
Since the lower bound of all array variables is zero, only the
upper bounds are stored in the attribute data of each array
variable. These bounds arc utilised by the interpreter to deter-
mine the location of the current value of cach element of the
array in the storage part of the state of the machine.

2. Simple variables and array variables with the same name
are to be distinguished. Since Basic permits the repetitious use
of variable names for a simple variable (requiring only a single
cell in the storage part of the machine) or as the name of a
whole array, the translator must recognise these two types of
clements and give them new distinct names so as to prepare
an unambiguous text for processing by the interpreter. In the
formal definition presented hcere, the opening parenthesis of
the subscripting expressions is concatenated with the array
name to form a new name which is distinct from the simple
variable of the same name.

Thus a simple variable A and an array A are given the unique
names A and A(respectively.

The abstract syntax of an array variable reference (either to
fetch the value or to store a value in that location) conforms
to the predicate is-array-variable which contains as its s-name
component, the name of the array variable. Similarly, the
object which represents a reference to a simple variable in the
text of the program, contains a s-name component which
contains the name of the variable. Additionally, *he state of the
machine contains a s-data-component which contains the
attribute data pertinent to each variable (simple and array
types). Amongst this attribute data is the location in the storage
component of the machine of the current value assigned to that
variable. In the case of an array variable, this location is the
location of the first clement in the array.

Within the s-data-component of the state of the machine, the
attribute of cach variable is selected by a selector of the form

*The work reported here was supporied in part by the National Science Foundation, Oflice of Computing Activities Grant No. GJ-60.

Volume 15 Numbert Reprinted with permission of the British Computer Society.

37

s-name(var) where var is the unique name of the variable as
generated from the rules outlined above. Thus the attributes of
the simple variable A are selected by s-name(A) whereas those
of an array A are sclected by s=name(At).

3. A one-dimensional array (culled a ‘list’ in the Basic manual,
1970) and a. two-dimensional array (called a ‘table’ in the
manual) may not have the same name. Or the number of sub-
scriptors in an array variable reference must equal the number
of dimensions specificd in its corresponding DIM specification.

This condition cannot be recognised by a syntactic analvser
since data is not transferred between recognised components
or phrases of the string being analysed. Since the Basic language
manual (1970) is very explicit on this point, and since this
definition assumes that storage allocation can be performed
prior to the ‘exccution’ of the program, this error is detected
in the translator.

Jn formalising other languages, special default or error
conditions may be substituted. but depending on the manner of
storage allocation, the processor in which the default or error
may be handled may vary between the translator and the inter-
preter.

In FORTRAN as dcfined in the American National stan-
dards, for example, storage allocation is static and thus these
conditions may be recogniscd in the translator. However,
the default condition in FORTRAN would be to replace a
non-existent subscript expression by the integer value 1, but
to indicate an error if there are too many subscripts.

The storage part of the state of the machine consists simply
of a list of internal values. During the translation of the pro-
gram from its parsed text form to the abstract text form, all

simple and array variables are assigned locations within this

list and the internal representation of scalar zero is assigned
to each element of that list.
4. The evaluated subscripts of an array variable are the integer

concrete
text
concrete - ’
syntax analyser
\
parsed
text
\
defaulting > - abstract
conditions translator syntax
! 1
instruction . R
and function interpreter g
definitions
i data l
1 .
results

Fig. 1. The abstract definition machine

- 38

parts of the expressions which form the subscripts. This is a
feature of most implementations of the Basic language. In the
formal definition presented here. it is assumed that the trans-
lator will insert the INT function into all subscript expressions
and thus the interpreter instruction definitions do not have to
contain a special function to extract the integer part of the
evaluated subscript cxpression.

In terms of concrete text, the translator would transform the
reference X(N/3 + K) into the reference X(INT(N/3 4 K)).

5. All variables or elements of arrays are assumed to have
initial values of scalar 0 prior to interpretation of the program.
This feature has been included in this definition since most
known compilers sct storage to zcro before cxecution of the
program. This assumption also requires that the storage portion
of the machine be statically defined. The questions of static or
dynamic storage, or predefined valucs of the clements are
among the problems which must be resolved during the process
of standardisation of the Basic language. However, with the
assumption of static storage assignment and predefined values
of all elements of storage, the translator may organise the
‘memory’ thus relieving the interpreter of many problems.

6. In a FOR statement, the valuc of the increment in STEP
clause is assumed to be + 1 unless specified otherwise explicitly.

7. Any statement consisting only of a linc number is assumed .
to be a null statement having no effect on either the flow of
control of the program or the values of any variables or
elements of arrays in the storage part of the machine.

Except in the case of the null statement, each statement in the
concrete text of the program is represented in the abstract text
by an object which contains s-line-no and s-st-name compo-
nents, along with componcnts which are peculiar to that state-
ment.

In the case of a null statement, only the s-line-no component is
present, which ensures that the text of the program contains a
statement with the line number of the null statement. The rep-
resentation of a null by the null object would not meet
this requirement.

