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I. INTRODUCTION

Despite the wvast research effort in the field of pattern recognition
[1-3], there has been relatively little utilization of. contextual informa-
tion [4-26]. In the area of character recognition, the potential aid of
contextual tecnhiques appears great. Consequently, ﬁost of the investiga-~
tions involving context have centered there. Humans use context in reading
so extensively that quite often they do not even realize they have read a
misspelled word correctly. In many cases the word is understood only by

1 This information might involve know-

the use of contextual information.
ledge of the language structure and/or knowledge of the subject topic.
Within a word the characters surrounding those in error might be sufficient
to suggest the corrections; it has been estimated that the English language
is over 50% redundant [28]. However, the syntax and semantics of the sur-
rounding words, sentences, and paragraphs might also contain valuable in-
formation.

" Contextual techniques have been incorporated in character recognitioh
systems directly into the classification process as well as in a postpro-
cessing system for error detection and possibly error correction. Semantic
information has been utilized only a few times and usually in programming
languages where the syntax and semantics is well defined [19-21]. 1In most °
cases, the contextual analyses were restricted to deciding upon a single
word on the busis of the characters within the word; that is, the syntactic

relationship of the words in the sentence and the semantics of the sentence

were not utilized. The approaches basically involved using either a

T Tn fact the recognition rate on isolated characters is only about
96% [27].



dictionary pf words or information, often probabilistic, concerning the
structure of the words in the language (or dictionary). Once a dictionary
iSvemplbyed, the. system is restricted; even if storage is not a difficulty,
dictionary searches and comparisons will increase exponentially with the
length of tﬁe list. Thus, an increase in computation time of an algorithm
with a large dictionary must be carefully considered; This does not imply
that there are not many applications where a modest dictionary could be
economically utilized in a special purpose recognition system [18].

Several researchers [7, 9-14,18] attempted to overcome the problems
assoclated with using a dictionary by extracting structural information
about the words that would have appeared in the dictionary. The probability
of digrams and trigrams (letter pairs and triplets) is reasonably constant
across a large sample of text and, therefore, can be used to characterize
the language under consideration. One can view this information as a
first and second order Markov process approximating the word structure of
the language under consideration. The use of digram, trigram, and even
quadgram probabilities has occurred in both character recognition and erfor
correction. The difficulty here, once again, is whether the improvement
in error-reject rates justifies the amount of storage required if the
technique uses the 263 (17576) trigram probabilities. The utilization of
n-grams for n greater than 3 is usually prohibitive due to the vast storage’
required (26" = 456,000 words). The justification for this expense is
that one woull not have to store a large dictionary (although most usable
dictionaries of a language would not be as large as 450K words) but the
main point is the removal of the need for lengthy searches and long compu-

tation times.



The systems that have been developed generally are directed towards
a classifier followed by an independently operating contextual postpro-
cessor for detecéion and/or correction of errors. Rather than carry out
separately the classification of each character on the basis of some Eet
of measurements and then employ letter statistics afterwards, theoreti-
cally one procedure could be employed utilizing all this information in an
optimal fashion. This would remove any need or use for an error detection
system. Raviv [14] considered the problem of designing such an optimal
classifier. Quite often, though, assumptions of the independence of
measurements (which is almost always a false assumption) are made to re-
duce enormous computation and storage requirements. This assumption allows
one to avoid collecting and storing the joint probability distribution'of'
the set of measurements conditioned upon-each pattern class. Assumptions
such as these, however, usually destroy the optimality of the procedure and
then the system might still £enefit from a contextual postprocessing system.
In contrast the contextual algorithms that will be presented greatly sim-
plify both the process of collecting and storing contextual statistical in-
formation and the computq;iong;fcomplexity; many of the errors introduced
by the simplif&ing‘assumétions just mentioned are rectified through this
use of context.

It was first noted by Sitar that almost 507 of the digram probabilities
are zero; a much lower density of non-zero entries occurs among trigram pro-
babilities [7]. One can greatly reduce the required storage by quantizing
the probability to 0 or 1, depending on whether it is zero or non-zero, re-
spectively [18]. Thus, much of the information is retained, but its com-
pactness makes feasible the storage and use of the much vaster amounts of

positional contextual statistics that will be discussed.



This paper is an examination of the relative effectiveness of the
various forms of contextual information in a postprocessing system for
error detectioﬁ and correction. The analysis will discuss context ranging
from a complete dictionary to quantized digram statistics. Errors ‘that
are undetectable and uncorrectable are discussed w;th experimental results
determining the effectiveness of the procedures as a function of the size

of the dictionary from which the input words are selected.

I1. USE OF DICTIONARY

Let us consider the manner in which a dictionary could be used to
correct errors in samples of words from the dictionary. Only the char-
acters within the word will be used to correct the characters in error;
thus the dictionary itself is assumed to be all the contéxtual information
available and, in this seﬁse, will be considered complete‘information.2

Given a sample in which it is unknown whether or not an error is prgsent,
the most straightforward procedure is to look up the word in the diction-
ary. If the word is in the dictionary, it does not necessarily mean that
no error occurred. An error might have transformed one dictionary word

into another dictionary word, a case in which the error is inherently

undetectable without the wider use of context previously mentioned. One

has no choice but to assume the word is correct.
If the word is not in the dictionary, and it is known to be a sample

of a dictionary word, then an error has been detected. If the word is to

Z The only further non-semantic information that could be available
would be the word probabilities.



be corrected, one might search the dictionary for words that are very
gimilar. If one is utilizing a character recognition system with a rea-
sonably high initial recognition rate, most of the words in error will
contain only one error. A few will contain two errors and very few will
contain more than two errors. Table II.l indicates the probability that

a word in error contains no more than two errors as a function of word length
and the character error rate.3 It is clear that the bulk of words in error
involve a single symbol error if the classifier has a reasonably high
recognition rate.

