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The last 30 years have seen the growth of a new branch of mathematics called
CATEGORY THEORY which provides a general perspecgive on many different branches of
mathematics. Many workers [1] have argued that it is category theory, rather than
SET THEORY, that provides the proper setting for the study of the FOUNDATIONS OF
MATHEMATICS.

The aim of this paper is to show that problems in APPLIED MATHEMATICS, too,
may find their proper foundation in the language of category theory. We do this
by introducing a number of concepts of SYSTEM THEORY which we unify in our theory
of MACHINES IN A CATEGORY. We write as system theorists, not aé philosophers.

Our hope is to stimulate a dialogue with philosophers of science as to the proper

role for category theory in a systematic analysis of a fuzzy world. We do not discuss

applications to biology or psychology--the framework presented here is at a very high
level of generality, and does not address the particularities which give these dis-

ciplines their distinctive flavor.

¥ The research reported in this paper was supported in part by the National Science

Foundation under Grant No. GJ 35759.




1.1

This paper is divided into two parts. In Part I, we sketch how the subjects
of control theory, computers and formal language have grown out of the ur-
disciplines of MECHANICS and LOGIC; and then present the formal concepts of

sequential machine, linear machine and tree automaton. We show how our notion

of MACHINE IN A CATEGORY provides an uncluttered generalization of these
three concepts.
In Part II, we introduce the "fuzzy world". Aithough.the study of
quantum méchanics provides the best known framework, we stay within system
theory, showing how PkaABILITY, MECHANICS and LOGIC gave rise to the study
of markov chains, structural stability and multi-valued logics. We then present

the formal concepts of nondeterministic sequential machine, stochastic automaton

and fuzzy-set automaton. Our notion of FUZZY MACHINE will generalize all

three. Of particular interest will be the demonstration that, although fuzzy
machines generalize machines in a category, we éan—-by a suitable enlargement

of viewpoint--regard them as a special case.

The paper is self-contained both as to system theory and to category

theory--but many topics must be but briefly outlined in an expository paper

of this kind. The reader wishing a fuller introduction to category theory is
referred to our book (2]; a text on control theory is [3]; for system theory
see [4,5]; many other concepts of machine theory.appear in [6]; our theory of
machines in a category appeared in (4,6,7,8] while the technical details of
fuzzy machines abpear in [9]. The state of the art in applying category theory

to systems and automata is reflected in [10].
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1.2

1. MACHINES IN A CATEGORY

In Figure 1, we schematize the evolutionof Machines in aCategory from concepts
in generalized mechanics and formal logic through the study of control theory,
the impact of computers, and notions of formal linguistics. The paragraphs
below are lettered with the arrows they describe:
A: Building on the work of Newton and its refinement by such workers
as Legendre, Hamilton, in the middle of the 19th Century, gave the following

formulation of generalized mechanics: The vector of generalized positions,

q= (ql,...,qn), one for each degree of freedom of the system must be

augmented by p = (pl""’pn)’ the vector of generalized momenta, one for

each degree of freedom of the system. There is then a function H(p,q),
the Hamiltonian, of these variables, in terms of which we may express the

system dynamics:

qj = p for 1 <j<n
3
) oH
T — for 1 < < n.
Py aqj jsn

Thus, with Hamilton we see very vividly that we may study systems which

are described by the evolution of state vectors over time, with this evolution

governed by vector differential equations of the form
q = £(q) |
where now the state q includes position, momentum, and any other relevant
variables as components. %
The transition to control theory comes when we emphasize that the differential
equation describing the evolution of the state of a system contains a number
of parameters, representing forces, which can be manipulated from outside the

system, so that we may write down the change of state as a function
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1.4

:1 = f(q,x) (1)

not only of the state vector itself, as in the classical formulation, but also

as a function of a control vector X. We should also note that only certain

aspects of the state will actually be measurable at any time, so that we may
introduce an output vector y which is a function
y = B(q) (2)

of the instantaneous state. Fo¥ example, in classical mechanical systems,
we can observe only the positions 'instantaneously', while the momenta--or
the related velocity variables--must be built up from observation of changes
in position over some period of time.

We now turn (Box 1) to three mathematical problems of control theory,

which underpin the central problem of optimization.

Given a system described by a pair of equatioﬁs giving‘(l) the rate of
change of the state and (2) the observable output as a function of the state,
we are to find a control signal which will drive the system from some initial
state to a desired final state in the quickest possible way, or with the least
use of energy--as, for example, of firing the rockets of a satellite in such
a way as to bring it into a desired stable configuration. Clearly, however,
before we analyze what is the most efficient way to bring it into position,
we must know whether any suitable control exists at all, and this is the question

of reachability. [Incidentally, it is worth noting that optimal control is

closely based on the work of Hamilton, for Hamilton had observed that the

trajectory of a system following given laws of motion was éuch as to minimize
the value of a certain function. It is a natural transition, then, to apply
these techniques to seek an input--or control--trajectory which will minimize

some evaluation of the cost or time of system performance, and this approach
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Three Problems of Control Theory

q = f(q,x)
Given a system

y = 8(q)
we may ask:
Is it reachable? Can we control it in such a way as to drive it from
some initial state to any desired final state?

