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ABSTRACT

We introduce the class of decomposable machines, present a uniform
realization theory for this class, and note that it yields not only the
well-known theory for linear machines, but also the recent theory of
group machines. In particular, we give a derivation of Kalman's module-

theoretic approach to linear systems in which linearity plays no role.

1 The research reported in this paper was supported in part by the
National Science Foundation under Grant No. GJ 35759.



1., Summary of the Input-Process Approach.

Here we give a brief summary of the geberal framework given in [2a]
for the study of machines in a category. In the next section we shall
present those notions of category theory not contained in [2a] which are

required for our introduction of decomposable machines in Section 3:

DEFINITION: A process in an arbitrary category K is a functor

X: E—-»f( Dyn(X) denotes the category of X-dynamics whose objects

are pairs (Q,8) with Q an object of X and'QX———-G—> Q a morphism in X,

f
and whose morphisms (Q,8) — (Q',8')-the X-dynamorphisms- are

K -morphisms Q ——29 Q' which render
QX ——— > Q

£X J 1f
6'
Q'Xx —> Q'
commutative. Composition and identities are defined as in K so that
Dyn(X) 1is a category.

We say that X is an input process if the forgetful functor

Dyn (X) ——> #: (Q,8) + Q has a left adjoint -that is, just in case
for each K in X there exists a "free machine" (KX@, Kuo) with "inclusion
of the generators" Kn: K ——> KX@, so that for any. (0,8) in Dyn(X)

and any K——f—> Q inZ , there is exactly one dynamorphism ¢ extending f;
i.e. there exists a unique y which renders the following diagrams

commutative:

K —E 5 px@ (kx®x — 05 kx@
[
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Having defined an input process, we could then make the following general

definition:

DEFINITION: A machine in a category X is a 7-tuple
M= (X,0,6,1,7,Y,8)
where X: _K———é](is an input process

(0,8) € Dyn(X) -we call Q the state object

I is an object of X , the initial state object

I —— Q is a K -morphism called the initial state

Y is an object of X , the output object
Q ———§~> Y is the output map.

We call IX@.the' object of inputs, and then use our freeness axiom to

define the reachability map r as the unique dynamorphic extension of t:

1 —0 > x@ (x?, 1y
! 1
T ¢ b r
¥ v
Q (q,%)

Again, by freeness, we define the rumn map 6@: QX@-—> Q as the

unique dynamorphic extension of the identity mab

. o — 2 ox’ (x€, ou)
' |
id 1 6@ 1 6@
Q ! '
¥ 0 (Q,s)

Finally, by the response (or system behaviour) of M, we mean

IX@ r:Q 6:Y




>
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For fixed I, Y and X we call any H-morphism

@ £

IXN —— Y

a response morphism. We say M realizes (or is a realization of) £ just

in case f 1is the system behavior of M. Our main aim in this paper is
to present very general conditions under which decomposable machines ~ which
include both linear machines and group machines - exist which are minimal

vrealizations of an appropriate class of response morphisms f.

2. THE IDENTITY PRCCESS

Given a set Q, a 4y in Q and a map Q RN Q, we can inductively
define a sequence g,——q—-> Q as the orbit of f starting at 95°
9 = 90
+1
44y = (a)8 = (qp)8"

q
We say N —* Q 1is defined by simple recursion on 9 and f. Note

that 1f q: N —— Q has 9; = 9, and is defined by simple recursion,
then q = q, for all n e N.

We may think of an orbit gI:——q—r Q as the state-trajectory of a
one-input sequential machine:

Example 1: In X=5 we may identify the identity fumctor X with - x X,

where XO is a one-element set {xo}. Then

@ * o
IX =IxX SIxN.

In particular, if I has one element, and I —l Q yields initial state

9y = tl)rs we have r(l,n) = (qo)tSn for a dynamics Q 5 Q.

