GENERALIZED DATA STRUCTURES FOR
DATA TRANSLATION®

by
Robert W. Taylor

COINS Technical Report 74A-3
September 1974

Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01002

*The research discussed in this paper was partially supported by a
grant from the National Science Foundation, GJ41829. The paper was
presented at the Third Texas Conference on Computing Systems in
Austin, Texas, on November 7 and 8, 1974.

" GENERALIZED DATA STRUCTURES FOR DATA TRANSLATION*

by

Robert W. Taylor
Computer and Information Science
University of Massachusetts

Amherst, Massachusetts

ABSTRACT

In order for a data translator to deal coherently
with a wide variety of data structures as they appear
in database management systems, there is a need for a
powerful model of data which is simultaneously general
and based on as few primitive notions as possible.

The DIAM model [1,2,3] is such a model. However, cer—
tain structures common to database management systems
are not easily modelled in DIAM as originally defined.
The paper proposes several extensions to handle these
cases, while, at the same time, not extending the basic
idea of a few primitive constructs.

The paper also contains a few examples of the use
of this model in a data translation situation.

1. Introduction

Data translation can be informally defined as the
process which takes data as created by a program and
computer system and makes it usable to another program
running on a possibly different computer system. Data
translation has been the subject of increasing interest
over the past few years [4-7]; techniques and methodol-
‘ogles developed in data translators can be of use in a
variety of situations:

1) "One-shot'" data translation can help alleviate
the difficulties of moving files from one com
puter to another or in preparing files for in-

tegration into a database environment.

"On the fly" data translation facilities in-
corporated into a network operating system can
greatly enhance a user's capability for file
sharing. 1In particular, a user process could
someday gain access to remote data bases, cre-
ated by some other process, and have data in-
stances presented with a structure that the
local process would like to see, rather than
with the structure where they were created.

2)

Data translation methodology will be useful

as research proceeds into adaptive databases—-
databases which change their structures--par—
ticularly their storage structures—-depending
on usage patterns.

3)

. Of course, we are far from the above three goals
in the general case--they may well be unattainable in
full generality. However, progress is being made on a
number of special cases, as will be discussed below.
The rest of this paper will discuss research into
some of the necessary features of a data translator.
In particular, we will focus on the problem of the nec—
essity for a translator internal form into which a wide
variety of data structures can be mapped. We argue
that this form must be based on a relatively small num—
ber of primitives and still be general enough to handle
a wide variety of cases. We then discuss the suitabil-
ity of the DIAM [1,2,3] model, with appropriate exten-
‘sions, for such a translator internal form. The final
section discusses several open problems.

*
... This research was supported in part by grant
GJ 41829 from the National Science Foundation.

01002

2. Translator Internal Forms

Since the earliest days of Input-Output Control
Systems, workers dealing with data have realized the
desirability of a standard system internal form for
data, the form being independent of the peculiarities
of the storage device on which it resides. Thus, we
see in most operating systems the concept of a "device
support routine" and the separation of logical I/0 from
physical 1/0. These concepts allow higher levels of
the operating system to view all devices in a uniform
manner.

Similarly, workers in the field of data transla-
tion have realized the necessity of a translator inter-
nal form. All the existing data translators follow the
basic architecture shown in figure 1. A reader/parser
process is responsible for accessing data instances and
reconstructing the standard form from whatever encoding
has been used. The rules for doing this are contained
in tables which have been derived from a detailed data
description of the source file. Then, the translation/
restructuring process constructs the corresponding data
instance (in translator internal form) for the target
file. Finally, the writer pProcess uses the encoding
rules of the target file description to encode the tar-
get data instance into the form expected by the target
system and write it to the storage medium which in turn
will be mounted on the target system.

Clearly then, the translator internal form is an
important part of this overall architecture. The capa-
bilities of a particular data translator will be limit-
ed by the generality of this translator internal form.
The form has the following requirements:

1) It should describe the data as fully as pos-

sible, both logically and physically.

2) It should be possible to parse and transform
uniquely data instances from a wide variety
of data structures, as they currently exist,

to an appropriate translator internal form.

3) It should be possible to define a variety of
operations over data in translator internal
form such that data may be written in a wide

variety of encodings.