Is it gbservable? Given the system in an unknown state, can we conduct
experiments upon it (apply controls, measure outputs) in such a way

as to eventually determine the system's state.

Given a system whose equations are unknown, the realization problem

is to determine a set of states, a dynamics f, and an output function

B which correctly describe the observed input-output behavior of the system.

Box 1
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is the basis of Pontryagin's maximum principle, one of the fundamental

techniques of optimal control.)

If reachability is an important question in the design of feedback control
systems--given a state, does there exist a control. we can apply to move the
System from that state to some other, desired, state--then no less important

a question must be the one of observability. We have already commented that

the instantaneous output of the system will in general tell us only some
small portion of what we need to know about its state. But feedback control
usually requires that we know all of the state before we can determine what 1is the
proper input to apply. Thus, 1t is our concern to determine when a system is
observable: namely, we wish to know how, given the system in an unknown state,
we can conduct experiments upon it--namely by applying controls and measuring
the consequent‘outpnts--in such a way as to eventually determine the system's
current state. Thereafter, our knowledge of the dynamics will allow us to
update the state as we apply the appropriate controls to its behavior.

The above prescription is based upon our knowing the equations (1,2)
which govern the system. This of course raises the very realistic problem
of how we might find these equations in the first place. In general, if we
come upon a system to which we can apply certain inputs, and for which we can
observe certain outputs, we wish to determine a state-space which can mediate
the relationship between the inputs and the outputs, and we then wish to
determine the dynamics and the output function which correctly describe the
observed input/output behavior of the given system. This is the realization
' problem, and we are frequently concerned to find a realization which is minimal
in the sense of having the smallest state—space possible. One of the most

pleasing general results of control theory is that if a realization is indeed
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minimal, then it must be both reachable and observable.

B: However, the treatment of arbitrary systems described by differential
equations is too complex for efficient mathematical solution. One of the most
common ways of approximating a complex system is by using linear equationms.
Moreover, the advent of the computer as the tool par excellence for controlling

a system has led us to move from continuous time systems described by differential

equations to discrete time systems in which we sample the behavior of the
system, and apply inputs, at regular intervals, so that we describe the system
in terms of equations which show how it changes from one sampling period

to the next. In fact by using an approximation to the rate of change predicted
by the derivative, and by using Taylor series, we can come up with a linear
approximation to the change in state of the system over the sampling period
which is linear, and we may also approximate the output by a iinear function

of the state:

a(t + 4t) £ q(t) + £(q(t),x(t))At
qt) + £ . qeorae + ng; . x(t)At

3q
= F q(t) + G x(t) (3
of of
where F = [} + At 3;] ; G = At I
= 98
y(t) * 3q q(t)
= H q(t) _ (4)
—aé .
where H 3q"

It is an empirical fact that many control systems can be usefully approximated

by descriptions of the form (3)/(4) using constant matrices F ,G and H.

C: If computers encouraged the passage from general differential equations

to discrete linear systems--or linear machines as we will call them from now on--

they also gave rise to new discrete systems in their own right, which in no way
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§: Q x XO —* Q

B: Q — Y

Input Set Xo = {n,d,R}
State Set  Q = {q,,q4.,44,9 ,9,,q.}
Output Set Y = {@,C,20¢}

Figure 2.

The 15¢ Machine.
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were to be considered as approximations to continuous systems. The concepts

of truth values in a two-valued logic which could be computed upon in a numerical-
like but non-numerical way, due to George Boole, provided the proper framework

in the 1930's and 1940's for the development of a formal theory both of relay
switching networks and the McCulloch-Pitts theory of formal networks. These

led to the general theory of sequential machines, which--among other things—-

provided the proper formal framework for talking about the various subsystems
of a computer. For example (Figure 2) we can describe a vending machine which
accepts nickels, dimes and rests-~the set of inputs 1is Xo = {n,d,R}. It
vends a candy bar, C, when 15¢ has been received from the initial state, puts
out 20¢ 1if it has received either 2 dimes or 2 nickels and a dime starting from the initial
state, and otherwise emits nothing, #--so that the output set is Y = {#,C,20¢}. The
current state and current input determine the next state via a function &--
an arrow leads from node q via arrow x to node §(q,x). The current output
is a function B of the current state--we mark the node for state q with the
notation q/8(q).

