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Abstract

Research on the system for recognition of object identity has con-
centrated on the neural detection of features such as edges, color and
movement (Hubel and Wiesel, 1962; Hubel and Wiesel, 1968), with the
assumption that subsequent recognition is based on the set of features
detected (Barlow, 1972). Since the visual field, in general, contains
many more than one object, at some stage prior to recognition of an object
there must occur a separation into subsets of the set of features detected,
such that each subset contains features corresponding to a single object

or a meaningful group of objects. This process of segmentation has not
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been studied neurophysiologically. Theoretically, it has been of im-
portance in artificial intelligence systems where pattern recognition
also involves segmenting out the optical data relevant to a single object
from an image of a scene containing many objects (Guzman, 1967). However,
the algorithmic and ﬁeuristic techniques developed for artificial intelli-
gence systems do ;ot explain how the activity of individual neurons in a
neural network can generate the segmentation of a visual scene.

In this paper, a model is developed for the segmentation of a visual
scene by excitatory and inhibitory interaction between feature-detecting
neurons in a neural network. Analytic equations are developed for the
neural mechanism of segmentation. The ﬁodel is tested by computer simu-
lation of the process of binocular depth perception in Julesz random-
dot stereograms (Julesz, 1971), where the segmentation process generates
the surfaces at different depths. Segmentation is performed on the basis
of feature similarity, that is, a segment is defined as a region of the
visual field where the same feature occurs at all points within that
region. The network detects feature similarity by responding with high

levels of neural activity in the corresponding region of the network.



SEGMENTATION PROCESSES IN VISUAL PERCEPTION:

A COOPERATIVE NEURAL MODEL

1. Introduction

Research on processes for fecognition of object identity has
concentrated on processes such as feature detection, pattern recognition
and visual search. The process of visual field segmentation, an import-
ant prerequisite in visual information processing, is generally ignored.
Neurophysio}ogical data for more than a decade (Hubel and Wiesel, 1962)
suggests that pattern analysis is based on the neural detection and
synthesis of pattern elements, such as edges, angles and texture, known
collectively as fegtures. Since the viéual field, in general, contains
more than one object, at some stage prior to recognition of the object
the set of features detected must be separated into subsets such that
each subset of features corresponds to a single object or a meaningful
group §f objects. The process of generating appropriate feature subsets

is termed here as 'segmentation'.

_ The process of segmentation has been of some theoretical interest
in the field of artificial intelligence, where pattern recognition involves
segmenting out the optical data relevan; to a single object from an image
of a scene containing many objects (Guzman, 1967). However, the algor-
ithmic and heuristic techniques employed in artifical intelligence
systems cannot explain how activity in networks of neurons can generate

segmentation of a visual scene.

In thé neurosciences, however, segmentation has elicited almost
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no interest, except for some early work by Gestalt psychologists on

the related problem of figure-ground separation (Koffka, 1935). The
current paradigm of neuronal action makes segmentation a particularly
difficult problem to study. Neurophysiology, which is one of the main
tools for the study of neural mechanisms of perception, is based on the
assumption of locélized connectivity. A neuron in one brain area pro-
Jects only to neurons in a corresponding spatial location within another
brain area. The result is that a neuron in the Qisual system, for
example in the visual cortex, is assumed to receivé~input only from a
localized region of the visual f%eld, generally known as its receptive
field. Segmentation, however, requires synthesis of information from
ﬁany locations in the visual field so that a decision can be made as to

which features in the input belong to a single subset.

Late;al interaction between neurons leads to modification of a
neuron's receptive field (Blakemore and Tobin, 1972). This localized
lateral interaction, however, also has a global effect, causing input

-at any location to eventually influence all neurons in that brain area.
It is this global effect through local interaction that is explored here

as a possible basis for the process of segmentation.

1.1. Definition of the Problem

The process of segmentation, that is, subdivision of the visual

field, may be based on a number of criteria. A region of similar feature

properties forms a 'primitive unity' (Hebb, 1949), with a high degree of
probability that the region corresponds to a single object. For example,

a& brown area is eventually recognized as a table, or a rough-textured

area defines the extent of a wall. Certain patterns of features, by
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enclosing .an area, may define a segment, for example, four lines ap-

propriately arranged may define a square-shaped segment.