4) The translator internal form should be based
on a few primitive notions of data, together
with rules of combination for more complex

structures,

We discuss each of these requirements in tuin.

The first requirement might be restated as follow%;‘
"a data translator must be aware of the meaning of
every bit that is present in the source file or to be
created in the target file. Its view of data is that
which is actually present or which is to be created."”
The translator is, after all, reading real files and
creating real files. Thus, for example, while a user's
view of data might well follow the relational model,
none of the relational models advocate that the imple-
mentation be in terms of "flat, sequential files" nece-
ssarily. Rather, they allow for a variety of physical
structures which can support a relational view, if de-
sired. But a data translator, since it deals with the
data that is "really there," must be aware of such
things as lengths and character sets of items, the

TABLES TABLES
DESCRIBING ngAgﬁgc FOR
ENCODING ENCODING
e SEARCH AND D
g RESTRUCTURING i N
T I ALLOCA -
) | TION -
| i T
| I i
1 | }
|
i 1 1 "/”f”a(:::l———
TRANSLATION/
READER > —
- ARSER’ RESTRUCTURING |- FLLTER
A / T ——>
TRANSLATOR TRANSLATOR
INTERNAL INTERNAL
FORM FORM

Figure 1: Translator Internal Architecture

structure of pointers, the methods used to delimit one
item from another, the algorithm for determining when
one entity is considered to be related to another en-
tity, and many other attributes of data which are be-
yond the scope of this paper, [8].

The point is, however, that while a relational
view of data may be entirely appropriate for many
classes of database users, it cannot be appropriate
for a data translator which deals with a wide variety
of source and target media and structures.

To further emphasize this point, consider the com~
cept of the "traversable access path." This is a con-
cept which is implicitly present in seemingly every
database system, yet one which is almost never dealt
with in a totally explicit manner. Consider the fol-
lowing examples of an access path:

1) The access path leading from one item in a
record to the next.

2) The access path leading from one record to
the next of the same type in a file.

3) The access path leading from a record of one
type to zero or more records of a second
type.

Often, these access paths (especlally cases 1.and 2)
are encoded via contiguity. They are access paths
nonetheless and there must be a mechanism in the
translator internal form to represent them explicitly.
We note in passing that cases 1 and 2 are often not
represented implicitly by contiguity in real situa-
tions--the indexed sequential file's sequential access
path usually follows a mixed strategy, with the access
path sometimes represented by contiguity in the ad-
dress space and sometimes represented by a pointer to
an overflow chain; of course, there will be a means of
determining which method is used in any particular
record instance. The overriding point is that the
translator must make the concept of an access path
fully explicit and in a standard form. Only then can
the problems of a variety of encodings be dealt with.

The second and third requirements follow also
from the concept of the translator view of data. If
we assume (perhaps optimistically) that the original
creator of the data in the source file had associated
with it a unique semantics, then it should be possible
to transform that data into translator internal form
while retaining the semantics. Similarly, when writ-
ing translated data, a wide variety of encodings
should be possible so that the translator output can
be fed to a variety of computer systems.

The fourth requirement should be obvious in the

sense that current work in data structures and program-
ming languages, e.g., [9,10] continues to emphasize
that need for building complex structures from simple
but powerful ones, rather than starting with complex
notions to begin with. Only then can one hope, for
example, to prove the correctness of a data transla-
tion.

3. The DIAM Model

Probably the most complete model of data that has
appeared in the literature to date is the Data Indepen-
dent Accessing Model (DIAM) of Senko, Altman, Astrahan,
and Fehder [1,2]. A more tutorial treatment of this
model can be found in [3]. We will briefly review the
highlights of this model.

. The model is broken into four levels—-the entity
set level, the string level, the encoding level, and
the physical device level. The entity set level is a
user's view of data as a set of "flat files" of entity
descriptions. The entity set level is in many ways
similar to the relational view of data and, as argued
in section 2, is not the appropriate view of data for a
data translator.