D: The point to stress here is that the various input, state, and output
sets involved here are small finite sets, and are in no way the Euclidean
spaces of linear system theory. 1In fact (Box 2) we may see that the theory
of sequential machines and the theory of linear machines live in quite different
domains of discourse:

First, let us examine sequential machines. It is common to assign to
each machine an initial state--in this case we have represented that initial
state by the map v from the one-element set 1 to the state set Q whose image
is precisely the initial state qo. The dynamics &: Q x Xo — (O 1is then a

map which assigns to each state and each input of the sequential machine the
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Sequential Machines

Initial State

1: 1 — Q

Dynamics

§: Q % Xo —* Q

Output Map

B: Q —™ Y

This lives in the

category Set:

each object is a set;

each morphism (arrow)

is a map.

Formal Definitions

Box 2.

Linear Machines
Input Map

G: I —Q

Zero-Input Dynamics

F: Q — Q

Output Map

H: Q — Y

This lives in the

category Vect:

each object is a

vector space; each

morphism (arrow) is

a linear map.
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state into which it will next settle, whereas the output map B: Q — Y
assigns to the current state the corresponding output. We stress that sequen-
tial machines 1live in the category Set--a domaiﬁ of mathematical discourse
comprising sets and arbitrary maps between those sets.

In describing a linear machine, we give an input map G: I — Q,
a zero input dynamics which is simply the map F from the state set Q into
itself, and an output map H: Q — Y. These describe the behavior of the
machine via q(t + At) = Fq(t) + Gx(t); y(t) = Hq(t). The appropriate domain
of discourse here is the category Vect in which now the objects are vector
spaces and each morphism--i.e., arrow going from one object to another-—-
is a linear map. [We have lined up elements of the definitions of sequential
machines and linear machines in Box 2 in a way that will seem mysterious to
the reader. We hope that the reason will become clear by inference from our general
definition of machines in a category in Box 4 below.]

Clearly, at this stage it is proper that we admit that the notion of
a CATEGORY or mathematical domain of discourse implicit in our above comparison
is in fact a formal concept of mathematics. In fact, we have as the basic
notions of category theory the idea of a category and of a functor (Box 3).

A categorz/jf is a domain of mathematical discourse in which we have
a collection of objects, such as the arbitrary sets of Set or the vector
spaces of Vect, together with, for each pair A,B of objects, a collection
<(A,B) of morphisms from the first to the second--these correspond to the
arbitrary maps of one set into another of Set, or the linear maps from one
vector space into another of Vect. As in both of these examples, we may
compose morphisms so long as the first ends where the second begins--and the
composition is associative, i.e., we may string together an arbitrary number

of composable maps and know that the overall composition 1s uniquely defined,
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Basic Notions of Category Theory
éngggggg;gPZE is omain of math ical discourse comprising

a collection of objects

for each pair A,B of objects a collection X(A,B)

of morphisms

f: A— B or A —£+ B

with domain A and codomain B

together with a law of composition
g-f:ra—c=a-5 58 ¢

which is associative and has identities idA: A— A,

A functor H from category;ﬁf to category

&

fH
BH
sends to
objects A objects AH
morphisms f: A — B morphisms fH: AH — BH
inﬁ in (_

in a "nice" way, namely

If £ = idA: A—> A then fH = idAH: AH — AH
hH

If £=A-B B2 ¢ then fH = an 8% gy PH, oy,

Box 3.
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irrespective of the 'bracketing' of the constituent morphisﬁs. Moreover,
we may assoclate with each object an identity morphism--this corresponds
to the map which sends each element to itself in Set and Vect--which has the
property that if we compose it with any other morphism, the result is that
other morphism. Incidentally, this equivalent definition of the identity
map exemplifies the difference between the set theory (define everything
in terms of elements) and the category theory (define everything in terms
of morphisms) approach to the foundations of mathematics.

So far, so good. A somewhat more technical concept basic to any use
of the language of category theory is that of a functor. Briefly put,
a functor is simply a Passage from one category to another in such
a way that the identities, and the composition of morphisms, are regpected.
In particular, a very useful idea in category theory has been that of
'chasing commutative diagrams'--drawing graphs in which morphisms
take us from one object to another over diverse paths in such a way that

the overall composition is the same. E.g., to say that

A — B & - C

k

h (5)

commutes, is to say that k + f =m, h*- g=kand h* g - f=k . f=m.

The iterated application of the fact that a functor preserves identities and
composition allows us to easily deduce that it must also preserve the commutativity
of any diagram--i.e., that if we replace each object A by the object AH and

if we replace each morphism f by the morphism fH, then if different paths

from one initiation point to one termination have the same composition in

the original diagram, then they must have equal compositions in the transformed
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diagram. For example, if (5) commutes in/ﬁ? then

ap —E gy eH

-+ CH

mH kH hH

commutes in [/ --e.g., mH = (k - f)H = kH - fH.

