4

THE DATA INDEPENDENT ACCESSING MODEL

A Review and Discussion
James 0. Mathers

COINS Technical Report 74A-1
February 1974

DEPT. OF CIMWPUTER B Sy
GIAZUATE fzzl oo

e e f=d RN ’ o
UKIVERSITY OF WASSACLLLETTS

AMHERST, MASSACHUSEITS 01002

TITTINN SCIENGE

e [

2;:52 ace

The Data Independent Accessing Model was developed by M.E. Senko,
E.B. Altman, M.M.Astrahan, P,L, Fehder, and C.P. Wang as part of the
Universal Information Syatem Technology (UIST) Project at IBM Research
Laboratory, San Jose, California, The Model is described in detail in
IBM Research documents RJ982, A Universal Information System Technology 1,
February 25, 1972, and RJ1121, The Representation Independent Language,
(Parts 1,2,and 3), November 2, 1972, The work of this Project is also
reported in an article by Senko, Altman, Astrahan, and Fehder, "Data
Structures and Accessing in Data-base Systems", IEM Systems Journal,
Volume 12, Number 1, 1973,

The purpose of this paper is to summarize in one document the main
features of the Data Independent Accessing Model and to provide additional
explanstory examples, Sections 1 through 3 are devoted to this review.

In Sections 4 and 5 some areas of the Model that were not developed in the
IBM Project are explored, Specifically, a Representation Dependent Language

is proposed and its use in accessing data in the model is discussed,

O ———

Section

1 - The Data In'dependent Accessing Model
1.1 = Entity Set Model
1.2 = String Model
1.3 - Encoding Model
1.4 = Physical Device Model
2 - Example
3 - The Representation Independent Language
4 =~ A Representation Dependent Language
5 = Translation of RIL Statements into RDL Procedures
5.1 = Chooging an Access Path
542 = Forming the RDL Procedure

13
20
29
38
47
57
62
62
67

-1—

1 - Ihe Data Independent Accessing Model

The Data Independent Accessing Model (DIAM) is an information storage
scheme in which the factors relevant to data base design and use have been
grouped into four majer areas or sub-models., The grouping is done in such
a2 way that decisions can be made within the context of one sub-model more
or less independently of the structures of other sub-models. Most significantly
this means that, given a set of data stored in the form of the DIAM, a user
will be able to access any subset of the data without concern for its
physical location or organization.

The four sub-models of the DIAM are:

Entity Set Model - Defines the user's interface with the stored information.
Data is described as named sets of data items,

String Model - Defines the logical access paths among data items and
collections of data items within the named sets.,

Encoding Model ~ Specifies how logical data items and their access paths are
represented as bit strings.

Physical Device Model - Specifies the form and arrangement of bit strings
on secondary storage media.

The sub-models represent varying levels of abstraction of a given set
of data, The structure of each model is specified by vélues of parameters
that are appropriate to its level, For example, the Entity Set Model is
specified by giving the name and content of the data sets that will be available
to the user. At the Physical Device level, parameter values will he the
names and sizes of areas en physical storage devices that actually hold
the data,

In order to make use of a model to access and manipulate data items, it

is necessary to be able to express the desired operations in terms of
elements of the model. This implies the existence of a language whose
primitive elements correspond to the elements of the model and the
permissible operations on them, Potentially, each sub-model in the DIAM
could have such a languace associated with it, but at this.time only two have
been developed.

The language associated with the Entity Set Model is the Representation
Independent Language (RIL) in which the primitive elements are sets of data,
attribute values, and set manipulation operations. This is the language in
which users can formulate their data base query requests.

The language associated wlth the String Model is the Representatlon
Dependent Language (RDL) in which access paths within data sets are specified
as well as attribute values. Typical operations in the RDL might involve
creating or following access paths and retrieving attribute values.

Formal languages have not been developed to express data operations in
terns of the Encoding or Physical Device models, but it is anticipated that
these will take the form of collections of standard procedures desigmed to
implement requests formulated at the more abstract levels.

Although the DIAM is partitioned for conceptual convenience, it is in
reality one model and data is actually stored in only one form, namely that
described by the Physical Device Model., Thus operations expressed in the
language of any other model must be translated eventually into pfocedures
that manipulate the physical representations of the data. To accomplish this,
translation facilities are provided between the :levels. Using them, a
statement in the RIL will be converted to a set of statements in the RDL.

This set will in turn be used to generate procedures at the encoding level

which will f£inally be translated into physical device oriented procedures,
For example, a request for retrieval of a certain date value might be
stated at the entity set level as the formation of a subset containing the
desired item, At the string level the retrieval activity would appear as a
command to follow the appropriate path to the data item, At the encoding
level the path-following command would be translated into a sequence of
pointer retrievals, since pointers are used to encode the paths, Finally,
at the lowest level, pointers are mapped into addresses on a physical device,
The operations that may be performed within the DIAM include not only
standard manipulations such as retrieval, update and deletion, but also
alterations in the structure of the model. For instance, new data sets can
be created or new access paths defined, using operations provided in the
RIL and RDL, Because of this,model design activities can take place at a
relatively high level and even the designer may take advantage of the
independence of the sub-models as he can operate only on the phases of the
model that are of interest. This facility permits the possibility of structure
evolution or self-adaptation to changing query loads,
Figure 1-1 illustrates the relationships among the elements of the
DIAM that have been described,

DESIGNER
ACTIVITIES

REAL WORLD USER
INFORMATION REQUESTS
ENTITY ENTITY WNTA
oa7 SET INDEPENDENT
MODEL CATALOG LANGUAGE
TRANSLATOR
STRING STRING
MODEL CATALOG REPRESENTATION
DEPENDENT
LANGUAGE
‘ TRANSLATOR
ENCODING ENCODING
MODEL CATALOG

el

PHYSICAL
DEVICE
MODEL

PAYSICAL
DEVICE
CATALOG

I/0 CONTROL

PHYSICAL

MAPPING

sy

1=1 JUNOIL

1.1 - Entity Set Model

The Entity Set Model (ESM) provides the description of the stored data
- that is seen by the user, He will formulate his requests for retrieval,
insertion, update, and modification of data items in terms of the structures
of this model,

The basic item of information in the ESM is the entity, which corresponds
to some real world object or concept about which information is being recorded.
The entity appears in the ESM as a collection of attribute values which A
describe the object the entity is representing. These values are placed in
the standard format of a triplet:

Attribute Domain Name/Role Name/Attribute Vaiue
The attribute domain mame is the set of entity names from which the attribute
¥alue can be drawn, The role nsme indicates the role the attribute value
rlaysin-describing the real world object, The attribute vﬁlue is the name
of the entity which, by its association with the real world object, deseribes
it. The collection of triplets associated with a given entity is called its
entity description and each triplet in the entity description must contain
a unique role name., An entity description corresponds to a record in other
systems.

To 1llustrate the concepts defined so far, suppose the real world concept
about which we wish to record information is a student, and that his inter-
esting features are his Student# (say 123) and his faculty advisor (say Mr.A).

The entity corresponding to this student has a description consisting of the

triplets: {N‘UMEERS/STUD#/1 23
NAMES/ADVISOR Ar A

where NUMEERS and NAMES are attribute domain names, STUD# and ADVISOR are role

names and '123' and 'Mr.A' are attribute values,.

If several objects have similarities that are of interest to the user,
the entities which represent them may be grouped into an entity set. The
descriptiohs of the entities in this set form an entity description set,
wvhich is roughly anslogous to a file in other systems. Each entity description
in the set will utilize the same role names in its triplets, and hence role
names are unique across the description set.

If we were interested in data about several students we could have the
following description set with an entity description for each student.

ERS/STUD#/123
NAMES/ADVISOR/ir.A

{NUMBERS/STUD#/A%
NAMES/ADVISOR/Mr.B

{NUMBERS/STUD#/789
NAMES/ADVISOR/Mr.A

We can give this description set & unique name, say STUDENTS, and then
combinations such as Description Set Name,Role Name will be unique across
the entire ESM, (e.g. STUDENTS.STUD#)

It should be noted that the attribute domains (such as NUMBERS) are
themselves entity sets and in some contexts it may be of interest to provide
each element with an entity description of its own, In the DIAM attribute
domains are merely entity sets used for the special purpose of providing
values to describe other entities. This use does not preclude the members
of an attribute domain from being deseribed by still other entities.

There must be at least one role name, or combination of several role
names, which can never take on the same valueé in two different entity
descriptions of the same description set., The role names with this property
are the identifiers of the description set. In the description set STUDENTS,

which was described above, the role name STUD# serves as an identifier.

The constructlon of an ESM ef information about a collection of real
world objects is a process of building entity description sets by choosing
the role names whose values will be the information of interest and of
assigning these role names to description sets. But the way in which this
assigmment is made will have a great effect on the efficiency with which
the user can manipulate the model to serve his purposes, and for this
reason certain rules are provided to guide the creation of description
sets, These are the Role Name Identifier Allocation (RNIA) rules.

Sincé attribute domains are actually entity sets, the values in an
attribute domain identify unique entities. These may be used to describe
other entities and may themselves be described. The problem is to decide:
1) What entity de'scription sets will be formed and what rele names will be
the identifiers of each?, and 2) In which entity description sets will the
non-identifier role names appear? For example suppose we wish to record the
courses in which a student is enrolled and the instructor for for each course.
STUDENTS, COURSES, and INSTRUCTORS are all entity sets. Course entities are
used to describe students, and courses are in turn described by instructor
entities, Given this information tobe stored, we must choose among several
possible models, There could be a single entity description set in which
triplets containing course names and instructor names are part of entity
descriptions for students, or STUDENTS could contain only the names of
courses taken by each student with another description set, COURSES, containing
the instructor information. Several other configurations are possible, and
the RNIA rules will lead to the selection of the structure with certain
desired properties,

To epply the rules it will be necessary to examine the relationship

that exists between the entity sets involved. For instance a student has

only one faculty advisor but each advisor can have several students

assigned to him, so the relation between the entity sets STUDENTS and

ADVISORS is many-te-one. The relationship of STUDENTS to COURSES is obviously

many-to-many, Figure 1-2 illustrates some possible relationships. The type

of relation will determine the allocation of role names to descriptive sets.

FIGURE 1-2, Examples of Entity Set Relations

&) Many-to-one

STUDENTS

123

456 o—

| 789 o]

b) Many-te-many

STUDENTS

¢) One-to-one

COURSES

ﬁ Mr.A

Mr.B

ADVISORS

123

456 o=

MATH o~

(e)

e PHIL
COURSES

[~~e BIOL
R e E

PHIL o]

BIOL &

FREN o=

:.
INSTRUCTORS

_e Mr,B

~e Mr.C

¢ Mr,D

ENTA Ruleff1 - If the relation between two entity sets is many-to-one, an
entity description should be formed for each of the "many" entities and

each description should include a triplet in which the attribute value is

a "one" entity. In the case of STUDENTS and ADVISORS this rule leads to a
single description set in which STUD# is the identifier and the non-identifier
role name ADVISOR appears in each description, The description set STUDINTS
has been previously shown in this form,

RNIA Rule#2 - If the relation between two entity sets is many-tomany, entity
descriptions should be oreated to represent each association of entities
from the two séts. These descriptions will contain at least two triplets
whose values are the names of the twe entities in the association, The role
nemes in these triplets will be the identifiers of the description set,
Figure 1-2b shows that & many-to-many relation exists between STUDEI'TS and
COURSES and so to record information about what students take what courses
Rule #2 requires the formation of a description set (call it SCHEDULE)

containing the following entity descriptions:

(NUMBERS /STUD#/123
COURSES /COURSE/MATH

{NUMBERS /STUD#/123
COURSES /COURSE/BIOL

{ NUMBERS /STUD# /4,56
COURSES/COURSE MATE

{ NUMBERS/STUD# /4,56
COURSES/COURSE /PHIL

{NU'MBERS/STUD#/789
COURSES/COURSE/BIOL

{m:BERs/st#ﬁgg
COURSES/COURSE/F :EN

SCHEDULE

\

The identifiers for this description set are STUD# and COURSE,

-10-

Any information that further describes the association entities can
be represented by additional triplets in the entity descriptions. For example
if we wished to record the grade of a given student in a given course, each
entity description in SCHEDULE would contain a triplet with the role name
CRADE and a value drawn from the attribute domain GRADES,

RVIA Buleff3 ~ If two entity sets have a one-to-ome relationship, the role
pames should be allocated according to the stability of the relationship
over time, If associations between entities are likely to change relatively
frequently, there should be a description set for each entity set and the
associations should be shown by placing triplets naming entities from one
set in the entity descriptions for the other set., Suppose we have the
COURSE-INSTRUCTOR relation from Figure 1-2c and also wish to store the

degree possessed by each instructor. The proper sets would be:

COURSES/COURSE/MATH FAMES/INSTR/Mr A
({ NAMES /INSTR/Mr.A DEGREES/DEGREE/Ph, D,
{connsrs/counsn/rm {NAMES/INS’I‘R/Mr.B
NAMES/INSTR/Mr.C DEGREES/DEGREE/M. A.
COURSES < INSTRUCTORS
{ COURSES/COURSE/BIOL {NAMES/INSTR/M:‘.C
NAMES/INSTRMr,B DEGREES/DECREE/M. S,
‘ {COUBSES/COURSE/FRM _{‘NAMES/INSTR/M:‘.D
\ | NAMES/INSTR/Mr.D DECREES/DEGREE/M.A.

This structure has the advantage that when the instructor for a course is
changed the degree information is not affected as it would be if it were
part of the entity description in COURSES,

If a one~to-one relation is fairly permanent, only one description set
containing all the information will be needed since the updating problems
will be infrequent.

