DECOMPOSABLE MACHINES AND SIMPLE RECURSION 1

Michael A. Arbib Computer and Information Science

Ernest G. Manes
Mathematics

COINS Technical Report 72B-2

University of Massachusetts Amherst, MA 01002 (November 7, 1972)

ABSTRACT

We introduce the class of decomposable machines, present a uniform realization theory for this class, and note that it yields not only the well-known theory for linear machines, but also the recent theory of group machines. In particular, we give a derivation of Kalman's module-theoretic approach to linear systems in which linearity plays no role.

 $^{^{1}}$ The research reported in this paper was supported in part by the National Science Foundation under Grant No. GJ 35759.

1. Summary of the Input-Process Approach.

Here we give a brief summary of the general framework given in [2a] for the study of machines in a category. In the next section we shall present those notions of category theory not contained in [2a] which are required for our introduction of decomposable machines in Section 3:

DEFINITION: A process in an arbitrary category $\mathcal K$ is a functor $X: \mathcal K \longrightarrow \mathcal K$. Dyn(X) denotes the <u>category of X-dynamics</u> whose objects are pairs (Q,δ) with Q an object of $\mathcal K$ and $QX \stackrel{\delta}{\longrightarrow} Q$ a morphism in $\mathcal K$, and whose morphisms $(Q,\delta) \stackrel{f}{\longrightarrow} (Q',\delta')$ -the <u>X-dynamorphisms</u>- are $\mathcal K$ -morphisms $Q \stackrel{f}{\longrightarrow} Q'$ which render

$$\begin{array}{cccc}
QX & & & & \delta & ; \\
fX & & & & & \downarrow & f \\
Q'X & & & & & \delta' & & Q'
\end{array}$$

commutative. Composition and identities are defined as in $\mathcal K$ so that $\mathrm{Dyn}(X)$ is a category.

We say that X is an <u>input process</u> if the forgetful functor Dyn (X) $\longrightarrow \mathcal{H}$: $(Q, \delta) \mapsto Q$ has a left adjoint -that is, just in case for each K in \mathcal{H} there exists a "free machine" $(KX^Q, K\mu_Q)$ with "inclusion of the generators" $K\eta: K \longrightarrow KX^Q$, so that for any (Q, δ) in Dyn(X) and any $K \xrightarrow{f} Q$ in \mathcal{H} , there is exactly one dynamorphism ψ extending f; i.e. there exists a unique ψ which renders the following diagrams commutative:

Having defined an input process, we could then make the following general definition:

DEFINITION: A machine in a category K is a 7-tuple

$$M = (X,Q,\delta,I,\tau,Y,\beta)$$

where X: $\mathcal{K} \longrightarrow \mathcal{K}$ is an input process

 $(0,\delta)$ \in Dyn(X) -we call Q the state object

I is an object of K, the initial state object

 $I \xrightarrow{\tau} Q$ is a \mathcal{K} -morphism called the <u>initial state</u>

Y is an object of ${\mathcal K}$, the <u>output object</u>

 $Q \xrightarrow{\beta} Y$ is the <u>output map</u>.

We call IX^{0} the object of inputs, and then use our freeness axiom to define the reachability map r as the unique dynamorphic extension of τ :

Again, by freeness, we define the <u>run map</u> δ^{0} : $OX^{0} \longrightarrow Q$ as the unique dynamorphic extension of the identity map

Finally, by the response (or system behaviour) of M, we mean
$$IX^{0} \xrightarrow{r} Q \xrightarrow{\beta} Y$$

For fixed I, Y and X we call any \mathcal{K} -morphism

$$IX^{0} \xrightarrow{f} Y$$

a <u>response morphism</u>. We say M <u>realizes</u> (or is a realization of) f just in case f is the system behavior of M. Our main aim in this paper is to present very general conditions under which decomposable machines - which include both linear machines and group machines - exist which are minimal realizations of an appropriate class of response morphisms f.