Suppose we assume that a word in error involves only one misrecog-
nized character. Then, if the most similar word in the dictionary differs
by a single character from the sample and no other word differs by one
character, it must be the correct version of the word. If this assumption
of the single character error is not valid (i.e., there are 2 or more
errors), the word in error might be improperly transformed into another
incorrect word. In general, a word is corrected to the word in the dic-

tionary that it is most similar to. We will say it is inherently uncor-

rectable given the dictionary information if there are several words that
are equally most similar. One could choose the word with the highest

a priori probability if this information were available, but more often
the word would be rejected because the expected proﬁability of error would
be too great. The set of words still in error after this entire process
would consist of inherently undetectable errors and words in error that

were improperly corrected.

3 For this calculation it has been assumed that errors are independent
of each other.



Table II.1 - Probability of no more than two errors in a word among all
words in error

.01 .05 .10 .20
word
length
3 =1.0 .999 .996 .984
4 =1.0 .997 .989 .954
5 =1.0 _ .995 .979 .914
6 | =1.0 .992 .966 .866
7 =1.0 .988 .951 .813
8 .999 .983 .933 .756




As the dictionary is enlarged, one can see that the rates of in-
herently undetectable and uncorrectable errors increase since it is more
likely: 1) that-a random error will produce some other word in the dic-
tionary, and 2) that there will be more similar words to one in error,
making it less likely to be able to correct the word. As the dictionary
grows, the amount of storage required increases; the'amount of computation
also increases, since one must first look up the unknown word in the dic-
tionary and then search the entire dictiomary if it }s absent. Some of
these disadvantages will be overcome by the use of positional binary

n-gram statistics.

III. POSITIONAL BINARY n-GRAMS

Clearly, it would be advantageous to make the amount of storage and
the computation time requireﬁ independent of the dictionary. Once storage
is fixed and the dictionary grows sufficiently large, the performance of
any error detection and correction algorithm will begin to suffer since all
of the information in the dictionary is not retained. The evaluation of
the method then becomes an evaluation of the tradeoff between the savings
of reduced computation and/or storage with the increase in the error rate.

Most of the contextual algorithms that have performed well in the past_did
so at the erpense of a large amount of storage or long computation times. They
made use of a complete dictionary or else extracted the information in a probaﬁi—
1istic form in terms of the probability of trigrams and quadgrams. However, the

following technique, developed by Riseman and Ehrich [18], is an effective



means of extracting large amounts of the information from the dictionary
in a readily retrievable form at a relatively modest cost of storage.

The context  algorithms utilize information extracted from the dic-
tionary. This information (called the dictionary syntax) is in the form
of a data base of quantized n-grams [18]. These n-grams, for any n, may
be either positional or non-positional, depending upgn the amount of in-
formation stored and the method by which the information is extracted from
the dictionary. For example, corresponding to the commonly used non-posi-
tional letter pair (digram) probabilities is a 27 x 27 binary matrix whose
entries arell if and only if that corresponding letter pair appears in
some word in the dictionary. Positional digram matrices, on the other
hand, are constructed so as to take into consideration the relative po-
sitions of the letters within words. One binary matrix exists for each
distinct pair of positions, and for six-letter words, fifteen (6 X 5/2)
of them are required to contain all pairwise positional information con-
tained in the dictionary. As an example, the contextual algorithm using
binary digrams will be described. Clearly the algorithm will function '
similarly with any binary n-gram by extension.

 The dictionary may be partitioned by word length. For each of these

sub-dictionaries, a pair of letter positions i and j can be used to define

a 26 x 26 binary matrix, dij’ called a binary digram. The (k,2)-th position

of di is defined to be 1 only if some word in the dictionary contains

]
letter k in che ith position and letter % in the jth position; otherwise,
it has a value 0. Thus, the probabilities of letter pairs in all pairs of

positions have been quantized to binary values of 1 or O.



The set of all positional binary digrams allows one to obtain the
same information that would be obtained from an associative memory that
could only be asﬁed the following type of question: is there some word
in the dictionary that has letters a and B in positions i and j, respec-
tively? It has been demonstrated that in some instanées this is an ef-
fective apéroximation of the structure of the dictionary. The selection
of a subset of these digrams for error detection was considered in [29].

This set of binary matrices contains a great deal of information due
to the fact that they tend to be fairly sparse. In fact, it has been
pointed out [7] that almost 50% of the 676 letter pairs never occur in
contiguous positions in any words in the English language. This leads
‘one to believe that the positional binary digrams are even sparser. Binary
digrams involving adjacent positions are generally more dense than others,
while binary digrams involving the first two and last two positions are
the sparsest. The first statement is intuitive if one considers, for ex-
ample, that only u can immediately follow q but that many choices are
available for possible letters in widely separated positioms. The éecond
statement means that there are fewer word beginning and ending pairs than
pairs in other positions. To our knowledge these positional statistics have
never been collected across the entire English language, although a fairly
large subset of the common six-letter words in English was used in pro-
cedures described later in this paper.

