ON THE DEVELOPMENT OF DATA BASE EDITIONS*®

Robert W. Taylor
David W. Stemple

COINS Technical Report 74A-2

March 1974

*
A paper presented at the IFIP TC~2 Working Conference on Data Base
Management Systems, Cargese, Corsica, April 1 - 5, 1974.

ON THE DEVELOPMENT OF DATA BASE EDITIONS

Robert W. Taylor and David W, Stemple
Department of Computer and Information Science
University of Massachusetts, Amherst, Massachusetts

1. INTRODUCTION

A recognized fact of life when dealing with data bases is that they evolve over
time. This evolution takes place on a number of levels of data structure. The
first of these, and the level with which most existing systems deal well, is the
level of data occurrvences. That is, new occurrences of data are inserted, and
existing occurvences are changed ov deleted. But through all of this, the data base
structure--the schema*--remains unchanged. New item, record and set types are
never added to or deleted from the data base schema, nor are the definitions of
which occurrenc¢es of records are linked to which other occurrences of records,
e.g. the SET OCCURRENCE SELECTION clause of the set member sub-entry, ever
changed.

The static nature of the data base schema has a number of implications for
the run-time modules of the data management system. Generally, it means that
the storage format of records is bound at compile time for any program accessing
the data base. That is, if two records A and B are related by set S, then what-
ever method is used for representing occurrences of this set--say chaining--there
is no question concerning 'where in an occurrence of record A is the pointer for
following set S". The answer is always the same for record occurrences of type
A. A similar argument holds for items and groups within occurrences of record
type A. This is not to say that the run time modules of the data management
system may not have to search through the stored version of the schema to discover
the position--it is merely to say that there is a binding between record type and
storage format, which may indeed be defined by the stored schema.,

Because of the fixed nature of data base schemas, usually the only way to
allow a data base to evolve is to dump the data base under one schema and reload
it under a different one. The introduction of new record types, so long as they
are not heavily linked to existing record types, is an exception to this. But the
fact remains that not much flexibility beyond the introduction of new record types
is allowed.

In addition to the dumping and reloading of at least a part of the data base,
there is the concurrent problem of recompiling any programs which deal with the
changed record or set types. The user working areas, used for communication
with the data base manager, will have been given a specific storage layout by the
compiler. A re-compilation and possibly a change to the program's data division
may be necessary depending on the sophistication of the sub-schema facility pro-
vided by the data management system.

*I'or purposcs of the exposition, we usc the terminology of the DBTG report [1l.
The issucs discussed here are independent of any particular data management
system, however.

R. W. TAYLOR and D. W. STEMPLE

This paper explores techniques which will allow data basc schemas to evolve
over timec without the necessity of dumping and reloading or of re-compiling applica-
tion programs. In particular, we cxplore the problem of allowing data base
"editions"--an cdition of a data basc is defined as follows:

The orviginal schema is the edition O schema. This schema (compiled
into schema tables), together with data occurrences conforming to it, com-
prise an edition O data base. An edition n + 1 schema is created from an
edition n schema by onc or more of the following:

1. The addition and/or decletion of one or more items within
one or more vecord types.

2. The addition and/or deletion of one or more vecord types.
3. The addition and/or deletion of one or more set types.

4. Changes in set occurrence selection or virtual/actual result
specifications.

Further, an edition n schema specifies the mapping, if needed, of
all editions j (j < n) data occurrences into forms suitable for presentation
to edition n programs, i.e. programs compiled with an edition n schema*,

An edition n data base is an edition n schema (compiled into schema
tables) together with data occurrences conforming to editions O through n
of the schema,

We further assume that an edition n program wishes to access data occurrences
from both prior and later editions. We focus our discussion on the design issues
which arise from such an environment, namely:

1. What features of a data base management system are necessary to
support editions?

2. How can one edition differ from another and still be processed by
programs compiled later or earlier?

3. What attributes of the data base are still resolvable at program com-
pile time, implying little loss in run time efficiency? When is a
re-interpretation necessary?