-11=

It is interesting to note the relationships between the Entity Set
‘Model and Codd's Relational Model. (E.F. Codd, "A Relational Model of Data
for Large Shared Data Banks", Commmnications of the ACM, June, 1970, Volume 13,
Number 6, page 377). An entity description set corresponds to a relation in
the Relational Model and an entity description corresponds to an n—tuple of
a relation, In addition, if an Entity Set Model for a given set of data is
formed according to the RNIA rules and then transformed into a Relational
Model by writing each description set in the form of a relation, the resulting
group of relations will, in general, be in Third Normal Form,

We will conclude this discussion of the Entity Set Model by presenting
the Description Set Catalog, Catalogs appear as part of each sub-model of the
DIAM, Their purpose is to list in anorganized manner the elements of their
respective sub-models, A catalog entry, consisting of ah element name and
ceftain associated information, constitutes a type specification for a class
of element instances that make up a portion of the sub-model, The information
given in a catalog entry is parameter information that is common to all
instances of the given element type,

The Description Set Catalog (Figure 1-3) is the catalog for the Entity
Set Model, The elements listed in it are either description set names (DSN)
or role names (RN) and appropriate parameter information is given in each
entry. The entry for STUDENTS means that the ESM contains a description set
of the type STUDENTS, (there will be only one instance of STUDENTS because
of the nature of description sets), and that the role name STUD# will serve
as an identifier in the description set., The entry for STUDENTS.ADVISOR means
that instances of this role name type will be part of the ESMrand that in each

instance the parameter Attribute Domain will have the value NAMES,

-12-

FIGURE 1-3, Decription Set Catalog

Element Name

STUDENTS
STUDENTS , STUD#
STUDENTS .ADVISOR

SCHEDULE
SCHEDULE,STUD#
SCHEDULE, COURSE
SCHEDULE,GRADE

COURSES
COURSES, COURSE
COURSES, INSTR

INSTRUCTORS
INSTRUCTORS,INSTR
INSTRUCTORS .DEGREE

DSN=Description Set Name

RN=Role Name

Egy @@y =ZEy E8F E

Identifiers
(STUD#)

(STUD#,COURSE)

(COURSE)

(INSTR)

Attribute Domain

NUMBERS
NAMES

NUMBERS
. COURSES
GRADES

COURSES
NAMES

NAMES
DEGREES

-13-

1.2 - String Model

The String Model is the sub-model of the D1AM in which access paths
are defined to commect Attribute Domain/Role Neme/Attribute Value triplets
and collections of thece triplets. Since the thread of a comnection has the
effect of tying together triplets and collections, it is called a string, and
hence the name String Model.

Strings are needed so that triplets in the interior of the model can
be accessed as efficiently as required. Interior locations are those which
are not llsted as entry points to the data base, and to reach such locations
it is necessary to follow a chain of address pointers. The pointers may be
computed, explicitly stored, or implied as in a linear sequential search,
Strings provide a means of conceptualizing a pointer structure, and the linking
of two elements by a string means that once the first element has been
retrieved a pointer to the second can somehow be obtained.

One of the main themes of the DIAM is modularity, An attempt has been
made to comstruct a model from a concise set of component types, and as an
instance of a given type of component occurs it is described by values of
the parameters that are appropriate to its type. For example role names are
described by the parameters Attribute Domain and Attribute Value, Whenever an
instance of a given role name occurs it is defined by values for these parameters,

One of the advantages of parameterization is that if 811 the instanrces
of a given type of component share the same values for one or more of their
parameters, these values can be factored out and placed in a single type
description for that comporent., The catalog is the listing of the type
descriptions for all comporents, Parameter values that are given in the catalog

need not be stored with each instsnce of the componert, For example all

instances of a given role name will utillze the same attribute domain, and
hence the domain name can be factored into the catalog as was done in Figure 1-3.
Attribute walues, however, may vary with each role name instance and so
mst appear in the instance representation.

In other uordé, a role name is one of the basic components of the model, -
A gpecific role name, say STUD#, is a role name type for the model under
consideration, Every triplet cemtaining STUD# that appears in the model is
an instance of fhe role name type STUD#. There will be a catalog entry for
the role name STUD# that will give the associated attribute domﬁin name,
say NUMBERS, since all instances of the role name will use values from this
same domain, The only part of a triplet that must appear as actual stored
data 18 the attribute value; the domain néme and role name are constant over
all occurrences of this type of triplet and have been factored into the
catalog, Similarly, nahed strings aré basic components.of the model.

| The elements of the String'Model will be discussed mainly in terms of
their parameters., Since the purpose of a string is to fornm 11nks'3mong
instances of role name triplets and/or other strings, the paraméters appropriate
to a string will be: 1) an Exit List naming the types of elements that the
string connects, 2) an ON List naming the striﬁgs which have this string on
their Exit lists,‘and 3) conditional information specifying what instances
are to be linked, This information will be constant over all instances of
a given string type and so can always he factored into the catalog.

There are three general kinds of strings, Attribute Strings (A-strings),

Entity Strings (E-strings), and Link Strings (L-strings), which differ in the
types of elements over which they can be defined and hence in the kind of

collections which they can form, When a string type is creatéd it is given

a name that is unique across the String Model. For example A1,A2, and A3
might be the names of A-string types. There will be a catalog entry for

each type and possibly many instances of each string throurhout the model.

A-strings - The function of an A-string is to 1link role name triplets that
are part of the same entity description. All the triplets in the description
need not be on the same A-string, but they must be on some A-string if they
are to be accessible, If an A-string is defined over a description set, there
will be one instance of the A-string for each entity description in the set.
A-string parameters are:

1) Exit List ef role names that appear on instances of the A-string;

2) ON List of strings on which instances of this A-string appe&r.

As an example we could define an A-string, say SA1, over the description
set STUDENTS, SA1 might have an exit list given by EXL=(STUD#,ADVISOR)
indicating that there is an instance of SA1 for each stﬁdent and that each
instance connects two triplets, one containing the role name STUD# and the
other containing ADVISOR, The ON list parameter cannot be svecified until

other strings have heen defined for this A-string to be on.

E-strings - E-strings link homogeneous elements, that is they form collections
which are subsets of the set of instances of one other string type. The
collections are formed according to some criteria which is one of the E-string
parameters,

Suppose A-string SA1 has been formed with an instance for each student,
We might use an E-string, say SE1, to link all instances of SA1, thus giving
access to a complete 1list of students, We might also define an E-string, SE2,

which links the instances of SA1 in which the values associated with the role

-16-

name ADVISOR are the same. Thig produces lists of students who have the same
advisor, There will be one instance of SE2 for each unique value of advisor,
E-string parametrs are:
1) Exit List, (will have only one element);
2) ON List;
3) Subset Selection Criterion (SSC) which may be:
a) A conditional statement specifying a boolean condition en attribute
values associated with each instance of the string over which the E-string
is defined, If the boolean condition is TRUE the instance is included on
the E-string.
b) A conditional statement specifying a previously defined collection of
which a string instance must be a part if it is to 5e included on the
E-gtring.
¢) A partition statement which names one of the role nanes on the sﬁrings
over which the E-gtring is defined, A1l instances which have the same value
for this role name will be on one E-string instance, those with another
value on another instance, etc. In this way the set of instances over
which the E-string is defined is partitioned according to weluves of the
specified role name., The form of this parameter is SSC=: ROLENAME = Value(n),
and instances of the E-string defined in this way are identified by
subscripting the B-string name with a value of the partitioning role name,
4) Order Om criterion (00) is a parameter unique to E-strings. Since the
elements on an E-string are all of the same type, it is meaningful to define
an order over them, Stated in the form OO=ROLENAME, this parameter means
that the string instances on each E-string instance are to be linked in

sequential order by the values associated with ROLENAME,

17

The two E-strings, SE1 and SE2, defined above would have the catalog

entries:

SE1 ESG EXL=(SA1); 0O=(STUD#); ON=...

SE2 ESG EXI=(SA1); SSC=:(ADVISOR=Value(n)); 00=(STUD#); ON=...
(ESG stands for E-string)

L-strings - The function of an L-string is to link heterogeneous elements,

that is instances of different previously defined strings, The exit list of

the I=-string will name a number of other strings and each instance of the

L-string will contain one and only one instance of each named string, The

instences are linked on the basis of a match of attribute values that appear

on each, There will be an L-string instance for each possible value of the

specified attribute,

L—-string parameters are:

1) Exit List

2) ON List ‘

3) Match Criteria (MC) which specifies the role names from each string on

the exit list whose values must match to determine inclusion in a given

L-string instance, This parameter appears in the catalog as

MC=(Description Set Name.Role Name = Description Set Name,Role Name = ...)
As an illustration of an L-string, suppose we have the ESM given in

Figure 1-3 and that we wash to link each course name with the degree held by

the instructor of that course. The following strings would be needed:

CA1 ASG EXL=(COURSE,INSTR); ON= CL1

TA1 ASG EXL=(INSTR,DEGREE); ON= CL1

CL1 1SG EXI=(CA1,IA1); MC=(COURSES.INSTR = INSTRUCTORS.INSTR); ON=,..

-18-

CA1 and TA1 are A-strings, An instance of CA1 ties together the triplets
that describe & course and an instance of IA{1 ties together the triplets
that describe an instructor, CL1 is an L-string and an instance of CL1 ties
together an instance of CA1 erd an instance of IA1 for which the values of
their common rele name, INSTR, are the same, In this case there will be an
instance of CL1 for each instance of CA1, and in general there will be one

instance of the I-string for each instance of the first string on its exit list.

A String Model is a network of E, L, and A-strings defined over the
role name triplets of an Entity Set Model, Figure 1-4 gives a graphic
representation of the sample strings defined in this section, An instance
of a string with no incoming arrow such as SE1 is considered to be an entry
point inte the data base, Lt can be seen how data values could be retrieved
by starting at an entry peint and tracing through comnected string instances
to the role name triplets that are desired, Lt is 1n this sénse that strings

constitute access paths to the stored data.

SE1

SE2(Mr.4A)

STUD /123
sal ADV/Mr.A

SE2(Mr.B)

STUD /456 STUD /789
sal SAL
ADV/Mr.B ADV/Mr.A

CRSE/MATH %
INSTR/Mr. Ay

Symbols Used

O A-string

E-string

A L-string

-6 L=

7-1 THNOTd

=20

1.3 - Encoding Medel

At thé encoding level of the DIAM we are concerned with representing
the elements of the String Model in a form suitable for storage on a physical
device., It is assumed that the creation of symbol groups to encode individual
attribute values, string names and structural information is handled
autonaticelly, What is of interest here is the creation of virtual pointers
to implement the links prescribed by the String Model and the placement of
symbol groups which represent names, pointers, etc. in a data stream which
will reside on some storage device and constitute the physical model of the
real world information,

In order to be free from the constraints of any particular physical
~device, symbol groups are viewed as being placed in a conceptualized storage
area called a Linear Address Space (ﬁAS). An LAS consists of an array of
‘addressable locations, each of which, for the purposes of this discussion,
can hold the symbol group that encodes a single a.lphnumeric charac‘ber. Sﬁveral |
named LASs may be used to form the Encoding Model. A i

Information from the String Model will be coded in one of two general
formats, First, actual attribute values will appear simply as groups of
| characters in contiguous LAS locations, Second, all other information will
be organized in Basic l"hcoding‘ Units (BEUs), Specifically, there will be a
BEU for each string and role name,and string names, pointers, and other
control information will be placed in the appointed locations in the BEU

format, The format for a single BEU is as follows:

LABEL APTR1 APTR2 eoe coe APTRn VPTR TERM

21

LABEL is the nmame of the String Model element which the BEU is encoding.
APTR],,.APTRn are n Associafion Pointers, There is one APTR for each string
vhich the element being encoded ié on, and the APTR holds the LAS address

of the next element on the string to which it corresponds,

VPIR is the Value Pointer which holds the LAS address of the first element
in the collection defined by this BEU, If the BEU represents a string the
.VPTR will point to the first element on the string, If the BEU represents

a role name the VPTR will point to an atiribute value,

IERM contaiﬁs termination information indicating where the collection defined
by this BEU ends,

The four fields described above are the parameters for the Encoding
Model, Since there will be one BEU for each element instance in the String
Model, there will be sets of BEUs corresponding to element types, and BEUs
in each set will share some common parameters, Once again we can take
advantage of these similarities to factor out the common information and
place it in catalog entries for each BEU type, For example all the BEUs
representing instances of a single string type will have the same value in
the LABEL field. The label value could, in many cases, be placed in the catelog
entry for the BEU type. A great deal of information can be removed from the
data stream by this kind of factoring.

The catalog entries for BEU parameters will have the formats given below.
In general the entry will either contain the parameter value or it will
describe the field in the BEU that holds the parameter value., When the second
method is used, the entry may give the size of the field and the units (bits,
bytes,etc,) in which the size is measured or it may give 2 termination symbol

that will appear in the BEU to denote the end of the field.

i .2

A typical catalog entry might have the form VALUE=q to indicate that

this parameter will have the value q for all instances of the string type.

In this case the parameter value has been completely factored into the catalog.