With these concepts before us we can now present the key concept of

machines in a categéry(}ﬁ . We should not, as we were encouraged to do in

the theory of sequential machines, think of the input of a machine as being
a set--or, more generally, an object--of inputs. Rather, we should think

of the input as being a process which transforms the state object Q into a new

state object QX. 1In all cases, we are to think of X as being a functor from
the given categorx)&f to itself. Then, given this object QX upon which the
dynamics is to act, a'dzgamics is simply a/&é -morphism 6% QX — Q.

Returning to Box 2, we see that for sequential machines, the category
’A? is Set, énd the functor X transforms a state set Q into the cartesian product
Q x Xo of all state-input pairs; while in the case of linear machines we work
in the category‘)%? = Vect, and our functor X leaves things unchanged so that
QX = Q. [To see that these really are functors, we must show how they act
on morphisms. For f: Q —* Q' in Set and X = —xxo ¢ Set —> Set, we define
fX: Q x Xo-——+ Q' x xo to send (q,x) to (f(q),x). For f: Q — Q'
in Vect and X = identity : Vect — Vect, we define f£fX: Q — Q' to be
simply f. The reader may check the functor conditions of Box 3.] Then,
a sequential machine has dynamics 6: Q x X0 —* Q, while linear machines have
dynamics F: Q — Q. With this we see that both types of machine of Box 2

are subsumed in our general notion of MACHINE IN A CATEGORY, summarized in Box

4. Summarizing, we see that a machine in a category requires us to specify
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MACHINES IN A CATEGORY

7t I —Q
X-Machines §: X— Q
B: Q —@m Y

X:} ——r/e is a functor; 1, 6 and B are /4 -morphisms

We stress that input is a process which converts the state-

object Q into a new object QX on which the dynamics can

operate

Box 4.
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a functor X froq/{'into itself which is a process which converts the state
object Q into a new object QX on which the dynamics 6 can operate. We must
specify a_)g’-morphism T from I to Q--in the case of sequential machines this
gives us the initial state, while it gives the input map of a linear machine.
Finally, we give a morphism B from Q to Y--which provides an output map in
both cases.

E: Instead of giving a formal treatment, let us just briefly note
that tree automata do indeed fit into this general framework of machines
in a category. Here, we briefly note that Post's theory of canonical systems
was specialized by Chomsky to yield his formal theory of languages, and that
many authors soon realized that the appropriate theory for handling the deriva-

tion trees of formal linguistics was the theory of tree automata, which could

be seen as a straightforward generalization of the theory of éequential machines
we have discussed above. Rather than give the general definition of tree
automata, however, let us content ourselves with a simple example (Figure 3)

of processing binary arithmetic trees. Here we start at the bottom--at the
'leaves' and combine pairs of numbers by addition and multiplication until
finally at the 'root' of the tree we have the overall evaluation of the arith-
metic expression represented by the tree. Let us see how we can think of this

as a machine in a category in the senseof Box 4. Here we are to think of the

state set as being the set N of all natural numbers, and we now introduce a
functor X: Set — Set, on the category of sets, which sends each state set Q to

the unien OX of two sets, onebeing Q x Q x {+} and the other being Q x Q x {x}. We

tiien see that amap fromQX to Q gives us precisely the two maps we need to evaluate nodes of
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Figure 3.

Processing binary arithmetic trees.

State Set Q is N (the natural numbers) in this example.
Introduce a functor X: Set —> Set

X =QxQx{+ uQxQqx{x}
Then a map &: QX — Q@ gives the dynamics:

8(q;,95,4) = q; + q,

G(QI’QZ’X) = ql X q2'

1.

17
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the tree as we pass from the leaves to the root.

With this successful subsumption of tree automata in a framework designed
to embrace sequential machines and linear machines, we have almost completed
the first part of the paper. But, before we look at what happens to this
theory in a 'fuzzy world', it seems worthwhile to quickly summarize a number
of results which have been obtained in the theory of machines in a category,
even if we do not have space to spell out any of the details. In fact,
given any functor X from the category/]e into itself we can define a category
Dyn(X) of X-dynamics--the objects are precisely the X-dynamics, while a Dyn(X)-

morphism--or a dynamorphism--is aljﬁ -morphism of state objects which

'respects' the dynamics--we might either apply the dynamics and code the
resulting state, or we may code QX and then apply the second dynamics--the

result is the same, as expressed in the commutative diagram

hX h Dyn(X) is a category
X because X is a fugg;or

*X——— Q'

This category is the setting for the major results of the theory of machines
in a category which we have developed [We should also mention.that other con-
tributions to the theory of machines in a category--though not using exactly
the same framework as that we have developed here--have been made by Goguen [11,12],
Bainbridge [13], Ehrig et al. [14], Goguen et al. [15] and others. However,
the nature of our survey doeé not make it appropriate to indicate here the
ways in which these different contributions are interrelated.] The results
which follow are presented far too briefly to allow comprehension--using as

they do the technical category—theoretic concept of an adjoint of a functor.
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However, the very point of this tantalizingly brief presentation is to stress
how important adjoints are to System theory; and we hope that many readers
will be tempted to turn to [2,4,6,7] for a full treatment of the following
results.