The extension to binary trigrams or a set of positional binéry trigrams
is straightforward. In fact, the dictionary of words of length £ can be
viewed as a binary %-gram organiied in a different fashion. Since very few

of the 261 possible &-letter words actually are in the dictionary, rather
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than construct an exceptionally large and sparse matrix, the dictiomary
itself is a list of the non-zero entries. In essence, the techniques that
will be described involve approximating the information in L-grams with
binary n-grams, 1 < n < %. 4

Error Detection

Given the set of positional binary digrams, one can determine that an
error has occurred if the dictionary syntax in the form of binary digrams

has been viotlated. Assume a sample word consists of the following characters:

ai ’ai geeoey Gi

where oy is a member of the alphabet. Then we must have
1 2 2 k

» O ) = 1lfor alll < j<kzx 2.

D,, (a
jk ij k

We are simply ensuring that, independently for each pair of positions in

the sample, the_charaéters that do appear there also appear in some dic-
tionary word. There may be some errors that are detectable if the dictionary

were available (inherently detectable) but that are undetectable by the dic-

tionary syntax. An example that illustrates this very simply is:

Dictionary SUT is an undetectable error
SAT D5t entry for SU is 1 due to SUN
cut D13: entry for ST is 1 due to SAT
SUN ' D23: entry for UT is 1 due to CUT

Error Correction

Among tuose errors that are detectable, the set of binary digrams

can be used to attempt correction. Consider a six-letter word,
s @ s O Iy a B g,‘wgi ‘.__\1, with a

the only character that is incorrect.

i,

“11’ ¢y
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If the binary digrams used are sufficiently sparse, several of them may

detect an error. In this example there are five chances to detect an error:

), D, (¢, ,a,6 ), D, (a, , y 0, ), D, (a, ,a ).
1 3 23 12 13 34 13 14 3 15 * 736 i3 16

If at least two of them detect an error (say D23 and D35) at a minimum the

Dilay » 9y )» Dyglay

position of the single error is fixed by noting that there is only one
position, 3, that appears more than once in the detection of the error. If

some character is to replace e then each of the 5 digrams contains
3

information about the admissibility of the various choices. The row

Dls(ai » ¥), where the * varies across all choices, contains a 1 in those
1
places in which a character is allowable (by the dictionary syntax) in

1 appears in position 1. If we logically intersect
1
the proper rows and columns in the 5 digrams, we will have utilized all

position 3, given that a

the available information:

T T
D13(ai ’ *)’ D23(ai » *), D 34(“1 s ¥), D 35(ai

T .
*), D7, (a *)
1 2 4 ’ 3671’

5

where DTij denotes the transpose of D,,. If the jth entry in this vector

ij
is 1, then the substitution of aj for ai3 will produce a word which is ad-
missibie by the dictionary syntax because it will satisfy all the 5 digrams
involving position 3. If there is only one entry having a value 1, the
choice is clear and the word will be corrected properly (still assuming a
single error). |

The process that has been described takes place after the position of
the error is fixed. The position may be fixed by examining the number of

times each position has occurred in the set of digrams that detect an

error. If only one error has occurred in a word, only one position can
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occur/hofe than ?nce. The violation of this condifion‘implies ghat more
than one error has‘occurred; On the other hand a word might havevmultiple
errors and it mﬁy gppear.that oﬁly a single error has occurred. In this
case the word in error might«be improperly corrected, thus re-introducing
an efrorf‘
When binary digrams are uﬁilized by the context algorithm, error
. correction wiil be attempted in two cases. In the first éase, if 1t
appeafs that a single error has occurred, one alternative letter exists,
and the éosition of that error appears to be determipéd, the correction
will be made. If only one digram detects the error, fhere is uncertainty
which of the two positions contains the error or even whether thére are
two errors.. Hdwever, when there is a choice of more than one position,
the correction algorighm can be applied to each position independently.
If one position has only one possible letter substitution and the ather
has none, the correction is made. This procéss could be called poSition
determination by elimination. In any other case with the use of digrams,
ﬁhe word is considered to be uncorrectable.
If higher n-grams (n > 2) are utilized, an attempt is made to correct
2-error words as well as l-error words. The positions in error are easier
to fix using higher n-grams because a larger number of positional n-grams probably
detect the error. Although it will not be discussed here, in many cases,
it is not difficult to determine the positions of # pair of errors by
counting the number of times each position occurs in the set of n-grams de-
tecting the error. An apparent two-~error word is corrected if both positions
are correctabie (i.e., only one pdssible letter subs;itution exiéts for each

error position). If the positions in error are not clearly fixed, the
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position(s) may be determined by elimination as in the case of digrams.

Again, any other case is considered to be uncorrectable.