If the parameter value is not factored, but appears in each BEU instance, the

catalog entry must describe the field in which it is placed so that a decoding

mechanism can locnte it, This may be done by giving the size of the field and

the units in which it is measured using the entries S1ZF=x, UNITS=y . For

example, if the parameter value is to appear in a field that is 4 bytes

long the entry SIZE=/ , UNITS = bytes would be used. Rather than specifying a

fixed field size, it might be convenient to use a termination marker to

delimit the field., In this case the entry TERMINATOR=z is used, If, for instance,

the end of a field is to be marked by the character # the entry would be

TERMINATOR= #,

Uéing the above conventions, the parameters that describe a given BEU

type will appear in the catalog as follows, (Underling indicates reserved

words and {I} denotes alternative forms.,)

LABEL: If the string name is factored into the catalog, its value can be

APTR:

given by the entry STRING LABEL = q where q is the string name,

If the name is not factored, the field in which it appears may be

described by one of the following entries SIZE~=x, UNITS=y;
{ERMINATOR=2;

Since there will be an association pointer for each string (1list) the

BEU is 6N, each APTR must be identified with the string to which it

applies, The catalog entry to do this 1ill be STRING = (string nome) .

The address that is the pointer will be given in terms of a displacement

from an origin within a~linear address space. The LAS must be identified

either by placing the name in the catalog or by providing a field in the
BEU, Oﬁe of the following entries should be used

LAS NAME VALUE = q;

LAS NAME SIZE = x, UNITS = y;

LAS NAME TERMINATOR = 23
Similarly, the displacement value can be factored or not, and so the

possible entries are
DISPLACEMENT VALUE = q;

DISPLACEMENT SIZE = x, UNITS = y3

DISPLACEMENT TERMINATOR = z;
A defsult on the displacement entry will indicate a value of zero,
The next entrj' will give the origin from which the displacement is to be
measured, The form of the entry will be ' START
ORIGIN = |} NEXII

NEXTC
AFTER

If START is used then the displacement is to be measured from the beginning
of the LAS that has been specified, NEXTI means that the origin is a point
immediately following the present BEU, NEXTC designates a&s the origin a
point immediately following the present BEU plus any centiguous portions

of its defining collection, AFTER designates a point following the final
portion of the defining collection regardless of whether the elements of
the defining collection are contiguous or not, The meaning of these terms
will be further illustrated in the example given below,

The final parameter in an APTR entry gives the units in which the

displacement is to be measured. It has the form DISPLACEMENT UNITS = y.

VPTR: Since the VPTR is alse & pointer it has the seme parameters as the
APTR except that the STRING entry is not needed because there can be
only one VPIR in each BEU, In addition the displacement may be given
by a function to support hash addressing mechanisms, In this case the
displacement entry is DISPLACEMENT FUNCTION = function

TERM: A cellection may be terminated in several ways, First, there may be
& count of some kind of units such as bits, bytes or collection elements,

The entry would be §_I_Z__E=x,_llNll‘§=y1,

TERMINATOR = Z, COUNTUNITS = Y5
VALUE = q,

Second, & termination symbol may be used and it will appear in some

specified field of the lest BEU in the collection, The required entry is

LABEL
TERMINATOR = q, FIELD USED = APTR 3

VPTR

TERM

Lastly, a given termination address may be specified using emtries of
the saine form as for a VPTR displacement,
To illustrate the specification of an Encoding Model, consider e string
structure described by the following string catalog entriess

String Name Iype Parameters
A1 ASG EXt=(R1); ON=(L1)
A2 ASG EXL~(R2,R3); ON=(E2,L1)
E1 ESG EXI=(L1); 00=R1; ON=(ENTRY)
)) ESG EXI~(A2); 00=R2; ON=(ENTRY)
L1 LSG EX1=(A1,42); MC=(A1,R1=A2,R2); ON=(E1)
R RN a=(A1)
R2 RN ON=(42)
R3 RN ON=(A2)

(See Figure 1-5)

~25-

B R2/Value
R3/Value

e o o

o] VPTR (€2)

Symbols Used

O A-string (ASG)

E-string (ESG)

Z{fik L-string (IL.SG)

FIGURE +5: Graphic representation of atring
structure given on page 24.

=26~

One possible encoding of this structure would be implemented by the follo-ding
encoding level catalog emtries.
Entry for String A1:

LABEL: STRING LABEL=A1

APTR: STRING=LT;LAS NAME VALUE=S2;DISPLACEMENT SIZE=/ ,UNITS=Bytes;

ORIGIN=START; DISPLACEMENT UNITS=Bytes :
VPTR: LAS NAME VALUE=S1; OR1GIN=NEXTI
TERM: TERM(R1)

This entry means that the string A1 has its LABEL factored into the catalog.
It has one APTR for the string L1, The pointeryalue is not factored, but
will be found in each instance of an A1 BEU in a 4 byte field, The value
in this field is the displacement from the START of LAS 52 to the REU for
the next element on L1, The VPTR points to the first element on A1's Exit
List, namely the role name R1, The displacement is zero.and-~the ORIGIN=NEXTI,
meaning that the BEU for R1 is located in LAS S1 immediately following the
BEU for A1, The end of A1's defining collection coincides with that of R1,

Entry for String A2:

LABEL: STRING LABEI=A2

APTR; STRING=E2;IAS NAME VALUE=S2;DISFLACRMFN] SIZE=4,UNITS=Bytes;
ORIGIN=START; DISPLACEMENT UNITS=Bytes

APTRs STRING=L1;DISPLACRMENT VALUE=J

VPTRs IN=NEXTT

TERMs QT%GH_(_RBY__
Bach instance of A2 is ON two strings (E2,11) and so has two APTRs, The Aptr
for K2 appears in a 4 byte field in the BEU, while the APTR for L1 has a null
value (g) a:i.nce A2 1s the last element on the defining collection of L1.
Entry for String L1:

LABEL: STRING LABEIL=L1

APTRs STRING=E1;IAS NAME VALUE=S1;ORIGIN=NEXTC

VTII;IR'MBz TERM(A2)

Each instance of L1 begins a collection of A-string instances (A1,A2). A1 is

=27

located immediately following L1, but the matching instance of A2 is in
a different LAS, The use of NEXTC in the APTR of an instance of L1 means
that the next element in the defining collection of E1 (that is the next
instance of L1 on the E-string E1) is located after the contiguous portions
of the defining collection of L1, that is after the instance of A1, The
terminator of an instance of L1 is defined to be the terminator of A2, since
that 18 the last element on L1,
Entry for String E1:

LABEL: STRING LABEL=E1

VPTR: LAS NAME VALUE=S1;QRIGIN=START

TERM: VALUE=68; COUNTUNITS=L1 instances
An E1 BEU has no APTR because it is an emtry point and not on any higher
string, The first imtance in the defining collection of E1 will be found at
the start of LAS S1 and the collection will terminate after 68 instances of L1,
Entry for E2s ’

LABELs SIRING IABEL= E2

VPTR:s LAS NAME VALUR= S2; DISPIACEMENT SIZE= 4, UNITS= Bytes;

QRIGEIN=START; DISPLACEMENT UNIIS= By%es.

TERMs VALUE= 'LAST'; FIELD USED= APTR,
The collection of A2 instances that deftnes E2 is terminated by the
character string 'LAST' in the final element in the collection,
Entry for R1s

LABEL: STRING LABEL= R1

APTR: STRING= A1; VALUE= ¢

VPTR: ORIGIN=NEXTI .

TERM: VALUE= 16; GOUNTUNITS= Bytes
The VPTR of NEXTI means that the velue associated with R1 will be located
immediately following the BEU for Rl., The defining collection of R1 (i,e.,
the associated value field) will always be 16 bytes long.
Entry for R2:

IABEL: STRING LABEL=R2

APTR: SRING= A2; ORIGIN= AFTER

VPTR: ORIGIN= NEXTI
TERM: VALUB= 16; COUNTUNITS= Bytes,

S1

S2

S1

S2

The APTR points to the next element on the A2 string, namely an instance

of R3,

associated with R2,

Entry for ,33’
LABEL: STRING LABEL= R3

APTR: STRING= A2; VALUE= @

VPTR: ORIGIN= NEXTI
TERM: VALUE= 12; COUNTUNLTS= Bytes

The féllouing d:l.aéram is a concéptuan.i- ;ép;éseﬁi;at:iqn of the two .LASs _

described above, BEUs are separated by Bouble lines and the format of a

BEU 18

~28=

LABEL

APTR

VPTR

TERM

the actusl data values intérspursed with the BEUs, The Value fields are

pointed to by role name BEUs,

START

AFTER means that this instance is located after the value field

f—— e e

. Notice the Value fields which hold

p

3

IE7

nﬁlii

TL
iim | ¢

BE

R1

'JlValue L1} ¢ !]A‘l

a2l 116

=

9 |i| Rz

A 4

Since in reality mach of the pointer information shown in the above diagram

is factored into the catalog, the actual data stream would appear as

A1 A1 A1

APTR(L1) | VALUE(R1) | AFTR(L1) | VALUE(R1)|APTR(L1) | . . .

4 Bytes 16 Bytes

E2 A2 A2

VPTR(E2) | APTR(E2) | VALUE(R2) | VALUE(R3) { APTR(E2)| VALUE(R2)
4 Bytes 16 Bytes 12 Bytes

4 Bytes

=29

Te4 ~ EPhysical Device Model

At the physical device level we are concerned with the way in which
coded symbol groups are entered on physical storage media, This involves
the assignment of BEUs from the Encoding Model to storage locations on a
physical device such.as a magnetic drum or disk, BEUs will not be assigmed
individually, but rather in bunches called Contiguous Data Groups (CDGs).

A CDG is defined as the largest possible set of BEUs and attribute values
vhich are associated by contiguity within an LAS and which encompass at most
one instance of the highest level E-string in the LAS,%* In general the
assignment procedure is: Associate an LAS with a specific portion of physical
storage and then define rules for the placement of CDGs from the LAS within
the physical space,

Physical Sub-divisions (PHYSD) are named address areas on a storage
device. (e.g. disk pack, cylinder, track, block, etc,) As with other elements
of the DIAM, a PHYSD name identifies a sub-division type of which there may
be many instances. Suppose a type of sub-division named BLKA is specified
as an area of 100 contiguous bytes, and BLKB is given 25 bytes. Then a
sub-division named TRKA might consist of one instance of BLKB followed by
as many instances of BLKA as can fit en a track, In this way PHYSDs can be
built up frem the smallest units of addressable storage (bytes) and each

instance of a PHYSD type wlll have a uniform composition,

* Collections of BEUs that encode string structures are in fact multilist

data structures in which each BEU contains pointers to the next items in the
lists of which it is a member, In many cases these pointers are factored from
the data stream and, during decoding, their values must be implied from the
relative positions of BEUs in the linear address space, When pointers are stored
in this fashion, the contiguity of the BEUs involved must be maintained in the
physical model., Contiguous Data Groups are sets of BEUs that must be stored
contiguously to preserve implied pointer values,

~30-

The parameter values that describe & PHYSD type may be completely
factored into the cataiog since they will be the same for all instances.
The catalog entries will be:

NAME Name assigned to the PHYSD

FORMAT This is basically a list of PHYSDs which cempose this PHYSD. Before
each PHYSD name in the 1ist is the mumber of repetitions of that
PHYSD that will appear, If the number of repetitions is given as X,
then there will be as many instances of the PHYISD as are required
to £i11 the PHYSD being described, After each PHYSD name in the
list will be en indicatien of where that PHYSD will start within
the scope of an instance of the PHYSD beimg described, If AFTER is
used the first instance will be placed in the next available
appropriate sub-division, Finally, there will be an indication of
vhether the PHYSD is to be filled by normal loading pméedures,
(indicated by FILL), or reserved for special use,(indicated by RESERVE).

CONTROL The names of PHYSDa reserved for contrel information.

SPAN A value of YES for this parameter means that if a CDG will not fit
completely into this PHYSD the first part will be placed in this
sub=~division and the remainder will span its boundary and fall into
the next appropriate sub-division, A value of NO means that the
entire CDG is to be placed in the next subdivision leaving the
ramaining space in this sub-division empty.

TYPE The pertion of a physical device fer which this PHYSD will serve
as a template, It is assumed that the storage device being used is
divided into predefined areas with system recognizable boundaries,

(eeg. cylinders and tracks on a disk). One of these aress, say TRACK,

=3t=

will be the value of the parameter TYPE, indicating that each
instance of this PHYSD will occupy one track on a disk, and that
the catalog entry for this PHYSD will provide a template for the
storage locations between the boundaries of the track.