We introduce a new functor U: Dyn (X) ——f/é? which sends an object
(Q,6) of Dyn(X) to Q in J@l, and sends a dynamorphism h: Q,8) — (Q',8")

to the underlying‘/gf -morphism h: Q — Q'. We call it the forgetful functor

because it "forgets" the dynamics § and just remembers the underlying state-
object Q.

Category theorists give a central role to the notion of adjoint of a

functor. In some circumstances we may associate to a functor Hi)Zt——+,<;

another functor F:« -——+,ﬁf called the left adjoint of H. In other

circumstances, there exists a functor G: _/ ——ﬂ-)&f called the right
adjoint of H. The definition of adjoints is beyond the scope of this paper
(see [2, Chapter 7] for the details), but we ﬁ&te the terminology that if
H has left adjoint F and B is an object in , then we say that BF is the
£;gg;j67 -object over B; while if H has right adjoint G, we say that BG
is the gofree/za-ﬂbject over B. With this terminology we may summarize
some of the results of [2,4,6,7]:

‘ ‘First, we showed that if the forgetful functor U: ggg$X) ——+’]?
from the category of X-dynamics to the underlying category/ﬁi has a left

adjoint F:Ji? — Dyn(X) ~-so that we may talk of free dynamics QF in Dyn (X)--

then we can in fact construct a reachability theory and a theory of minimal
realization. This theory includes sequential machines, linear machines, tree
automata, and many other examples.

If on the other hand we require that the forgetful functor has a right
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adjoint G:‘Jﬁ;——+ Dy (X) --so that we may construct a cofree dynamics QG

in Dyn X--we are then able to construct an observability theory and a cominimal
realization theory--which is much the same as a minimal realization theory,
with differences that are too technical to detain us here. In any case, we
find that tree automata do not correspond to functors X which yield forgetful
functors with right adjoints, but sequential and linear machings do. Thus,
both sequential and linear machines are examples of machines in a category for
which the corresponding forgetful functor has both a left and a right adjoint,
and we have found that in this case we get an exceptionally simple minimal
realization theory using what are called image factorizations, and that we
also have a framework for studying duality of systems based upon the fundamental
concept of categorical duality [2]. 1In particular, of course, we may talk
about both reachability and observability for sucﬁ'systems. To further tantalize
the reader, we point out that, for I as in Box 4, IF is the "object of input
experiments". Since IF is determined uniquely by x‘[z, p. 113], the nature
of "input experiments" is not determined independently by intuition--a new
principle in system theory. This principle has surprising consequences for
affine machines [11] and group machines [8].

Summarizing, then, we have seen that with the idea of a functor we can
embrace a far laéger class.of automata than we can by restricting ourselves
to the situation in which the dynamics must act on something Qith the form
of Q x Xo; and--as the above flash-through of results indicates--the category
theory concept of adjoints of functors is central to our approach to general
system theory.

We reiterate that the above survey is far too brief, but it should be
sufficient to set the stage for the new perspective that 1is required when we
start looking at different aspects of nondeterminism in our approach to systems in

a tuzzy worid.
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2. FUZZY MACHINES

We have now seen how to use category theory to provide a general perspective
(Figure 1 to Box 4) for a number of apparently disparate classes of systems:
sequential machines, linear machines, and tree automata. But the time has
come to face up to the fact that we live in a 'fuzzy world--there is no
guarantee that we can be sure of the next state of a system in the real
world. In the rest of this paper, we are going explore a somewhat paradoxical
approach to the 'fuzziness', namely that in whiéh one can give a precise
prescription of the range of possibilities for the next state from any given
starting condition. (But we emphasize at once that we will axiomatize a
class of such Prescriptions, frankly recognizing that there are many different
kinds of fuzziness.)