IV. PREVIOUS EXPERIMENTAL RESULTS

Sitar [7] developed a postprocessing error detection and correction
system utilizing digram and trigram statistics from the English language
as well as statistics on the type of errors made by the classifier. The
latter information can aid the s&stem greatly but must be extracted from
each classifier. Low probabilities of letter pairs and triplets were used
to detect and fix the positions of errors in text. Digram and trigram
information was able to detect 40 and 60 percent of the errors, respec-
tively. However, only 80 to 90 percent of the positions of the errors
could be fixed, and then only 75 percent of these were correctable. Ac-
counting for new errors introduced by the processing, the error rate was
reduced by about one-third using trigrams.

bamerau [26] used a dictionary comparison procedure for word correc-
tion. This involved comparing an encoding of each word of the dictionary
to an encoding of the sample word and, i1f there was no match, correcting
the sample to a word differing in a single position. (This encoding pro-
cedure loses all positional information.) Using the potential misspellings
déﬁecteé by the eﬁcoding and comparison procedures, Damerau also looked
for words that had two adjacent characters interchanged as well as one
deleted or inserted character. For single character errors only, the pro-

cess corrected 95 percent of the errors in words from a 1600 word dictionary.
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Vossler and Branston [ll] compared the use of a dictionary to digram
information in an error correction system. Both methods employed the
confusion matrix statistics from the classifier. Given the classifier out-
put, the word in the dictionary that has the maximum likelihood of having
been input is selected. This procedure requires much storage and computa-
tf;n as well as the a priori probability of the occurrence of each dicﬁionary
word. The latter information is not usually available and varies with the sub-
ject of the text. The second method used digram statistics to approximate the
probability of occurrence of the dictionary words and once again choosing that
word with the maximum likelihood of having been input. The results obtained
" are shown in Table IV.1l for text using a 364-word dictionary. It.is obvious
that the use of the dictionary is far superior to digram information. A pro-
cedure combining the two processes was used with a 3700-word dictionary. The
input was newspaper text, and about 25 percent of these words did not appear
in the dictionary; in those cases digram probabilities were used to attempt
correction. In this experiment the correction rate was about 44 percent.

Carlson [13] used a very large amount of information--all contiguous po-
sitional (positions 1, 2, 3; positions 2, 3, 4, etc.) trigram probabilities--
to correct errors in English first names. In this case, however, the classifier
‘was used to signal the postproceésor as tg which character is being confused;
thus the problem of detecting and fixing the position of the error is not con-
gidered. The error correction rate was about 95 percent.

Finally, Raviv [14] developed a Bayes' decision procedure for classi-
fication of a character which balances the information from contextual con-
siderations. Extensive amounts of empiriéal results were presented. In

some experiments, only a slight improvement in the error rate was achieved
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Table IV.l ~ experiemental results from Vossler & Branston [11]

DICTIONARY METHOD DIGRAM METHOD
INITIAL CHARACTER
ERROR RATE 3.2% 19.4% 4.2% 19.2%
CHARACTER ERROR . - i -
CORRECTION RATE 93% 89% 45% 357%
FINAL CHARACTER
ERROR RATE .22% 2.2% 2.3% 12.5%
INITIAL WORD o - '
ERROR RATE : 10.9% 55%7 14.2% 50.7%
WORD ERROR
CORRECTION RATE 93% 92% 457, 407
FINAL WORD .
ERROR RATE .79% 4.6% 7.8% 30.6%
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by going from digram probabilities.to trigram probabilities. Since this
Anformation is integrated into the classification process and there were
not any experiments run using no contextual information, the effect of

context in the;improvémept in the error rate is not available.

V. EXPERIMENTAL RESULTS

The eipériments to be described all were carried out on six-letter
words as representaﬁivé of words in the English language. The procedpfes
employgﬂwWQuld work in a similar fashion for dictionaries and n-grams con-
structed for words of other lengths; however, one. can expect that tﬁe detec-
tability and certéinly the correctabiiity ratés wiil imprdve directly as

a function of word length.

~$hé-ﬁa:a Base

| A list of 2755 aik-letter words was compiled and used for all of the
following experiments; this list comprised the lérgest word set employed.
In order to determine the effectiveness of the algorithms as a function of
the sizg of the set of input words, subsets‘of 300, 800, and 1300 words
were created from the 2755 words. The 300 word subset congisted of arbi-
"trary six-letter words compiled by the authors. fhe remaining 2455 words
were obtained from Thorndike-Lorge [31] by selecting all six-letter words
from categories AA-10, inclusive. The 800 and 1300 word subsets consisted
of the 300 wor& subset and words randomly selected from the Thorndike-Lorge
iist. The full 2755 word set contains virtually all six-letter words com-
monly used. From those subsets (comprising the word data base) the syntax

was extracted and stored in the binary n-grams.
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The data base of n-grams chosen for this experiment is:

IND: one non-positional digram requiring 272 bits of
storage;*

15PD: the entire set of 15 positional digréms requiring
15 x 262 bits of storage;

INT: one non-positional trigram requiring 273 bits of
storage;

20PT: ;he entire set of 20 posifional trigrams requiring
20 x 263 bits of storage;

INQ: one non-positional quadgram requiring 27% bits of

storage.
In addition, two subsets of the set of 20 positional trigrams were chosen:

4PT: a subset of four of the 20 positional trigrams requiring
4 x 263 bits of storage;
6PT: a subset of six of the 20 positional trigramé requiring

6 x 263 bits of storage.