Some examples of catalog entries for PHYSDs are:
NAME = TRKA FORMAT = (1(BLKB),START = BLOCK = 0,FILL)
(X(BLKA) ,START = BLOCK = AFTER, FILL)
CONTROL AREA = BLKB

TYPE = TRACK

This entry describes a physical sub-division called TRKA, From the value of
the TYPE parameter we know that each instance of TRKA will take up one track
on a disk, The FORMAT parameter shows that each instance of TRKA will be

. divided into 1 instance of & sub-division called BLKB followed by as many
instances.of a sub-division called BLKA as can fit on the track. The entire
track is to be filled at load time, and BLKB will contain contrel information,
The exact nature of this control information will not be specified here,

The next two entries give the composition of the PHYSDs BLKA and BLKB, which
are mersly blecks of 100 and 25 contiguous bytes, respectively. Since a byte
is the smallest unit of addressable storage, no smaller sub-divisions need
be defined,

NAME = BLKA FORMAT = (100(BYTES),START = BYTE = 0, FILL)

TYPE = BLOCK

NAME = BLK FORMAT = (25(BYTES),START = BYTE = AFTER, FILL)

TYPE = BLOCK

=32-

TRKA FORMAT = (X(BLKB), START = BLOCK = 0, RESERVE)
SPAN = NO
TYPE = TRACK
TRKB FORMAT = (x(BLKA), START = BLOCK = 0, FILL)--
SPAN = NO
TYPE = TRACK
TRKC FORMAT = (1(BLKB), START = BYTE = 0, FILL)
(x(Bi.Kc), START = BYTE = 4, FILL)
SPAN = YES
TYPE = TRACK
BLKA FORMAT = (1(FLDA), START = BYTE = 0, FILL)
. .._{1(FLDB), START = BYTE =),, FILL)
T!PE = BLOCK _
BLKB FORMAT = (1(FLDA), START = BYTE = 0, FILL)
TYPE = BLOCK"®
BLKC FORMAT = (1(FLDA), START = BYTE = 0, FILL)
(1(FLDB), START = BYTE = 4, FILL)
- (1(FLDC), START = BYTE = 20, FILL)
TYPE = BLOCK
FLDA FORMAT = (4(BYTES), START = BYTE = 0, FILL)
TYPE = FIELD
FLDB FORMAT = (16(BYTES), START = BYTE = 0, FILL)
TYPE = FIELD
FLDC FORMAT = (12(BYTES), START = BYTE = 0, FILL)
TYPE = F1ELD
Figure 1-6 shows how these PHYSDs would be arranged on a disk,

-

FIGURE 3-6

-33=
.\ /
Track# / BLKB | BLKB BLKB
0 TREA " TREA
1. TRKB
2 | TRKB \
3 . '
4L F= " TRKB BLKA BLKA BLKA
5 .
6
7 TRKB
8 TRKC
9 TRKC)
10 _
1; TRKC BLKBI BLKC .o BLKC
13
14
15
16 FLDA FLDB
17
13 -
19 Bml I
16 bytes
BLKB
FLDB FLDC

12 bytes

-34~

Once the erganization of'physical storage has been specified, the LASs
from the Encoding Model can be assigned to particu:l.ai" PHYSDs, This mapping
is accomplished by a catalog entry for each LAS containing the LAS name
followed by a nested expression in which the PHYSDs that will hold the LAS
are named, Within this expression each PHYSD name may be followed by the names
of its component PHYSDs, Only those components wili be listed that are to
be used in stering the LAS,

For "example, suppose & disk pack PACKA is divided into 5 cylinders of
type CYLA and 195 cylinders of type CYLB, Each CYLB is in turn divided into
2 tracks of type TRKA and 18 tracks of type TRKB, Then to store LAS A only
on TRKB type tracks in CYLB cylinders the catalog entry for the LAS would be

LAS NAME = A (PHYSD = PACKA (PHYSD = CYLB (PHYSD = TRKB)))
Since CYLA and TREA are not mentioned, PHYSDs of these types are not used
in stering this LAS, Becaﬁso no sub-divisions of TRKB are listed it is
assumed that the entire track is to be used, |

The particular instances of a PHYSD type that are to be used to store
an LAS can be specified by following the PHYSD neme with a pair of values
(START,mD) vhere START is the number of the first instance of this PHYSD
type that will be used to stere the LAS, END is the mmber of the last
instance used. For instance the entry

LAS NAME = A (PHYSD = PACKA (PHYSD = CYLB (PHYSD = TRKB(4,10))))
would mean that the LAS A is to be mapped into each cylinder of PACKA
starting at the 4th track of type TRKB and extending through the 10th track
of type TRKB,

As a further example, consider the LAS structure shown in Figure 1-5,

In terms of string names these LASs are characterized by the sequences:

=35

S1: E1 L1 A1 R1 Value L1 A1 R1 Value L1 A1 R1 Value oo
S2: E2 A2 R2 Value R3 Value A2 R2 Value R3 Value A2 R2 Value coe

The BEU data streams for S1 and S2 have the structures

L

' CDG
A1 A1 A1

S1 APTR (L1) | Value | APTR (L1) | Value | APTR (1L1) e o o
4 bytes 16 bytes

—CDG + CbG } CDG

E2 A2 A2

S2 VPTR (E2) | APTR (E2) | Value | Value | APTR (E2) | Value | Value | . . .

4 bytes 4 bytes 16 bytes 12 bytes

51 consists of only one contiguous data group since it contains one instance
of an E-string whose ordering is implemented by contiguity. In Sé the components
of each A-string A2 are related by contiguity but the A-string instances in
E2 are not,(that is the APTR in A2 for E2 is not factored so physical contiguity
- need not be maintained), Thus we ara free to segment the BEU stream as we
desire and can choose the CDG structure shown, perhaps in anticipation of
future insei*tions. Assume that the physical storage device to be used is a
magnetic disk and that 1 cylinder is available for the storage of LASs St and
52, We choose a physical organization described by the following catalog entries:
CYLA FORMAT = (1 (TRKA), START = TRACK = 0, RESERVE)
(7 (TRKB), START = TRACK = AFTER, FILL)
(12(TRKC), START = TRACK = AFTER, FILL)
CONTROL AREA = TRKA
SPAN = NO
TYPE = CYLINDER

36—

The mapping of LASs S1 and S2 into the sub-divisions of the cylinder
CYLA can be described by the following catalog entries:

LAS NAME = S1 (PHYSD = CYLA (PHYSD = TRKB(1,5)))
which means that S1 is te be placed in CYLA starting with the 1st track of
tyfe TRKB and extending through the 5th track of type TRKB, All sub-~divisions
of these tracks will be spanned.

LAS NAME = S2 (PHYSD = CYLA (PHYSD = TRKC(1), PHYSD = TRKC(2,12)

(PHYSD = BLXC)))

which means thet S2 is to be placed in CYLA in tracks éf type TRKC. In the
18t TRKC all sub-divisions (BLKB, BLKC) are to be used, In the 2nd - 12th
TRECs only blocks of type BLKC are te be used, The composition of CYLA after
the placement of the LASs is shown in Figure 1-7.

The metheds for censtructing rules for the placement of Contiguous
Data Groups within the physical sub-divisiqns assigned to an LAS are not
well developed at this‘time. The simplest precess is to take each CDG as it
appears sequentially in the LAS and place it in the next available PHYSD
that has beenm assigned to that LAS, This process is trivial if the physical
organization has been designed to accomedate a known and fixed LAS structure;
that is if PHYSDs have been tailered to hold the anticipated CDGs, This has
been done in the above example, as fields have been provided to exactly fit
the known size of BEU and value fields and blocks have been specifically
designed to held CDGs, The CDG placement procedure for this case can then be
described ass Maintain for each LAS a pointer containing the address of the next
unfilled bleck assigned to the LAS, To load an ILAS begin at ite START location
and place each successive CDG on the physical device at the location given
by the apprepriate peinter. After each placement modify each peinter
according to the catalog entry for the LAS,

FIGURE 1-7

E

- ed el d D DD DD D ORIV WN = O
ORI MW 0

37

Iype # Mithin Iype

aaaaa:aa:agéaaaaaéé

TREC

.

NN

VRIOONTVWVWN2L2IOMTNSTWVWN

g 4% ////////}/]

g LN L

A/ AL S S
77 7A 777 A7 7 7 7 /////f;l

4 AL X 777
N '6%%&\\\&%&\\ e N N\

Space to be filled by CDGs from LAS S1

Space to be filled by CDGs from LAS S2

2 - Exanple

This section traces the development of a DIAM for a specific set of data
threugh the emtity set level, string level, and encoding level. The structures
presented here will be used to illustrate future points and discussions,

The data base being modelled contains the following information about

employeess
Exployee Name Department Manager Preject Hours Worked Lecation
Number (RVPF) (NAME) _ (DEP) = _(MGR) _(PROJ) __ (HRS) (1.0C)
1 AA 1 X 8 14 A
9 16 B
2 BB 2 YY 7 11 A
9 14 B
8 20 A

3 cc 1 XX

Treating each columm as an entity set, we notice that the following relations

between sets hold, EMP# - NAME one-to-one (1)
EMP# - DEP many-te-one (2)
EMP# - PROJ many-to-many (3)
PROJ - LOC many-te-one (4)
DEP - MGR one-to-one (5)

EMP#,PROJ - HRS many-te-one (6)
We new form the entity description sets by following the RNIA rules. Relations (1)
and (2) indicate that NAME and DEP should be placed in a description set with
RP# as the identifier, Call this set EMP, Relations (3) and (6) dictate a
description set with EMP#,PROJ cembinations as the identifier and HRS as an
associated role name, Call the set HOURS, From (4) we form a description set
PROJT with role names PROJ and LOC, From (5) we place DEP and MCR in a set
called DEPT with DEP as the identifier. '

=30

The Description Set Catalog resulting from these allocations is

Element Name Function Identifiers Attribute Domain
EMP DSN (&P#)

EMP ,RMP## RN NUMBERS
EMP,NAME RN NAMES
EMP, DEP RN NUMBERS
HOURS DSN (EMP#,PROJ)

HOURS,EMP# RN NUMBERS
FOURS,PROJ RN NUMBERS
EOURS . HRS RN NUMRERS
PROJT DSN (PrROJ)

PROJT . PROJ RN NUMPERS
PROJT,LOC RN LETTERS
DEPT DSN (DEF)

DEPT ,DEP RN NUMRERS
DEPT ,MGR RN NAMES

The string structures shown in Figure2-1are chosen more or less arbitrarily

and they are specified by the following String Catalog,

Name Function String Name TIYPE Parameters

BYP DSN

P , EMP# RN ON=EA1,EA2)

EMP,NAME RN ON=EA1)

EMP.DEP RN ON=EA1)
EA1 ASG EXI#(M#,NA}E,DEP) $ON=EE1,EE2(n))
EA2 ASG EXI=(EMP#);ON=(EL1)
EE1 ESG EXI=(EA1);00=(EMP,EMP#) ; ON=(ENTRY)

EE2(n) ESG EXI=(BA1);SSC=sValue(n)=EMP.DEP ;
0B=(EMP . EMP#) ; ON=(DL1)

EL1 LSG EXL=(EA2,HE2(p));MC=(EMP,EMP#=
HOURS . EMP#) ; ON=(EE3)

EE3 ESGC EXI=(EL1);00=(EMP.EMF#) ; ON=(ENTRY)

EEL
EAL
EAL
EAl
1
V(8
HAl)
2Ef1
PRrROJ/8
HRS/14

EMP/1
NAME/ AA
DEP/1

BNP/2
NAME/BB
DEP/2

EMp/3
AME/CC
DEP/1

BE2(1)

HLY HL1

HAL HAl

EMP/1
PROJ/9
HRS/16

SEMP/2
PROJ /7
4RSS/ 11

EA2

EA2

HE2(2)|
HL
HAL

<Mp/2
PROJ/9
S HRS/ 14

’ -
/

SLY

HE2(3)

_ Jau?
'PAf)

(9)

N wACTH

MNP/ 3
PP0J/8
HR3/20

N

HE1(9)

- ans

o .o

ron o TP g e v 0t

LI R 1Y

DEL DE2
L1 DEP/L
DAL MGR/XX
DL DEP/2
DAL HGR/YY
PEL)

PROJ/7

FL{ PAL C/A
PROJ/B

FL PAL Lc/a
PROJ/9

L1 PAl 10C/B

FIGURE 2‘13

K v

RESL Yo R

41~

Name Function String Name Type

HOURS DSN
HOURS.EMP# RN
HOURS,PROJ RN

HOURS.HRS RN

HE1
HE1(n)
HE2(p)
HL1

PROJT DSN

PROJT.PROJ RN

PROJT.IOC RN
PA1
PL1
PE1

DEPT DSN

DEPT.DEP RN

DEPT.MGR RN
DA1
DL1
DE1
DE2

ASG

ESG

ESG

LSG

ASG

ESG

ASG

ESG

Parameters

bn:(nm)
ON=(HA1)
ON=(HA1)
EXL=(EMP#,PROJ ,HRS) ; ON=(HE1 (n) ,HL1)

EXL=(HA1) 3 SSC=(sValue (n)=HOURS ,PROJ);
00=(HOURS , =MP#) ; ON=(PL1)

EXL~(HL1) SSC=(:Value(p)=HOURS.EMP#);
00=(1T01"RS, PROJ) ; ON=(EL1)

EXL=(HA1,PA1) ;MC=(HOURS.PROJ=PROJL PROJ) ;
ON=HER)

ON={PA1)
ON=(PA1)
EXL=(PROJ,10C) ;ON=(PL1,HL1)

EXL=(PA1,HE1(n)) ;MC=(PROJT.PROJ=
HOURS,PROJ) ; ON=(PE1)

EXI=(PL1) ; 00=(PROJT,PROJ) 3 ON=(ENTRY)

oN=(DA1)
oN=(DA1)
EX1=(DEP /,MGR) ; ON=(DL1,DE2)

EXI=(DA1,EE2(n)) ;MC=(DEPT,DEP=E} .DEP#) ;
ON=pE1)

EXL=(DL1) ;00=(DEPT.DEP) ; ON=(ENTRY)

EXL=(DA1) ;00=(DrPT.DEP) ; ON=(ZNTRY)

The next step is to specifiy the encoding of the strings and data values

in Linear Address Spaces. We will use 4 LASs, one for each entity description

set, and name them EMP,HOURS,PROJT,DEPT respectively., Bach LAS is byte

addressable with an inftial address of 00, The Encoding Model is described

by the following catalog entries.

