DESIGN OF A SEMANTICALLY DIRECTED
VISION PROCESSOR

*
E. M. Riseman
A. R. Hansont

COINS Technical Report 74C-1
January 1974

This research was supported by the Office of Naval Research
under Grant ONR 049-332

* .
Department of Computer and Information Science

University of Massachusetts
. Amherst, Massachusetts 01002

TDivision of Language and Communication
Hampshire College

- Amherst, Massachusetts 01002



UNCLASSIFIED

A Seiurity Classification
DOCUMENT CONTROL DATA - R & D
Sy s s fication of tirfe. b v abatrine t an rde i anrotation suist be sntered When the Loergl) report i alas Lefied)
B - T Jarporate author, 29. REFCR " sEC R "V CLassiFinaT oy,
' . , UNCLASSIFIED
University of Massachusetts, Amherst, Mass. 01002 26, GrouR
None
|3 RERoR- STz
DESIGN OF A SEMANTICALLY DIRECTED VISION PROCESSOR
4. DESCRIPTIVE NOTES (Type of report and, inclusive dates)
Technical Report
S AUTHORIS) /First name, middle initial, last nome)
Edward M. Riseman
Allen R. Hanson
6. REPORT DaTE 7a. TOTAL NO. OF PAGES 75. NO. OF REFS
January 1974 37 42
8a. CONTRACT OR GRANT NO.

98. ORIGINATOR'S REPORT NUMBER(S)
N00014-67-A-0230-0007

b. PROJECT NO.

COINS Technical Report 74C-1

95. OTHER REPORT NO(S) (Any other numbers that may be assigned
th: s report)

d.

10. DISTRIBUTION STATEMENT

Distribution of thig document is unlimited

I1. SUPPLEMENTARY NOTES 12. SFONSORING MILITARY ACTIVITY

Office of Naval Research, Code 437

None Washington, D.C.

13. ABSTRACT

Most vision research to date has been applied in highly constrained envir-
onments consisting primarily of objects with straight lines, simple shape, little
texture, and no color. Many of the techniques developed are going to be of little
help in machine perception of natural outdoor scenes. This paper discusses the
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tors, etc.) to be interfaced with high level conceptual knowledge (e.g., trees stem
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The proposed system will employ some of the standard techniques of pattern recog-
nition coupled with semantic information structured for scene analysis. This process
will involve investigating several of the most plausible models of hypotheses of what
1s in the scene being viewed. The system will operate by reducing information in the
scene with local operators in a parallel structure. The detection of prominent fea-
tures in this reduced data signal the likely presence of particular objects. Each gen-
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tively analyze the lower level mass of data; a rough value of the likelihood of the
object, based upon a set of features, will be returned. When any object is detected,
the semantic knowledge will interact with the visual information and guide the search
for objects that are related to the given object. As more of the scene is perceived,
the model and semantic net will speed up further analysis, After initial processing

the bulk of the analysis will be directed in a top-down fashion. Information flow and
conceptual design are sketched in Figure 3.
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I. INTRODUCTION

Research in the.field'bf compufer vision Hagvdeveiofé& in a somewhat
narrow, though understandable, fashion. Naive notions of AI researchers
concerning the complexity of vision processing were quiékly dispelled. The
initial problems were not the expected difficulty of determining what objects
were depicted by the lines and vertices that appeared in the image. Rather
detection of the lines and vertices themselves was the initial non-trivial
problem. Since then the domain of the "block's world" of polyhedra has been
extensively studied [1 - 9]. Reasonable segmentation of objects, even if
some are partially occluded, can usually be carried out. Object reconstruc-
tion is aided by the use of various heuristic techniques for the grouping of
regions into objects. These solutions, however, have proven to be less than
trivial and seem to have left uncertainty with respect to solving more gen-
eral problems in the fiéld.

There appear to be two long-range directions for vision research that are
now called for. The first involves stepping into the real world of outdoors
with an enormous increase in the complexity of scenes. This will force
consideration of many global properties of scenes as opposed to the micro
properties employed in the block's world. Many of the current techniques
may have to be discarded and new ones developed. The second involves the in-
terface of computer vision research with powerful semantic techniques so
that perception will take place as a knowledge-directed process. As Tenenbaum

[10] points out:

"We feel that the time is now ripe to confront a number of these
crucial perceptual issues--information overload, segmentation of
textured objects, representation of irregular objects, generality

of strategies--that do not arise in the blocks world. Instead of
simplifying the environment, we must learn to cope with the complex-
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ity of real-world scenes by capitalizing upon their natural
redundancy of descriptive features and contextual constraints.,"

We will briefly discuss the need and desirability for pursuing each of the
research directions mentioned, and then describe a tentative design of a
semantically directed vision processing system for analysis of complex

outdoor scenes. Reference to Figure 5 will facilitate the discussion.