This default has been included instead of merely deleting
the statement from the program to allow programmers to
delete a statement from a program without requiring them to
alter the line numbers in control statements which refer to the
statement being deleted.

For example, the programs

010X = X 010

070 GO TO 010

are equivalent.

This default is typical of the environment in which programs
written in this language are expected to operate. That is, an
environment of remote console, an interactive time-sharing.

Similarly, REM statements (remarks or comments) are con-
verted into null statements by the translator, since control
statements may transfer control to a REM statement.

8. Any non-null statement which docs not contain a key word.
(always identified in Basic by the first three characters of the
statement) is assumed initially to be a LET statement. This
default is taken into account in the analyser rather than the
translator since the definition of a LET statement permits this
default. The set of acceptable key words is implicitly defined
in the concrete syntax.

070 GO TO 010

The interpreter

The third processor in the abstract machine operates on the
abstract text according to instructions and functions defined for
the language. The state of the interpreter contains the abstract
text of the program and an instruction stack from which the
interpretation of the abstract text is directed. Instructions may
consist of two types—self replacing and value returning. The

‘The Computer Journal

former instruction type replaces itself’ in the stack by one of its
defined groups, chosen according to the condition currently
existing in the state of the abstract machine. The execution of a
value returning instruction causes changes in the state of the
machine and the deletion of the instruction from the stack.
Initially the instruction stack contains the single instruction:

execute program(s-text(£))

Appendix 1. Concrete syntax

The meta language used in this concrete syntax d:finition is a
modification of Backus Naur Form. Repetitive concatenations
of objccts are indicated by the notation {.. .} where i is the
minimum number of repetitions required and j is the maximum
number of repetitions permitted. Where either index is repre-
sented by a variable, the domain of the variable is the meta
expression.

2,

<statement > : = <line no> { <let st> | <read st> | <data st>|
<print st> |

<goto st>|<onst> |<if st>|
<for st> | <next st> | <dim st> |
<def st> | <gosub st>|
<return st> | <restore st> |
<stop st> | <rem st> },!

<terminal st>: = <lJine no> <end st>

3. <program>: = (< statement > J,® < terminal st>
42 <lineno>: = {<digit>},* | < hlank? 1! .
5. <expression> ;= <multiply factor > * < prefix op> <expression> |

. <involution factor> : =

<expression> {+-{—), < multiply factor>

. <muliply factor> : = <multiply factor> {*|/};!

<involution factor>
< involution factor>
<prefix op> : = 4-|—
<term> | <term> ¢ <term>

. <term>: = <constant>|<variable> | < function ref> |
. (<cxprcssnon>)' . .
. <variable> : = <simple variable> | <subscripted variable>

<simple variable> : == <letter> { < digit>)t
<subscripted variable> : = <letter> (expression> .
{, <expression> },')

13.t <integer> : = {<digit>},*

14.
15.
16.
17
18.
19.
20.
21.
22,
23,
24,

. <Sto

<fraction> : = _{ <digit> },*
<decimal> : = {<digit> },/<?. {<digit> },*~
<exponent> : = E {<sign> }o! {<digit>},?
<constant> : = <number> {<exponent> },!
<number>: = <integer> | <fraction > | <decimal>
<digit> : = 0}1]2/3/4/5|6/7;8)9
<sign>: = 4|—
<function ref> : = <function namc> (<expression>
{, <expression> },0)
<function name> : = <library function> | <user function>
<user function> : = FN <lctter>
<library function> : = SIN:COS|TAN!ATN|EXP|ABS|LOG!
SQR|INT ;RND

. <dim st>: = DIM <array dim> {. <array dim> },;

. <array dim> : = <letter>(<integer> {, <integer>),!)

. <let st>: = {LET),! <varjable> = <expression>

. <signed number> : = {<sign> },* <constant>

. <data list>: = <signed number> {, <signed number> },®
. <data statement > : = DATA {data list> },!

. <restore st> : = RESTORE

. <goto st>: = GO TO<linc no>

. <on st>: == ON <cxpression>GO TO <line no> {, <line no>)@
. <gosub st>: = GOSUB <line no>

. <return st>: = RETURN

. ‘<if st>: = IF <boolean expression> THEN <line no>

<boolean expression> : == <expression> <relation>

< expression >

. <relation> ; = =|>=l<={>|<l<>
. <for st>: = FOR <simple variable> = <expression>TO

< expression > {STEP < expression> }o!

. <next st>: = NEXT <simple variable>

<rem st>: = REM { <character> },»
st>: = STOP

<cnd st>: = END

. <read st> : = READ <variable> {, < variable> },®

. <print st>: = PRINT{ < print string> },! { < punct> };*

. <punct>: = ,|;

. <message> : = “{<char>)"

. <char>: = <letter> | < digit> | < special char>

. <printstring> : = <message> | <expression> |{ < print string> },®

*Depending on the implementation. a blank character is optionally the
traihing characier (0 a line number. Otherwise blanks may be added to
statements at will.