String
or

EA1

EE2(n)

EL1

EMP . EMP#

Iype

ASG

ASG

LSG

ESG

Encoding Parameters

LABEL: STRING LABEL=(EA1)

APTR: STRING=EE1; ORIGIN=AFTER

APTR: STRING=EE2; DISPLACEMENT SIZE=3,UNITS=Bytes;
ORIGIN=START; DISPLACE:ENT UNITS =Bytes

VPTR: ORIGIN=NEXTI

TERM3 TERM(BENMP , DEP)

LABEL: STRING LABEI=EE1
VPTR: ORIGIN=NEXTI
TERN: VALUE=3, COUNTUNITS=FA1 instances

LABEL: STRING LABEL=EA2

APTR: STRING=EL1;LAS NAME VALUE=HOURS;DISPLACEMENT S1ZE=3,
UNITS=Bytes; OR1GLN=START; DISPLAGEMENT UNITS=Bytes

VPTR: OR1GIN=NEXTT

TERM: TERM(EMP.BMP¥)

LABEL: STRING TABEL=EE2

APTR: STRING=DL1;DISPLACEMENT SIZE= @

VPTR: DISPLACEMENT SIZE=2,UNLTS=Bytes;ORIG1N=START
TERM: TERMINATOR='EOB';FIELD USED=APTR

LABEL: STRING LABEL=EL1
APTR: STRING=EE3;DISPLACKMENT VALUE=/ 3 ORICIN=NEXTI
VPTR: ORIGLN=NEXTI

'TERMs TERM(HE2)

LABELs SPRING LAREIL=EE3
VPTR: ORIGIN=NEXTI
TERM: VALUE=3,COUNTUNITS=EL1 instances

LABEL: STRING LABEL=EMP,EMP#
APTR: STRING=EA1;O0R1GIN=AFTER
APTR: STRING=EA2;SIZE= @
VPTR: ORIGIN=NEXTI

TERM: VALUES1,COUNTUN1TS=Bytes

~43=

S_M Type Parameters

EMP,NAME RN LABELs STRING LABEL=EMP.NAME
APTR: STR1ING=EA1;0RIG1N=AFTER
VRTR: ORICIN=NEXTIL :
TERM: VALUE=2, COUNTUNLTS=Bytes

E{P,DEP RN LABEL: STRING LABEL=RMP,DEP
APTR: STRING=EA1;DLSPLACEMENT SIZE=f
VPTR: ORIGIN=NEXTI
TERM: VALUE=1,COUNTUN1TS=Bytes

HOURS.EMP# RN IABEL: STRINC LARKL=HOURS,RMP#
APTR: STRING=HA1;ORICIN=AFTER
VPTR: ORICIN=NEXTT
TERM: VALUE=1,COUNTUNLTS=Bytes

HOURS,PROJ RN LABEL: STRING LABIL=HOURS,PROJ
‘ APTR: STRING=HA1;ORIGLN=AFTER

VPTR: ORIGIN= NEXTI
TERM: VALUE=1,COUMTONITS=Bytes

HOURS.HRS RN LABEL: STRIMG LABEL=}OURS.HRS
APTR: STRING=HA1;DISFLACRMEVT SLZE=f
VPTR: O?LCAIN=NEXTL
TERM: VALUE=2,COUNTUNITS=Bytes

HA1 ASG LABEL: STRIVG LAREL=HA1
APTRs STRIG=HE1; ORIGIN=AFTER
APTR: STRING=HL1;IAS NAME VALUE=PROJT; DISPLAC’MII‘T SIZE=2,
UNITS—Byte3° ORLG1N=START;DL JPLnCEMENT UN1TS=Pytes
VPTR: ORIC LN=NEXTL
TERMs TERM(HOURS,HRS)

HE1(n) ESG LAREL: STRING LAREL=HE1
APTR: STRING=PL1;ORLGIN=AFTER
VPTR: ORIGAN=NEXTI
TE®M: TERMINATOR='EP';FlEID USED=VALUE

HE2(p) ESG LABEL: STRING LABEL=HE2
APTR: STRLMG=EL1;DLSPLACENMIT S1ZE=g
VPTR: ORIG.N=NEXTI
TERMs TERMINATOR='EB!;F1ELD USED=VPTR

HLA LSG LABEL: STRING LABEL=HL1
APTR: STRLNG=HE2;ORLGIN=AFTER
VPTR: DISPLACEMNT SLEE=2,UN1TS=Rytes;ORLCIN=START;
DLSPLACEMENT UN1TS=Bytes
TERM: TERMLIATOR='LST';FLNLD USED=APTR

String Iype Parameters
PROJT.PROJ RN IABELs STRING LAREI~=PROJT.PROJ

APTR: STRING=PA1;ORLGIN=AFTER
VPTR: ORIGIN=NEXTI
TERM: VALUE=1;COUNTUNITS=Bytes ¢

PROJT,LOC RN LABEL: STRING LABEL=PROJT.LOC ‘
APTRs STRING=PA1;DISPLACEMENT SIZE=g .
VPTR: ORIGIN=NEXTI
TERMs VALUE=1,COUNTUNITS=Bytes

PA1 ASG LABEL: STRING LABEI=PA1 ;
APTR: STRING=PL1;LAS NAME VALUE=HOURS;DISPLACEMINT SIZE=2,
UNITS=Bytes; ORIGIN=START; DISPLACEMENT UNITS=Bytes
APTR: STRING=HL1; VLAUE='LST!' ..
VPTR: ORIGINsNEXTI 7
TERMs TERM(LOC)
d

An
PL1 LSG LABEL: STRING LABEL=PL1 @
APTR: STRING=PE1;ORIGIN=AFTER
VPTR: ORIGIN=NEXTI
TERMs TERM(HE1)

PE1 ESG LABEL: STRING LABEL=PE1
‘ VPTR: ORIGIN=NEXTI
TERMs VALUE=3;COUNTUNITS=PL1 instances

DEPRDEP RN LABEL: STRING LABEL=DEPT,DEP
APTR: STRING=DA1;O0RIGIN=AFTER
VPTR: ORIGIN=NEXTI
TERM: VALUE=1,COUNTUNITS=Bytes

DEPT.MGR RN LABEL: STRING LABEL=DEPT,MGR
APTRt STRING=DA1;DISPLACMENT SIZE=§
VPTR: ORIGIN=NEXTI
TERM: VALUE=2;COUNTUNITS=Bytes

DA1 ASG LABEL: STRING LABEL=DA1 :
APTR: STRING=DL1;LAS NAME VALUE=EMP;DISPLACEMENT TERMINATOR=¥;
ORIGIN=START; S S
APTR: STRING=DE2;DISPLACEMENT VALUE=2; ORIGIN=AFTER;
DISPT.ACEMENT UNITS=Bytes
VPTR: ORIGIN=NEXTI
TERMs TERM(DEPT,MGR)

DL1 1SG LABEL: STRING LABEL=DL1
APTRs STRING=DE1;DISPLACEMENT VALUE=6; ORIGIN=NEXTT;
DISPLACEMENT UNITS=BYTES
VPTR: ORIGIN=NEXTT
TERM: TERM(EE2)

5=

String Type Parameters
DE1 ESG LABELs STRING LABEL=DE1

VPTR: ORIGIN=NEXTI
TERM: TERMINATOR='EF';FIELD USED=APTR

DE2 ESG LABEL: STRING LABEL=DE2
VPTR: ORICAN=START
TERM: TERMINATOR='E!';FIELD USED=VALUE
Figure 2-2 shows the Linear Address Spaces after they have been filled

with the data values and structural information., The groupings above each
line show which bytes belong to BEUs for which string instances. Fer example,
the first 3 bytes of LAS EMP (Locations 00 through O2) contain all of the
BEU for the first instance of the A-string EA1 that has not'been factored
into the catalog, namely an agsociation pointer that gives the address of
the next element on the first instance of E-string EE2 (Location 014). The
next 4 bytes contain the three values for the role nemes associated with this

instance of EA1,

LAS Name

P

DEPT

PROJT

EAl Eal EAL EAl
(WPTR{EE2) Valugs ~\/— e P A, N
[o|t]u4f1|afajr]of2]|8|z|BfB|2|0o|2]|8|3]|c]|c]|1 ols
00 10 20 0

" EA2 EA2 EA2
EE2 EB2 APTR(ELL) Y7 — — M\~
et e
1171 |13
ololo]|~? ols|loltlols|6]|2]o0]l62]|3
40 50 60 -
DL1 Dal DL1 DAl DL1 DAl
z e - ¥ . —)
ofl6lulof¥]t|xlx]ol6lu]l2|¥i2]|Y|T|E]lF %| E
00 10 ’ 20 30
- HE1(7) | - HE1(8) 4} HE1(9)
___ Hal HAL HAL Hal
N " s
olof217]1 |1 Epou181nousszo plolsl1]9l1
00 10
amz(l) (2) ug2(39
EAL — o LT e L i
N/ P ~
6lofs|2]9]1|as EIlP 11213 lo]lslBlolo|3|6]|El® El B
40 50 60
Pal PAl
- e A".. T, R Lo . N t+ -
0 0_'7]4 1 Z‘SIA'3l0'9IB |_L
00 ' T 20 30

~97-

¢=C TNOTd

=l T

3 - The Representation Independent Langusage

The Representation Independent Lenguzage (RIL) is the user's medium
of interactlon with the Entity Set Model, Its operations are set~theoretic
in form, giving the user great flexibility in accessing and manipulating
data without concern for the actnal storage structures or accessing processes,
The syntax of the RIL will be presented informslly with brief explanations and
examples., The examples will refer to the model developed in Section 2,

An Infermation Entity (I-entity) is a group of one or more data values,
each of which is associated with a uniquely named attribute., An entity
description from the ESM is termed an I-entity in the RIL,

An Information Set (I-set) is a uniquely named, structurally hemogenous
collection of one or more I-entities, I-sets are the entity description sets
of the ESM, EMP, DEPT, HOURS, and PROJT are examples of I-sets, Since an I-set
is structurally homogeneous, each of its I-entities will contain values
associated with the same attributes, The names of these attributes are
referred to as the template of the L-set, denoted by T(S), where S is the
I-set name, For example the I-set EMF has T(EMP) = (RIP#,NAME,DEP) .

I-sets may be basic (part of the permanent data base), temporary (created
and named by the user and defined only within the context of his query), or
scratch (named by the user and defined within4the context of a single statement).

The process of accessing dedta items in the ESM is expressed in the RIL
as the selection of L-entities and I-sets according to the date values they
contain, The selection eriteria and the name of the I-set to which they are

applied constitute the definition of a new I-set.

The basis fer the selection process is the Entity Conditional Term (ECT),
which is a boolean valued function of attribute values in the I-entities to
which it is applied. Suppose we wish to select from the I-set EMP I-entities
for empleyees in Department 1, The ECT (MJEP‘-= 1) could be used, It would
have the value TRUE when applied to an I-entity in which DEP=1 and FALSE
otherwise, This ECT is an example of a cormon type known as the Value
Comparisen (VALCOMP) ECT., An ECT is formed frem 2 or more Entity Parameter
Expressions (EPE) jeined by comparison oi)erators. The result of the comparison
is the value ef ECT,

An EPE is a functien whose demein is one or more attribute values, In
the ECT (EMP.NAME = AA) EMP,NAME is an EPE defined on the attribute EWP.NAME
and whese cutput .is merely the unaltered value of the attribute, AA is an
EPE with & constant value, ='is the comparisen operator,

Other examples of EPEs combined inte ECTs aret

EMP.EMP# € 20
DEPT.MGR # YY
$5.50 x HOURS.HRS > $100,00
LENGTH OF (EMP.NAME) > 10

The cemplexity ef EPEs is geverned by the functions provided in the.
implementing system. Typically these could include standard arithmetic
functions, (+,~-,%,47, sin,...) and character string operations such as
LENGTH, FIRST n CHARACTERS, and so on,

Several ECTs may be combined by boolean AND (A) and OR V) operators
to form boolean valued Entity Conditional Expressions (ECE) so that if we
wished te select employees in Department 1 with name AA we 6ould write:

EMP,DEP = 1 A EMP,NAME = AA

~49-

A new I-set is defined by the Subsetting Operation which has the general
form Stq—-Ss: ECE wﬁere St is the terget I-set and Sy is the source I-set
from which entities are to be selected. For example, a temporary I-set (S1)
containing entities for employees in Depariment 1 could be defined by the
subsetting operation S1e—EMP: S1,DEP = 1 , Notice that the ECE (S1,DEP=1)
is a condition on an attribute value from the target set S1, not the source
set EMP, The ECE is a condition which 21]1 elements of the target set must
meet, This emphasizes that the subsetting operation is a definition of the
target set and does not necessarily imply a procedure for its formation, The
ECE in the example should be read as "The I-set S1 consists of I-entities
vhich are also members of the I-set EMP and which satisfy the condition
S1.DEP=1", The target set bullt up in this way is now available for use as
8 source set in future operations,

When accessing data, there may be situations in which selection of
I-entities must be based on values associated with whole sefs of, rather
that individual, entities. Recall that the entity set HOURS contained entities
that gave the heurs worked by a given employee on a given project. In other
words T(HOURS)=(BMP#,PROJ,HRS), Suppose, for example, we wanted the employee
members of all employees who have worked a total of at least 30 hours on all
projects, Té retrieve these values we could form, sequentially, the I-sets:

S14— HOURS: S1,BMP# = 1

S2 «—HOURS: S2,EMP# = 2

Bach temporary I-set contains all the "hours worked" I-entities for one
 employee, We could then sequentially access each I-entity in the temporary

sets and add the HRS value to a cumulative total for the corresponding employee.