I.1 Indoor vs. Outdoor Scenes

Almost all research in scene analysis to date has been conducted in
highly constrained environments such as the blocks world or a relatively
uncluttered laboratory world of corridors, rooms, doors, desks, etc. In
certain aspects the laboratory world does not differ dramatically from the
blocks world. 1In each of these environments, the image is composed of basic com-
ponents such as straight lines, rectangles, and the like. It has not been
necessary to dramatically alter scene analysis techniques (e.g., inclusion
of color and texture information) from the block's world to handle scene
analysis in the laboratory world. To date there has been only a little
effort expended towards the examination of natural outdoor scénes [11-12].
These images are far more complex and bear little resemblance to the images
found in the blocks or laboratory environment, particularly in terms of re-
quirements for scene analysis. Here the world is one of non-straight lines,
color, varying texture, and little control of lighting. The descriptions
of objects are also more complex. There is a relatively simple and general
description of pyramids and cubes; on the other hand, the description of the
set of.all types of trees is far more difficult to state due to the varia-
tions in shape, size, color, and texture as a function of botﬁ the season

and area of the country. Consequently, many of the techniques for the blocks
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world may have little applicability to the real world.

The most successful effort (possibly the only serious one completed)
in the analysis of outdoor scenes is that of Yakimovsky and Feldman [12].
They utilized semantic information in a decision-theoretic approach to the
analysis of several road scenes. The information includes properties of the
boundaries between regions (e.g., how likely is the adjacency of two regions)
and properties of the regions themselves (color, shape, etc.). After ini-
tial clustering of picture points to form regions, a decision-tree analysis
is used to further join and then identify regions according to a maximum
likelihood analysis based on these properties. For more complex environments,
we feel that the a-priori conditional probability of a feature given a
region cannot be reliably estimated (usually the number of samples is very
small) and probably changes over time. Thus, it is becoming apparent that
the inclusion of more complex semantic information is necessary; further-
more, the nature of this information must be such that it can be utilized

in a highly flexible manner.

I.2 The Utility of Semantic Information

The blocks world is almost entirely devoid of semantic informationm.
In fact, most of the techniques that are regularly employed in scene analy-
sis utilize only the visible physical structure of objects in a picture.
Although terms such as "line semantics" or "semantic descriptors" have been
applied to this work, we feel that these approaches have been primarily
syntactic. The techniques, for example, involve the difference in intensity

of light and dark areas as a clue to the presence of a line, the legal ways

that lines can come together and still represent the vertices of a trihedral
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solid, the pattern of shadows produced by such vertices and the objects
containing them, the adjacency of regions in the context of various types

of vertices as heuristic clues for the combining of regions into a single
object, as well as the search techniques or global strategies for parsing

an entire scene into a syntactically acceptable representation using combin-
ations of these tyées of analyses. The main point is that the meaning of the
.scene within some structured world of objects and activity is utilized
little, if at all. The complexity of the real world offers a richness of
knowledge in a form that has not been applied in vision research.

We can gain insight from the efforts on natural language processing.
Conversation systems, such as Winograd's [13], allow semantics of linguistic
information to be related to a physical structure of block objects. However,
there really are no.general a-priori relationships between the separate ob-
jects or types of objects in this domain. Thus, while supplying a nice
setting for language research, this type of problem domain seriously handi-
caps the vision researcher. Lately, work in speech recognition [14-16] has
been blending the syntactic and semantic approaches of natural language pro-
cessing with the more classical approaches of pattern recognition applied to
acoustical data. As a simple demonstration of the potential of this approach
to vision, one need only look at any scene through a small window and examine
what he "sees" as opposed to what he "knows" is there.

In a related piece of research, one to which we are particularly sympa-
thetic, Tenenbaum [10] has described the preliminary structure of a knowledge-
based perceptual system. Though it operates in a constrained world of walls,
doors, desks, chairs and telephones, it begins to utilize higher level infor-
mation. Tenenbaum's approach is to define a simple two-stage procedure for

distinguishing the object sought from other objects appearing in a scene. The
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system relies heavily on such data as color and range (relative size) to
quickly eliminate most obj;cts from the set of possible objects. After

this reduced set is found, features which pairwise disambiguate the objects
are employed. Contextual information is employed to form strategies on where
to look for a particular objecc’ or what objects are nearby any objects found.
Currently, the SRI work is set up to interactively determine both the
features sufficient to distinguish individual ijects and the strategies

that can efficiently use-them. A general model of each object in the scene
is stored internally; when an object is found its size and orientation is

correlated with the intermal mbdel which is then displayed via a graphics

display.

I.3 A Perspective on the Proposed System

Tennenbaum's approach is similar to the one proposed here in that coarse pro-
cessing of the data (although not of the parallel type we utilize and de-
scribe later) and application of semantic information quickly reduces the
siée of the set of objects to which an unknown object belongs. However,
although similar in concept, our approach differs in several significant
ways. First, all operations are done on the raw data as opposed to our in-
teractive layered system that is currently being examined and is described
later. Second, although the scene is more complex than the blocks world,
it is still a relatively simple, straight-line world; consequently, the sem-
antic and syntactic information can be in a reasonalby straightforward form,
possibly a simple table. The range and complexity of the kind of infor-
mation that is required for the analysis of an outdoor scene makes our problem
considerably different. We feel that this problem domain necessitates more

general and powerful utilization of context, semantic knowledge, and model-



building.