The first way in which nondeterminism entered the world of automata
theory was through the study of nondeterministic sequential machines (F
of Figure 4). This was in part motivated by the study of formal languages—-
for in designing machines to parse a sentence one had to be aware of the fact
that the initial portion of a sentence could be consistent with a number
of possible parsings, so that there was no unique way to classify the next
word, but rather a number of possible ways consistent with the information
already processed. In any case, whatever the history, there has become

entrenched the idea of a nondeterministic sequential machine--we suggest

that perhaps a better word would be 'possibilistic'--in which the current
séate and the input do not determine a single unique next state, but rather
determine a set of possible next states, so that the dynamics maps the set
of (state, input) pairs into an element of ZQ, the set of subsets of the state

set Q.
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The idea, then, is that in any run of the machine, one and only one state
will appear at any given time, but if state q appeared at time t and input
x were then applied, the state at time t + 1 must belong to the set
8(q,x) of states.
Now, we may observe that the passage from Q to 2Q is the object map of
a functor of the category Set into itself, oo
2(-): Set — Set 1is a functor
Q +— ZQ
(f: Q— Q'] — [2f: 22— 2% : 5cq —+£(5) = {£(s)| s € S} € Q'].
This suggests that the nondeterministic sequential machines we have just
looked at may be considered to be a special case of dynamics expressed in the
form
§: QX — QT
for some suitable choice of a functor T. The question before us, then, is
what are suitable restrictions on functors T for the consideration of such
dynamics to be in fact the proper setting for 'dynamics in a fuzzy world'?
G: Before we turn to this rather technical question, however, it is
worth gontinuing the historical perspective of Figure 1 by considering, in
Figure 4, various ways in which the idea of a 'fuzzy world' has been approached.
Of course, this historical view of ours is a very sketchy one, and we can only
hope that some more careful historian or philosopher of science will take this
lead to more carefully chart the interconnections between these ideas. In any
case, let us briefly notice that generalized mechanics in the classical sense

has recently spawned two most important new theories of mechanics, namely

quantum mechanics (with crucial use of probability theory) and relativity
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theory. Unfortunately, we have nothing further to say at this time about these
important developments, but wish to draw attention briefly to the fact that
classical mechanics and probability theory have also given rise to statistical
mechanics--namely the description of large systéms in terms of the average
behavior of their myriad deterministic (or possibly quantum mechanical) components,
The theory of statistical mechanics is still in an unsatisfactory form,
and we believe that its proper development is one of the great challenges of
system theory. Here, however, let us briefly note that Poincaré, in pondering
the various problems of celestial mechanics, came up with a very crucial notion
of structural stability--a notion very much appropriate to the conduct of
scientific study in a fuzzy world. Briefly, he noted that in taking any system,
it is not possible to determine the parameters of that system with complete
exactitude. It is thus, then, a matter of crucial import that no very delicate
change in the parameters of the system should drastically alter its behavior--
for then we could have confidence in the predictions that were made. This,

then, is the idea of a structurally stable system: a system whose behavior

is only changed slightly by a slight change in the parameters that describe
the equations of motion of that system. Interestingly, these ideas of Poincaré

have led to two recent developments. One is Thom's theory of catastrophes [16]--

in which Thom classifies those parameters of system description which lie at

the borderline between two different d;mains of structural stability. It is
perhaps worth noting in passage our belief that Thom's mathematical contributions
here are of vital importance to system theory; while at the same time expressing -
the greatest skepticism about the way in which Thom has suggested that his theory
of catastrophes has importaht and immediate applications to such diverse fields

of applied mathematics as theoretical embryology and linguistics.
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A more direct descendent of Poincare's ideas is the theory of tolerance
spaces due to Zeeman, in which he replaced the idea of a topology on a space
by the more discrete notion of a tolerance: namely a reflexive and symmetric
relation which tells us of any two points of the space whether or not they
are in tolerance of one another. This then suggested to Arbib the idea of
a tolerance automaton-—namely a sequential machine in which the dynamics
and output are 'continuous' with respect to tolerances on the various spaces
involved. It has recently been noted by Dal Cin that we may make such tolerance
automata into machines in a category in a fairly obvious way.

With this, then, let us turn to the remaining two evolutions in Figure &4-~
namely, that from the Markov chains developed by the probability theorists; and
that which we may recognize as part of the evolution of multivalued and intui-
tionistic logics (the name of Post occurs here as well as in the canonical
systems which led to formal language theory) from classical Boolean logic.

H: Markov chaiﬁs were developed in the late 1800's as a way of modelling
the dynamics of a classical systen for which one could at best givé probabilities
as to the next state given the present state, rather than the classical
systems witn which we started our discussion in this paper in which the current
state determined the future states for all time. The stochastic automaton,
then, is related to Markov chains just as our control systems are related to
classical mechanical systems. Namely, we introduce a set of inputs, such
tnat for each input there is a corresponding Markov chain, with the probability
distribution of the next state being determined by the Markov chain indexed

by the current input.