50—

If this totsl exceeded 30 hours, that employee's mmber, name, ete. would be
included in & target temporary set. For the convenience of the user the RIL
coentains constructions that will allow such complex and cumbersome procedures
to be expressed in a single statement,

The expressions for stating selection criteria bzsed on set values are
analogous te these for handling entity values., Set Parameter Expressions (SPE)
are functions which assign unique values to sets, For instance TOT(S1.HRS)
could be the summing function required in the above example, returning a
value that is a total of the specified attribute values for all I-entities
in the named I-set, Other useful SPEs might be (where S1 is an I-set and
A ig an attribute in ite template):

MAX(S1,A) returning the msximum value of the attribute over all
entities in the set; |

AVG(S1.A) returning the average value; and

COUNT(S1) returning the number of I-entities in the set., Other SPEs
can be defined as needed,

VALCOMP Set Conditional Terms (SCT) are formed by using comparison
operators to comnect SPEs, TOT(S1.,HRS) 2 30 is a SCT which would have
the value TRUE if the total hours worked by Empleyee 1 were at least 30,

Set Conditional Expressions (SCE) are boolean combinations of SCTs.

The SCE (TOT(S1.HRS) € 20) A (COUNT(S1) > 2) would have the value TRUE
if Employee 1 had worked less than 20 hours on more than 2 projects,
. The SCE provides a means of selecting sets according to a given criterion,
but there must be a means of dynamically producing the sets to which it is
to be applied, In the RIL this accomplished by defining a new type of entity

conditional term, the FOR ECT, which has the general form FOR [Sc s2 SCE]

=51

where Sc_is a scratch I-set, The ECT has the value TRUE for a given instance
of Sc when the SCE is TRUE for that instance, The FOR ECT can then be used
in a subsetting oﬁeration with the definition of Sc dependent on.the I-entities
of the source I-set. To form the subset of employees working more than 30
hours we could now write
52 «—BMP: FOR [(ST<—HOURS: S1,EMP#=S2.EMP#)::(TOT(S1.HRS) 230)]
This expression defines the I-set S2 as consisting of I-entities from EMP,
Each element of S2 satisfies the cendition that if a scratch set S1 is formed
from HOURS se that each element of S1 has EMP# equal to the EMP# in the
element of S2 then the total of the HRS values for elements of S1 will be 2 30.
Several additional types of ECTs and SCTs are provided for special
purposés. The EXIST ECT has the form € (S;e— Sj ¢ ECE) and has the value
TRUE if the I-set S; is non-mull, that is if there exists an entity in s,
that meets the condition given by the ECE, The EXIST ECT is equivalent to
the expression FOR [S; &—S;sECE::COUNT(S;) 21] .
The EXCLUDE ECT is the logical complement of the EXIST ECT, It has the
forn €(S;«—S; t BE) and is equivalent to FOR [S;e— S;+BCE: :COMNT(S;)=0)
The ALL SCT has the form ALL(S : ECE; :: ECEj) « It has the value TRUE

i
For example ALL(EMP:EMP,DEP=1::EMP.EMP#<2) would be FALSE since not 211

if and only if ECE.: is TRUE for all entities in S for which ECEi is TRUE.

of the employees in Department 1 have EMP# less than 2, (See page38) If EGEi
is not present, the SCT becomes a test of whether all entities in S meet '
the criteria expressed in ECEj.

In a model such as the ESM vwhere related data wvalues are stored in
differenf data sets it may often be necessary to rerform set intersections

to access all the desired data pertaining to a given real world object. The

intersection of two I-sets could be accomplished using the FOR ECT and
subgetting op;raﬁion as in the above example, Hewever, because of the frequency
of this operatiom a special expression for it has been provided,
The I-aggregate is a set of I-entity combinations, It is defined by an
I-Structure Specification Expression (SSE) having the form:
[5y | 8y ¢ ®oE]
Each element of the l-aggregate contains a pair of I-entities, one from Si
and one frem Sj’ that meets the criteria stated in the ECE, For example,
te 1ink infermation on empleyees with records of their heurs worked, it is
‘mecessary to intersect the I-sets EMP and HOURS en the basis ef EMP#. This
‘weruld be expressed by [Ste—EMP | S24—HOURS : S2,EMP#=S1,BYP#]
Since in this example there are several I-entities in HOURS fer each
employes, each I-@tity frem EMP wlll appear in several elements of the
I-aggregate, If this is undesirable for the application at hand, the
operater of car be employed as fellows:
Bre—eP | o (s2e—HOURS:S2,BPF = S1.RPH)]
which indicates that each elemsnt of S1 is te be linked with a set of all
elements in S2 fer which the EMP#s match, In general the & eperator causes
the intersection of two I-sets to result in a hierachical structure with
single elements from one set linked to groups of elements from the other.

To 1llustrate I-aggregate and the & operator, consider the two I-sets

.- iz ROURS
EMP#/1 EMP#/41,PROJ/8
BIPS/2 R/ FROT5
RMBF/3 EMP#/2,FROJ /7
BMP#/2,PROJ /9

EMP#/3,PROJ/3

The I-aggregate resulting from the SSE [S1e—EMP | S24—HOURS : S2.mMP#=S1,BMPH]
would be '

EMP#/1 - EMP#/1,PROJ/3
EMP#/1 - EMP#/1,FROJ/9
BMP#/2 - EMP#/2,PROJ/7
EMP#/2 - BMP#/2,PROJ/9
EMP#/3 - BMP#/3,PROJ/3

The SSE [S1«—BP |«(S24—HOURS:S2, RPA=S1.BPH)] , utilizing the
operator would result in

EMP#/1 - #/1,PROJ/8
EMP#/1,PR03 /91 .

EMP#/2 - {EMP#/Z,PROJ/?}
EMP#/2,PROJ/9

BP4/3 - {BP#/3,Pr05/3)

While the I-aggregate provides the links to effect set intersection,
it is not itself an I-set and so cannot be used in further processing. An
I-set can be created from an I-aggregate, however, using the Derivation
Operation, This operation has the forms

Si(81585500008) &= [ssE] var,,VAT,,...,VAT
vwhere 81982500058 define the template of the new set S,, and SSE defines

some I-structure, possibly and I-aggregate, VAT1,VAT2,...,VAT are Value

n

Agsignment Terms written in the form a,3= VEXP1 « VEXP; is a Value Expression,
a function of attribute values in the I-structurelfrom which the new set is
being derived, Each attribute in the T(St) will have a corresponding VAT,

The following examples illustrate the derivation operations

The set of names of all employees is defined by:

S2(NAME) <= [S14—RP] NAME:=S1,NAME

=54

A 1ist of all employees and their assigned managers is given by:
S3(NAME,M0R) <= [S1e—RMP | S2«— DEPT:S1,DEP=52,DEF] NAME:=S1.NAME,MGR:=52,MGR

Using the derivation operation, the set of employees with over 30
hours worked can be expressed in an alternative way to that on page 51:
S4 «—(S3(BMPF) <= [514— BMP| (S24— HOURS:S2, BMPA=S1.BYEF)] EMPH:=S1.BMPH):
TOT(S2.HRS) 2 30

If no information about the employees besides their EMP# is desired, this
form permits the elimination of uneeded data values from the target set.

Most of the RIL elements discussed so far are oriented toward retrieval
of stored data. But the language also provides for insertion, update and
deletion as well as input/output operations,

Insertion is essentially the inverse of the subsetting operation., It
i3 prescribed by an empreésion of the form

Ss—b St s ECE
The effect of insertion is to copy into the target set Sy those I-entities
from the source set Ss for which the ECE is TRUE, If the ECE is omitted, all
elements of Sy are added to S.. Insertion requires that the templates of the
target and source set be identical, .

To illustrate insertion, suppose S1 contains I-entities for new employees
and has the same template as EMP., In order to add to the EMP set those
employees that are assigned to departments 1 or 2 we can write

S1—»EMP:S1,DEP £ 2
Note that the ordering of the I-entities in BMP is not a matter of concern
for the uéer in this example, I fact ordering is transparent to the user
in all phases of the RIL, & point indicative of the data independence that
it provides,

Update is indicated by an expression of the form:
s, =>[5, : EOE] var,,var,,...
where St is the set to be updated, Ss contains updating information and
T(Ss) and T(St) have at least one attribute in common., ECME is an I-entity
Conditional Matching Expression which has the same form as an ECE and is
used to select elements of St to be updated based on a match of the common
attribute values in S, and S_, VAT,5.+s are of the form a;:=VEXP; , and they
describe how attribute ay in the I-entity selected from S¢ is to be modified,
For example, if we wish to change the department managers, and I-set S1 could
be formed with T(S1)=T(DEPT), the I-entitdes of S1 containing the new manager
names, The update expression would then be:
$1 => [DEPT:DEPT,DEP=S1,DEF] MCR:=S1.MGR
If an update operation requires no input, the expression would be written:
() = [st : ECE | VAT, ,VAT,,...
For instance to move employees in Department 2 to Department 3 we use:
() => [EfP:EMP.DEP=2] DEP:=3
Deletion is expressed by:
\=> [5, 1 EcE]
where ECE is used to locate the I-entities in St that are to be removed
and \\ is a special deletion symbol, To remove the record of hours worked
by employee 2 on project 9 the expression is:
\\=> [HOURS:HOURS.EMP# = 3] HOURS,PROJ = 9
If the user wishes to have 2 temporary I-set appear as output from the
model, this can be done by enclosing the set name in\ \a’c the time it is

defined, giving an expression of the form: \ S t\(—-—-(Set definition expression).

56

For example \| 81\ «—EfP:S1,DEP=1 would cause the records for employees
in Department 1 to be output.

For input operations it 1s assumed that data to be input is assembled
in a file external to the ESM, Each record of this file contains data values
that -are to be placed in a single I-entity, The Input Statement has the form:

Sy+—\(ay582500058)\ ¢ ECE
S; is a temporary I-set that is to receive the new values. (84,85y...,8 L) are
attribute names that specify the template of St‘ The ith field in a record
of the external file will hold the value assigned to a4 in an I-entity of Sge
The ECE permits the conditional selection of records from the external file.

To input a new set of empioyee records we would write:
ste—\T(2r)\

If the external file held "hours worked" records and we wished to input
only those pertaining to project 7, the expresseion would be:

s2«—\1(HOURS)\ s S2,PROJ=7

Ay

57w

4 - A Representation Dependent Language

The Representation Dependent Language (RDL) provides a means for
stating, in terms of the string model, procedures which, when executed,
will result in the desired operations on the data base., It is necessary
that the RDL have the capability of expressing procedures *hat will implement
any statement in the Representation Independent Language (RIL), Thus it rust pro-
vide for retrievals, insertions, deletions, and changes of data itens, In
addition the RDL will permit the specification of procedures which alter
the structure of the string model, One possitle RDL is proposed here,
Elenents of the RDL
String Structure Expressions (SNGSE)

An SNGSE will have the generel form
ES.S.(81,805044)4 (8145510504405 (55,55,5500)e won (RN
(RN

11...1’RN11...2,‘00);¢.0

120-.1’MT120002’...); tee

vhere ES is an entity set name, S, S, S11, ete, are string names and RN11 19

etc. are role names, Different levels of the string structure are seperated
by single perlods., Groups of elements at the same level are seperated by
seni-colons. Elements enclosed in parentheses comprise the Exit List of a

string at the next higher level, so that S has EXI=(S4,S,,...) , S, has

EX1=(S se+s) &nd S, has EXL=(S,,,5555...), etc, If the above structnre

11? 12
vere viewed as a tree it would have the form

//}i //iij Spp e

""f~’1~\\\\\“ RN ","’1;;\\“*

RN 10001 Myq2 oo 210,01 21,..2°

~58-

Tims the mumber of subscripts an element has indicates the level at which it
wlll be found and the subscripts themselves idenﬁ.fy the parent strings, For
instance sijk would appear at the 4th level of the structure and would have
EXL = (sim,suu,sim,...) « Referring to ‘the exemple in Section 2, the
string structure containing the strings DE1,DL1 DA1,EE2, and EA1 would be
represented by the SNGSE

DEPT.DE1, (DL1) . (DA1,ER2), (DEP,MGR) ; (EA1) . (EMP#,NAME, DEP)

String Declaration Statement - CREATE SNGSEp
vhere SNGSEp is a string structure expression which has been modified as
followss 1) Bach component may be followed by an expression in[]that
specifieé values for parameters appropriate to the general string type of the
component, 2) If the component is & role name it may be enclosed in { Hto
indicate that it is an identifier for the entity set in which it appears,
The execution of a CREATE statement causes the generation of catalog entries
for the strings in the expression, To illustrate, consider the statement
CREATE TE1.TL1 [MC=(TA1.RMPA=EA1.EMPF)] .(TA1,EA1), (CPROTY,EMPH)
which establishes a structure consisting of a new E-string TE1 which will
connect instances of a new L=string type TL1. The exit 1list of TLT includes
a new A-gtring TA1 and an already existing A-string EA1, Instances of these
strings are linked on the basis of matching values for the role name EMP#,
TA1 has EXI=(PROJ,EMP#) with PROJ as the identifier for the new’ entity set,
Role names need not be given for EA1 since it is already in the catalog.
In general, the effect of thls statement is to-create new string types.
Instances of these types will be formed at a later stage by assignment of

values to the string and role names listed here,

String Acquisition - GET S

vhere S is a string,(possibly subscripted), that is on the Entry List, (It is
assumed that each string for which ON=ENTRY is listed, together with the
address of its first BEU, in an accessible table called the Entry List). The
GET statement initiates at the encoding level the pointers and other mechanisms
necessary to follow the linked lists which constitute paths through the data
beginning at the entry location specified here, At the string level the effect
of this statement is to retrieve the instance of the string S, (There will be
only one instance of S since it is on the Entry List.,) Thus S becomes the
Present String and the Current String of its type as described below,

Present String - The neme and LAS address of the last string instance to be
retrieved is placed on a push-down stack, The top entry on tﬁis stack is the
Present String (PS), |

Current Strings - A stack will be maintained for each type of string retrieved,
and the name and LAS address of each instance retrieved will be placed on

its appropriate stack., The top entry on a stack will be the Current String

for that type, designated by CS(String Mame)., e.g. CS(EA1).