The string level is a further specification of the
data objects at the entity set level. Specifically,
the string level deals with the methods used for group-
ing data items as specified at the entity set level to-
gether with a specification of all access paths both
within and among these data items. There are three
basic string operations--the grouping operation, the
collecting operation, and the aggregating operation.®
(See figure 2). The grouping operation specifies an
access path from one data item to another; only data
items can be grouped. The collection operation speci-
fies an access path among various instances of the same
schematic structure--the simplest example would be the
access path in a sequential file from one reco-d in-
stance to the "nmext" record instance. The aggregating
operation specifies an access path from an instance of
one structure to an Instance of a different structure.
The aggregate is similar to the DBTG set [12] in some
cases.

The encoding level specifies how each object at
the string level is encoded into bit patterns, and the
physical device level specifies how the bits are allo-
cated over the various media as organized for a partic-

* .

These were called A-strings, E-strings, and L-strings,
respectively, in the original DIAM literature. We will
use the terminology of [8].

GROUP

COLLECTION

NAME

PERSONNEL

E PP

AGGREGATE

)

AGE ISOC-SEC—F

PERSON'S DEGREES

&

DEGREES

(&)

Figure 2: String Level Primitives

ular accessing method. While these two levels of data
are important and challenging areas, they are beyond
the scope of this paper which will focus primarily on
extensions at the string level. The interested reader
is referred to [3,11].

We now discuss the attributes of the three string
operations in more detail. The grouping operation
specifies that an access path must exist from one in-
Stance of a data item to an instance of another data
item within the group. A group instance is synonymous
with an instance of each item in the group (though
some of these may have null values which might be rep-
resented as a null string when encoded).

The collection operation is specified by a subset
selection criterion which specifies when an instance of
the structure over which the collection is defined is
to participate in the collection. There is also an or-
dering criterion, which specifies how the various in-
Stances within a collection are to be ordered. Final-
ly, it is worth noting that one of the most important
subset selection ecriteria is the "partition by unique
value," as shown in Figure 3. In this case, there are

DEGREES
JONES JONES)

JONE
B.A.

.

JONES
M.S

Y DEGREES
(BROWN

Figure 3: Inessential set
as modelled in
DIAM

as many instances of the collection as there are unique
values of the partitioning component. Such a facility
will be especially useful in conjunction with the next
Structure..

The aggregate relation is specified by naming the
components to be aggregated and specifying a match con-
dition--a predicate that must hold whenever the access
path exists from an instance of one of the structures
to an instance of another. '

As an example, Figure 3 shows the DIAM model of a

-DBTG set [12]. The set is modelled as an aggregate de-
fined over an instance of the group PERSON through the
collection DEGREES of instances of the group DEGREE
Such that the DEGREE instances are partitioned into col-
lections by a unique value criterion and the aggregating
match condition is over the partitioning criterion.

Such a structure corresponds to an inessential set, as
defined by Codd [13].

4. DIAM Extensions

The DIAM architecture has been shown [1] to be suf-
ficient, at least in concept, to deal with a variety
of data structures and data Structure encodings in var-
ious database management systems. However, careful ex—
amination of a few examples reveals that the DIAM model
as originally defined, cannot deal with some struc-—
tures. We therefore will propose in this section a
Dumber of extensions which will allow the same basic
constructs to be used in a real data translator.

Consider the example of a DBTC set. It is well
known that there are in most existing database manage-
ment systems a variety of "set modes' used to imple-
ment this structure. Among these are chain, chain
linked to prior, chain linked to prior and owner, and
pointer array. All of these Structures imply the exis-
tence of four access paths--a path to the "next" member
of the set, a path to the "prior" member of the set, a
path to the "owner" member of the set, and, of course,
a path from the owner to the "first" member of the set.
Only two of these are directly embodied in the DIAM L-
string concept. Thus, it will be necessary to augment
the DIAM concepts to allow the definition of a "prior"
path and an "owner" path.

Considering first the prior path (Figure 4) it is
clear that the "prior" path is a second collection hav-
ing the same subset selection criterion and the "re-
verse" ordering criterion. Thus it should be clear

DEGREES

\

[DEGREES-R

COLLECTION DEGREES-R
OVER

DEGREE
REVERSE OF DEGREE

Figure 4: Extending DIAM for DBTG Sets

that the "prior" path is very much a dependent one--it
is only meaningful if the subset selection criterion is
the same and the ordering reversed. Thus the DIAM col-
lection statement must incorporate an option stating
that one collection is the REVERSE OF or SYMMETRIC TO
another, basic collection.