1In the following definitions, the maximum number of digits has been
set in conformance with the implementation at the author's institution.

Volume 15 Number 1

51.
52,

SS.

56.

57,
58.

. <def st>: = DEF <blank> FN <letter> (< simple variable>

{, <simple variable> %) = <expression> |
< def block >
<def head > ; - DEF < blank > FN < letter > (< simple variable>
{. <simple variable> }o¥)
<dcf end> : == FNEND

. <function variable> : = FN<letter>
. <def variable> : == <simple variable> | <subscripted variable> |

<function variable >

<def statement> : = <line no>{ <def let st> | <def read st> |
<def print st> | <go to st>|
<def on st> | <def if st> |
<def for st> | <def next st> |
<gosub st> | <return st> |
<restore st> | <stop st> |
<rem st>),!

<line no> <def head> { <def statement > },»

<line no> <def end>

<letter>: = Axi%,c;D{EiF;GiH;I!J|K;L;M§N;O{P;O}RiSITIUIViW

r4

<def block> : =

|
< special chnr|>: L +]=I*l/|=DI(}> | <['L.I;| <blank> |$]|4|?

The statements defined by the meta component names of the
form <def n st> have the same structure as the object <n st>
except that <simple variable > may be replaced by < function
variable > in all components. For example:

<def next st> : = NEXT { <simple variable> | < function variable> },}

The specification of the punctuation of the clements of the
PRINT statement cannot be expressed in a context-free-gram-
mar since the quotation marks surrounding a literal string can
be rccognised as a separator. Thus the symbol ‘, may be
omitted in certain instances. The following four context-
sensitive productions specify the permitted forms of punctu-
ation in a print string:
<message> <expression> : = <message> { < punct> },! <expression>

<expression> <message> : =

<expression> { <punct> },' <message>

<message> <message> : = <message> { <punct> },‘<m&ssage>.
<expression> <expression> : = <expression> < punct> <expression>

Appendix 2. Abstract syntax

is-¢ = (<s-text: is-text>,
<s-stg: is-int-value-list>,
<s-input: is-input >,
<s-attr: is-attr>,
<s-output: is-output >,
<s-for-stack: is-for-stack >,
<s-functions: is-def-group>)
is-text = ({ <s-linc(i): is-statement > |i ¢ line-no-set})
is-statement =: is-null-st v is-end-st v is-read-st v
is-print-st v is-goto-st v is-gosub-st v
is-return-st v is-if-st v is-next-st v
is-let-st v is-restore-st v is-for-st
is-input = (<s-key: is-intg>,
<s-data: is-ext-value-list>)
is-attr = ({ < s-name(var): is-variable-data > |var ¢ variable-name-set))
is-variable-data = is-simple-variable-data v
is-function-variable-data v
is-vector-data v
is-table-data
is-function-variable-data = (<s-element: is-location>

. is-simple-variable-data = (< s-clement: is-location>)
. is-vector-data == (<s-upper-bound: is-dimension-1>,

<s-clement: is-location >)

. is-table-data == (<s-upper-bound: is-dimension-1>,

<s-clement:
(<s-upper-bound: is-dimension-2> I
<s-clement: is-location>)>)
is-dimension-1 = is-intg
is-dimension-2 == is-intg
is-location = is-intg

. is-output = is-ext-valuc v is-literal v is-punct v is-"CR*
. is-for-stack == is-for-clement-list

is-for-element = (<s-line-no: is-linc-no>,
<s-index: is-simple-variable v
is function-variable >
<s-limit: is-int-value>,
<s-increment: is-int-value>)
is-def-group = ({ <s-def(name): is-def> [name ¢ def-name-set})

. is-def = (<s-par: is-int-valuc-list>,

<s-exp: is-expression v is-def-block >)
is-def-block = ({ <s-linc(i): is-def-statement > }i ¢ line-no-set})

20. is-def-statement == is-let-st v is-read-st v is-print-st v

is-goto-st v is-on-st v is-if-st'v

is-for-st v is-next-st v is-gosub-st v
is-return-st v is-restore-st v is-stop-st v
is-rem-st v is-null-st v is fnend-st