We should also mention that a number of researchers are currently exam-
ining the effectiveness and economy of multi-sensory data from touch-sensors,
mechanical position sensors on wheels or camera, radar, etc. [10,17,18]. 1Ip
the system to be described below only visual data is considered since we are
trying to develop techniques to deal with this rich source of information.
However, we are in no way precluding the use of such data; in fact, it can
be incorporated in a natural way into the system we envision.

In order to get some perspective on the approaches currently employed
and the variety of strategies that are still available, let us consider
for a moment a plausible cognitive approach of a human. Suppose we supply
a person with a large photograph and constrain his view of it by forcing him
to use a magnifying glass so that at any single moment he sees the grain in
the picture within a very local region. If this individual is given the prob-
lem of determining roughly what is in'the picture, we feel that he will use
very different procedures than those used by the current vision systems.
Rather than attempting to comstruct an outline drawing, he will look for
prominant features as clues to what the image represents. He will probably
scan quickly in many different directions, but once he finds a prominent
feature, his strategy might become highly context sensitive and model-direc-
ted. He might form hypotheses which encompass large numbers of assumptions
and use these to direct the processing until they are verified or disproven.
Our interest here is not to assert a model of human problem-solving, but
rather to emphasize the need for higher-level approaches to computer vision.

As we see it, one of the crucial problems is to interface low level

visual information associated with local features and high level conceptual
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knowledge. We propose that this can be done by quickly filtering upward
processed information from local features, finding prominent features, and
possible objects in the scene, and then invoking world knowledge from a

type of semantic net to direct further processing. Thus, the processing in-
itially will be bottom-up until hypotheses are formed and then will switch
to top~down. The design that we outline is an ambitious project. Conse-
quently, we will denote some of the distinct subproblems whose solution
will contribute to an effective vision processor, but which can be indepen-

dently investigated.

II. LOCAL FEATURES AND PARALLEL PROCESSING

ITI.1. Hints from Pattern Recognition

Research in pattern recognition has made it unmistakably clear that iden-
tification of the category of a pattern of information cannot be separated
from either selection of the features to be employed or the pragmatic con-
sideration of the dimensionality of this data. Suppose we utilize an array
of input points that ensures fairly good resolution, say 256 x 256. Then
each snapshot of a scene is comprised of 64K points with each point consis-
ting of 6 bits (64 distinct levels) of intensity for each of 3 colors. In
terms of the classical approaches to pattern recognition, this is a staggering
computational overload. From this point of view, an immediate necessity is
the reduction of this data to a manageable level by retaining a subset of
the most relevant data or carrying out a transformation which emphasizes
that data useful for classification. However, the problem we have here is
far more complex than the typical pattern recognition problem, irrespective

of the dimensionality of the patterns. Nevertheless, we ask the same ques-
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tions: How can the data be usefully reduced in size and which features’

should be employed?

II.2. Data Reduction

Many of the approaches in scene analysis to date have operated on the
raw digitized data exclusively. Visual systems in the animal world, however,
carry out extensive parallel preprocessing. We think this is highly desir-
able in our problem domain. By.automatically reducing the data and preser-
ving coarse, though significant, information, detailed analysis of critical
regions of the image can be selectively carried out where it would not be
practical across the whole scene. Our goal here is to specify the type of
information thatshould beAretained and a simple structure for this data
reduction.

The approach we put forth is the utilization of local preprocessing
functions which are applied across the entire array and produce as output
an array of processed data of reduced dimensionality, but which preserve
spatial relationships. Conceptually, we choose to think of this stage as
a parallel feature extraction process as opposed to a sequential examination
of the data. Obviously, we can simulate any parallel processing in a
sequential fashion. However, we think of this stage as the initial automatic
processing which is not high-level goal-directed. The feature extraction
stage 1s of low efficiency because much computation is carried out and only
a portion of this output will contribute significantly., In addition, we
want it carried out quickly to enable the higher level processes to be
brought into play at an early point in the sequential analysis that follows.
Given the state of LSI we feel that much of the hardware that we are sim-
ulating can be economically constructed in the near future, although we are not

suggesting that it be built at this time.
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Let us first give an example of a simple local edge-detection function
operating on an ideal noise-free image of a 2-dimensional rectangular figure.
Imagine that we have a logical function f of four points:

0 if the intensities of all points
f(xl,xz,x3,x4) = are within A of each other

1 otherwise

This equality can be viewed as a locai edge detector on a 2 x 2 subregion.

It outputs. a signal of 1 whenever there is a difference greater than A between
any two points. If thisAfunction is repeated on 2 x 2 non-overlapping sub-
areas across the whole array, then the 256 x 256 grid can be reduced to a
128 x 128 grid in which 1's denote boundaries. (Note that we are ignoring
quantization noise for the moment.) Thus, the“information is reduced by a
"factor of 4 and processed so that only detected edges will show. This can
be viewed as differentiation (to detect edges) and then low pass filtering
(or smoothing). If the function is then repeated on this next layer, the
array is reduced to 64 x 64 and the process can be repeated, say, to the

16 x 16 level as depicted in Figure 1. Note that the function is somewhat
simpler After the first layer since the input has been transformed to binary.
Each layer is an outline drawing that is more smoothed (or blurred) than

the previous:layer.