Segmentation may also be a feedback process. For example,

computation on a group of features can define what other features should
‘be included in the group. This is seen in the perception of hidden
figures. Once a part of the figure is perceived, the rest of the figure

stands out from a meaningless background of lines and angles.

In artificial intelligence programs for object recognition,

segmentation is carried out by iteration of a series of processes.

Computation on a group of features causes generation of a‘hypothesisr
This specifies other features that should belong to the group. If these
features are found, the hypothesis is satisfied, and computation is
carried out on the remaining features. Otherwise, a new hypothesis is
generated, and a new attempt at segmentation occurs (Minsky and Papert,

1972).

Thus, segmentation criteria may vary from the very simple to the
very complex, and, in actual perception, segmentation probably occurs
repeatedly, at a number of different stages. He?é we examine, and
develop a model for segmentation on the basis of feature similarity,

the most basic process of segmentation.

Sections 2, 3 .and ‘4 develop and analyze the model which
is based on neural networks operating through parallel, distributed
computation. Section 5 1s a specific application of the model to the

| aegmentation of random-dot stereograms (Julesz, 1971), where eacﬁ segment
corresponds to a surface at a different depth from the observer. While
;;her models have been developed for the process of stereopsis (one of
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the processes by which depth is perceived), the model presented here
is neurally oriented in contrast to the more abstract approaches used
elsewhere. It also provides a neural basis for the cooperative, dipole

model of stereopsis presented by Julesz (1971).

2. The BiologicallBasis of the Model
The model of the segmentation process to be developed in this
chapter uses feature similarity as the criterion for ségmentation. The
aim is to develop a neural network capable of detecting features and
associating them appropriately so that the existence of regions of'
similar feature input can be perceived. In order to define the charac-
teristics and connectivity of such network, available psychophysical

and neurophysiological data are explored.

In a cluttered visual field, with objects of different sizes,
shapes and colors, the search for a target object is reduced if cues are
gi?eﬁ. These cues structure (or segment) the visual field, For example,
search for an orange object causes perception of a g;ttern of orange
objects on a background of other colored objects (Williams, 1966). Cues
such as color cause much more efficient segmentation than cues such as
shape, suggesting that segmentation on the basis of feature similarity
must use simple features, where calor is considered a simpler feature
than shape (for example, a square or triangle). Beck (1967) also comes
to the conclusion that simple features, such as brightness or orientation,
provide better "perceptual grouping" than more complex features such as

shapes.

]

Through neurophysiological observations it is known that features

that are detected more peripherally in visual processing are color, move-
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ment, texture‘(spatial frequencies), orientation and, perhaps, depth.
Detection of specific shapes appears to be the result of further proces-
sing (Hubel and Wiesel, 1962). We will assume that the features that are
detected peripherally are thé simplest and that, when a cluster of similar

features occurs in a region, this provides the basis for the formation of

a segment.

In figure-ground situations, the threshold for discrimination
of a feature is lower in the figure region than in the ground, and ac-
curate discrimination occurs earlier in the figure area. This may be
the effect of figural facilitation, ground inhibition, or a combination
of both types of processes (Weitzman, 1963). Further, when a cluttered
field is segmented on the basis of a color, a pattern in that color
stands out from the background, also suggesting some figural facili-

tation or ground inhibition effects.

We suggest that the neuronal correlate of figural facilitation
or ground inhibition may be, very simply, a higher level of neural
activity in the figure area and a correspondingly lower level of activity

-

in the ground.

In the corresponding case'of segmentation based on feature
similarity, we suggest that the occurrence of a cluster of similar features
genefates a high level of activity in the corresponding feature-detecting
neurons. Random activation of feature detectors results in low activity

levels in these neurons.

In the following section, a model of interacting arrays of

feature detectors is described. It is shown qualitatively that certain



simple patterns of excitatory and inhibitory connectivity between the
neurons suffice to generate the desifed high-activity regions correspond-
ing to Segments. The model is embedded into the overall pattern recog-

nition process.