Considering next the "owner" path, (see Figure
5) it is clear that the basic criterion for the exis-
tence of this path is that whenever there is a path

BROWN DEGREES
ROWN
B.A.
=={BROWN
Dr .
Figure 5: Modelling Owner Pointers in DIAM

from an instance of PERSON, through the DEGREES collec-—
tion to an instance of DEGREE, then there is a path
directly back to the instance of A. TFine. However,
this is illegal in DIAM as originally defined. The
problem is that the path must be modelled as an aggre-
gate, but as originally defined, it was illegal for a
given structure (in this case, BROWN) to participate in
more than one instance of a given higher level struc-
ture. Thus the multiple instance of DEGREE, all point-
ing at the same instance of PERSON (i.e., BROWN) is an
illegal DIAM structure! However, it is not difficult
in this case to declare the structure to be legal since
the object pointed at (namely, PERSON) need not point

- back directly. Hence there is not the problem of hand-
ing a variable number of pointers associated with PER-
SON.

A final example of a necessary generalization is as

‘precluded the concept of,

follows. The aggregate structure of DIAM required that
in order for an aggregate to exist, one instance of
each of its defining components must exist such that
the match condition is satisfied. This rule thereby
for example, the DBTG empty
set as well as the IMS [14] structure where dependent
Segments can have zero or more occurrences relative to
a parent segment. Thus we extend the definition of an
aggregate to specify whether a group instance is op-
tional or not in order for the aggregate to exist.

5. The Treatment of Pointers

It should be clear that, with the extensions de-
fined in the previous section, there is within the
translator internal form an explicit representation of
eévery access path. Further, these access paths are
known to the formation of a particular data instance in
the target file.

There remains the problem of specifying the appear-
ance of pointers in the bit Stream representing the
Source or target file. It should be noted that in the
Original DIAM specifications, this problem was not
dealt with in detail--it didn't have to be because the
addressing structure was fixed in the DIAM model. A
data translator, however, must be able to deal with a
variety of device organizations.

As an example, consider the problem of transforming
a record structure represented in translator internal
form as a list (see Figure 6) into an encoded "indexed"

ZERSON NAME/BROWN SO0C.SEC/018-25-9086

PERSON |5 9 BROWN

A

018259086

LENGTH
OF
FIRST
ITEM

POINTER T0 FIRST ITEM

Figure 6: Multiple encodings of items in a record

record structure, where the first part of the record is
essentially a vector of pointers locating the various
fields of the record. Such a structure is not uncom-
mon in systems that deal with variable-length charac-
ter strings, such as document systems. Such a trans-
formation was not specifiable in DIAM as originally
defined. DIAM contained a number of options whereby
one could specify that a pointer was implicitly repre-
sented by contiguity of various data, but if a pointer
was to remain explicitly represented in the data, there
were no facilities for "moving it" to a different place.

Thus it is necessary to define extra operations for
moving data items and pointers from one item to another.

The example of Figure 6 is treated as follows (see
Figure 7):

1) A collection is defined over a group containing
an item into which the pointer will be moved.

2) The pointers in the translator internal form
of the group (i.e., list) are treated as a vee-
tor and extracted into the collected pointers.
Similarly with length attributes.

3) The vector of pointers is represented contigu—
ously and the items in the group are also with

POINTERS
v

LENGTH POINTER
- _ _-
e NAME/BROWN
~)
~
LENCTH ~ SOC-SEC/018259086
- e /
F o= -_—
factored pointers factored pointer
Oy N
5 9 BROWN 018259086

e~

Figure 7: Extended DIAM modelling of pointers
embedded in a record structure.

the vector of pointers being contiguous with
the first item in the group.

It thus is clear that there must be defined for
each pointer that will appear in the encoded data
stream an item into which the translator internal form
pointers may be extracted. This is necessary because
each pointer will eventually be bound to a particular
addressing schema and its bits will relate to parts of
a device (first 8 bits for cylinder, next 4 bits for
track, etc.) and thus the scmantics of the pointer must
itself be described.