21, is-fuend-st — (<s-linc-no: is-linc-no>,
‘ <s-st-name: FNEND >
. . < s-function-nanc: is-function-name>)
22, is-variable = is-simple-variable v is-array-variable v
A is-function-variable ' .
23, is-function-variable - senamic: is-function-name >)
24 is-simyte-ariable - imple-nanie >)
25, is-array-variable .- (< s-name: is-array-name>,
< s-subscript-1 ¢ is-expression >,
. < s-attbsCript-2: is-eapression v is-2>)
26. is-expression ~ is-infix-eapression v is-pretix-expression
v is-vitriable v is-constant :
. v is-function-ref v is-dummy-parameter
27. is-infix-expression = (< s-opcrand-1: is-expression>,
< s-operand-2; is-expression >,
. . < s-operator; is-infin-operator>)
28, is-prefix-expression = (< s-operand: is-cxpression>,
. < s-operator: is-prefis-operator>)
29, is-infix-operator - s+ Vv is-" =’ v 5.0 ¥
Vs vis-4®
30. is-prefix-operator = is-"4’ v js-"=—"
31. is-function-ref =: (<s-name: is-function-name >,
. < s-arg: is-cxpression-list >)
32. is-dummy-parameter = (<s-name: (<s-def: is-function-name >
. <s-var: is-intg>)>)
33, js-let-st = (<s-line-no: is-linc-no>,
<s-ste-name: LET >,
<s-variable: is-loadable>,
. < s-expression is-expression >)
¥4, is-nuil-st = (<s-linc-no: is-line-no>)
35. is-rem-st = (<s-linc-no: is-line-no >,
. <s-st-name: REM>)
36. is-stop-st = (<s-line-no: is-line-no>,
<s-st-name;: STOP>)
37; is-end-st = (<s-line-no: is-line-no>,
<s-st-name: END>)
38. is-goto-st = (<s-line-no: is-line-no>,
<s-st-name; GOTO >,
<s-destination: is-line-no>)
.39, is-on-st == (<s-line-no: is-line-no>,
<s-st-name: ON>,
<s-eXp: is-expression>,
<s-line-no-list: is-line-no-list>)
40. is-if-st = (<s-linc-no; is-linc-no>, -
<s-st-namic: IF>, .
<s-boolean: is-boolean >,
<s-destination: is-linc-no>)
41. is-boolean == (<s-cxp-1: is-expression>,
<s-cxp-2: is-expression>,
<s-relation; is-relation>)
42, js-gosub-st = (<s-linc-no: is-line-no>,
<s-st-name: GOSUB >,
<s-destination: is-linc-no>)
43, is-return-st = (<s-line-no: is-line-no >,
<s-st-name: RETURN >)
44, is-for-st = (<s-line-no: is-line-no>,
<s-st-name: FOR>, N
<s-index: is-simple-variablc v is-function-variable>,
<s-initial: is-expression >, '
< s-limit: is-expression>,
< s-increment; is-expression >)
45, is-next-st == (<s-line-no: is-linc-no>,
<s-st-name: NEXT >,
<s-index: is-simple-variablz >)
46. is-restore-st = (s-linc-no: is-line-no>,
<s-st-name: RESTORE>)
47, is-read-st = (<s-line-no: is-line-no>,
<s-st-name: READ >,
<s-load: is-loadable-list>)
48, is-loadable - is-variable
49. jis-print-st = (<s-linc-no: is-line-no>,
<s-st-name; PRINT >,
< s-output: is-print-list>)
0. js-print = is-expression v is-literal v is-punct
S1. is-literal = is-char-list
52, is-punct = is-%," v is-*{

The following predicates are not defined explicitly in this
section since the objects which satisfy the predicates are trans-
formations of objects defined by the concrete system. If we
define the fraction /1 as the transformation function which
converis a character string in the concrete text into a unique
elementary object in the qualified text, then we may define
these predicates in terms of concrete syntax components.

53, is-char - A(<char>)

$4. is-simple-name — .1 < simplc variable>)

58, js-array-name = /(< letter>)

6. is-function-name = .1{ < function name>)

§7. is-library-function - .1(<library function>)

S8. is-user-function = .1« user function>)

59. is-constant = A(< constant>)

60. is-line-no == A(<fine no>
61. is-relation == A(<relation>)
62. is-intg = A(<integer>)

The two predicates is-ext-value and is-int-value arc implemen-
tation defined, and represent the attributes of the representation
of external and internal values respectively.