IT.3. Types of Information Extracted

Now let us examine the way in which these 6 layers of information can
be dynamically analyzed in software in the usual sequential fashion. Imagine
viewing a tree outlined against the sky. Since it is desirable to process an
image very quickly, it is not feasible to examine all 64K points on the first

level. However, it is a relatively simple task on the . 5th layer of 16 x 16
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16 x 16

64 x 64

\\

16 x 16

4x4

256 x 256

Fig. 1 - Layered Parallel Preprocessing
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points to determine if there is an upright convex blob of approximately

the following shape:

Figure 2
It is important that the functions be relatively uniform over all sub-arrays
describing the scene. This will allow the information to be interpreted
in a straightforward fashion. Now, it is unclear whether this is a lollipop
viewed at a couple of feet or a tree at a greater distance. However, the
-analysis can be directed to sample portions of the upper boundary of the

2

object in more detail, say at the 128" or 2562 level. The outline should be

relatively uniform for the lollipop but irregular for the tree:

,‘\/\/\/\/l/Z

'//\/\:;/V" ."v{)

Figure 3
Thus, different knowledge of the shape of trees is available at the fine
and coarse levels of processing. We will discuss later how information at
the higher levels is used to direct the selective examination of the large

amount of data at lower levels.

I1.4. Some Alternatives for Local Operators

It should be pointed out that in the process just described, we have
ignored quantization noise--edges will be overlooked if they fall on the
boundary of adjacent 2 x 2 windows. There are various straightforward ways

of taking care of this problem: overlapping windows on the first layer, adja-
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cency operations, and/or increase in the size of the windows (say to

3 x 3 or even to 8 x 8) so that this event occurs iess often. We will

not discuss this aspect further. Rather we wish to address the more
interesting problem of making the preprocessing work on boundaries with the
presence of noise and texture.

Texture is a characteristic that is essential in the identification of
boundaries. The boundary between grass and bushes might only be determined
by the use of texture. However, in the case of strongly textured elements,
each local operator might think that an edge has been detected and the entire
region of cells could turn on. Any cell of a few points might have some dark
and some light points. The effect of noise is similar. In essence, it is
: therspatial distribution of the intensity that is texture. In order to
determine differences between regions soﬁe properties of the distribution
must be determined.

The first change to accomodate these problems might be to compute aver-
‘age gray levels on the first layer subarrays (possibly with the expansion
of size of the 2 x 2 windows). Now, a local edge would be denoted by some
minimum difference in the average values of a subset of regions. On the
subsequent layers, the equality function can then be reproduced with modest
amounts of noise having little effect on the average values being compared.
This will also solve the problem of boundaries between objects of different
texture if the average gray level of the two regions is different. Rosenfeld
and Thurston [19] have applied this technique in a two-pass system to detect
boundaries, even when the average gray levels are the same, as long as the
coarseness of the texture is different. However, the technique will break

down if there is not sufficient difference in the coarseness of texture.
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There are a number of variations or alternatives to the specific
scheme described. A somewhat different approach involves suppression of
activity of those cells when all neighboring cells have similar texture char-
acteristics such as relatively equal mean and variancevof intensity of the
points in each cell. If the variances of each local region within an object
are approximately the same, this information may be sufficient. A different
parameterization of texture that might be useful is Haralick's spatial
grey tone dependency matrix [20 ]. Briefly stated, this technique captures
the spatial distribution of intensities by providing a count of the number
of times two adjacent points have intensitiés i and j, and this is provided
for all i and j within the allowable range of intensities. A third possi-
bility is the use of Fourier descriptors for texture. Bajcsy [11] has shown
that in some cases the directionality and quality of texture is better cap-
tured by Fourier anmalysis than spatial operators.

There are many possible edge detection functions that might be useful;
there is a choice between separate functions of individual color intensities
or a joint function of all colors. This also applies to texture'descriptors.
Our goal is not just detection of edges, but rather the parameterization of
visual characteristics. Thus, there are other useful parallel local opera-
tors such as a color homogeneity function, a movement detection function, a
straight-line angular orientation function, etc. Some of these mappings
might produce non-visual information. For example, a texture function across
some sub-image might output a number or vector which serves as a descriptor

of the texture of that region. Another such mapping is a descriptor of the
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speed and direction of movement of an object; note that this operation might
be dependent upon comparison of previous snapshots-ahd the determination of
object boundaries. 1l's or non-zeroes in these upper level arrays can denote
movement within that square. A color homogeneity function mapping in a
layered fashion down to say 16 x 16 will make available, in a very simple
form, the information on whether a large region is of a single color since
each upper point represents 256 lower level points.‘

To some extent, the preprocessing of the image need not be highly
reliable. We do not intend to carry out detailed analyses on the upper
(coarse) levels of highly processed information. Rather it will only serve
as a guide for efficient detailed processing of the lower (fine) levels. Thus,
in some cases, misleading processing might cause only additional computation;
e.g., when an edge has been erroneously detected, this might be rectified
by the use of context in the sequential processing of the lowest layers. On
the other hand our best candidates for describing texture might be our local
operations themselves; thus, there may be no further processing available
to better characterize the texture of a region.

An additional complication but one that would provide a more flexible
processing system is to incorporate feedback from the executive programs to
the lower levels of the array preprocessor. Thresholds for intensity dif-
ference in edge detection, for instance, could be varied in different sec-
tions of the image under the control of the sequential analysis. This opens

up a whole range of techniques for refined and tuned processing of an image.