2, NECESSARY FEATURES TO SUPPORT EDITIONS

Consider the case where items are added to a given record type in a new data
base edition. For example, record type R, edition O (R.O) may contain items A,

*Strictly speaking, it is only nccessary to specify mappings from edition n-1 to
edition n, but we allow the more general case for efficiency.

DATA BASE EDITIONS

B, and C whereas record type R, edition 1 (R.1) contains items A, B, C, and D.
If we wish to allow edition O programs to access cdition 1 records, there is clearly
no problem, since record type R to edition O programs contains only items A, B,
and C. Thus the system need only deliver items A, B, and C in the formats they
had at data base edition O, and the program will execute properly (we explore the
problem of storing new data occurrences in later paragraphs).

Retrieval of edition O record occurrences (of type R) by edition 1 programs is
somewhat more complicated. Clearly a value must be provided for item D. We
thus arrive at a following necessary condition in a data definition language which
allows for data base editions:

If in a later edition, an item is added to a record type, the definition

in the later edition must provide a way of defining the value for accessing
records of a previous edition. A data base procedure incorporated into

a VIRTUAL RESULT spcciflication will suffice for this task.

It should be clear that as soon as a generalized virtual result facility is
available, the deletion of items in new editions becomes possible. In this case,
when an cedition O program accesses an edition 1 record, the virtual result will
have to be computed since the item will be included in edition O of the record,
but not in cdition 1. If an item is deleted from a record Llype in a subscquent
cdition, then the cdition definition must provide a means for computing the value
when the record is accessed by programs compiled under a previous edition,
Again, a generalized VIRTUAL RESULT mechanism will suffice.

The casc of accessing sct definitions which may or may not be present with
respect to a particular edition of a data base is similar to item addition and
deletion. However, allowing set types to be added/deleted across editions imposes
some limitations on the structure of the records participating in the sets. Tor
example, suppose that an edition O record occurrence is the current one of a
particular run unit, and suppose also that in edition 1 of the data base, this record
type is the owner record in a set type S that did not exist in edition O (see figure
1). Assume further that the run unit is an edition 1 program and wishes to traverse
members of set S, The set occurrence can be traversed so long as in edition 1
there is a proper ''set occurrence selection'" clause for the new set., This set
occurrence selection clause must be phrased in terms of values existing in both
editions. It must specify criteria whereby a record occurrence can be implicitly
associated with a particular set occurrence by virtue of the value of certain items
existing within the record itself. Furthermore, the data management system must

have an independent access path to record occurrences specified in the "set
“occurrence selection" clause.

Consider the example of Figure 1. As shown, in edition O of the data base,
record types A and B exist, but are not explicitly related via a set. In edition 1,
the two record types are related by set S. TFurther, the conditions for an occurrence
of record B to be considered related to an occurrence of record A (i.e., a member
of set S) is that they have matching key values. This is stated in the vevised
syntax of the forthcoming DDLC Journal of Development [2]. If an cdition 1 run
unit issued the DML command

FIND NEXT MEMBER OF S SET

R. W. TAYLOR and D. W. STEMPLE

and the "current" record of set S was an occurrence of record type A, edition O,
the data base system would locate (by some means) those occurrences of record type
B whose designated item values matched those in the recovd A occurrcnce. The
rccord occurrence presented to the run unit would be that occurrence which satisfied
the ecdition 1 SET OCCURRENCE SELECTION clause and was first under any set
ordering defined in edition 1 for set 8. We can thus draw the following conclusions:
So long as the dctermination of set occurrence selection is based on

data values existing in the participating records (as opposed, say, to

currency), and the data management system has an independent access

path to the participating records, new set types can be incorporated
across editions.

EDITION 0 EDITION 1
A A
S
B B

Sample Set Occurrence Selection Clause in Edition 1 of the Data Base.

SET OCCURRENCE SELECTION IS THRU S OWNER
IDENTIFIED BY CALC-KEY OF A EQUAL TO KEY
IN RECORD-B.