We now re-express the above notion arrow-theoretically prior to



formulating the general categorical definition:

Consider (N, I 2 N, N 5

* N) where I i1s a one-element set,

I —Z—s N 1is the zero map with image 0, and g—s# N 1is the successor

map nn+ 1, Then I z > N 2

for all I ——s Q § > Q there exists exactly one g,; Q such that

* N has the universal property that

!

lq

)
comnmutes.

This clearly generalizes to the following:

DEFINITION: If I is an object in the category H, a simple recursive

object with basis I 1is an

(i’ I z > i, i 's' > i)

such that for all (Q, I LA Q, Q s ., Q) there exists exactly one

I 3, Q such that

I —2——s and

O s iy
n
£0

L 4 >

LD ——— b
S

commute . We say that q is defined by simple recursion (on 9, and f).

This definition was first formulated by Lawvere [4, p. 1507, Axiom 3;
S, p. 292]. We shall see in Section 3 that I can be constructed in

most categories, but now let us see the implications of its existence in

any category 7(:



Let, then, X: j‘f—*]ﬁ be the identity functor, i.e. KX = K and

(K £ L)X = K —£i L. An X-dynamics is then just a map Q L, Q.

It is clear that «d, I —Es i, 1 —2—» i) is a simple recursive
object with basis I if and only if (via Mg = 8 and n = z) it is just
the free dynamics of the identity functor on I - note that this ties in
with S :

Example 2: Returning to Example 1, we see that in the category 5,
I=IxN with

I—2— I xN:1ir+ (1,0); and

I x g—s—r I xN: (i,n) — (i,n#l) .

DEFINITION: We say that X is a simple-recursive category if I exists for

all I¢ XK.

DEFINITION: A decomposable machine M = (Q,F,X.,G,Y,H) in the simple

recursive category X 1is a machine of the identity process: Q N Q

is the dynamics, XO < Q 1is the initial state morphism, and
Q —i, Y 4is the output morphism. The reachability map X

o — @
is then the inorphic extension of G, while rH: f(o -~ Y 41is the system

behavior.

We shall see in Section 3 that this does indeed yield linear machines
if # 1is the category of R-modules, and yields group machines [1] if X
is the category of groups. But here let us develop the realization theory
for morphisms f(o ——+ Y 1in a simple recursive category X by showing
that they have a minimal decomposable machine realization.

We start by recalling that in [2a] we called an arbitrary machine
M= (X,Q,6,I,2,Y,) 1in a category K coequalizer-reachable just in case

e S N Q 1s a coequalizer, i.e. just in case

the reachability map IX

a
there exists a pair of maps E——3 IX@ such that ar = yr, and such
Y

that for every map r' for which ar' = yr', there is a unique map ¢



such that the following diagram commutes:

e @ r
E———r IX ———
y

Q
|
r' ¢
4
Q

|

We may thus state the following problem (which we shall see in Section 3

does indeed reduce to the usual problem for linear machines):

REALIZATION PROBLEM FOR DECOMPOSABLE MACHINES:
Given a response morphism f: iO ~——— Y 1in the simple recursive category j{,
find a decomposable machine Mf = (Qf,F,xo,G,Y,H) which is the minimal

coequalizer-reachable realization of f. In other words:

(1) Mf realizes f, i.e. f = re H

(i1) The reachability map io —:£-—+ Q of Mf is a coequalizer

(11ii) Mf is minimal in that for all M = (Q,F',XO,G',Y,H') satisfying
(1) and (11) there exists a unique dynamorphism ¢ for which

we have the commutativity of

B
X /] i
0 |
*\\\\;\\\\\\\\* t -/,//”//;////*

We now approach our main theorem which not cnly includes the realization
theory for linear machines [3, Chapter 10; 7, Chapter 8] but also the more

recent realization theory for group machines [1].