II.5 Focus of Attention

Now we will describe a modification in the layered data structure that

is under consideration. An interesting biological mechanism suggests itself
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as a way to reduce the data to be processed, the foveal view of the human
visual system. Only the central field of vision (several degrees) is in
focus and carries detailed information of the scene; the remaining field

of view seems to transmit information on a relatively gross level. Motion
can be detected on the extreme periphery, but not detailed color, form, etc.
As a simple experiment, one need only look at a particular object and ex-
amine what he "sees" on the periphery. However, it seems we "know" most

of what is in a particular scene by using internal models to add a large
amount of information to the gross view. For those interested in more de-
tailed and biologically motivated models of human vision processing that
bear resemblance to the ideas in this paper, we refer you to Arbib [21] and
Didday and Arbib [ 22],

The suggestion for our model of a mechanical visual system is not to
process all areas of the scene with equal effort. Presumably, if the region
of interest were known, the major portion of computation could be carried
out on the points comprising this region and points falling outside this
region would receive only crude processing. This type of "selective focus"
may be approximated in the proposed system by constructing the first layer
in the following manner. The central field samples information in a dense
fashion and areas progressively further from the center sample information
with an increasingly coarser grid. The region of "focus" or central interest
is resolved at the finest level and surrounding regions become less and less

detailed, as shown in Figure 4.
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256x256 128x128
_ 64x64 32x32 16x16

' 8x8

dﬂ\\

Figure 4, First Layer of a system employing a 'foveal view'

If necessary, a layered preprocessing system similar to the original
layered system can now be constructed by mapping central information to the
level of coarser surrounding bands: and repeating this process with the new
larger central area. Of course, the region of central interest may be shif-
ted across the entire scene by altering the camera position. Although this
is -an interesting structure and might be useful, it will not directly affect
the . success or failure of our schemes for visual perception. Therefore,

we will not employ this mechanism in our initial research.

I1.6 Comparison with Past Parallel Processing Machines

The various layers of processed information for each of the functions

employed will be assumed to be simultaneously available to the executive

vision processor. Although interaction of the various processing functions
might be useful, in the interest of initial simplicity we will maintain their
independence. Thﬁs, boundary detection of objects operating on several of
the processed arrays will initially be a higher level process. We seek to
determine how to utilize this information, not details of how the information

is made available.
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One could think of computational modules at each cell in each layer
that can compute any of the necessary functions desired. Theﬁ we would
allow the. executive routine to control the switching of the functions on
all cells. In the limit one can imagine a very simple general purpose mini-
computer at each point in the'array at each layer. In the simplest form,
only a couple of these functions might be available in separate array struc-
tures. We feel that this can be intelligently discussed only when we
und;rstand the amount, the complexity, and the manner of use of the processed
data. There has been extensive research on the design of general image
processing machines and parallel transformations from the late 1950's to
the present [23 -311. Most of that effort was not concerned with any par-
ticular application. The design that is outlined here should not be com-
pared with such general purpose systems. Any of these structures that can
effectively.perform our computations could be utilized in our scene analy-
sis. For the time being, however, we refer the interested reader to the la-
test two papers which will serve as an effective introduction to this area
[30-= 31]. Additionally, it should be pointéd out that the limitations asso-~
ciated with perceptron-like parallel processing [32] are not a factor here
because decisions are based upon both the processed and the raw data, upon

both parallel and sequential processing.

ITII. THE SEMANTIC NETWORK

One of the prime goals of this research is to determine how to bring
knowledge of the world (both general and specific) to bear upon the visual
perception of images. The image will be processed for the purposes of iden-

tifying all large or "important" objects, and construction of a rough 3-D
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model of the scene. By 'object' we mean each physical region whose boun-
daries should be identified (such as sky), although they are not literally
objects (in the sense of manipulatable objects).

Useful knowledge might be of a general form--that trees are green and
basically immobile; that people have two fleet, are potentially mobile, and
often appear on sidewalks, which generalljbhave a long narrow shape; and
that if the sky appears in an image, it usually appears above all other
objects. Thus, we are concerned with spatial, temporal and functional re-
lationships between the visual events of interest. The extensive base of
such general information allows one to view the world in the highly struc-
tured way in which it exists. In addition, there might be availabie spe- -
cific information about the environment under consideration. This might
vary from a list of the objects that are likely to appear in the image
to a complete topographical map of all objects in the environment. This
information must be organized in a form which allows easy transformation in-
to visual processes; that is, in such a way that it interfaces naturally

with the visual analysis to be performed.

III.1 Representation of Semantic Information

The semantic information can be embodied in many forms. The specific
physical structure does not seem to be critical at this point of the research,
although two forms of representation are immediately evident, semantic net-
works or an axiomatized data base for theorem proving.

In the first alternative, the one towards which we are leaning, seman-
tic information can be embedded in a directed graph structure in which the
nodes are used to represent conceptual objects or their modifiers while

arcs represent the relationships between them. All information which bears
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directly or indirectly upon the visual image or its processing should be
embodied within such a network. Thus, all physical visual attributes of
an object will be associated with a node; e.g., a tree has a certain color,
shape, texture, and size, and these can be stored as attribute-value pairs
associated with the node for tree. In fact, the internal model of "tree"
must be rich enough to embody both the general concept of a tree as well
as all variations of trees that might appear in the scene being processed.