String Search - DO FOR S: C [B]

where S is the name of a string on the exit list of the PS (Present String),

C is a conditional expression that selecis instances of S, and B is a block

of RDL statements, B will be executed for each instance of S that is selected.
The expression C may be a boolean function defined on data values that can

be accessed by at most 3 pointer retrievals, That is if S is an A-string the
values of role names on its exit list may be tested (2 pointer retrievals);
or, if S is an L-string which has an A-string as the first element of its exit

list, the values of role names on that A-string may be tested (3 pointer retrievals).

(While deeper searches for data values to be tested could theoretically be
allowed, they are neglected at this point because of the complexities they
would cause and because any operation for which they would be needed could
be performed by using temporary strings and mmltiple search passes.) C may
also be a boolean condition on some function of a count of the instances of
S that have been retrieved, destignated COUNT(S), The word ALL will indicste
that every instance of S on the PS is to be selected., When an instance of S
1s selected it 1s placed on the PS stack (and thus becomes the PS) and on
the C8 stack for its string type. The []define the scope of the search
statement within which only data values accessible from one of the CSs by
no more’.'bhan 3 pointer retrievals are available, When execution of B is

- completed, the PS is used to find the next instance of S to which C is
applied, When the pertinent set of S instances is-exhausted, PS is restored
to: the value it had before the search statement was encountered, Search
statements may be nested to any level,

Assignment Statemenf - ASSIGN SNGSE,

vhere SNGSE, ‘:I.s a string structure expression £Mt has been modified as
follows: Each component may be followed by an assignment symbol «— and

an expression, If the component is a role name the expression will be a
function of data values that can be retrieved from current strings, If the
component is a string name the expression must be an already existing string
or string structure of the same type (i.e, A-string, E-string or L-string)

in which case the assignment constitutes a link to that structure. Execution
of an assigmment statement creates an instance of the structure named in the
SNGSE, If the components of the SNGSE are string nemes which appear in search

statements within whose scope the assignment statement appears, then the

~61-

SNGSE is taken to be a specific instance of the named structure composed
of the current strings, In this case the assignment represents a modification

of the deslgnated instance, The modification could be deletion, symbolized

by 9‘ . The assignment of data values to OUT denotes output from the system.

To illustrate RDL procedures consider the following example, Suppose
the structure to be searched has the form ES1.ET.(A1).(RN1,RHN2) ., We wish
to select all instances of A—étring A1 for which role name RN2 has the
value x, and we will place the values for RN{1 for the selected instances
in a new structure specified by the statement

CREATE ES2,E2,(A2), (RN3)
The remainder of the RDL procedure will be

GET E1

DO FOR A1s RN2=x

[AssTaN A2,RN3 @— RN1]

The assignment statement will be executed once for each instance of A1 that
contains the desired value of RN2, and each time it is executed a new instance
of A2 is created with RN3 being assigned the current value of RN1,

Now, taking the original string structure in the above eXample and
the new structure created by the procedure, suppose we wish to forﬁ a lin
between instances of A1 and A2 based on a matching value for RN1 and RNB.'

The RDL procedure to accomplish this is

CREATE ES1,E3,L1,(D1,D2) (D1 and D2 are dumy string
‘ names, Actual names will be
GET E2 supplied in the assignment
statement,)
DO FOR A2: ALL
[cET E1

DO FOR A1: A1,RN1=A2,RN3

[AssTaN L1.(D1<— A2,D2@— 41)]]

62—

5 - Iranslation of BIL Statements into HDL Procedures

Given an RIL statement that describes a certain operation to be
performed, we wish to form a group of RDL statements which describes the
same operation in terms of the String Model., In addition, since there may
be more than ome group of statemenﬁs that could represent the operation, we
wish to choose the RDL representation that is in some sense the best.

5.1 - Choosing an Aocess Path

An RIL, statement w:l.ll specify certain data values that are to be
operated upon and it is necessary to choose a path through the String Model
from an entry point to the role names whose associated data values will be
those that are required, The process of choosing a path has two phasess
Path Emmeration - 1isting all possible paths from entry points to each
role name; Path Selection = choosing from all the paths listed the onés
which can be most efficiently used in performing the desired operation,

Path enumeration can be performed by taking each role name from the
parse of the RIL statement, finding its ON list from the catalog and tracing ‘
back to entry points using all elements of each ON list encountered., This
produces a set of paths for each role name, For example the RIL statément
Te—BP : T.DEP = 7 AT.EMP# {3 requires access to data valﬁes for
role names EMP/DEP and EMP/RMP#, The ON lists retrieved by starting with
the catalog entry for RMP/EMP# are:

BMP/RVPH ON=EA1,EA2
EA1 ON=EE1,EE2
EA2 ON=EL1

EE1 ON=ENTRY
RE2 ON=DL1

EL1 ON=EE3

EE3 ON=ENTRY
DL1 ON=DE1

DE1 ON=ENTRY

63—

Thus the possible paths to EMP/EMP# are:

(1; EMP/EMP# «— EA1 «— EE1 «— ENTRY

(2) BMP/RMP# «— FA1 «— EE2 «— DAT «— DL1 @«— DE1@— ENTRY

(3) BMP/EMP# «— EA2 @— EL{ «— EE3 @— ENTRY

Note that when an L-string occurs in a path all elements of its exit 1ist
are included also to show the different string types that will be accessed
in a search of the L-string, The paths to instances of EMP/DEP are:

(4) BMP/DFP @— EA1 @—EE1 @— ENTRY

(5) EMP/DEP @~ EA1 @—— EE2 ¢— DA1 @ DL{ @ DE{ #—— ENTRY

This completes the process of path enumeration,

Path selection requires evaluation of each path that has been genefated
‘with reference to the operations specified in the RIL statement, This process
should reveal which paths are essential to the operation and indicate, if
alternatives exist, which is the most efficient, Several heuristics are

suggested here to guide this selection,

5411 = Role Name Inclusion

It is possible that a single path may provide access to several of the
required role names, If so it may be preferred because the needed data can
then be accessed by 2 single search procedure, If there is no single path
to two role names whose values must be accessed simultaneously, then this
operation must be performed, at least conceptually, by forming temporary
entity sefs to hold the values from the search of each path, and then taking
the intersection of the temporary sets. In the extreme case this may reduce
to an exhaustive search of several entity sets, Thus it seems reasonable
to favor a path that accesses as much of the needed data as possible in a
single search, This criterion is applied to a path by checking the exit list

of each A-string for the presence of the desired role names, While in a strict

=6y

sense only the role names on the terminal A-~string are on the path in that
their BEUs contain pointers in the chain from entry point to final data value,
the role names on non-terminal A-strings can be accessed with relative ease
once the A=-string is reached, Thus a role name will be considered to be
availsble on any path in which its A-string appears. |

To illustrate this heuristic we can apply it to the five paths generated
above, By the convention that the presence of an A-gtring implies the
availability of all role names on it, paths (1) and (4) are equivalent as
are (2) and (5), and so (1) and (2) wdll be dropped from consideration,
Checking the exit lists of each A=string we find the role names available
on each path ares
3) BR/BE
(4) ee/Red, BP/ANE, BF/DEP
(5) B BPF, BMP/SAME, M/DEP » DEPT/DEP, DEPT/MGR
Thus paths (4) and (5) contain all the data values that need to be accessed
and will be preferrable to (3) which contains only one role name,

512 « A=string Grouping Conditions

The presence of conditional terms (ECTs, SCTs) in an RIL statement |
indicates that data values are to be selected from a given set of values '
according to some criteria defined on the values themselves §r on the values
of related attributes, At worst this selection can be carried out by a linear
search of the entity set, besting wvalues as they are encountered, There may,
however, be paths available containing strings that effectively partition
an entity set according to the conditional criteria specified, If this is
the case, then search time can be saved by limiting the search to a subset
of the target values, Such partitioning is typically done according to the

b5

Set Selection Criteria of E-strings, This parameter can be checked each

time an E-string is found on a path, If the role neme in the SSC is the same
as one of those appearing in an ECT or SCT, the path containing the E—sfring
may be preferred,

An RIL statement may also require value selection based on comparison of
data values from different entity sets, This could occur in a conditional
expression or an I-aggregate construction, The obvious string structure to
support this type of access is an L-string linking elements of the subject
entity sets, Thus it is beneficial to check the Match Criteria of L-strings
on a path for the presence of role names from different entity sets that
are involved in RIL comparisons. _

In the above example the choice of entities from the I-set EMP is
conditional on values of EMP/EMP# and EMP/DEP, Checking the SSC for EE2
we see that this E-string partitions the set of EA1 string instances according
to values of EMP/DEP, Thus path (5) which contains EE2 is favored over (4)
by this criterion.

5«13 = String Instance Count

When accessing a particular subset of data it will probably be necessary
at some point to search through a set of string instances and choose one
meeting certain conditions that are known to lead to the target data., For
example in using path (5) to reach entities for employees in Department 1
it is necessary to search the instances of the L—stfing DL1 on E-string DE1
to find the one that leads to values associated with Department 1. Using
path (4) it would be necessary to examine each instance of EA1 on EE1, testing
the value of EMP/DEP, When alternative search paths are available it may be

relevant to check what instance searches are invloved in each and the

b6

' relative sises of the sets %o be searched, This informetion may be available

- a8 termination information for ;E-étrings at the encoding level or could be
estimated from periodically updated instance counts of the moiﬁnt string
structures, In the above eummple; if the nature of the data were such that
there were more departments than employees, it might be more efficient to

use path (4) and search the set of EA1 strings than to search the larger

set of departments, If, as is more likely, the cardinality of EMP is greater
than that of DEPT, then this rule gives added incentive for choosing path (5).

- 5414 = Path Length

If several paths are viewed as equal according to the above three
criteria, it may be of some advantage to choose the path containing the
. fewest str;.l.ng types, since foilou:lng this path will involve the fewest
pointer retrievals and address calculations,

=67

5.2 = Forming the RDL Procedure

if complete flexability is to be achieved, the DiAM must be able to
service any legal RIL request, it is likely that the most frequent requesis
will have been anticipated in the design of the string model ard that tke
strings which lead to the data values they specify are already available,
In these cases the RDL procedures for processing the requests will involve
no more than following the selected access path.ffom the entry point to ‘t:e
desired data values., If any branching decisions rmst be made, the data values
on which to base the decisions will always be immediately available, For
instance, suppose the RIL statement Q1 @=EMP: Q1,DEP=1 has resulted in
selection of the path EA1 @== EE2 &= DA{ @—DL{ @ DE{ &#—ENTRY . One reascz
this path waé‘chdéen is that the match condition on the L-string DL1 is tased
on the value of DEP, (Sé; Section 2) The instances of DA1 representing
departments are explicitly linked to groups of EA1 instances representirg
erployees in the same department, This structure was, of course, intehdei to
support just such a query., The RDL procedure to implement it is a sequence
of search statements, onebfor each string in the path, The FOR condition in
the statement where a single instance of DL1 rust be selected will te precisely
the same as the condition in the Entlty Conditional Term of the RIL statere=-.
The procedure will be:

GET DEt
DO FOR DL1: DA1,DEP=1
[DO FCR DA1: ALL
(DO FOR EE2: ALL
[po For EA1: ALL
[ASSIGN OUT = (R P#,NAME,DEP)])]]]
In such cases the formation of the RDL procedure appears to be relativelxw
straightforward,
In those instances in which reguests are made that the string structure wvas

not designed to process, more complex RDL procedures may well te recuired., Ia

addition, any algorirhm for generating the RDL expressions may have to chosre

among alternative procedures, and so mst have access to some criteria of
efficiency, In the following, some of the aspects of this problem are explored,

| All data base transactions requested by users involve the accessing of
particular date items; that is, the generation of physical device addresses
at which data values for particular role names associated with given entity
descriptions are located or are to be located., A=-strings are defined in such
a wvay that for a given A-string type there will usuelly be a one-to-one
correspondence between A-string instances and entity descriptions, and the
structure of the A-string (its defining set) is relatively steble. Thus at
the string level it is convenient to restate the basic transaction problem
as one of accessing subsets of A-string instances, Once an A-string has been
retrieved, it is a straightforward operation to locate the role names and
data values associated with it, Thus a request to access dslxta.vfor Employee 1
will be interpreted as a request to retrieve the A~string instance which has
in its defining collection the role name EMP# with associated value 1.