2. THE IDENTITY PROCESS

Given a set Q, a q_0 in Q and a map $Q \xrightarrow{\delta} Q$, we can inductively define a sequence $\underline{N} \xrightarrow{q} Q$ as the orbit of f starting at q_0 :

$$q_0 = q_0$$

$$q_{n+1} = (q_n) \delta = (q_0) \delta^{n+1}$$

We say $\underline{N} \xrightarrow{q} Q$ is defined by <u>simple recursion</u> on q_0 and f. Note that if $q: \underline{N} \longrightarrow Q$ has $q_1 = q_0$ and is defined by simple recursion, then $q_n = q_0$ for all $n \in \underline{N}$.

We may think of an orbit $\underbrace{N} \xrightarrow{q} Q$ as the state-trajectory of a one-input sequential machine:

Example 1: In $\mathcal{H}=S$ we may identify the identity functor X with $-\times X_0$ where X_0 is a one-element set $\{x_0\}$. Then

$$Ix^{0} = I \times x_{0}^{*} = I \times \underline{N} .$$

In particular, if I has one element, and $I \xrightarrow{\tau} Q$ yields initial state $q_0 = (1)\tau$, we have $r(1,n) = (q_0)\delta^n$ for a dynamics $Q \xrightarrow{\delta} Q$.

We now re-express the above notion arrow-theoretically prior to

formulating the general categorical definition:

Consider $(\underline{N}, I \xrightarrow{Z} \underline{N}, \underline{N} \xrightarrow{S} \underline{N})$ where I is a one-element set, $I \xrightarrow{Z} \underline{N}$ is the zero map with image 0, and $\underline{N} \xrightarrow{S} \underline{N}$ is the successor map $n \mapsto n + 1$. Then $I \xrightarrow{Z} \underline{N} \xrightarrow{S} \underline{N}$ has the universal property that for all $I \xrightarrow{T} Q \xrightarrow{\delta} Q$ there exists exactly one $\underline{N} \xrightarrow{Q} Q$ such that

commutes.

This clearly generalizes to the following:

DEFINITION: If I is an object in the category \mathcal{H}_{\bullet} , a simple recursive object with basis I is an

$$(\hat{I}, I \xrightarrow{z} \hat{I}, \hat{I} \xrightarrow{s} \hat{I})$$

such that for all (Q, I $\xrightarrow{\tau}$ Q, Q $\xrightarrow{\delta}$ Q) there exists exactly one $\hat{I} \xrightarrow{q}$ Q such that

commute. We say that q is defined by simple recursion (on q_0 and f).

This definition was first formulated by Lawvere [4, p. 1507, Axiom 3; 5, p. 292]. We shall see in Section 3 that \hat{I} can be constructed in most categories, but now let us see the implications of its existence in any category \mathcal{H} :

Let, then, X: $\mathcal{K} \longrightarrow \mathcal{K}$ be the identity functor, i.e. KX = K and $(K \xrightarrow{f} L)X = K \xrightarrow{f} L$. An X-dynamics is then just a map $Q \xrightarrow{\delta} Q$.

It is clear that $(\hat{1}, \hat{1} \xrightarrow{s} \hat{1}, I \xrightarrow{z} \hat{1})$ is a simple recursive object with basis I if and only if (via $\mu_0 = s$ and $\eta = z$) it is just the free dynamics of the identity functor on I - note that this ties in with S:

Example 2: Returning to Example 1, we see that in the category 5,

$$\hat{I} = I \times \underline{\underline{N}}$$
 with
$$I \xrightarrow{Z} I \times \underline{\underline{N}}: i \mapsto (i,0); \text{ and}$$

$$I \times \underline{\underline{N}} \xrightarrow{S} I \times \underline{\underline{N}}: (i,n) \mapsto (i,n+1).$$

DEFINITION: We say that $\mathcal K$ is a <u>simple-recursive</u> category if $\hat{\mathbf I}$ exists for all $\mathbf I$ ϵ $\mathcal K$.