FIGURE 1

ACCESSING IMPLICIT SETS ACROSS DATA BASE EDITIONS

DATA BASE EDITIONS

We now consider how this "independent access path'" might be specificd. The
most obvious method is to make cach rccord type a member of a singular sect
(i.c. onc owned by the SYSTEM). This will always provide an cxhaustive access
path, but it also forces the data management software through a lengthy search in
a large data base. A more sophisticated mechanism makes use of data base
procedure mechanisms, often associated with location mode CALC. Given certain
data values in the occurrence of record type A of our example, the data management
system could use the appropriate values as inputs to a data base procedure which
was much more than a CALC routine. Rather, this data base procedure could be
a whole access method, as long as it cventually returns a data basc key. Thus,
by giving record type B a CALC location mode, a whole range of possible set
traversal mechanisms is possible.

The most important point, however, is that the evolution of sets across data
base editions requires a "matching value' philosophy when using the set occurrence
selection clause. This vreflects an approach similar to the match condition defini-
tion facility in the L-string of the DIAM model [3].

There remains the question of when to introduce a new record type as opposed
to a new edition of an existing record type. A moment's reflection should convince
the reader that the following outline should guide a data base administrator when
making this decision:

A new edition is justified if:

1. An cdition O program ncecd ever access data values in a
record stored by an edition 1 program

2. An edition 1 program neceds to access an edition O record
as if it were the augmented (or diminished) record under
consideration.

If neither of the above conditions obtain, then introduction of a new
record type (possibly containing as VIRTUAL RESULTS items from record
types defined under the old edition) is a proper evolution of the data base.
This will guarantee that the old program can never make veference to the
new record type, since its name is not in the edition O program's name
space.

The question of whether to create a new record type or new edition of an
existing record type can also be approached using the concepts of the Entity Set
Model and DIAM [3].

We first view a record type in the DBTG sense to be an A-string corrcspond-
ing to an cntity description (in DIAM terminology). If a data administrator is
creating a new A-string (record type) corresponding to a new entity description,
then the new edition of the schema should contain a new record type. The old
program should be unaffected since it deals with entity descriptions which have not
been revised; the old program nced have no knowledge of the new entity description.
If, on the other hand,' the data administrator is augmenting or otherwise changing
an existing entity description, then the new edition.should contain a revised

R. W. TAYLOR and D. W. STEMPLE

definition of the existing A-string, reflccting the fact that the entity level model is
changed, but in a different scnsec.

For storing records, we adopt the guideline that creation of new record
occurrences or modification of existing ones will be made using the current edition.
This has scveral advantages. Primarily, it mcans that the run time modules of
the data management system do not have to search back through the stored version
of the several schemas in order to discover the proper storage format., They
always usc the most vecent one, which is accessed frequently anyway and is apt to
be in main storage. They do have to use the old schema in order to dccode the
data occurrences, but as will be scen in section 3, this does not imply a heavy
overhead. In addition, the purpose of editions is to allow the data base to evolve.
By always writing under the current edition, the data base occurrences will tend
to be brought up to date as they are accessed. Only those records which are truly
archival in the sense that they are read and never modified will remain under the
old storage format.

There are some difficulties with this approach, however. In particular, when
writing a record occurrence where an item or set type which existed in edition O
does not exist (explicitly) in edition 1, information may be lost. This loss results
from the fact that the set was explicitly represented in edition O, "There is no
guarantce that the data values which implicitly represent set membership arc present
in the new edition (after all, the set is presumably no longer of interest). This
loss, however, is due to a choice made by the data administrator and should
therefore be a loss of little consequence. As a practical matter, it is our ex-
perience that additional set and item types are more frequent by far than the
deletion of itemi and set types across editions. Thus, bringing the record occur-
rences ''up to date" will usually not imply an information loss from previous
editions.