Appendix 3. Interpreter of the Basic machine instructions and
functions

1. execute-programftext) ==
 execute-stutement(next-linc-no(teat, 0), text, < >)
2. ‘execute-statenicnt(line-no, text, line-no-stack) =
is-Q(line-no) v is-fXs-line(line-no)text)) — error
is-9(s-st-name's-linc(line-no)text) v
is-REM(s-st-name*s-line(linc-noxtext)) —
execute-statement(next-line-no(text, line-no), text, line-no-stack)
is-END(s-st-nam¢-s-linc(line-nojtext)) v
is-STOP(s-st-name's-line(line-noj{text)) ~» nutl
is-GOTO(s-st-name’s-linetlinc-no)text)) —
execute-statement(s-destination's-linc(line-no)(text),
text, line-no-stack)
is-GOSUB(s-st-name's-line(linc-no)(text)) —
execute-statement(s-destination®s-line(line-no)(text), text,
< next-line-no(text, line-no)> Nline-no-stack)
is-RETURN(s-st-name’s-line(linc-no}{text)) -
execute-statement(head(linc-no-stack), text, tail(linc-no-stack))
is-FOR(s-st-name’s-line(line-no)text)) -~
execute-for-st(s-linc(linc-no)(text). text, line-no-stack)
is-NEXT(s-st-name’s-line(line-no)text)) —
execute-next-st(s-for-stack(£): text, line-no, line-no-stack)
is-LET(s-st-name-s-line(line-noj(text)) —»
store(s-stg(£); location, value):
location: get-location(s-variable's-line(linc-no)(text)),
value: evaluate-expression{s-expression‘s-line(line-no)(text))
is-READ(s-st-name’s-line(linc-noktext)) -
execute-read-st(s-stg(¢); line-no,
’ s-input(#), text, line-no-stack)
is-RESTORE(s-st-nam.¢"s-line(line-no)(text)) —
restore-key(s-key's-input(¢):)
is-PRINT(s-st-name's-line(linc-no)(text)) —
execute-print-st(line-no, text, line-no-stack)
is-IF(s-st-name’s-line(linc-no)(text)) -
execute-statement(c, text, line-no-stack);
c: compare-relation(a, b, .
s-relation’s-boolcan‘s-line(line-no){text),
s-destination’s-line(linc-no){(text),
next-line-no{text, line-no));
a: evaluate-cxpresslon(s-cxp-1's-boolcans-linc(tine-no)(tex1)),
b: e\'aIuate-expmsion(s—exp-2‘s-boolcan‘s-linc(linc-no)(tcu))
is-FNEND(s-st-name's-line(line-no)(text)) —»

ss(result);
result: fetch(s-stg(£), location);
location: gel-location(s-function-name's-line(Iine-no)(icxt))
is-ON(s-st-name’s-line(line-no}(text)) —
tnt-on-st(a, s-line-no-list’s-line(line-no)(text),
text, line-no-stack);
a: evalunle-cxpression(s-cxp's-line(line-no)(texl))
3, execute-for-st(for-st, text, linc-no-stack) = -
not-{}(s-index'elem(j, s-for-stack({) = s-index(for-st)) — error
T — execute-statement(a, text, line-no-stack);
a: compare(s-for-stack(£); init,
least(those-next(s-index(for-st),
s-line-no(for-st)), text);
store(s-stg(£); location, init);
stack(s-for-stack(¢); s-line-no(for-s1),
s-index(for-st), limit, inc);
Jocation: get-lucation(s-index(for-st)),
init: evaluate-expression(s-initial(for-st)),
limit ; evaluate-cxpression(s-limit{for-st)),
inc: evaluate-expression(s-increment(for-st))
4. stack(for-stack; line-no, variable, limit, inc) =
I: <py(<s-line-no: line-no>,
<s-index: variable>,
<s-limit: limit>,
<s-increment : inc>) < Nfor-stack
5. execute-next-st(for-stack: text, line-no, line-no-stack) =
is- < > (for-stack) -~ error X
s-index's-linc(line-noXtext) # s-index(head(for-stack)) -»
execute-next-st(tail(for-stack); text, line-no, linc-no-stack)
T - exccute-statementib, text, line-no-stack);
b: compare(for-stack: a, line-no);
a: increment(for-stack)
6. Increment(for-stack) =

pass(x): .
store(s-stg(¢); location, x); .
x: lnt-lnﬁx-expression(s-incrcmcnl(head(for-smck)),
value,4);
value: fetch(s-stg(£); location);
location: gct-localton(s-index(hcad(l'or-stack)))

The Computer Journal

.