Experiment #1. Detection of Errors

The object of this experiment was to test the effectiveness of the
~context algdrithm'in detecting errors occurring in the input stream; the
effectiveneés was to be determined as a function of the type of n-gram
utilized and as a function of the size of the word set from which the syn-

tax had been extracted.

* Note that blanks must be considered in non-positional information
requiring 27 characters; positional n-grams using 26 characters auto-~
matically include this information since a blank always precedes the
first position and follows the last position.
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-

A test set.of 600 one-, two-, and three-error words (for a total of 1800
words) was generated from the word data base by randomly generating the posi
tion(s) of the error(s) and the substituted letter(s) according to a uniform
distribution. The results of applying the context algorithm to the test set
are shoen in Figures V.la-c. Tﬁe detectabiiity rate for all positional tri-
grams (ZOfT) on one-error wards varies from 99.87% to 58.6%. As expected, the
dictionary a;goriﬁhm is only slightly higher, varying from 99.8% to 99.6%,
while all other n-grams yield lower detectability rates. It might be surprising
to some to note that the set of all positional trigrams is more effective than
INQ in error detection (and in error correcfion, as shown in Experiment #2),
despite the far smaller amount of storege that is employed. Also, there is
a surprising payoff from the use of one non-pésitional digram in one-error
detection. Between 30% and 65% of these errors are detected with the use of
just 729 bits (less than 50 sixteen-bit-words in a minicomputer).

The detection rates of the various n-gram algorithms decreases as the
size of the word set increaées. This effect is due to the increasing density
of the n-gram matrix, which gfows as a function of the logarithm of the size
of the word set as shown in Figure V.2.

Experiment #2. Correctability

The object of this experiment is to determine the conditional correction
‘rate of detectable errors; that is, given that an error has beet detected, what
is the probability of correcting it? The correction algorithm has been described
elsewhere in che paper. Figures V.3a and V.3b indicate the conditional correc-
tion rates obtained on one- and two-error words. No attempt was made to correct
any three-error words, nor two-error words via digrams; corrections were ac-
tually made only when one letter was possiblé for thevpositions in error. Once
again the dictionary and 20PT algorithms were best. In the case of the largest

word sets, the dictionary algorithm corrccts about 20% more of the one-error words.
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Figure V.2 Density of Ones in Binary n-Grams as a
Function of the Size of the Word Set
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The dictionary algorithm showed a sizable improvement over the 20PT only
in the case of the larger word sets. A more complete comparison of the al-
gorithms will be carried out in later sections of this paper.

Experiment #3. Analysis of Uncorrectable Errors

A deeper analysis of the detectable but uncorregtable errors was
performed. In this experiment correction was attempted on a total of
45,000 one-error words using all positional trigrams. Some of the errors
were uncorrectable because the position of the error was fixed but more
than one letter could be used to correct the error. In most of these
cases there were very few choices; in fact, a large proportion of this type
of uncorrectable error only had 2 or 3 choiges, as is summarized in the
left-hand portion of Table V.l.

The other type of uncorrectable error occurs when the position of the
error is uncertain. It has been pointed out that if there are two positions
in which an error could have.occurred gsome of these cases are eliminated
by attempting correction in both positions and determining that no character
can correct an error in one of the positions. .Errors still remain uncor-
rectable when it cannot be narrowed down to one position via this elimina-
tion process. This leads to a distribution of possible substitution charac-
ters in multiple positions,_as summarized in the right-hand portion of
Table V.1. In this portion of the table i/j denotes that there are i alter-
native characters admissible in one position and j characters for a second
position. Once again the cases where there are a total of 2 or 3 possible
characters distributed across the positions account for a large fraction of
the total. The remainder column includes those cases where there are more

than two possible positions.



*Note:

Table V.1 - Analysis of uncorrectable errors

i/§ means that i characters may fit in one position
and j characters may fit in the second position.

size of number of uncorrectable number uncorrectable because number uncorrectable because - percehtage of
word set errors out of 45,000 more than one letter choice position indeterminate uncorrectable
_ ‘ in which number
f choices is
‘ total of 1/1% | 1/2*% | remain- | total o
number of choices 2 and 3 der of 1/1 2 or 3
- and
more 1/2
2 3 than
. 3
300 1836 1370 0 0 1370 431 31 4 462 .999
800 4771 3228 226 36 3454 906 | 240 135 1146 .964
1300 8332 5218 765 214 5983 1158 | 519 - 448 1677 .912
2755 16139 7551 | 2540 | 1753 10091 1283 | 951 2061 2234 .764
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These results are extremely important since they point out that an
attempt at correction is feasible in. most of the uncorrectable éases,
due to the small number of feasible choices. In Experiment #4, a forced
error raté was computed under the assumption that when two choices exist,
.8 of the choices could be resolved favorably, and in the case of n
choices, (.8)n-l could be resolved favorably. Justification for this high
forced guess rate is given in the discussion at the end of the paper.