Y]

Recall from [23] the general defining diagram for the Nerode equi-
o
valence Ef mn— IX@ (when it exists) of an arbitrary response morphism
Y

@

f: IXX ———r Y:

RX" pX"
———-“\‘-_\m
h ~ . . lpxl'l. . \
~ ~ xn ol
Efxn * - 1"
p'x"
YXn uén)f
Q
X X" > Y
(n) p
Ho
(n) n -

In the case of present interest I = Xo, X = idjc and Mg =8 X’o ——> Xo.
Thus our general definition reduces to the following for X = idj(:
DEFINITION: Let f£: ﬁo —~———+> Y be a response morphism for the identity

process of a simple recursive category K. The Nerode equivalence of f 1is

defined to be a pair of morphisms of the form

—_———
Ef——_—_"xo

Y
such that as"f = stf for all n=0, 1, ... and universal with that

property, that is whenever p,p' 1s another

pair of maps with psnf = p'snf , then there exists unique ¢ with ¢a =p

and Yy =p'.



This is an example of what categorists call a limit construction [6]

and as such Ef exists in most categories. For example, in R-Mod, groups
or topological spaces, Ef is the set of all (x,y) in io x io such
that xs°f = ysnf for all n, and a, Y are the restrictions of the

coordinate projections.

-NERODE REALIZATION THEOREM FOR DECOMPOSABLE MACHINES
Let f£: io-—————* Y be a response morphism for the identity process in the

simple-recursive category XK. Assume that the Nerode equivalence
o "

Ef —_ Xo of f exists and that there exists a coequalizer ﬁb X Qf
Y
of a and y. Then
F .
(1) There exists a unique dynamics Q —i Q. and initial state
£ f

G
morphism Xo -—-£——+ Qf whose reachability morphism is r.

(1i) There exists a unique X -morphism Hf:

Moreover, Mf = (Qf,Ff,XO,Gf,Y,Hf) is the minimal coequalizer-reachable
realization of f.

Proof: This follows from the Nerode Realization theorem of [2a], since
Postulates 1 and 2 of [2a] were assumed, while Postulates 3 and 4 are guaran-
teed by the Lemma of [2a] following that theorem since it is trivial that

' the identity process preserves coequalizer diagrams. E]

Of course, in the present case, a direct verification is also straight-

forward: We can find the desired ¢ from



10

o . r
E ——=3 &, —— Qq
y' i
r L
£ Q
£

once we verify that a'rf = Y'rf. Now a's®f = o'rF'H = Y'anH = Y'snf ,
and so by the definition of Nerode equivalence, there exists a unique

with Yo = o' and ¢y = y'. But this yields a'rf = Warf = wyrf = Y'rf. O

3. COPRODUCTS

We now show that any category X with suitable coproducts is simple

recursive:
DEFINITION: Let {Ka | @ € I} be a family of objects in X. A cogroduc;n
of {Ka} is an object C together with a family of X-morphisms {Ka —2 ¢}

£ _
with the universal property that for any family {Ka —=<2— X} there exists

exactly one f for which the following diagram commutes:

in

% b

2
e -0

Note that the above definition implies that C is unique up to isomorphism,

f
for if Ka——“——:»x were also a coproduct with
f
_._.__—u—-——-b
Ku : X

in
o

O ---

we infer from the diagrams
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X C
} )
| '

£ i g in : b f
i ¥

l% & > C idx Ka_——%fa X idY

i N i

£y ' f ifh\ .4
b ~ ¥
X r

and the uniqueness condition in the definition of coproduct that
gf = idy and fg = idy
so that f and g are isomorphisms, and fa = 1na-f while in, = fa-g.
Most categories we care about have coproducts:
Example: In the category & of sets, the coproduct of a family {Ka !rx e I}
of sets is the disjoint union
_I_J_K,jl = {(x,a) |xeKu,a e I}
with Ku—ih—> C: x = (m ,X). For, given any family of maps K, -—3———>X
f
we may define C —— X uniquely by (a,x) = f (x) to ensurc that
__—i&—, C
% :
i
'
] l £
X
commutes.
Example: In the category R-Mod of modules over the ring R, the coproduct

of a family {Kal a € I} of R-modules is the direct sum

=1Lk = @1\1 = {(x,)] % # 0 for only finitely

nel aE
many o}

with Kg —ir—lﬁ—>C: Xp = ((SanB). For, given any family of R-linear maps

f f
K, —%—> X we may define C ——>X uniquely by (%) ~l"’a§1 £ (%) to

0
ensure that % #
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in,

<
HMe—--=0

commutes.