We also note that the notion of extraction of a
vector of values and embedding of those values in a col
lection is a necessary feature for attributes of data
other than traversable access paths encoded via point-
ers. 1In particular, to distinguish "namelist I/0" Ffrom
formatted I/0 in FORTRAN, the rules for determining how
to locate the name of the item in itself constitute the
encoding characteristics of a separate item-—the name.

6. Conclusions and Final Comments

One of the inescapable conclusions one draws from
the discussions above is that data translations and da-
ta models for translation are complicated. They are
more suited to intra- and inter-computer communication
than to man-computer communication. In the longer
term, the details of data modelling will not be the
concern of many, if any, users, though users will as-
suredly use parameters in picking their storage organ-
izations. This is as it should be. However, the de-
velopment of data translation capabilities and the ac-
companying data models will hasten the day when the
computer can help us with our data organizations rather
than tending to lock us to a very machine-dependent,
non-problem-oriented view as it does today.

It i1s felt that the extensions to the DIAM model
described here enhance the data description capabili-
ties of DIAM to the point where a data translator,
based on these concepts, and capable of handling a very
wide range of structures could be built. The real
question remaining is, how efficient would this trans-
lator be. What capabilities would have to be sacri-
ficed when the capability must operate in real-time,
as it would a network environment. These questions re-
main, but in any case, it is unlikely that database de-
signers cognizant of data tramslation will continue to
tie their structures so tightly to programs and ma-
chines.

ACKNOWLEDGEMENTS

The author would like to thank R. Frank and D.

Smith of the University of Utah, V. Lum of IBM Re-
search, and J. P. Fry of the University of Michigan
for many helpful comments.

REFERENCES

1.

10.

11.

12.

14.

Senko, M. E., E. B. Altman, M. M. Astrahan, and P.
L. Fehder, "Data Structures and Accessing in
Data-base Systems,'" IBM Systems Journal, 12:1,
1973, pp. 30-93.

Altman, E.B., M. M. Astrahan, P.L. Fehder, and
M. E. Senko, "Specifications in a data indepen-
dent architectural model," Proceedings of the
ACM SIGFIDET Conference, 1972, available from
ACM.

Mathers, J. 0. and R. W. Taylor, "The Data Inde-
pendent Architectural Model: A Review and Dis-
cussion," Report 74A-1, COINS Dept., University
of Massachusetts, February, 1974.

Fry, J. P., D. C. Smith and R. W. Taylor, "An Ap-
proach to Stored-Data Definition and Transla-
tion," Proceedings of the ACM SIGFIDET Confer-
ence, 1972, available from ACM.

Merten, A. G. and J. P. Fry, "A Data Description
Language Approach to File Translation," Pro-
ceedings of the ACM SIGFIDET Conference, 1974,
available from ACM.

Ramirez, J. A., N. A. Rin, and N. S. Prywes, "Auto-
matic Generation of Data Conversion Programs
Using a Data Description Language,'" Proceedings
of the ACM SIGFIDET Conference, 1974.

Housel, B. C., V. Y. Lum and N. Shu, "Architecture
to an Interactive Migration System,' Proceed-
ings of the ACM SIGFIDET Conference, 1974.

CODASYL Stored Data Definition and Translation
Task Group, Draft Specifications for a Stored-
Data Definition Language, available from author.

Hoare, C. A. R., "Proof of Correctness of Data
Representations,” Acta Informatica, 1, pp.
271-281, 1972.

Dijkstra, E. W., "Notes on Structured Programming,
Structured Programming, Academic Press, 1972.

Smith, D. C. P., and R. Frank, "Concepts for a
Physical Access Structure Specification of Da-
ta," Proceedings of the ACM National Conference
1974.

CODASYL Data Base Task Group, April 1971 Report,
available from ACM.

Codd, E. F. and C. J. Date, "Interactive Support
for Non-Programmers, The Relational an. Net-
work Approaches," Proceedings of the ACM
SIGFIDET Conference, 1974.