In a typical String Model several A-string types, or sets of A-string
instances, will be defined, In general, there will be at least one set of
A-string inste.nqes for each entity description set, Some description sets
may be represented by more than one A-string type, each type being defined
by different combinations of the role names from the description set. The
satlisfaction of a user query may require the retrievel of A-string instances
from one or more of these sets, For example Ste—EMP: S1DEP = 1
involves accessing instances of one A-string type, whereas

S2<—BMPs FOR [S34—DEPT: S3.DEP: :ALL(S3:S3,MGR=XX)]
requires that instances of two different A-strings be retrieved, one linking

the role names 4n the description set EMP and the other linking the role

69—

names in DEPT, In addition, there may be occasions in which the éet of
instances of a given A-string type is partitioned into subsets by instances
of a higher-level string. The E-string EE2, for example, partitions the set
of A-string EA1 instances according to department, forming one subset of
instances of BA1 representing Employees 1 and 3 and another from the instance
of EAd represenﬁing Employee 2.,

As stated, the process of accessing means the generation of addresses, In
the DIAM this means the retrieval of pointers, either explicit addresses from
the data stream or implied pointers from the catalog. Because of the list
structure used in the model, the pointer to any given element (string instance,
role name, or data value) can be obtained from the Entry List or by retrieving
the preceding element in some list (string) which contains the target element,
The predecessor will supply the required pointer. In practice, A-strings
will never appear on the Entry List..To place the address of many A-string
instances on the Entry List would waste the advantage of defining higher level
strings over the set of A-strings, Tﬁus we will assume that pointers to
A-gtrings will only be found by tracing some higher level string and
decoding the pointers as they are encountered,

From the two preceding paragraphs we see that all string models possess
a number of basic sets of A-string instances, These sets are distinguished by
the fact that they are all included within the scope of & single instance of
a higher level string, or in other words, that each A-string instance in the
set contains a pointer (APTR) to the next instance in the set, The first
instance is pointed to by the higher string instance (VPTR), We will call
such a set of A-string instances a linked set. The concept of a linked set will

be useful in choosing an efficient implementation for a given transaction request,

=70=

If the RIL query to be implemented involves A-string instances from only
a single linked set, then the natural RDL procedure to satisfy it is a single
search statement in which the FOR clause gives the condition for selection of
instances from the linked set. For example, consider a request for fhe
Department managed by Manager XX, given by the RIL statement S1€—DEPT: S1.HGR = XX.
As shown in Chapter 2, the A-string DAl is defined over the entity descriptions
for departments, and a single instance of a higher level string (DE2) is
defined over DAl. Thus all instances of DAl form a 1inkea set, and this is
the only linked set involved in the query. These string names would have
been found by the path selection methods of Chapfar 5, which would produce the
path DAl ¢ DE2 €—ENTRY. We can then form the RIL procedure

GET DB2 |

DO FOR DAl: MGR = XX

[51-51.0EP «— DEF]

'If the requested transaction involves A-string instances from more than
one linked set, then some type of set intersection must be performed. Set
intersection implies, at least conceptually, the simﬁltaneous accessing of
elements from different sets, in this case A-string instances from two or more
linked sets. Since the RIL presented here does not provide for parallel
operations, the problem of implementing a set intersection becomes one of

choosing the sequential process that most efficiently accomplishes the desired
| retrievals from the several linked sets in question. There are three
procedures that could be used for set intersection.

Alternating Search Method- Using this method, an A-string instance is
chosen from the first linked set (assume two sets are to be intersected). The
search of the first set is then suspended with the identity of the current
string being saved, and a second seaBch routine for the second set is entered.
The element of the second set that matches the current element of the first

set is selected and the intersection is performed for those elements. The

second search routine is then exited and the first routine continued to the
next element,
Suppose that two paths have been selected

A1 @— E{ @— ENTRY (1)

A2 &— 2 &— A3 &— |1 &— E3 &— ENTRY (2)
and that the linked sets to be intersected are the set of all instances of A1
and the subset of instances of A2 which defines a given instance of E2, The
sequence of RDL statements necded to perform this intcrsection by the
Alternating Search method would be:

GET E1
DO FOR A1: ALL
[GET B3
DO FOR L1: A3,Ri1=x (Selects desired instence of E2)
(Do FOR A3: ALL
[DO FOR E2: ALL
[D0 FOR A2: A2.R1=A1.R1 (Intersection match)
[ASSIGN OUT @—41,42701212

Temporary Set Method ~ This method consists of accessing one of the linked
sets and copying the desired A-string instances from it into a set of
temporary A-strings with a simpler structure, The second linked set is
accessed and all instances in it are placed in a second temporary set. The

temporary sets are then intersected using the Alternating Search method,

The RDL statements needed to implement this method for the example given

above are: CREATE TS1,TSE1.,TSA1.(EXL same as for A1)
CREATE TS2,TSE2,TSA2,(" "™ n n pA2)
GET E1

DO FOR At: ALL

[AsSICN TSA1 e—A1]
GET E3
DO FOR L1: A3.R1=x

[DO FOR A3: ALL

[DO FOR E2: ALL
[DO FOR A2: ALL
[ASSIGN TSA2 @— 4272102

Ly 2

The above aprocedure forms the temporary sets. To carry out the intersection

ve needs
GET TSE1
DO FOR TSAT: ALL
[cer s
DO FOR TSA2: TSA1,R1=TSA2,R1
[asszen our — 751,7542]]
New String Method - Since the main function of an I-string is to 1ink

elements from different sets, they are ideally suited for use in set
intersections, If an L-string is defined that links instances of one A-gtring
type to those of another, then this intersection has in a sense been wired into
the String Model., A pair of A-gtring instances can be retrieved simply by
following pointers from one to the other, and in fact we will say that each
I~string defines a. separate linked: set, If the set intersection has not been
built into the permanent structure by L-strings, then the RDL permits them to
be added dynamicelly as new strings, The effect of this is t§ superimpose
over the two old linked sets.awr syray of -nisw:linked sets, each containing a
padr of A-string instances, joined according to the condition for the inter-
section, The method now reverts to the case of a single linked set, since as
each gset is retrieved all the required information can be obtained from it
without reference to any other linked set,

It should be noted that when this method is used pointers to implement
the newly formed links may have to beimserted into the previously existing
data stream. Specifically, when two linked sets of A-stri‘ngs are being joined
by a new L-string, BEUs for A-string instances in the first set will have to
have an extra APTR for the L-string, This may cause significant complexities
at the encoding level,

The sample intersection éescribed above, if performed by the New
String method, would require the following RDL statements, |
First to form the new string structure

CREATE E3.12,(D1,D2)
GET E1
DO FOR A1: ALL
[cET B3
DO FOR L1:A3.R1=x
[D0 FoR A3: ALL
(D0 FOR E2: ALL
[0 woR A2: 42,R1=A1,R1
(AsSICN 12.(D1 @=A1, D24—142)7322]
Then to search the new structure .
GET E3
DO FOR L2: ALL
[assTon our e~ A1
DO FOR A1: ALL
[AssIoN ouT @— 223]

The problem now becomes one of choosing the best of the above methods to
handle the given transactions. At this point, a reasonable criterion for
"best" would seem to be the number of pointer retriovals that must be made.
Costs of storage cannot be dealt with without further consideration of the
physical implementation to be used, and catalog complexity is not well enough
defined to serve as a criterion. Thus we will assume that the best accessing

method is the one that requires the minimum number of pointer retrievals.

7

Before exploring thé costs of the three methods described, we define
the following functionsa.

2(S) , vhere S is a string type, gives the mmber of instances of S currently
in the data base, For example if there are 100 employees, each
represented by an instance of an A-string EA1, then { (EA1) = 100 .

c(8) , where S is an A-string, gives the number of instances of S that
must be retrieved to satisfy the current RIL request, For example if
the current query calls for information on one employee, c(EA1) = 1
for that request. If information is desired on all employees or on
all employees meeting a certain criteriom,then c(EA1) = ¢ (EA1).

A(R) , vhere N specifies an ac@ess path from an entry point to an A-string,
gives the number of string instances that must be retrieved when the

path 1s followed, exclusive of the first A-string instance, For the

path At e E1 @— L1 «—E2<— ENTRY (1)
R(1) =3 '
Consider .. = the case in which two sets are to be intersected that

.cannot be reached by the same access path, In other words during the path
selection process it was found that no single path contained all the required
role names. Say the.two paths selected are

A1 @—851 «— 32 ®— 53 «— ENTRY (1)

A2 «— S/, a— S5«— ENTRY (2)
The linked sets to be intersected are the sets of all instances of A-gtrings.
A1 and A2, and S1, S2, etc. are higher level strings, Note that S1 and S4 must
be E-strings, since we have specified that there are only two liﬁked sets.
The intersection of A1 and A2 will result in a set éf pairs of A-string
instances which have matching values for one of their role names., Assume that

that
the query being processed requiresﬁall instances of A1 are to be matched, so
that c(A1) = ¢ (a1).

=75-

The Alternating Search method would require that path 1 be followed
until S1 is retrieved, a process involving 3 pointer retrievals, Retrieving
each instance of A1 will require 1 pointer retrieval, so' the number of r~trievals
needed in searching path 1 will be 3 + i(A1). Similarly the pointer
retrievals needed to search path 2 are 2 + g(A2), Since path 2 must be
searched once for each instance of A1 until a matbh is found, the average
mimber of retrievals for a search of path 2 will be 2 + % ¢(A2). The number
of pointer retrievals needed for the entire intersection process is then

3+ 2(a1) + 2(a1) [2+ 3 ¢(a2)]
= 3+ 32(a1) + 4 2(a1) 2(a2)

The Temporary Set method for intersecting the sets would require tﬁe
same search of path 1 and only a single complete search of path 2, The result
would be two temporary sets of A-strings which must besearched again to
perform the intersection, The minimal structure for the temporary sets must
be an E-string defined over each of the sets of A-string instances. The
paths needed to search this structure would be '

TA1 @—TE] <— ENTRY (3)

TA? @—TE2 w— ENTRY (4)
Intersecting TA1 and TA2 using the Alternating Search method would take

1 + 3(TA1) + 2(TA1) [1 + 31 (TA2)J pointer retirevals,
Since #(TA1) = 2(A1) and 7(TA2) = 2(A2) , the totel retrievals needed
for intcrsection by the Temporary 8et method is given by
3‘+ §(A1) + 2 + 3(A2) + 1+ g (A1) + (A1) [1 + %Q(AZ)]
=6 +3i(a1) +2(A2) + % ¢(a1) 2(a2)

~76-

The New String method inveloves the creation of a new linking string
structure that embodies the desired set intersection., Obviously the inter-
| section must be performed once during the farmetion of the links. The Alter-
nating Search method is used and as each pair of A-string instences is retrieved
8 new linked set is formed on the path A2 ¢« A1 «—-NL1 vhere NL1 is
a new I-string that links an instance of A1 with the matching instance of A2,
Presumably a higher level E-string will be proveded to give access to the
new linked sets, that is to the instancesof the new L-string, Thus the new
path will be A2 ¢~ A1 @~ NL1 @«—NE1 «— ENTRY
To access a pair of A-string instances from this path will require 1 pointer
retrieval for NE1 and 3 retrievals for each instance of NL1, for a total of
1 + 3 ¢(A1) retrievals, The whole intersection process, them, requires
3434(a1) +34(81) §(A2) + 1+ 34(a1)
=4 + 6 2(A1) + § 4(a1) g (A2) retrievals,
In summary, letting theimitance counts be 2(A1) = 4 and ¢(A2) = 10,
the values obtained for each of the three methods are |
3+ 39(21) + 2 2(a1) g(a2) = 35 (Alternating Search)
6 +39(a1) +2(82) +3+(A1)4(A2) =48 (Temporary Set)
4+ 63(A1) +3¢(A1)7(82) =48 (New String)
Comparing the values we see that for this example the Alternating Search
method will always be preferable, for any values of (A1) and (A2),
Generalizing the above discussion, consider the two paths
A1 51 &~ ., . . & Sn @— ENTRY (1)
R2e~Twe—¢.. @—Tn «—ENTRY (2)
where the instances of A1 and A2 are the seéis to be intersected, The cost of

intersection measured in pointer retrievals will be:

77

Alternating Search metﬁod -
2(1) + F@A1) + o(a1) [22) + 3 4(22)]
= J(1) + F@a1) + Q(2)c(a1) + Je(a1) ¢ (42)
F(A1) is a function which gives the expected number of retrievals needed %o
find c¢(A1) A-string instances in a total colleciion of 2 (A1). At least c(A1)
instances will be accessed and at most g (A1), It is assumed that the desired
instances are dis?ri?uted randomly within the linked seét, F is defined as
A1 k k-1
F k [@(Aﬂ) - (c(M))]
k=c(A1)
F(A1) for 3(a1) > c(a1)
(A1)
c(A1)

(a1) for 2(A1) = c(a1)

Temporary Set method -
L(1) + F(a1) + £ + 2(a2) + 1 + c(A1) + c(a1) [1 + —.33~¢'(A2)]
= Q(1) + F(a1) + A(2) + 3 (A2) + 1 + 2c(A1) + 3c(A1) g (A2)
Note th-t while only c(A1) instences of A1 muct be retrieved, all instances
of A2 are needed because i¥ is possible that all of them will be involved |
in a match,
New String method -
A1) + ra1) + f(2)e(a1) + 3e(a1) g (A2) (to form the 1inks)

+ 1 + 3c(A1) (to search the new string structure)

Comparing the general results for the three methods, several observations can
be made,

First, it is obvious that for a single intersection, the New String
Method must always require more retrievals than the Alternating Search Method

since the former includes an activation of the latter. However, once the new

link strings have been established, they are available for use in answering -

=78~

future requests. The link forming process is a one-time fixed cost in the
New String dethod and if the intersection is performed many times, the cost
per intersection may well be lower than for repetitive use of the Alternating
Search method. The point of cost indifference between these two methods could
be easily determined.
Second, the cholce between the Alternating Search and Temporary Set
methods will depend on the comparison of t.he values of the expressions
Xz) e (a1) and 2(2) +1(a2) +1+2¢(a2)
It is clear that as c(Al) becomes larger, the Alternating Search process
-becomes less attractive since the entire second path will have to be searched
more times. Similarly, the longer path 2 is, the more favorable the Temporary
Set method appears. This comparison can be made dynamically to choose the
most efficient method.
From the above we see that the choice of intersection procedure may depemd
“s on the expecfed frequency of occurrence of certain queries, perhaps derived from
the history of user requests, Also, factors such as the cost of storage and
| catalog search time may be important. Since these areas have not yet been ex-
plored, we will not attempt at this time to give formal rules for translation
of RIL statements into RDL procedures. The preceding discussions can, however,

provide guidelines for this translation process and suggest directions for further
development,