DEFINITION: A decomposable machine $M = (Q, F, X_0, G, Y, H)$ in the simple recursive category \mathcal{K} is a machine of the identity process: $Q \xrightarrow{F} Q$ is the dynamics, $X_0 \xrightarrow{G} Q$ is the initial state morphism, and $Q \xrightarrow{H} Y$ is the output morphism. The reachability map $\hat{X}_0 \xrightarrow{F} Q$ is then the morphic extension of G, while $rH: \hat{X}_0 \xrightarrow{Y} Y$ is the system behavior.

We shall see in Section 3 that this does indeed yield linear machines if $\mathcal K$ is the category of R-modules, and yields group machines [1] if $\mathcal K$ is the category of groups. But here let us develop the realization theory for morphisms $\hat x_0 \longrightarrow Y$ in a simple recursive category $\mathcal K$ by showing that they have a minimal decomposable machine realization.

We start by recalling that in [2a] we called an arbitrary machine $M = (X,Q,\delta,I,z,Y,\beta) \quad \text{in a category } \mathcal{K} \quad \underline{\text{coequalizer-reachable}} \text{ just in case}$ the reachability map $IX^{\underline{0}} \xrightarrow{\Gamma} Q \quad \text{is a coequalizer, i.e. just in case}$ there exists a pair of maps $E \xrightarrow{\alpha} IX^{\underline{0}} \quad \text{such that } \alpha r = \gamma r, \quad \text{and such}$ that for every map r' for which $\alpha r' = \gamma r'$, there is a unique map ϕ

such that the following diagram commutes:

We may thus state the following problem (which we shall see in Section 3 does indeed reduce to the usual problem for linear machines):

REALIZATION PROBLEM FOR DECOMPOSABLE MACHINES:

Given a response morphism $f: \hat{X}_0 \longrightarrow Y$ in the simple recursive category \mathcal{K} , find a decomposable machine $M_f = (Q_f, F, X_0, G, Y, H)$ which is the minimal coequalizer-reachable realization of f. In other words:

- (i) M_f realizes f, i.e. $f = r_f \cdot H$
- (ii) The reachability map $\hat{x}_0 \xrightarrow{r_f} Q$ of M_f is a coequalizer
- (iii) M_f is minimal in that for all $M = (Q,F',X_Q,G',Y,H')$ satisfying (i) and (ii) there exists a unique dynamorphism ψ for which we have the commutativity of

We now approach our main theorem which not only includes the realization theory for linear machines [3, Chapter 10; 7, Chapter 8] but also the more recent realization theory for group machines [1].

Recall from [2a] the general defining diagram for the Nerode equivalence $E_f \xrightarrow{\alpha} IX^{0}$ (when it exists) of an arbitrary response morphism $f: IX^{0} \longrightarrow Y:$

In the case of present interest $I = X_0$, $X = id_{\mathcal{K}}$ and $\mu_0^{(n)} = s^n \colon \hat{X}_0 \longrightarrow \hat{X}_0$. Thus our general definition reduces to the following for $X = id_{\mathcal{K}}$:

DEFINITION: Let $f \colon \hat{X}_0 \longrightarrow Y$ be a response morphism for the identity process of a simple recursive category \mathcal{H} . The Nerode equivalence of f is defined to be a pair of morphisms of the form

$$E_f \xrightarrow{\alpha} \hat{x}_0$$

such that $\alpha s^n f = \gamma s^n f$ for all n = 0, 1, ... and universal with that property, that is whenever p, p^* is another

pair of maps with $ps^nf = p's^nf$, then there exists unique ψ with $\psi\alpha = p$ and $\psi\gamma = p'$.

This is an example of what categorists call a <u>limit construction</u> [6] and as such E_f exists in most categories. For example, in <u>R-Mod</u>, groups or topological spaces, E_f is the set of all (x,y) in $\hat{X}_0 \times \hat{X}_0$ such that $xs^nf = ys^nf$ for all n, and α , γ are the restrictions of the coordinate projections.