Experiment #4. Error and Reject Rates

Up to this point we have examined the rates of the system to detect
and correct Qords with one, two, and three errors. Any classifier with
a given character error rate will output some proportion of words with a
distribution of 1, 2, 3,... error words. Since the postprocessor does
not know a priori the number of errors in a word, a k-error word might
mistakenly be detecteé as a l-error word, k > 1, and then improperly cor-
rected; similarly, a j-error word might be mistaken for a 2~error word,
j > 2, and improperly corrected. Expected word error and reject rates of

the contextual postprocessor can be computed in the following manner:

let udi = fraction of undetectable i-error words, i =1, 2, 3;

di =] - udi = fraction of detectable i-error words

uc. = fraction of uncorrectable i-error words, i =1, 2, 3;

me = fraction of k-error words corrected improperly as
an %-error word, k > %.

T = assumed classifier character error rate;

f, = probability of i-error word being output from the

classifier.
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The probability that the classifier outputs a 6-letter word with i errors

can be computed as a function of r by

£, = (g) fa - L

Assuming that no more than 3 errors occur (for the character error rates

considered this is not unreasonable), the final word error rate E is then

E = udlfl + (ud2 + m21)f2 + (ud3 + m31 + m32)f3

and the final word reject rate R is

3
R = :E: uc,f,.
f=1 1

Teble V.2 gives the actual percentages of errors that are corrected,
rejected, and remain as errors after processing with 20PT and with the
dicitonary algorithm. Also computer is the percentage of errors that con-
tain a single error. As the character error rate, T, increases, the proba-
bility of words with multiple errors sharply increases. This leads to a
smaller percentage of words that are corrected.

Figures V.4a-c show the error, rejecf, and correction rates for all
positional digrams and assumed Qlassifier error rates r = .01, .05, and .10,
producing word error rates of .059, .265, and .469 respectively. Shown on
the same plots are these initial word erro. rates W and the foréed error rate.
The forced error rate is computed assuming a zero reject rate and an 80%
forced guess rate, as previously discussed. Plots are shown as a function
of the aize of the word met. Figuros V.5a-c show the same Information but

for the set 20PT,



Table V.2 - Comparison of the algorithm using the entire set of positional trigrams (20PT) and

the dictionary algorithm:

percentage of errors corrected, rejected, and remaining

DICTIONARY SET OF POSITIONAL TRIGRAMS (20PT)
CHARACTER | SIZE OF INITIAL | % WORD | % WORD % WORD % WORD % WORD % WORD % WORD
ERROR WORD SET | WORD ERRORS ERRORS ERRORS ERRORS ERRORS ERRORS ERRORS
RATE, r ERROR | WITH 1 | CORRECTED  REJECTED  REMAINING | CORRECTED  REJECTED  REMAINING
RATE, w | ERROR
.01 300 5.85 97.5 95.2 4.6 .17 94.9 4.9 .17
800 91.4 8.4 .19 87.2 12.5 .36
1300 88.9 10.9 .22 80.3 19.3 41
2755 82.9 16.7 42 60.7 37.9 1.40
.05 300 26.49 87.6 93.3 6.5 .23 92.9 6.8 .23
800 88.5 11.1 .36 84.4 15.1 .49
1300 85.6 13.9 .49 76.9 22.3 .74
2755 78.6 20.5 .82 57.4 40.7 1.86
.10 300 46.86 75.6 89.8 . 9.9 .38 89.3 10.3 .38
800 84.0 15.3 .70 79.9 19.3 .80
1300 80.2 18.8 .95 72.1 26.7 1.21
2755 72,9 25.7 1.46 52.9 44.6 2.44
.20 300 73.79 53.3 78.7 20.4 .87 78.2 20.9 .85
800 71.8 26.4 1.72 68.1 30.1 1.74
1300 67.5 30.3 2.12 60.4 37.3 2.31
2755 59.6 37.4 3.03 42.9 53.5 3.60
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VI. STORAGE AND COMPUTATIONAL ANALYSIS

Before one can - Properly compare the contextual algorithms with the dic-
tionary method, one must take into consideration their.relative cost, namely
the amount of storage and computation necessary for these algorithms.

The space required to store the dictionary is directly proportional to
the length of the dictionary. Assuming 5 bits are required to code each of
the 26 alphabetic characters, then each 6-letter word requires 30 bits; the
required storage is 30m where m is the size of the set of words. Table VI.1
gives the number of bits required for the sets of words considered in this
paper as well as the storage necessary for the other types of n-grams. The
space required for the n-grams is not a function of the dictionary size
and remains constant.

The dictionary requires far less space than the set of 20 positional
trigrams; the subset of trigrams must be limited to 4 before the required
space is less than the size of the 2755-word dictionary.

There is a strong reason to ignore the disadvantage of the larger
storage requirements for the complete set of trigrams, 20PT. Namely, the
plummeting cost of storage: at this point in time high speed storage can
be bought at 1l¢/bit; thus 320,000 bits cost only $§,300, and the price is
dropping sharply. We expect that in the near future the cost of the dif-
ference in storage will not be significant. Actually, 335,000 bits is not
a very large amount of storage, less than 10K 6% CDC-3600 words which are
48 bits long. One should note that previous research utilizing the
actual probabilities of non-positional letter triplets requiréd large
amounts of storage (assuming only 16-bit words, 17576 words, or over 280,000

bits, are needed), yet was relatively ineffective in the error correction process
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Table VI.1 - Comparison of storage requirements