7. compare(for-stack ; value, line-no) =
signum(s-increment(head(for-stack))) x
(value-s-limitthead(for-stack) > 0 -+
PASS: next-line-nofs-texi(§), line-no)
1: tailtfor-stach)
T -» PASS: nevi-line-nots-tent(£), s-line-no(head(for-siack)))
8. fetch(stg, lovation) -
PASS: clsm(lu...mun, stg)
9. store(stg: focation, value) =
elemitiocation):
10. get-location(vari
is-simple-variabletvariable) -
get-loc-I(s-name(s-name(variable)) *s-atir(£))
T -» get-lac-2(s-name(s-name(variable)) ‘s-attr(£), variable)
11, get-loc-1{symtab) .
PASS: ﬁ-cl:.mcnl(\\mtab)
12, get-loc-2(symtab. variable) =
is-eo(s-clement(symtab)) —
(not-Q(s-subscript-2(variable)) — error
T — map-3(s-upper-bound(symtab), s-element(symtab),
subscript);
subscript: evaluate-expression(s-subscript-1(variablc)))
T = (is-2(s-subscript-2variable)) -- error
T — map-i(s-upper-bound(symtab),
s-upper-bound-s-element(symtab),
s-clement s-element(symtab),
subscript-1, subscript-2);
subscript-1: evaluate-expression(s-subscript-1(variable)),
subscript-2: evaluate-expressivonts-subscript-2(variable)))
13. mrap-Xdim-1, location, subscript) =-
PASS: map-l(dim-1, location. subscript)
14. map-d(dim-1, dim-2, location, subscript-1, subscript-2) =
PASS: m.ap~’(d1m-l dim-2, location, subscript-1, subscript-2)
15. evalunte-expression(expression) =
is-infix-expression(expression) —
int-Infix-expressionta, b, s-apcrator{expression));
a: evaluate-cxpression(s-operand-1(expression)),
b: evaluate-cxpression(s-operand-2(expression))
is-prefix-expression(expression) —
int-prefix-expression(a. s-operator(expression));
a: evaluate-expression(s-operand(expression))
is-variable(expression) —
fetch(s-s1g(£), location);
location: get-location(expression)
is-constant{cxpression) —
pass(internal-rep(expression))
is-function-ref(expression) —
Int-function-ref¢expression)
issdummy-parameter{capression) -
pass(clent(s-var's-name(cexpression)) "s-par*
s-def(s-def"s-name{cxpression)) ‘s-functions(£))
16. tnt- lnﬁx-cxprcss:on{op-l op-2, opr) =
is-*+"(opr) - » PASS: op-1 + op-
is-'—"(opr) — PASS: op-1 - op-2
is-***(opr) > PASS: op-1 op—"
is- "(opr) — PASS: op-1 = op-2
is-'1'(opr) — PASS:eop 1 tnwp-n)
17. !nl-preﬁx-exprcssion(opd opr) =
is-"+ (opr) — PASS: opd
is-'—"(opr) -» PASS: —opd
8. compsrc-rcla(mn(cxwl exp-2, rel. destination, next-line) =
is-*="(rel) & (cxp-1 = exp-2) v
is-* <*(rel) & (exp-1 < exp-D) v
is-‘> *(rel) & (exp-1 > exp-2) v
is-* < ='(reh) & (exp-l < exp-’)v
is-*> ="(rel) & (exp-) = exp-2)
is-‘ < > '(rel) & (exp-1 # cxp-Z) — PASS: destination
T — PASS: next-line
19. Int-on-st(value, list, 1ext. linc-no-stack) =
execute-statement(elem{compress(value, length(list)), list),
text, line-no-stack)

References

20.

21.

N
N -

23.

25.

26.

27.

28.
2

o o™

.

30.

31

2.

~

33.

34.

3s.

lnt-l‘unr(lon-rcf(exp)
is-library-function(s-name(exp)) &
fength(s-arg(exp)) = 1 -»
int-library-function(s-namce(cxp), x);
x: e\nlmle-nprcsuun(hc.ld(s-arg(exp)))
is-user-function(s-namci{esp)) —
Int-function-def(s-exp s-detls-name(exp))'s-functions(§)):
evaluate-args(s-par-s-def(s-name(exp))-s-functions(£);
. s-arg(esp), 1)
int-library-function(name,arg) ==
pass(namc(arg))

. Int-function-def(block) =

is-expression(block) —
evaluate-cxpression{block)

is-def-block(block) -+ exccute-program(block)
evaluate-arps(parameter-list: argument-list, n) =

n > length(argument-list) -+ aull

T -» evaluate-args{parameter-list; argument-list, n + 1);

stote-pm(elcm(n parameter-list); a);
te-expression({elem(n, argument-list))

. slolrc-par(par a) =

execute-read-st(stg; linc-no, input, text, line-no-stack) ==
exccute-statement(next-line-no(text, line-no), text, linc-no-stack);
read(stg: input, s-line(line-no)(text), 1)
read(stg; input, read-st, n) ==
n > length(s-load(read-st)) — null
T -» read(stg; input, read-st, n - 1);
store(stg; location, value);
location: get-location(elem(n, s-load(read-st))),
value: get-data-value(s-key's-input(§); s-datetinput))
get-dafa-value(hey; data-list) =
key > length(data-list) - error
T — PASS: internal-rep(clem(key, data-list))
T:key + 1
reslto:l'e-ke)(key') =

execute-print-st(line-no, text, line-no-stack) =
execute-statement(next-line-no(text, line-no), text, line-no-stack);
print(s-output(§): s-output's-linc(line-no)(text), 1)
print(output; print-st, n) ==
n > length(print-st) — add-to-output(output; ‘CR’)
n = length(print-st) & is-punct(clem(n, print-st)) —
add-to-output(output; elem(n, print-st))
is-expression(elem(n, print-st)) —
print(output; print-st, n + 1);
add-to-output(output; a);
a: evaluate-cxpression(clem(n, print-st))
T - print(output; print-st, n + 1);
add-to-output{output; elem(n, print-st))
add-to-output(output; element) =
is-int-valuc(element) — 1: output N <external-rep(clement) >
T = I output N < element >
least(list) =
is- < > (list) — error
length(list) = 1 — head(list)
head(list} < head(tail(lis)) —
Icast(< head(list) > Ntail(tail(list)))
T -+ least(tail(list))
those-next(index, line-no, text) =
< (ri)(s-st-name-s-linc(i)(text) = NEXT &
s-index"s-line(i)(text) = index &
i > line-no)>
compress(value, list-length) =:
value < | - 1
value > list-length - list-length
T - value
next-line-notext, i) =
i > (7j)(s-st-name’s-linc(jltext) = END) — error
§'§-9(§-line(i)(lexl)) - next-line-no(text, i + 1)
T—i

ANoON (1970). BASIC, Fifth Edition. Dartmouth College, Hanover, New Hampshire.