NERODE REALIZATION THEOREM FOR DECOMPOSABLE MACHINES

Let $f \colon \hat{X}_0 \longrightarrow Y$ be a response morphism for the identity process in the simple-recursive category \mathcal{H} . Assume that the Nerode equivalence $E_f \xrightarrow{\alpha} \hat{X}_0$ of f exists and that there exists a coequalizer $\hat{X}_0 \xrightarrow{r} Q_f$ of α and γ . Then

- (i) There exists a unique dynamics $Q_f \xrightarrow{F_f} Q_f$ and initial state morphism $X_0 \xrightarrow{G_f} Q_f$ whose reachability morphism is r.
- (ii) There exists a unique \mathcal{K} -morphism H_f :

Moreover, $M_f = (Q_f, F_f, X_0, G_f, Y, H_f)$ is the minimal coequalizer-reachable realization of f.

Proof: This follows from the Nerode Realization theorem of [2a], since

Postulates 1 and 2 of [2a] were assumed, while Postulates 3 and 4 are guaranteed by the Lemma of [2a] following that theorem since it is trivial that

the identity process preserves coequalizer diagrams.

Of course, in the present case, a direct verification is also straight-forward: We can find the desired ψ from

once we verify that $\alpha'r_f = \gamma'r_f$. Now $\alpha's^n f = \alpha'r F^n H = \gamma'r F^n H = \gamma's^n f$, and so by the definition of Nerode equivalence, there exists a unique ψ with $\psi\alpha = \alpha'$ and $\psi\gamma = \gamma'$. But this yields $\alpha'r_f = \psi\alpha r_f = \psi\gamma r_f = \gamma'r_f$.

COPRODUCTS

We now show that any category ${\mathcal K}$ with suitable coproducts is simple recursive:

DEFINITION: Let $\{K_{\alpha} \mid \alpha \in I\}$ be a family of objects in \mathcal{K} . A coproduct of $\{K_{\alpha}\}$ is an object C together with a family of \mathcal{K} -morphisms $\{K_{\alpha} \xrightarrow{\text{in}_{\alpha}} C\}$ with the universal property that for any family $\{K_{\alpha} \xrightarrow{\text{f}_{\alpha}} X\}$ there exists exactly one f for which the following diagram commutes:

Note that the above definition implies that C is unique up to isomorphism, for if $K_{\alpha} \xrightarrow{f_{\alpha}} X$ were also a coproduct with

we infer from the diagrams

and the uniqueness condition in the definition of coproduct that

$$gf = id_X$$
 and $fg = id_Y$

so that f and g are isomorphisms, and $f_{\alpha} = i\eta_{\alpha} \cdot f$ while $i\eta_{\alpha} = f_{\alpha} \cdot g$.

Most categories we care about have coproducts:

Example: In the category S of sets, the coproduct of a family $\{K_{\alpha} \mid \alpha \in I\}$ of sets is the disjoint union

 $C = \coprod_{\alpha \in I} K_{\chi} = \{(x,\alpha) \mid x \in K_{\alpha}, \alpha \in I\}$ with $K_{\alpha} \xrightarrow{in_{\alpha}} C : x \mapsto (\alpha,x)$. For, given any family of maps $K_{\alpha} \xrightarrow{f_{\alpha}} X$ we may define $C \xrightarrow{f} X$ uniquely by $(\alpha,x) \mapsto f_{\chi}(x)$ to ensure that

commutes.

Example: In the category R-Mod of modules over the ring R, the coproduct of a family $\{K_{\alpha} \mid \alpha \in I\}$ of R-modules is the direct sum

$$C = \coprod_{\alpha \in I} K_{\alpha} = \bigoplus_{\alpha \in I} K_{\alpha} = \{(\mathbf{x}_{\alpha}) \mid \mathbf{x}_{\alpha} \neq 0 \text{ for only finitely }$$

$$\max_{\alpha} \{(\mathbf{x}_{\alpha}) \mid \mathbf{x}_{\alpha} \neq 0 \text{ for only finitely } \}$$

with $K_{\beta} \xrightarrow{\text{in}_{\beta}} C$: $x_{\beta} \mapsto (\delta_{\alpha\beta}x_{\beta})$. For, given any family of R-linear maps $K_{\alpha} \xrightarrow{f_{\alpha}} X$ we may define $C \xrightarrow{f} X$ uniquely by $(x_{\alpha}) \mapsto_{\substack{\alpha \in I \\ x_{\alpha} \neq 0}} f_{\alpha}(x_{\alpha})$ to ensure that

commutes.