More formally, a Markov chain M is given by a set {ql,...,qﬂ} of

states and an n x n stochastic matrix P = (Pi ) whose interpretation is

3
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that if M is in state q, at time t, then it will be in state q at time

h|
t +1 with probability pij' A stochastic automaton has its dynamics given by a set

Xo = {xl,....xm} and a collection of m Markov chains, one P* for each input
X ¢ Xo. If M is in state q:j at time t and receives input x, then it will
be in state q; at time ¢t + 1 with probabilicy p;‘j. Here the dynamics is

8: Q x X, — QB : (ay,%) — 'p’l‘j

where P: Sef —> Set is a functor with
QP = set of probability distributions on Q (If pe QP, let p(q) denote

the probability of q)

fP : QP — Q'P : £P(p) : q'— [ p(q).
qef™*(q")

We see once again that the dynamics is of the form QX — QT, where now
T is the functor P: Set —* Set which sends a set Q to the set of all probability
distributions on Q.

I; For our last example of a functor T for our general theory, we
turn to fuzzy sets. This notion seems to have been independently established
by Zadeh [17], although it is clearly a special case of ideas developed by
many authors in looking at multivalued and intuitionistic logic. Briefly,
Zadeh observed that there are many 'sets' in the world for which one cannot
make the confident assertions of membership or nonmembership demanded by
classical set theory. For example, the set of all 'tall people' is such a set.
Certainly someone who is three feet tall does not belong to the set, while
someone who is seven feet tall certainly does. But what of someone 5'3" tall?
Perhaps they almost belong to it, say with 'weight' 0.3, while someone of

height 5'8" might belong to the set with membership strength 0.8. On this




basis, then, Zadeh defines
A from W to the continuous
tie strength of membership

Before going further,
horror in this approach to
unreasonable to simply say
set of tall people, surely

world of ours to assign so
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a fuzzy set in the universe W to simply be a map
interval [0,1] of real numbers, with A(w) being

of w in A.

it is perhaps worth noticing that there is a certain
the problem of fuzziness--for if it seemed

of any element whether or not it belonged to the

it seems even more unreasonable in this fuzzy

precise a number as 0.7 to membership. It may

perhaps be suggested that the appropriate approach to fuzzy sets is to realize

that the fuzziness simply is imposed by the fact of undetermined context.

If we are surrounded by short people, then we will say a person of 5'6"

is tall; if we are meeting with the Watusi then such a person will be short.

The idea, then, that a statement may have different truth values depending

on the context suggests that there is implicit a whole series of mechanisms such

as those that are being painfully developed in artificial intelligence approaches

to the understanding of natural language [18]. But such an idea takes us

too far afield from the particular historical domain of discourse that we

have set for ourselves in this paper, and so now we return to fuzzy sets,

with the observation that one can clearly define a suitable functor T associated

with 'fuzzing' (indeed, QT = [O,I]Q) » and that with this we may then define fuzzy-set

automata tobe those with dynamics §: QT — QT, where T is the fuzzing functor.

With these three examples, we are ready to begin the development of our

general theory. However, before we do 80, it is worth making a couple of

technical observations. Firstly, we may note that a continuous interval

[0,1] may be replaced by any lattice, and that for technical reasons we shall

usually want this to be a distributed lattice, and thus what is known as a
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semiring. In fact, Schutzenberger [19] has constructed a rich theory of automata
over semirings so that not only are fuzzy sets a particular case of models
already developed in multivalued and intuitionistic logic; but the study of
fuzzy automata is a specifal case of Schﬁtzenberger's theory. Secondly,
we note that Goguen [20,21,22] has studied a category of fuzzy sets.

But all this is an aside, and it is time to return to the general
study of dynamics of the form

6: QX — QT

whicih provide the dynamics of what we call FUZZY MACHINES. [We hope that
Professor Zadeh will forgive us for appropriating his word for this general
setting~-we use the term fuzzy-set machine to refer to his special case.]

Our first observation is that QX — QT looks like a generalization of the

case QX —> Q which is obtained by taking T to be the identity functor.
It would be far more appealing, aesthetically, if in fact we could take

QX —*+ QT to be a qpeciai case. But to do this we would have to consider

a category/K?T whose objects are the same as those of the original category
)K but for which a morphism A — B 1is actually a/ﬁi -morphism A — BT.
In this case, a morphism QX — Q, and thus a dynamics, in our new category
ﬁl would indeed be a morphism QX —+ QT 1in ﬁ .

Recalling (Box 3) the need for identities and composition in defining

a category, we can now develop a picture of what such a new categoryﬂjzaT
would look like. Our first requirement is that we can define identity m:;phisms/'
for this category, and our choice for this is the morphism Ae: A — AT

wulcii tells us how to interpret pure elements as particular examples of

- A
fuzzy ¢lements. For example, when T = 2( ) we require Ae: A — 2

to send an element a of set A to the singleton {a} which is an element of
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the set 2A of Subsets of that set. Again, for T = P, we require Ae(a)
to be the probability distribution on A for which a has probability 1.
Given these identity morphisms, we can think of an ordinary morphism as a
fuzzy morphism--namely we follow the morphism A —+ B with the 'fuzzing
morphism' Be. Our second requirement in makingﬁ,r a category is a
composition of fuzzy morphisms, so that we may compose A —* BT with
B —* CT to obtain a morphism A —» CT--in such a way that we have the
usual axioms of a category for associativity of composition, ‘and the existence
of the identities which Qe require to be the 'fuzzing morphisms' Ae:
F (D x F (8,0 — B (ACT & (8 — B e

which satisfies

(YoB)oa=yo (Boa)

o o Ae = a = a o Be.