In addition to physical attributes of objects, spatial, temporal and
functional relationships between objects bear useful information. One
'knows' that trees are rooted in the ground and often appear beside side-
walks. In addition, sidewalks are used by people to walk upon; therefore,
one often will find people with their feet upon them. All of'this infor-
mation can be embedded in the network as a directed arc between the objects
labelled with the name of the relationship. Quillian [ 33 ] has examined
various ways of storing and retrieving information from semantic nets; e.g.,
the length of the path between related objects may be used as a rough estimate
of the 'relatedness' between objects.

An alternative approach would be to embed tﬁe semantic information in
a modified theorem-proving enviromment [34-37]. These theorem-provers axi-
omatize the semantic information at the same time that they utilize heuristic
information to efficiently direct large-scale searches. Our use of a theorem-
proving system would most likely be based on heuristic search methods coupled
with a model approach to theorem proving [38]. As in a straightforward
theorem prover, a set of rules (or clauses) is provided describing the permis-
sible deductions, and a set of predicates and functions describe the relation-

ships between objects. However, the use of a simple theorem proving system
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applied to real world environments has the obvious disadvantages; it is
neéessary that information from the model and clues from prior proof proce-

dures be blended with heuristic search procedures in order to guide the proof

procedure.

- Régardless of the structure chosen to embody the semantic information,
the problems encountered concerning efficient use of this information remain.
Qﬁestions still remain open such as how to employ heuristic information in
order to drastically reduce retrieval or proof time and how to best employ
models of the environment. We feel that both approaches are viable and in-
terface with the rest of the system in a similar fashion. For the rest of
this paper, we will only refer to the semantic net as the means of storing

and retrieving semantic information.

III.2 Application of Semantic Information to Scene Analysis

We have outlined a relatively straightforward construction of a net-
work for semantic retrieval of information. However, there has been little
attempt in vision research to apply structures of this type. One possible
reason for this is that the information in these networks is not in a func-
tional form. If the information is stored in this network with descriptive
symbolic labels (i.e., the actual words associated with the concepts), then
it must be translated into a form in wiich the knowledge may be applied to
the image. This is a distinct limitation of such nets. We may retrieve
the information that the "trumnks" of trees are generally '"vertical'. How-
ever, in terms of processing the image, this means that the lower portion
will have a narrow boundary running up and down. Winograd [13] represented
knowledge in a procedural form in his natural language processing system.

This latter technique will be used to make our semantic network into a far
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more flexible medium. For example, a piece of descriptive information about
some object can be associated with a subprocedure; a set of programming
statements. This ;ubprocedure can describe how the image should be analyzed
in order to detect that characteristic of the object. This representation
of information allows it to be functional; a node has a mechanism by which
it can actively operate on the image rather than remain as a passive place-
holder.

Now we have % computational structure for the semantic network. We can
" build it in the usual descriptive form and associate with each node a pro-
cedure to apply the information. Thus, we can view the structure as a net-
work of symbolic labels or a network of labelled subprocedures. The con-
cept of "tree" is defined as a graph structure of concepts with words as la-
bels ("green", "tall", "trunk", "leaves"), and a subprocedure associated with
determining the presence of "tree". This approach leaves us with a network
of vision procedures, one associated with each object. All information
about a single object which has a direct visual component is now accessible

through that object procedure.

The only other information is that relating the different objects of
the environment. Thus, there will be additional arcs associated with
spatial and functional knowledge. An object procedure will be connected to
other object procedures by this relational knowledge. In addition to this
information we will provide a set of useful entry nodes into the network.
These nodes will be sets of pointers to the various objects that have partic-
ular characteristics. Thus, there will be a node associate with each measur-
able concept or physical attribute that can be associated with an object, and

a pointer to each object that has this characteristic (or a particular value
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of the attribute). For example, there will be a node for color and a list
of pointers to objects which have each particular color. The object descrip-
tions will contain the necessary modifiers operating on, in this case, the
attribute color. In this way it will be relatively easy to access the subset
of objects which are green, or mobile, or with straight edges. These entries

will be necessary for the executive system in constructing models of the scene.

IV. VISION PROCEDURES

Up to this point we have discussed the layered preprocessing of the
visual data and the network of conceptual information. Here Qe describe
the form of the actual algorithms which operate on the visual data and inter-
face with the semantic knowledge. The purpose of these procedures is to de-
termine roughly the likelihood of the presence of various objects in the
different regions whose charactegistics have been tentatively identified.
Consider the procedure associated with '"tree'". There are many types
of trees with varying characteristics; each of these variations must be
taken care of in the semantic net as we have described. Thus, one type of
tree might have a "trunk" consisting of a vertical, farily straight brown
area from 1" to 5' in width and 3' to 100' high, full round "foliage" with
deep green leaves, a given type of texture, ..., etc. This information must
in some way be correlated with the visual data if the presence of this
tree is to be determined. This portion of the process of scene analysis

is very similar to the classical problem in pattern classification.
Iv.l. 'The Pattern Recognition Approach