Example: In the category \underline{Gp} of groups, the coproduct of a family $\{K_{\alpha} \mid \alpha \in I\}$ of groups is the "free product"

$$C = \coprod K_{\alpha}$$

defined by the following rather elaborate construction:

- 1. The elements of C consist of all finite sequences (including the empty one, Λ) of elements of the form
 - (k, α) for which $k \in K_{\alpha}$ and $\alpha \in I$ subject to the conditions:
 - (i) No (k,α) in the string has $k = identity e_{\alpha}$ of K_{α}
 - (ii) No string $(k_1,\alpha_1)(k_2,\alpha_2)...(k_n,\alpha_n)$ has $\alpha_j = \alpha_{j+1}$ for any $j, 1 \le j \le n$.
- Multiplication in C is simply concatenation of sequences, save that we must apply the operations
 - (iii) replace consecutive elements of the form $(k,\alpha)(k',\alpha)$ α by the single element (kk',α) using multiplication in K_{α} .
 - (iv) Delete elements of the form (e_{α}, α) until obtaining a sequence (probably empty) which satisfies (i) and (ii).

It is clear that Λ is the identity, and that $(k_1,\alpha_1)\dots(k_n,\alpha_n)$ has inverse $(k_n^{-1},\alpha_n)\dots(k_1^{-1},\alpha_1)$. One simply checks associativity to confirm that $\coprod K_\alpha$ is indeed a group.

Then, given any family of homomorphisms $K_{\alpha} \xrightarrow{f_{\alpha}} X$ we may define

 $C \xrightarrow{f} X$ uniquely by

$$[k_1,\alpha_1)\dots(k_n,\alpha_n)]f = (k_1)f_{\alpha_1}\dots(k_n)f_{\alpha_n}$$

to ensure that

commutes.

We may now appreciate that it is easy to find examples of simple-recursive categories because any category which has countable copowers is simple-recursive. More precisely, let us write $(I \xrightarrow{in_n} I^{\S}: n=0,1,\ldots)$ for the countably infinite copower of copies of I. The following theorem says that "mathematical induction is stronger than simple recursion".

THEOREM: $(I^\S, I \xrightarrow{in_0} I^\S, I^\S \xrightarrow{s} I^\S)$ is a simple-recursive object with basis I, where s is defined by the "induction hypothesis"

Proof: We have to check that given I $\xrightarrow{\tau}$ Q $\xrightarrow{\delta}$ Q there exists exactly one ψ such that

But from the left-hand triangle we read

$$in_0 \cdot \psi = \tau$$

while from the right-hand square, and the fact that $in_n \cdot s = in_{n+1}$, we read

$$in_{n+1} \cdot \psi = (in_n \cdot \psi) \cdot \delta$$
 for each $n \cdot \underline{N}$.

This defines $in_n \cdot \psi$ for each $n \in \underline{N}$, and so defines ψ uniquely by applying the coproduct property to

With this background we may see how neatly the general theory of Section 2 embraces the theory of linear machines. (The reader may supply a corresponding link to the group machines of [2a]):

Lemma: A <u>linear</u> machine (X_0, Q, F, G, Y, H) is coequalizer-reachable just in case every state is of the form $\sum_{j=0}^{n} x_j GF^j$, i.e. just in case (F,G) is reachable in the conventional system-theoretic sense of the term:

Proof: We note that in R-Mod $X_0^\S = \coprod_{\alpha \in \mathbb{N}} X_0 = \{(x_n, \dots, x_1, x_0) \mid n \in \mathbb{N} \text{ with } each x_j \in X_0, n \geqslant j \geqslant 0$

so that r: $X_0^{\S} \longrightarrow \mathbb{Q}$ is precisely the map $(x_n, \dots, x_1, x_0) \mapsto \sum_{j=0}^n x_j GF^j.$

Thus, our assertion follows immediately from the following lemma which asserts in particular that every coequalizer in R-Mod is onto.