size of dictionary n—-grams
word set _

m #f bits %equir_ed # bits required
300 9;600 1 non-positional diéram (IND) 729
15 positional digrams (15 PD) 10,240
860“ 24,000 1 non-positional trigram (1NT) 19,683
4 positional trigrams (4PT) 70,304.
1300 Bé,OOO 6 positional trigrams (6PT) 105,456
20 positional trigrams (20PT) 351,520
2755 782,650 1vnon—positional quadgram (INQ) 531,444
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The computation required is another matter. One can envision
vast amounts of information being processed by any character recognition
system. If, in addition to this system, one adds a postprocessor, it
is clear that speed would be at a premium. The time required for error
detection by the dictionary algorithm and the contexFual algorithms are
of the same order of mégnitude. A lexicographic binary search requires
logzn (1032300 - 8.2, 10322755 = 11.8) dictionary accesses (this process.
must be time sequential) to determine whether or not a word is in the
dictionary. On the other hand the full set of trigrams may require up to
20 bit accesses (which may be done in parallel), and proportionally fewer
for the systems using a subset of trigrams or digrams.

It is in the correction process that the dictionary algorithm suffers
greatly. To choose the most similar word to one in error, the entire dic-
tionary must be searched. One can determine a lower bound on the amount
of computation for a l-error word that is correctable (i.e., there is only
one dictionary word that differs by one character from the incorrect sample).
We will assume that all but one of the dictionary words differ from the
error sample in the first two character positions and do not have to be
examined further. The remaining dictionary word (the correct word) differs
in only one position and the whole word must be examined. This means that
as a lower bound m dictionary accesses and 2(m - 1) + 6 comparisons are
required, or 3m + 4 operations as a crude measure; similarly one can derive
4m + 3 operations as a lower bound on the 2-error correction process.

Table VI.2 summarizes the comparison of coﬁputational requirements. To
correct a word with one error using positional trigrams, one must carry
out the following procedure: using the 10 trigrams which involve a single

character position, one must access ten 26-bit rows (or columns), intersect
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Table VI.2 - Comparison of computational requirements for error correction

- size of dictionary - lower bound '
word set on operations required n-grams
o l-error 2-error l?error 2-error
. | correction correction correction correction
300 o6 1203
15 pos. dig. 53 -
800 2404 3203 1 non-pos. trig. 38 76
4 pos. trig. 40 75
1300 3904 5203 6 pos. trig. 47 84
20 pos. trig. 76 114
2755 8269 . 11023 1 non~pos. quad. 42 84
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them, and then examine each of the 26 bits for a total of 46 operations.
Assuming it takes 30 operations to determine the position of the error
(by counting the number of times a position occurs in the set of trigrams
detecting an error), one obtains a crude estimate of 76 operations. fhis
computation is independent of the dictionary length. The other computa-
tional estimates are obtained in a similar fashion and although they are

rough, they clearly point out the orders of magnitude difference in speed.

VII. DISCUSSION

The algorithms that have been presented appear to.be extremely effective
in both error detection and correction. Although the dictionary algorithm
is slightly more effective than the set of all positional trigrams (20PT) for
error detection, the detectability rates of the 20PT are so high already
that the difference is negligible. Depending on the size of the word set,
detectability rates for l-error words vary from 98.6% to 99.8% and yield
almbst perfect detection for words with 2 or more errors.

A comparigon of the various contextual algorithms shows that the only
types of contextual information which do not cause error detectability
rates to drop significantly as the dictionary size increases is the 20PT
and 1NQ. One non-positional digram (a single 27 x 27 binary matrix) is
not nearly as effective (although one must keep in mind the small number
of bits : of information required) but all other types detect at
least 95%'of:errors for small word sets. It seems that little of the in-~
formation necessary for error detection resides in the specific value df
the non-zero probability of letter pairs and triplets since very effective

error detection took place in the algorithms using quantized binary values.
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The knowledge of whether the probability of some set of letters in certain
positions is non-zero is sufficient for error detection. The power of the system
seems to reside in the partitioning of information by position. This allows the
n-gram matrices to be sparser than position-independent matrices and alsa permits
geveral of them to participate in the detection and correction process.

The dictionary algorithm is somewhat more effective than binary positional tri-

_grams in terms of error and reject rates. For the smaller word data sets, the dif-
ference in performance is not very signigicant. For the larger word sets, most of
the difference involves a lower correction rate and higher rejection rate on the part
of the binary trigrams. However, the remaining error rate is still very small.

The positional binary trigrams are certainly far more effective than any previous

use of the probabilities of digrams and trigrams. There have been methods in the
past that have detected a high percentage of errors but these methods have relied
upon slow dictionary look-up algorithms or extremely large amounts of data [13,26].
Herein lies the power of the trigram correction process. Although it is not quite

as effective in correcting errors as the use of a complete dictionary, it is orders
of magnitude faster than the dictionary correction process. It is this advahtage that
would allow high speed correction in an on-line process.