IBM Corporation, "Information Management System
360, Version 2, System/Application Design
Guide, SH20-0910-3.

e e b e e e m

r

| BIBLIOGRAPHIC DATA |1- Report No. 2.

SHEET NSF-0CA-GJ41829-74A3

3. Recipient’s Accession No.

4, Ticle and Subtitle

GENERALIZED DATA STRUCTURES FOR DATA TRANSLATION

5. Report Date date of issue
9/74

6.

7. Author(s)
Robert W. Taylor

8. gerforming‘ Organization Rept.
o.

9. Performing Organization Name and Address

Computer and Information Science Dept.
Graduate Research Center

University of Massachusetts

Amherst, MA 01002

10. Project/Task/Work Unit No.

11, Contract/Grant No.

GJ41829

12. Sponsoring Organization Name and Address
National Science Foundation
Office of Computing Activities
Washington, D.C. 20550

13. Type of Report & Period .
Covered

14,

15. Supplementary Notes

in Austin, Texas, on November 7 and 8, 1974.

Presented at the Third Texas Conference on Computing Systems

16. Abstracts

easily modelled in DIAM as originally defined.

basic idea of a few pr1m1t1ve constructs.

data translation situationms.

In order for a data translator to deal coherently with a wide variety of
data structures as they appear in database management systems, there is a need
for a powerful model of data which is simultaneously general and based on as
few primitive notions as possible. .The DIAM model [1, 2, 3] is such a model.
However, certain structures common to database management systems are not
The paper proposes several
extensions to handle these cases, while, at the same time, not extending the

The paper also contains a few examples of the use of this model in'a

17. Key Words and Document Analysis. 170. Descriptors

Data Translation
File Conversion
Data Independent Accessing Model

17b. Identifiers/Open-Ended Terms

17¢. COSATI Field/Group

18. Availability Statement

Release unlimited.

19.. Security Class (This
Report)

21. No. of Pages
7

| UNCLASSIFIED
- |20. Sccunty Class (This

UNCLASSIFIED .

22. Price

FORM NTI15-35 (REV, 3-72)

THIS FORM MAY BE REPRODUCED

USCOMM-DC 14952-P72

~

Al

N

gl

‘I BIBLIOGRAPHIC DATA |1 Report No. ‘ 2. e ;
SHEET NSF-0CA~GJ41829-74A3 3. Recipicnt's Accession No.
4, Title and Subtitle

GENERALIZED DATA STRUCTURES FOR DATA TRANSLATION

9/74

5. Report Date date of 1ssueh

6.

7. Author(s)
Robert W. Taylor

8. ge:forming Organization Rept.
O.

9. Performing Organization Name and Address

Computer and Information Science Dept.
Graduate Research Center
University of Massachusetts

01002

10. Project/Task/Work Unit No.

11. Contract/Grant No.

GJ41829

12, Sponsoring Organization Name and Address
National Science Foundation
Office of Computing Activities
Washington, D.C. 20550

13. Type of Report & Period
Covered

4.

15. Supplementary Notes

in Austin, Texas,; on November 7 and 8, 1974.

Presented at the Third Texas Conference on Computing Systems

16. Abstracts

basic idea of a few primitive constructs.

data translation situations.

In order for a data translator to deal coherently with a wide variety of
data structures as they appear in database management systems, there is a need
for a powerful model of data which is simultaneously general and based on as
few primitive notions as possible. The DIAM model [1l, 2, 3] is such a model.
However, certain structures common to database management systems are not
easily modelled in DIAM as originally defined. The paper proposes several
extensions to handle these cases, while, at the same time, not extending the

The paper also contains a few examples of the use of this model in'a

7. Key Words and Document Analysis. 17a. Descriptors

Data Translation
File Conversion
Data Independent Accessing Model

17b. 1dentificrs/Open-Eaded Terms

17¢c. COSATI Field/Group

18. Availability Statement

Release unlimited.

19. Security Class (This
Report)

21. No. of Pages

7

S -
20. Security Class (Ehis

Page
%JNQI,LASSIFIED -

22, Price

FORM NTI5-35 (REV, 3-72)

THIS FORM MAY BE REPRODUCED

USCOMM-OC 14952-P72
-

r

-