Lemma: Let \mathcal{K} be a category of universal algebras and let $K \xrightarrow{f} L$ be a coequalizer. Then f is onto.

Proof: Consider the diagram

where f is the coequalizer of α and γ , R is the congruence $\{(x,y): xf=yf\}$ of f (p, q being the restrictions of the coordinate projections) and θ is the canonical projection to the quotient algebra. Because $\alpha f = \gamma f$ there exists τ with $\tau p = \alpha$, $\tau q = \gamma$. Thus, $\alpha \theta = \gamma \theta$, inducing unique ϕ with $f \phi = \theta$. As p f = q f there exists unique ψ with $\theta \psi = f$. As $f \phi \psi = f$ and f is a coequalizer, $\phi \psi = id$. Thus ψ is onto

It is now apparent that our general Nerode realization theorem of Section 2 yields the Kalman realization theory of [3, Chapter 10] as a special case: If $X_0 = K^m$ for some field K, then $X_0^{\S} \cong K[s]^m$, the ring of m-tuples of polynomials in the indeterminate s (we eschew Kalman's use of z here for obvious reasons) with coefficients in K. Then the Nerode equivalence

$$\{(x,y) \mid (x,y) \in X_0^{\S} \times X_0^{\S} \text{ and } xs^n f = ys^n f\}$$

is the equivalence of the K[s]-linear map

$$\tilde{f}: K[s]^m \longrightarrow Y^{\underline{N}}: x \mapsto (xf,xsf,xs^2f,...,xs^nf,...)$$

Just as a K[s]-module is any K-module equipped with a linear map, and Kalman shows us how to go from \tilde{f} (or the corresponding $f:K[s]^m\longrightarrow Y$) to the minimal K[s]-module $Q_f\xrightarrow{F}Q_f$ for which there exist G and H such that f is the behavior of (K^m,G,Q_f,F,Y,H) so do we show how, in any

simple recursive category $\mathcal K$ to go from a $\mathcal K$ -morphism $\hat{x}_0 \xrightarrow{f} Y$ to the minimal (G,Q_f,X_0,F,Y,H) which realizes it. The crucial insight of our approach is that linearity plays no role.

We state here that if both K and its dual K^{op} are simple-recursive then the identity process is state-behavior in the sense of [2b] and the usual observability and duality theory of linear systems can be formulated. See [2b] for details.

4. AN ALTERNATIVE FORMULATION

To conclude, it will prove insightful to give a uniform format for linear and group machines which yields a second general notion of decomposable machine within our framework of machines in a category. We first note some further properties of the coproduct:

If we consider $\{K_{\alpha} \mid \alpha \in I\}$ for I the empty set \emptyset , the condition for C to be their coproduct is simply that for any X in \mathcal{K} , there is a unique map $C \xrightarrow{f} X$. Such a C is called <u>initial</u>. For $\mathcal{K} = S$, we have $C = \emptyset$; for $\mathcal{K} = R\text{-Mod}$, it is the 1-element module $\{0\}$; and for $\mathcal{K} = \underline{Cp}$, it is the 1-element group $\{e\}$.

Where no ambiguity can result, we may write \emptyset for the initial object in any category (\emptyset is thus unique up to isomorphism if it exists). We shall often write K+L for the coproduct of two objects K and L, It can easily be checked that

- 1. $K + \emptyset \cong K$
- 2. $K + L \cong L + K$
- 3. $(K + L) + M \stackrel{\sim}{=} K + (L + M) \stackrel{\sim}{=} K + L + M$

We now show how to combine maps using the coproduct construction: DEFINITION: (i) Given $K \xrightarrow{f} X$ and $L \xrightarrow{g} X$, and some specific choice of K + L, we define the map $\binom{f}{g}$: $K + L \longrightarrow X$ by the diagram

(ii) Given
$$K \xrightarrow{f} K'$$
 and $L \xrightarrow{g} L'$ we define $K + L \xrightarrow{f+g} K' + L'$ by $f + g = \begin{pmatrix} f & in'_1 \\ g & in'_2 \end{pmatrix}$ i.e. we have