Example: In the category G____E. of groups, the coproduct of a family
{Kal a € I} of groups is the "free product”
BCENIRS
defined by the_ following rather elaborate construction:
1. The elements of C consist of all finite sequences (including
. the empty one, A) of elements of the form
(k,a) for which k e K, and a2 €1
subject to the conditions:
(i) No (k,a) in the string has k = identity e, of K,
(11) No string (k;p 1)(k2.a2)...(kn,an) has @y =gy for any
j, 1€ <n.
2., Multiplication in C is simply concatenation of sequences, save
that we must apply the operations
(iii) replace consecutive elements of the form (k,a)(k',a) -
a - by the single element (kk',x) - using multiplication
in K, .
(iv) Delete elements of the form (eu ,a) until obtaining a
sequence (probably empty) which satisfies (i) and (ii).
It is clear that A is the identity, and that (ig ,al)...(knan) has
inverse (k;l,an) ...(k'l'l,a 1). One simply checks associativity to confirm
'that: _LL Ky is indeed a group.

Then, given any family of homomorphisms Ka__fa._> X we may define
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c —f X wuniquely by

[kl,al)...(kn,ah)]f = (kl)fa °'°(kn)fa

1 n
to ensure that

commutes.

We may now appreciate that it is easy to find examples of simple-
recursive categories because any category which has countable copowers is
i
simple-recursive. More precisely, let us write (1 -——:kl-+ I§: n=0,1,...)

for the countably infinite copower of copies of I. The following theorem

says that "mathematical induction is stronger than simple recursion".

in v
THEOREM: (Ig, I . I§, I§ —_— I§) is a simple-recursive object

with basis I, where s is defined by the "induction hypothesis"

1
inn l inn+1
I8 —-o e > 1f
s 5 ‘
Proof: We have to check that given I LI Q 0 there exists
exactly one ¢ such that
in s
I 0 o > 18
] [
1 []
Yy '
\\1 . l
Q—>Q

But from the left-hand triangle we read
ino o = 71
while from the right-hand square, and the fact that inn s = Ang g, we

read
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in V= (inn *Y) 6 for each n * N

This defines inn «y for each n ¢ N, and so defines ¢ uniquely by

applying the coproduct property to

inn
1

v

O 4 ———

inn'w

O

With this background we may see how neatly the general theory of Section
2 embraces the theory of linear machines. (The reader -may supply a corres-
ponding link to the group machines of [2a]):

Lemma: A linear machine (XO,Q,F,G,Y,H) is coequalizer-reachable just

in case every state is of the form 1onchj, i.e. just in case (F,G) is

reachable in the conventional system-theoretic sense of the term:

Proof: We note that in R-Mod XJ =a-l1!1 Xg ={(xp,+e0s%p5%9) noe N with
o
each Xy € Xgp n 23 > 0
so that r: Xg—————é Q 1is precisely the map
‘ j
(xn,...,xl,xo) > jgoijF .
Thus, our assertion follows immediately from the following lemma which

asserts in particular that every coequalizer in R-Mod is onto. O

f
Lemma: Let KX be a category of universal algebras and let K——> L be a

coequalizer. Then f 1is onto.