Pattern classification is generally viewed as at least a two-part pro-

cedure: feature extraction and classification. The selection of a set of

EAYY
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features upon which the decision will be based is most crucial. Relia-
bility of decisions is directly limited by the quality of information in
the feature measurements. We have already discussed the extraction of
some features through extensive parallel preprocessing. Now the .task is
to determine the subset of information from any of the layers that signal
the presence of, say, a tree. We must decide which of the concepts asso-
ciated with an object have measureble and relatively invariant visual com-
ponents (sometimes dependent upon such things as the season of the year,
etc.). Some features describing a tree are color, shape, size, and texture
of the trunk and foliage. Higher level features which are simple functions
of the procéssed data may be quite useful. Since shape is complex and
difficult to describe, one might employ a ratio of area to perimeter [6,10].
There is a great deal of flexibility in writing a procedure to examine spe-
cific portions of the information. The uppermost layers contain the coar-
sest information, but they are of low dimensionality so they can be examined
quickly in a sequential manner. The rough shape, color, and texture might
be sufficient to determine the likely absence or presence of a tree. However,
since any of the more detailed layers can be accessed, as we pointed out
earlier, the boundary should be uneven on a finer grid and the color might
be less uniform upon a micro-examination (which may be correlated to the
texture). Features which are effective in separating some pair of categor-
ies (objects) may be particularly useful in reducing critical ambiguity
(10,39-40].

The second phase is the classification process. Here we view this as
determining the likelihood of the presence of the goal object given the val-

ues of the features measured. The goal here is to get a coarse evaluation
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such as "improbable", "low", "medium", "high", "almost certain". This
crude decision information will be fed to an executive system (the vision.
monitor to be described shortly) so that it can be integrated into a

global model of the scene. The coarse evaluation can be accomplished by
mapping the statistical evaluation of a standard pattern classifier into
the desired several confidence levels (fuzzy set theory [41] might be use-
fully applied here). As we mentioned earlier, one of the serious obstacles
to this approach is a reliable estimate of the class conditional probabil;
ity densities for each feature. This is also complicated by the occlusion
of objects which may make it difficult to measure the degree of presence of
a feature (such as shape). A decision tree approach [12] to this problem
heuristically based on outstanding (and hopefully simple) characteristics
may overcome this difficulty, Of course, statistical formulations can be
employed where useful but we think they will be limited. This appears to
be one of the most difficult portions of the research design to implement,
This explains our motivation for easing the comnstraints on our classifier
to one of making coarse decisions. We will leave the responsibility for
removing ambiguity, making finer decisions, and correcting errors to the
executive system which will bring contextual and semantic knowledge into
the perceptual process.

Before we discuss the model building process, we will digress briefly
to discuss the efficient application of the (possibly) many object proce-
dures whose processing we envision to be primarily sequential. The following
section outlines techniques to focus on a few of the object procedures and

a few subareas on the basis of high level mappings of information on the
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top layer.

IV.2 Contextual Cueing Specialists

Certain objects are relatively easy to discern in a given image. This
may be due to various factors. If one sees a large expanse of blue in the i
top of the image with some green splotches below, a reasonable initial hy-
pothesis is that it is blue sky with trees below; a less likely hypothesis
is that it is water with some type of vegetation in the foreground. Of
course, this must be coupled with information concerning the location of
the observer, the direction (up or down) of the gaze, etc; the latter hy-
pothesis is far more likely if one knows that a pond, for example, is near-
by, and the observer is outdoors looking down. Similarly, a long broad
straight line might denote a sidewalk or a building; a region of the image
which is moving must be one of a relatively small subset of object types——
person, animal, car, bicycle. If the procedures associated with these ob-
ject types can be applied selectively to the particular regions in-question,
the construction of hypotheses as models will function more accurately and
efficiently.

Specifically, the set of features which flag the likely presence of
certain objects will be searched for in the top layers of the processed
visual data by a set of special procedures called "contextual cueing special-
ists". These procedures can examine the top layer (in genéral, any of the
layers of coarsest information) and selectively step down through the layers
when more detail is required. Whenever any of these prominent features

is found, one or at most a few object procedures will be activated in the
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region of that feature.* Thus, the sequential scan is quick because of the
small amount of processed data and the tentativeness of the decision. This
initial scan very selectively invokes a few object procedures which will

examine the much larger amount of data on lower levels,

V. VISION MONITOR AND MODEL CONSTRUCTION

Our goal now is to somehow amalgamate the various forms of information
at a very early stage of the analysis so that a hypothesis of the scene
can be formed. This model will direct further processing of the data with
the goal of either completing the model or rejecting it and finding an al-
ternative mo@el. The desired output is an intermediate level detailed draw-
ing of boundaries and identification of objecté of any significant size.

The vision monitor is the system what will oversee the construction
of the model, utilizing ifAformation from all sources. The operation of this
visual system is highly modularized and basically allows a heterarchical
control structure [42]; each process can call other processes and the partic-
ular sequence of program interactions is dependent upon the data in the im-
age. Information is fed to the vision monitor which is responsible for the
final decisions on the model. The entire sequential vision processing of
the information is tailored for efficiency of computation and semantically

driven analysis. A schematic diagram of the system is shown in Figure 5.