Example: For R-modules,

$$\binom{f}{g}(k, \ell) = f(k) + g(\ell)$$
 in X
 $(f + g)(k, \ell) = (f(k), g(\ell))$ in K \bigoplus L

For groups

$$\begin{aligned} & (\overset{\mathbf{f}}{\mathbf{g}})(k_1 \ell_1 k_2 \ell_2 \dots) = \mathbf{f}(k_1) \mathbf{g}(\ell_1) \mathbf{f}(k_2) \mathbf{g}(\ell_2) \dots & \text{in } \mathbf{X} \\ & (\mathbf{f} + \mathbf{g})(k_1 \ell_1 k_2 \ell_2 \dots) = \mathbf{f}(k_1) \mathbf{g}(\ell_1) \mathbf{f}(k_2) \mathbf{g}(\ell_2) \dots & \text{in } \mathbf{K} + \mathbf{L}. \end{aligned}$$

As an interesting aside, we note that if \hat{I} and $I + \hat{I}$ exist, then $\binom{z}{s}: I + \hat{I} \longrightarrow \hat{I}$ is an isomorphism, which may be interpreted by saying that \hat{I} is an "infinite" object (think of \lesssim , and I a non-empty set).

With these definitions we may succinctly state our alternative general format:

A <u>linear machine</u> is an R-linear map $\binom{F}{G}: Q+X_0 \longrightarrow Q$ together with an R-linear map $H: Q \longrightarrow Y$.

A group machine is a homomorphism $\binom{F}{C}:Q+X_0\longrightarrow Q$ together with an R-linear map $H\colon Q\longrightarrow Y.$

We suddenly understand a source of great confusion in general system theory. For R-modules, the product $Q \times X_0$ and the coproduct $Q + X_0$ are isomorphic, and thus we could always treat linear systems as if the next-state map were from $Q \times X_0$ to Q. However, it is clear that $Q \times X_0$ and $Q + X_0$ are not isomorphic for groups (unless they are abelian - can you see why?), and it was the attempt to provide a realization theory for group machines that forced us [1] to see that coproducts provided the appropriate algebraic setting.

With this motivation, we are led to consider the following process in <u>any</u> category \mathcal{K} : Pick an object $X_0 \in \mathcal{K}$, and let X be the process $X = - + X_0 \colon \mathcal{K} \longrightarrow \mathcal{K} \colon Q \mapsto Q + X_0$. We assume each $Q + X_0$ exists; but then, the action on morphisms is given by

It is clear that X is indeed a functor. It is in fact an input process (i.e. admits free machines):

THEOREM: Let X_0 be any object of a simple recursive category $\mathcal K$ with finite products. Then the functor $X=-+X_0$ is an input process on $\mathcal K$. Moreover, the free dynamics on I is determined as follows:

$$IX^{0} = \hat{I} + \hat{X}_{0}$$

Denoting the zero and successor maps, respectively, by

$$I \xrightarrow{\overline{z}} \hat{I}$$
 and $\hat{I} \xrightarrow{\overline{s}} \hat{I}$ for I; and $\hat{X}_0 \xrightarrow{z} \hat{X}_0$ for X_0 ;

we have

$$(IX^{\hat{\theta}})X \xrightarrow{I\mu_0} IX^{\hat{\theta}}$$
 is $\hat{I} + \hat{X}_0 + X_0 \xrightarrow{g+(\frac{c}{2})} \hat{I} + \hat{X}_0$

Reading off the 'top' of the two diagrams spliced together, and off the 'middle' and 'bottom' of the right-hand diagram we obtain

and these are clearly simple recursions, and so define α and β uniquely. \square Having assured ourselves that $-+X_0$ is an input process, we can then make our alternative definition:

DEFINITION: A <u>decomposable machine</u> (Mark II) in the simple recursive category with finite coproducts is a 6-tuple

$$(X_0,Q,F,G,Y,H)$$
where $Q + X_0 \xrightarrow{(F_0)} Q$ is an $X = - + X_0$ dynamics
$$Q \xrightarrow{H} Y$$
 is the output map

and it is understood that we take the initial state to be the unique map $\emptyset \xrightarrow{\tau} Q$. We denote the machine by (F,G,H) for short.