3. IMPLICATIONS OF EDITIONS ON RUN-TIME EFFICIENCY

The run-time inefficiencies of data management systems are well known.
These inefficiencies are generally the result of a large amount of interpretation
by the run-time modules of the data management system; they can generally be
justified by savings in other areas--increased data independence, reduced program
development time, ctc. On the other hand, one would hope that incfficicnecies would
be avoided wherever possible. By this we mean that when a decision can be bound
without loss of data independence it will be bound. This approach is preferable to
total interpretation by the run time modules, especially if data management systems
are to service applications which need a fast response.

There are several cases where a binding is possible, if desired, when
dealing with data basc editions.

Consider the case where an cdition n program wishes to access edition m
records, n > m. Most data management systems require that the run unit must
first "register" its existence with the run-time modules of the daln management
system. ‘Thal is, the operating system job scheduler will start exccution ol a
run-unit, but this run-unit must still inform the data management system of its

DATA BASE EDITIONS

existence in ovder to establish communications areas in storage and to allow the
data management system to resolve concurvent requests for data resources, free
deadlock conditions, cle. During this "registration”, the run unit could provide

all information pertaining to the mechanism for transforming data occurrences from
prior editions into edition n format. This is true because at program compile time
all editions of the stored data base schema were (presumably) available to the
compiler. Each of these editions specified how to transform earlier editions into
later editions. Thus this information can be carried with the compiled version of
the program and "registered" with the data management system. There is no
necessity for the data management system during data access to also access the
stored schema in order to find out "how can I transform ecdition i to edition i".
That question is resolvable at compile time for all data base editions less than or
equal to the program edition.

If the data base record is of a later edition than the program edition, there
is, of course, no way the program can tell the system how to do the transformation.
When the system discovers an edition number in the accessed record which is greater
than the edition number of the accessing program, it will have to search for the
appropriate version of the stored schema. Thus the stored schema is interpreted
only when absolutely necessary.

4. CONCLUSION

This paper has introduced the concept of a data base edition and explored
ways in which it could be used to allow data bases to evolve over time without
the nccessity of dumping and rcloading. Of course, periodic dumping and rcloading
to bring all data occurrences up to the present edition, as well as recompilation
of frequently used programs, may be desirable for the sake of cfficiency. Ilowever,
with the ability to define ecditions; the decision of when to bring the data basc up
to date can be made using a cost/benefit analysis in the same way that periodic
"garbage collections' of a data base can be justified on an operations research
basis [4].

For completeness, we note that theve is a third kind of data base evolution,
more complex than creation/deletion of data occurvences and less complex than
full schema editions. This intermediate level deals with changing storage structures
for a fixed data base schema. An example would be a change in set implementation
specification from a mode of CHAIN to one of POINTER ARRAY with no other
change to the schema edition. Another would be a change in item representation
from binary to decimal.

It is felt that the techniques developed in this paper will aid in allowing this
intermediate level of editions--indeed, the concept of a sub-schema already in-
corporates many of these flexibilities.

In summary, if we accept the cvolution of data base structurcs--both logical
and physical--as a way of life, it follows that the data base administrator must be
allowed to accommodate this evolution without dumping and velonding for overy
chinge, ‘The coneepl of a dala base cdition gives much of the machinery to let
this happen without massive recompilations. It is also possible under a data base

R. W. TAYLOR and D. W. STEMPLE

management system with cditions to try some experiments which improve efficiency.
As with so many programming systems, analytical and simulation techniques can
often only suggest possibilitics. To sce if a change will really help, the only way
may be to try it. If it works out, then a more complete restructuring can be
undertaken; if not, then the occurrences will eventually be removed by reversing
the effect of the experiment in the next edition.

DATA BASE EDITIONS

REFERENCES

].

2.

CODASYL Dala Basc Task Group, April, 1971, Report, Available from ACM.

CODASYL Data Definition Language Committee, Journal of Development, in
press.

Scnko, M. E., E. B. Altman, M. M. Astrahan, P. L. Fchder, Data
Structures and accessing in data base systems, IBM Systems Journal,
12:1, 1973,

Schneiderman, B., Optimum Data Base Reorganization Points, Communications
of ACM, 16:6, June, 1973.