ChiaTHAM, T., and SATTLEY, K. (1964). Syntax Directed Compiling, Proc. S.J.C.C., pp. 31-57.

INGFRMAN, P. Z. (1966). A Syntax Oriented Translator, New York: Academic Press.

Lrg,). AL N, and Wy, D.(1969). The Vienna Definition Language: A Generalisation of Instruction Definitions. SIGPLAN Symposium on

Programn..ng Language Definition.

Lucas, P. et al. (196%). Method and Notation for the Formal Definition of Programming Languages, Technical Report TR25.087. IBM

Laboratory, Vienna,

Volume 15 Number 1

41

COMPUTER AND INFORMATION SCIENCE
TECHNICAL NOTES

The following TECHNICAL NOTES are now available at the Computer and Information
Science Department, Graduate Research Center except those marked with an asterisk.

*TN/CS/00001
(Out of Date)

*TN/CS/00002

*TN/CS/00003

*TN/CS/00004
TN/CS/00005

*TN/CS/00006
(Revision is
TN/CS/00020)
TN/CS/00007

* TN/CS/00008
(Out of Date)

* TN/CS/00009
TN/CS/ 00010

* TN/CS/00011
(Out of Date)

* TN/CS/00012
TN/CS/00013

TN/CS/00014
TN/CS/00015

TN/CS/00016

TN/CS/00017

Current Research Toward the Standardization and Formal Definition
of PL/T by John A.N. Lee (April 1,1968).

Discrete Markov Chains: An Heuristic Approach by Sue N. Stidham
(July 1,1968). '

The Damelki Syntactic Analysis Algorithm by Susan L. Gerhart
(August 28,1968).

A Survey of Hashing Techniques by John'A.N. Lee (September 15,1968).

The Recognition and Use of Null Elements in a Syntax Directed
Translator by John A.N. Lee (September 19,1968). ‘

SYNFUL, A Proposed General Purpose Translator System by John A.N. Lee
'('October 1,1968).

Sorti Almost Ordered Arrays by Caxton C. Foster (November 18,1968).
1-"8

Vlenna Definition Laqguagge—-Semantlcs by John A.N. Lee (December 13,1968)

An Examination of Two Hash Transfarms by Caxton C. Foster (May 9,1959).

Multiplexing Without Tears by Caxton C. Fostef' (May 30,1969).

Vienna Definition ige--A Generallzatlon of Instruction Definitions
by John A. N. Lee and Delmore Wu (April,1969).

An Unclever T:ime-Sharing System by Caxton C. Foster (October,1969).

The Formal Definition of the Basic Language by John A.N. lLee (April,1970)
(Also published in Computer Journal and as Technical Report 72B-1)

A Debugging Aid by Caxton C. Foster and Hugh C. Schulz (January 16,1970).

Conditional Interpretation of Operation Codes by Caxton C. Foster
and Robert H. Gonter (February,l1970).

Same Simple Algorithms for Content Addressable Mennmes by Caxton C.
Foster (July,1970).

A Data Distributor--The Sprinkler Systém by Caxton C. Foster (July,1970).

#TN/CS/00018

TN/CS/00019

TN/CS/00020

TN/CS/00021

% TN/CS/00022

TN/CS/00023
TN/CS/00024

TN/CS/00025
TN/CS/00026
TN/CS/00027

®»TN/CS/00028
TN/CS/00029

TN/CS/00030

* TN/CS/00031

TN/CS/00032

TN/CS/00033

TN/CS/00034

TN/CS/00035

TN/CS/00036

An Annotated Bibliography on Syntax-Directed Translation by
John A.N. Lee, Taveta K. Bogert, and Helen Gigley (July,1970).

C O, (o] cha chaub amaug--A Novel Multiply-by-
Three Circuit by Caxton C. Foster, Edward Riseman, 1, fred Stockton,
and Conrad Wogrin (September,1970).

SYNFUL--A General Purpose Translator System and Extensive Modification
of Technical Note #00006 by John A.N. Lee and Helen Gigley, edited by

Taveta K. Bogert (November,1970).

Maintenance Manual for the UMASS Timesharing Version of SYNFUL by
Ronald Lautmann (November,1970).

Microprogramming: A Design Alternative by Michael J. Sullivan
(December,1970). A

A Simulated Associative Memory by Caxton C. Foster (December,1970).