*In the next section, we discuss the construction of a model of the
environment that satisfies the semantic constraints. Once the model is
initially constructed the contextual specialist must agree with the model
before automatically invoking the object procedure.
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Let us summarize the operation of the system that has been developed
up to this point. A digitized image is automatically prepfocessed in a
layered fashion. The upper levels are scanned for outstanding features by
cueing specialists. Any features that are discerned with some degree of
confidence call up a subset of vision procedures associated with various
candidate objects. These procedures analyze the visual information selec-
tively down to the lowest levels. If one or more of these procedures iden-
tify one or more candidates as being likely, then the semantic network can
be consulted. The presence of a sidewalk should have '"person" as one of
its strongest candidates (and not "tree'" or "building") and be investigated
first.. The construction of an internal model, as discussed below, would
tag .the hypothesis '"person" as potentially mobile and subsequent processing
of later scenes would tend to verify or reject this hypothesis. Once the
identity of one or more objects is tentatively fixed, information from the
semantic net in conjunction With high level processed data can direct fur-
ther visual processing. From this point on, éne can view additionmal pro-
cessing as construction of a model of the world being viewed. This analysis
will be under the control of the vision monitor although the type of pro-
cegsing by the systems described will still be taking place.

The semantic network will immediately be able to retrieve both general
and specific information concerning possible objects related to the identi-
fied objects or prominent features. The semantic net has been set up to
be applied simply and flexibly. The net can direct processing to the next
subset of object choices whose presence is most likely assuming the presence
of some given objects, as well as defining the probable subregions in which

they will appear. Prominent characteristics such as color and size might be
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accessed to determine which objects have these characteristics.

In the case of general information, the vision monitor will attempt
to correlate the semantically identified objects with those already sug-
geséed by cueing specialists but yot yet evaluated because of lower priority.
Any objects supported by information from both the network and the cueing
specialists can be examined more carefully by their respective vision pro-
cedures. During detailed processing by an object procedure, specification
could be made to examine the suitability of the context to the given object.
This would lead to suspension of the present analysis and accessing the sur-
rounding processed features and other related objects through the semantic
net and/or model for gross compatibility; several bad fits of this data on
the one hand, or likely matching characteristics of semantically related
objects and subregions on the other, would imply very different expectations
with respect to the presence of the object in the region originally examined.
0f course, this analysis can be continued recursively to any depth but .we do
not see the need or desirability of more than a couple of layers of recur-
sion. This illustrates the usefulness within a vision procedure of providing
alternative subprocedures of varying computational complexity, depending
on the desired confidence of the decision. If a topographical map is avail-
able, then the tentatively identified objects can be fitted to altermative
choices in the map. Then specific nearby objects can very quickly be checked
for consistency. |

Usually there will be many choices open to the vision monitor in con-
structing the model as well as the problem of competing alternative models.
In the latter case such ambiguity can be resolved by directing the visual
analysis to those regions or objects which will verify or contradict one or

more of the models. The coarse likelihoods of the presence of objects in
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various regions (some of which may be competing) provided by the vision
procedures must be used to direct the system to the globally most likely
interpretation of the image. If a map of the environment is available, one
might continue processing of the image in that area where the visual data

is most likely to disagree with the projected model. In any case the prob-
lem of ambituity between models is open to a variety of strategies and limi-
‘ted search procedures probably cannot be avoided.

The initial construction of a model of the image should speed by ;r-
ders of magnitude the further development of the model utilizing semantic
direction. We conjecture that erroneous models will be discerned very early
by inconsistencies between implied semantic data and the visual data. Thus,
it is hopéd that after the initial phases of analysis, the system should
perceive the image even more quickly. Thus we have the start-up problem; once
the system is in a steady state, the temporal relationships between objects
of a given scene will become more important than the spatial relations. Al-
though some level of detail might be glossed over due to lack of semantic
importance, most key aspects of an image should be focussed upon rather

quickly.

SUMMARY

This report outlines the motivation and design of a vision processing
system to operate on real-world outdoor images. The system utilizes both
pattern recognition procedures for analyzing visual data and higher level
AI techniques for applying world knowledge. By embedding conceptual know-
ledge and carrying out extensive parallel preprocessing, much of the visual
analysis is able to be directed in a top-down fashion. Hypotheses of what is

in the scene are formed rather early in the analysis. Then the model, prom-
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inent visual featu:es, and conceptual knowledge are used for affirmation '
and completion of the model or fejéétion in favor of an alternative model.

This design represents preliminary ideas on a vision processing project
that is being started. The COINS department at the University of Massachu-
setts has a flying spot scanner for digitizing 35 mm slides on a 256 x 256
grid in three colors. This is interfaced to a PDP-15 computer with a disk
and magnetic tape.. A color display system is now under construction.

The scenes that will be analyzed will probably be from the University of
Massachusetts campus. The initial reseaxch will focus on the preprocessing
of the image and the object recognition routines. The second phase of the
work will employ a small semantic network and a rough topological map of
the environment. It is envisioned that as the semantic net is enlarged and
the full capabilities of model-directed analysis are obtained, more complex

scenes without the use of a map will be examined.
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