This indeed fits in with our convention of taking 0 as the initial state of a linear machine and e as the initial state of a group machine.

Now it is easy to check that $\hat{\emptyset} = \emptyset$ so that

$$\emptyset x^{0} = \hat{\emptyset} + \hat{x}_{0} \cong \emptyset + \hat{x}_{0} = \hat{x}_{0}.$$

Thus the reachability map of (F,G,H) is simply the map

$$r: \hat{X}_0 \longrightarrow Q$$

which is the " β " for f = τ in the last proof. If $\hat{I} = I^{\hat{S}}gr$ satisfies

$$in_n r = GF^n$$
 for all $n \in N$.

The system behavior f equals rH, and is the unique f: $X_0^{\S} \longrightarrow Y$ satisfying

in
$$f = GF^nH$$
 for all $n \in N$,

a formula very familiar from linear system theory (which is a special case).

To conclude, then, let us check that our two notions of decomposable machine mesh. Given a fixed input process X, initial state object I and output object Y, we may define a category $\mathcal{M}_{X,I,Y}$ whose objects are the machines

$$(X,Q,\delta,I,\tau,Y,\beta)$$

for arbitrary Q, δ , τ and β , and whose morphisms $M' \xrightarrow{\psi} M$ are the X-dynamorphisms $\psi \colon Q' \longrightarrow Q$ which satisfy

Noting that the identity process in a category $\mathcal K$ with finite products equals $-+\emptyset$, we have our equivalence result in the following form:

THEOREM: Let $\mathcal K$ be a simple recursive category with finite coproducts, and let $\mathbf X_0$ and $\mathbf Y$ be fixed objects of $\mathcal K$.

Set
$$m_1 = m_{-+0, X_0, Y}$$
 and $m_2 = m_{-+X_0, 0, Y}$

Then the maps

$$(-+\emptyset,Q,F,X_0,G,Y,H) \mapsto (-+X_0,Q,\binom{F}{G},\emptyset,\tau,Y,H)$$

$$\psi \colon Q' \longrightarrow Q \mapsto \psi \colon Q' \longrightarrow Q$$

define a behavior and reachability preserving isomorphism $\,^\Phi$ from $\,^M_1\,$. to $\,^M_2\,$

Proof: The crucial point is that

$$x_0^{(-+\emptyset)} = \hat{x}_0^{(-+\emptyset)} = \hat{x}_0^{(-+X_0)} = \hat{y}_0^{(-+X_0)}$$

The rest follows by routine calculation.

In particular, it follows that a machine M is a minimal coequalizer-reachable realization of f: $X_0^\S \longrightarrow Y$ in \mathcal{M}_1 iff $\Phi(M)$ is a minimal coequalizer-reachable realization of f in \mathcal{M}_2 .

REFERENCES

- [1] M. A. ARBIB, <u>Two Papers on Group Machines</u>, Technical Report 71B-2, COINS, University of Massachusetts at Amherst, 1972.
- [2a] M. A. ARBIB and E. G. MANES, <u>Machines in a Category: An Exposition</u>, In Press.
- [2b] M. A. ARBIB and E. G. MANES, Adjoint Machines, In Press.
- [3] R. E. KALMAN, P. L. FALB and M. A. ARBIB, <u>Topics in Mathematical</u> System Theory, McGraw-Hill, 1969.
- [4] F. W. LAWVERE, An Elementary Theory of the Category of Sets, Proc. Nat. Acad. Sci. U.S.A. 52, 1964, 1506-1511.
- [5] F. W. LAWVERE, Adjointness in Foundations, Dialectica 23, 1969, 281-296.
- [6] S. MAC LANE, Categories for the Working Mathematician, Springer-Verlag, 1972.
- [7] L. PADULO and M. A. ARBIB, <u>Deterministic Systems: A Unified State-Variable Approach to Discrete and Continuous Systems</u>, Philadelphia: W. B. Saunders, 1973.