A Five Tape Algoritlm for the Instant Playback Problem by Caxton C.
Foster (December,1970).

A Comparison of Simulation Languages by Albert W. Zukatis (January,1971).

A Stack Oriented Camputer by Caxton C. Foster (April,1971).

Certain Formal Properties of the Viemé Definition Language by

. John A.N. Lee.

When the Chips are Down by Caxton C. Foster (January,1972).
Program for the PDP-11 by

RAUPEDATA-11 -- A Sophisticated Deb
isher (le . .

A Tutorial on Cobol Extensions to Handle Data Bases: The Data Base
Group Report by Robert W. Taylor (February,1972).

System Design: Process Models by Richard H. Eckhouse, Jr. (April,1972).

Autamated Accounting Systems by Richard H. Eckhosue, Jr. (April,1972).

A Generalization of AVL Trees by Caxton C. Foster (June,1972).

Conditional Syntactic §pec1flcat10n by J. Dorocak and John A.N. Lee
(September,1972).

A Formal Definition of Mini lan%a;sﬂ;_mbeﬂw
by Edward G. Pisher (October,1972). '

Data Administration, Data I
aylor o, .

ce, and the DBTG Re by

COMPUTER AND INFORMATION SCIENCE
TECHNICAL REPORTS

The following TECHNICAL REPORTS are now available at the Computer and Information
Science Department Graduate Research Center, except those marked with an asterisk.

70C-2

70C-3

70C-4
70C-5

70C-6

71B-1

71B-2
71B-4
71C-6
72A-1

72B-1
72B-2

72C-1

73B-1

73B-2
73C-3

73C-4

73C-5

73C-6

Organizational Principles for Embryological and Neurophysiological Processes
by Michael A. Arbib.

On_the Likely Evolution of Cammunicating Intelligence on Other Planets by
chael A. Arbab (August 1, 1970, revise C ’ .

Contextual Error Detection by Roger W. Ehrich and Edward M. Riseman.

Transformations and Samatotopy in Perceiving Systems by Michael A. Arbib.

Organizational Principles for Theoretical Neurophysmlq& by Michael A. Arbib,
(August 15, 1971).

‘The Definition and Validation of the Radix Sorting Technique by John A. N. Lee,

(January, 1972).
Two Papers on Group Machines by Michael A. Arbib,-

Automata with Ranked State Sets by Dieter Schiitt.

Machines in a Category by M. A. Arbib and E. G. Manes.

A Study of the Constraints upon the Parallel Dlspatcha;qg and Exeecution of
Machine Code Instructions by Caxton C. Foster and Edward M. Riseman.

The Fonnal Definition of the Basicé Langxage by John A. N. Lee.

Deccmposable Machines and Simple Recursion by Michael A. Arblb and E. Manes.
A Contextual PoMessy}g System for Error Detectlon and Cor'rectlon in
Character Recognition by Edward M. Riseman and A.— Hanson (October 1972).
Adjoint Machines, State-Behavior Machines, and Duall by Michael A. Arbib
an% Ernest G. FE’{es (January 1973).

Natyral State Transformations by Suad Alagié (February 1973). (Revised Nov.1973)

A Model of Posited Decisionary and Learning Mechanisms in Mammalian CA-3 .
I—E.m_ by William Kilmer, T. McLardy, and M. Olinski (February 1973).

Four Faces of Hal: Artificial Intelligerice ‘Techiniques “in Compuiter-
Assisted Instruction W Howard A. Peelle and.Edward M. Riseman (h, 1973).
System Design of an Integrated Pattern Re ition System, or How to Get
the Best Mileage out of Used Pattern Classifier A.R. Hanson
E.M. Riseman, %;June I§75¥. ’

Neural Models of Spatial Perce onmdtmcm'mlofbbvenent,by
. s Co 8 5 Parvat. une 3).

COINS Technical Reports - Page 2

73B-3 ' Foundations of System Theory, I by Michael A. Arbib and Ermest G. Manes,
July, 1973))

73A-1 ULD and a Description of the PDP-8, by John A. N. Lee (September 1973).

738-4 Time-Varying Systems, by Michael A. Arbib and Ernest G. Manes
(November 1973§'.

73C-7 Model of a Plausible I:einl.’g% Scheme for CA3 Hippocampus, by William

er and Melanie Olinski, (Nov., 1973).

73B-5 Algebraic Aspects of Algol 68, by Suad Alagié (November 1973).

73C-8 Biolo§ of Decisi% and Le_rg_Tnp)ﬂ g Mechanisms in Mammalian CA3-Hippocampus,
y Wi o 3). '

73C-9 %e Movements and Visual Peroe%;‘on: A '"Two Visual ?tem" Model by

. Didday and . r .

73A-1.1 Basic Specifications, by John A.N. Lee, Steven R. Beckhardt, and Arthur
. Karshmer (July 1973).