(We also require that B o (Be - f) =B - f for f: A—+ B, a: B — C.)
We call I = (T,e,comp), and the category ﬁ"l it induces, a fuzzy category,
over /? . (Adepts at category theory should note [23,24] that the notion
of a fuzzy category is equivalent to the notion of a Kleisli category.)

Having introduced the idea of fuzzy category we find that there is a fly
in the ointment, and it must be removed: We have been looking at ﬁ—morphisms
QX — QT and suggesting that the correspénding morphism from QX to Q in

X_I. is a dynamics. But, unfortunmately, so far we have oniy required X to be
a functor on ﬁ , not a functor on ]61. This suggests, then, that we try

to 'lift' the functor X on } to a functor X on ﬁ/! Clearly, X and X

must act the same on objects. However, given a ﬁ/ -moxphism A — BT,

the action of X will yield af -morphism AX — BTX, whereas X will

yield a }T—mor:phism ‘AX — BX, 1i.e., a)e -morphism from AX to BXT.
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We note that one way of reconciling this problem is simply to introduce
for each object B a distinguished morphism

BA: BTX — BXT
Then define, for g: A——+ B = A — BT

gi_: A-f{'—-rB§= AX — BXT
to equal

AX EX BTX B3 BXT
the collection of BX's defined in this way, then A must obey certain axioms
which make it what a category theorist calls a distributive law. In fact,
it can be verified that X is a 1ift of X if and only if it is obtained from
X by using a distributive law A in this way. Thus, we may always denote X
by xk for the appropriate distributive law A.

For example, in the case X = -xxo and T = 2(_)

QA: (2Q) x xo —_ 2Qxx° : (S5,x) — {(s,x)ls € S}
is the only distributive law.
More generally, replacing 2(_) with any T: Set —* Set gives rise
to the distributive law

QX: QT x Xo —* (Q x XO)T : (P,x) — (:LnxT)(P)
where

:I.nx: Q— Q x xo t q— (q,x).
Thus, there are many examples!

Once we have reached the stage of realizing that the proper setting

for the study of nondeterministic automata is the category of some functor
T using a functor X on/? which can be lifted by a distributive law X to a

functor xx on ﬁl. (Box 5) we can in fact show that many results holding for

X are also available for XA' We can show that each X-dynamics 'is' an
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Euzzy Machines
¢ I — QT
QLI cMachines, §: QX— QT
B: Q — Y

X: jf/ —-P/é is a functor and I = (T,e,comp) 1s a fuzzy category for which

there exists a distributive law A: TX — XT.

l-algebra. 1, & and B are Z -morphisms.

Box 5.

Y 18 the carrier of a

11



‘e

2.12

Xx-dynamics, and we c&n show that each Xl-dynamics may be 'simulated’ by an Y~dynar.ics.
Mcrecver, 1f we can do reachability theory for X, we can also do it for X, If we cando
observability theory for X we can also do it for XA if certain conditions concernirg "T-alget ra:i"
are met. Finally--and this is a technical comment whose content is clearly
beyond the scope of this exposition--we may note that the proper setting for b
the theory of minimal realization for these Kleisli machines 1is the treat-
ment of (X,T)-composite algebras.

Unfortunately, there is no space here to give the necessary background
on category theory to expand upon any of these results, or the earlier
results of Part I. However, we can summarize our discoveries quite succinctly.
The idea of a morphism

§: QX — Q

in a category/f is the proper setting for the study of dynamics in a deter-
ministic world. [We noted that the notion of left and right adjoint of a
functor were crucial in studying reachability and observability, respectively,
for such dynamics; as well as for approaching the theory of minimal realizationm.]
What is perhaps most surprising is that dynamics in a fuzzy world is a special
case, namely that in which the functor X is now an appropriate lifted functor
XA' and the category in which the action takes place is a fuzzy category
for some 'fuzzing functor' T. It is this 'surprise' that suggests that our
general notion of a "Machine in a Category" of Part 1 is indeed a proper
setting for system theory: for ome of the best tests of proper generality
of a theory is that it is robust in the sense that it can admit apparent
extensions and special cases, rather than requiring a proliferation of super-
and subscripts for each new variation that arises. 1In conclusion, we synthesize

our overview in the mandala of Figure 5.
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