The contextual algorithm employing the entire set of trigrams yielded l-error cor-
rection rates varying from 61% to 95% of the errors as a function of the size of the
word set. The correction rate for 2-error words drops to the 34$ to 837 range. These
results compare favorably to the previous work that has been discussed, in terms of
detection and co.rection rates, computational efficiency, and extendability to a
larger portion of language. )

The procedures under discussion should be able to transform a poor classification
gystem into a fairly effective one. The 2755 six-letter word set included many
words that are not often used. A particular application might not be restricted in-

ordinately 1f the irput set were limited to 800 or 1300 words of any given length.
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(Note that between 5000 and 10,000 words could easily be sued by subdividing the
words according to their length. If one assumes an 800 word input set with either
character error rates of 107 or 20%, then 6-letter words would have a word error rate
of 47% or 74% resﬁectively. These systems would be virtually unusable. The high
speed contextual system that has been described will reduce the 477 error rate to
a .382‘;rror rate and a 9% reject rate; correspondingly the initial 747 error rate
results in_1.292 errors and 227 rejects. For lower initial character error rates
the system performs better, since a larger proportion of the errors are l-error words
which are wasier to correct than multiple-error words.

Only six-letter words were examined-in the experiments described. Similar
statistics could be employed for sets of words of other lengths. There are
fewer positional n-grams for words of shorter length; consequently the system might
detect and correct fewer errors. A possible compensating factor, howgver, is
the existence of fewer short words, which should reduce the density of the binary
n-grams and improve the performance of the contextual processor. Since the density
is a function of the number of distinct letter pairs that exist across the set of
words, we are unsure how much effect this will have. For longer words there are
far more n-grams available; for example, in 8-letter words the total number of di-
grams and trigrams available is 28 and 56, respectively. The implication is that
if one invests a greater amount of storage, résults superior to. those presented
in this paper should be obtained. |

The assumption of the errors being random substitutions should be discussed.
In practice, if a Bayesian clagssifier is used, there is a bias towards the letters
that are a priori more likely. Thus, there would be a tendency for more of the

error substitutions to be from the more likely
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letters. This would cause some deterioration in detectability rates since
the local density of thé n-grams is greater about those letters. However,
this deterioration can be offset by using statistics on the confusion matrix
from the classifier, a process that was ignored in this paper.

The use of confusion matrix information of the classifier results in
a loss of standardization since the postprocessor is now dependent on the
particular classifier employed. On the other hand the system might be im-
proved a great deal. If one looks at the substitution matrix for a given
classifier one sees that when a mistake is made there are usually only
several characters that the correct letter could have been. It has been
pointed out in Table V.l that when an error is uncorrectable a very high
percentage of these cases involve only 2 or 3 choices. If the information
concerning the possible substitutions is available (a 26 x 26 binary matrix
might be sufficient), a large proportion of the currently uncorrectable
errors might be resolved.

A powerful correction system can be achieved by integrating the classi-
fier and the contextual postprocessor. If on-line detection and correctioa
is attempted, one can allow feedback from the postprocessor to the classifier
during error correction, as shown in Figure VII.1. Reclassification can be
carried out among the few allowable choiées, immensely simplifying the
original 26-character dichotomization problem. At the loss of standardization
of the postprocessor, correctability rates approaching detectability rates
might be feasible. Further research in this direction is being carried out.
An‘even more integrated recognition system can be utilized by allowing
feedback to the measurement system SO that further specific measurements
can be taken to reduce uncertainty in the correction process when there is

more than one alternative. This final recognition system 1is shown in
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Figure VII.1 Recognition System Utilizing Feedback of Contextual Information:
feedback from contextual post processor to classifier indicates

the reduced set of alternative characters. Reclassification is
performed on the reduced set.
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feedback from contextual post processor to classifier reduces
the number of alternatives when reclassification is indicated;
feedback from contextual post processor to feature measurement

and selection indicates additional specific measurements to be
made.,
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Figure VII.2, containing both feedback loops. Not shown in this diagram
igs any of the computation required in the feedback loops. However, the
simplicity of the postprocessor we have described might allow this compu-
tation to be reasonably straightforward. Research in-this direction has
been started [30].

A contextual system of the type described might be the key to making
handwriting recognition feasible. Relatively poor classifiers (10% to 20%
character error rates which yield over 50% word error rates) potentially
might have 95% of their errors corrected. The speed of the contextual cor-
rection process would enable the system to carry this out on-line during
the classification. The handwriting segmentation problem would make al-
ternative attempts of correction for different length words.

Another extension of the techniques that have been discussed is the
correction of errors in feature measurements. Each character position of
a word can be likened to a féature of thé word pattern. From this view-
point the contextual system 1s correcting the value of a feature measurement
from one of the possible 26 measurement values to another. If tﬁe set of
features of any general pattern are partitioned into a set of % subsets,
then positional binary n-gram statistics could be collected. For example,

a positional trigram would involve three of the £ subsets and describe the
allowable values that features in these subsets can take on. At that point
the detecticn and correction procedures could be applied without any change.
Of course the success of the system would be highly dependent upon the density
of the n-grams; the densities will be a function of the particular problem in-
cluding the type of patterns and features selected as well as the type of

n-grams employed.
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VIII. CONCLUSION

It is the authors' contention that contextual recognition techniques
in character recognition have not been developed and utilized nearly as
much as they should be. The results described in this paper demonstrate
that computationally efficient procedures can be used to drastically cut
error rates with only modest reject rates. The use of positional binary
n-grams might make difficult classification, such as handwriting recog-

nition, feasible. Conversely, one might greatly reduce the complexity

" of pattern classifier if it is followed by a contextual postprocessor with

the reliability that has been demonstrated herein.
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