Proof: Consider the diagram
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e

where £ 1is the coequalizer of a and y, R is the congruence

= f

U e e

{(x,y): xf = yf} of f (p, q being the restrictdéons of the coordinate
projections) and 8 is the canonical projection to the quotient algebra.
Because af = yf there exists t with 7p =a, 1q = Y. Thus, ab = Y6,
inducing unique ¢ with f¢ = 8. As pf = qf there exists unique § with
6p = f. As fo = f and f 1is a coequalizer, ¢ = id. Thus ¢ is onto

and f = 6 1is onto. a

It is now apparent that our general Nerode realization theorem of
Section 2 yields the Kalman realization theory of [3, Chapter 10] as a
special case: 1If Xo = K® for some field K, then Xg g'K[s]m, the ring
of m-tuples of polynomials in the indeterminate s (we eschew Kalman's use

of z here for obvious reasons) with coefficients in K. Then the Nerode

equivalence

{x,y) | x,y) ¢ Xg x Xg and xs"f = ys'f}

is the equivalence of the K[s]-linear map

E H K[S]m — Yg T X (xf,xsf,xszf,...,xsnf,..-)

Just as a K[s]-module is any K-module equipped with a linear map,
and Kalman shows us how to go from E (or the corresponding £ : K[s]m-————* Y)
to the minimal K[s]-module Qf —E Qf for which there exist G and H

such that f is the behavior of (KP,G,Qf,F,Y,H) so do we show how, in any
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- simple recursive category X to go from a X-morphism ﬁb —£ Y to the
minimal (G,Qf,XO,F,Y,H) which realizes it. The crucial insight of our

approach is that linearity plays no role.

We state here that if both K and its dual K°P  are simple-recursive
then the41dent1ty process is state-behavior in the sense of [2b] and the
usual observability and duality theory of linear systems can be formulated.

See [2b] for details.
4, AN ALTERNATIVE FORMULATION

To conclude, it will prove insightful to give a uniform format for
linear and group machines which yields a second general notion of decom-
posable machine within our framework of machines in a category. We first

note some further properties of the coproduct:

If we comsider {Kul o« € I} for I the empty set @, the condition for
C to be their coproduct is simply that for gny X in ﬁr, there is a unique
f
map C —> X. Such a C is called initial. For K =5, we have C = @;
for X = R-Mod, it is the l-element module {0}; and for X-= Gp, it is the
l-element group {el.
Where no ambiguity can result, we may write P for the initial object

in any category (@ is thus unique up to isomorphism if it exists). We

shall often write K + I. for the coproduct of two objects K and L, It
can easily be checked that

1. K+@9%K

TK+(L+M EXK+L+M

w
~~
~
+
!
A d
+
=
n
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We now show how to combine maps using the coproduct construction:
DEFINITION: (i) Given K——f—> X and L-——g-—>x, and some specific choice

’ f
of K + L, we define the map (g): K + L——>X by the diagram

in f
1 ¢ (f)
K+ L----- B->x
A
in2 g
L
f g ' .
(ii) Given K— K' and L ———>L' we define
f+g

K+ L———>K' + L'

fin]'_
byf+g==<
g iny

i.e. we have

Example: For R-modules,
| Gt = £0) +7(H  in X
(£ + ) (k,0) = (£(K),g(0)) in K@ L
For groups
) (kybkobye ) = EkRULDEGYDELY ... in X

(£48) (kyl1kpbr. ) = £(k))g(Ff(ky)g(£) ... in K+ L.
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As an interesting aside, we note that if I and I +1 exist,
then (:) :I4+1 —— I is an isomorphism, which may be interpreted
by saying that I is an "infinite" object (think of 55, and I a non-

empty set).

With these definitions we may succinctly state our alternative
general format:

A linear machine is an R-linear map (g] :Q+ XO — Q together

with an R~linear map H: Q — Y.

A group machine is a homomorphism (g) t Q + xo - Q together with

an R-linear map H: Q —— Y.

We suddenly understand a source of great confusion in general system
theory. For R-modules, the product Q X Xo and the coproduct Q + Xo are
isomorphic, and thus we could always treat linear systems as if the next-

~state map were from Q x X0 to Q. However, it is clear that Q x XO and

Q + X, are not isomorphic for groups (unless they are abelian - can you

0
see why?), and it was the attempt to provide a realization theory for

group machines that forced us [1] to see that coproducts provided the
appropriate algebraic setting.

- with this motivation, we are led to consider the following process
in any category H: Pick an object XO ;.ﬁﬁ and let X be the process
X=-+ xo: X ——r K Q—Q+ XO. We assume each Q + Xo exists; but

then, the action on morphisms is given by

Q
|
Q

inl

R
",
+

] > Ql xo
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It is clear that X 1is indeed a functor. It is in fact an input

process (i.e. admits free machines):

THEOREM: Let Xo be any object of a simple recursive category KX with

finite products. Then the functor X = - + xo

Moreover, the free dynamics on I 1s determined as follows:

is an input process on X.

@

IX =I+XO

Denoting the zero and successor maps, respectively, by

. 5 - R g -
] —251 and I ——>1 for 1; and
FA ~ -~ s ~
XO—————-> XO and XO-————’ XO for XO;

we have
Iy - - g - -
(IX@)X—O—> IX@ is I + X5 + X0—+()La I+ X,
In Q z - in1 h ~
] —> IX is I —— 1 ~———>1+X
&) £
Proof: Given any 0O +,X0—E—-> 0 and I —m——> Q we must check that there

exists a unique I+ 3{0——-&1—-’0 such that the following diagrams commute:

1 —2—+ i 18l 14%  and T+X+Xg SHE) 14X,
1(%) l(oé)ﬁdxo & l%)
0 0+ Xn — 0

Reading off the 'top' of the two diagrams spliced together, and off

the 'middle' and 'bottom' of the right-hand diagram we obtain

2
1 -

N\

N

S ~

Xo

0

and Xo >

n
9]
F
e ety

Po i e N B
D t———— 4>
%]
/

QD —— 0
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and these are clearly simple recursions, and so define a& and B uniquely. O

Having assured ourselves that - + 0 is an input process, we can then

make our alternative definition:

DEFINITION: A decomposable machine (Mark II) in the simple recursive

category with finite coproducts is a 6-tuple

V (X9,Q,F,G,Y,H)
where Q + XO——SEl—b Q isan X = - +X, dynamics
H

Q Y 1is the output map
and it is understood that we take the initial state to be the unique

T
map @ ——> Q. We denote the machine by (F,G,H) for short.

This indeed fits in with our cénvention of taking O as the initial

state of a linear machine and e as the initial state of a group machine.

Now it is easy to check that a = § so that
@ - g A:':':' Xn = X
PX* =P+ X5 TP+ Xg = X,
Thus the reachability map of (F,G,H) is simply the map

A

r: Xg—>Q

which is the "B" for £ = T in the last proof. If I= I§

gr satisfies
in r = GF" for all n e N.
The system behavior f equals rH, and is the unique f ; Xg — Y
satisfying
in f = GF™ for all n € N,

a formula very familiar from linear system theory (which is a special

case) .
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To conclude, then, let us check that our two notions of decomposable
machine mesh. Given a fixed input process X, initial state object I

and output object Y, we may define a category WX.I Y whose objects are
. Rk ]

the machines
(x!Q’GOI,T’Y’B)

for arbitrary Q, 6§, T and B, and whose morphisms M' J—» M are the

X-dynamorphisms ¢: Q' — Q which satisfy
Noting that the identity process in a category X with finite products

equals - + @, we have our equivalence result in the following form:

THEOREM: Let XA be a simple recursive category with finite coproducts,

and let Xo and Y be fixed objects of K.

Set 7)21 =7¢-+¢,X0,Y and W__‘_x R

Then the maps

(' + asQ’F’x G;Y’H) = (" + xopQ"(z)tafraYaH)

0'
Pp: Q' — Q@ = ¥: Q' — Q

define a behavior and reachability preserving isomorphism ¢ from 7721

. to 7'12.
Proof: The crucial point is that

-~

e _; G =
xo(- +@) = X, + ") X,

The rest follows by routine calculation. 1

= 44 ¥ @
=0+ X, =0(-+X)



In particular, it follows that a machine M is a minimal coequalizer-~

reachable realization of f: Xg —>Y in '}yl 1ff o(M) is a minimal

coequalizer-reachable realization of £ in %.

22
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