A mathematical analysis of the dynamics of these interacting

arrays is developed in Sec. 4

[

3. Formulation of the Model

In the previous section, it was suggested that segmentation on
the basis of feature similarity is the earliest segmentation in the
visual system. The hypothesis is made that the neural basis for such
segmentation is simple -- cortical regions receiving similar feature
input show increased levels of neural activity because of excitatory
interaction between similar feature detectors.‘ The region of increased

activity defines the extent of the segment.

In section 3.1 we'show in a qualitative manner how inter-
acting neural arrays, through feature extraction, can lead to generation
of high activity regiﬁns corresponding to segments. The model of the
segmentation process is then embedded in the overéll pattern recognition
process (in Sec. 3.2 ), indicating how regions of high activity can
restrict the pattern recognition process to the region defined as the

segment.

3.1. Neural Representation of the Segmentation Stage

Figure 2.1 indicates the neural connectivity that causes regions
of gsimilar feature input to increase in activity. The process is one of
positive feedback (or cooperative facilitation). The neurons of this

stage correspond to the simple cells of Hubel and Wiesel (1962), that
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detect features such as edges, orientation, velocity and direction of
movement. Neurons that detect similar features are assumed to excite
one another. For example, all neurons that respond‘selectivelyvto the

color red interact by exciting each other.

Therefor?, as a first approximation, this stage can be conceived
of as a set of neural nets. Within a net, the neurons detect similar
features and interact through excitation. The nets do not interact
with each other because neurons detecting dissimilar features do not in-
teract. In the mathematical analysis developed in Sec. 4, . these non-
interacting nets of feature detectors are modélled as separate arrays,

with each array containing only neurons detecting similar features.

A population of inhibitory interneurons, with wide dendritic
and axonal spread for each neuron, is interspersed among these feature
detectors. (In figure 1, they are shown in a separate array for
siﬁplicity, to aid in showing the flow of information). These inhibitory
interneurons receive input from the activated feature detectors and
inhibit all the feature detectors in the corresponding location. The
net effect is that activation of a set of feature detectors reduces the
activity of all the other feature detectors in that region. However,
because of the excitatory interaction between similar feature detectors
(or positive feedback) a region of high activity tends to expand its
boundaries. If the input to neighbouring similar feature detectors is
subliminal (that is, input exists but is not sufficient to activate the

-neuron), the excitatory influence of the nearby high-activity region

!

causes these neurons to become activated too.

Thus, the effect of the connectivity diagrammed in Fig. 1 is
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twofold:

a) a region of near-uniform high activity is developed, corresponding
to the existence of a segment characterized by a specific feature, even
if the input ﬁo this region is nonuniform.

b) spurious activation of other feature-detectors in éhat region is

suppressed.

A detailed mathematical analysis and simulation is presented

in sec. 4'

«3.2. Embedding the Segmentation Stage in a Pattern Recognition
Process .

The segmentation stage described in Sec. 3.1 . can generate
regions of high activity corresponding to the occurrence of a cluster
of similar features in the visual input. - However, in order.to event-
ually recognize an object, this region of increased activity must be
used by a later stage which carries out a pattern recognition procedure
on the region of visual input defined by the increased activity. The
actual process of object recognition is still not known but current
theories are based on the assumption that the detection of complex
combinations of features must underlie any such process (Barlow, 1972).
In this section, we show how regions of increased neural activity can
guidg information flow so as to regtrict pattern recognition procedures

to definite régions of the visual input.

While the segment is defined by a specific feature such as

its color or texture, it generally contains other features as well, such

as the lines defining its edges, its depth from the observer, and any

details on its surface. All these features contribute to the process
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of object recognition.

For the process of segmentation to.be'completed, computation
must be restricted to the features lying within the region of high
neural activity, and features lying outside this region must be
excluded. Hence the occurrence of a region of high activity must in

some way separate the computation on the features lying within and

- outside this region.

Figure 2 outlines one possible scheme that achieves spatial
separation of computation on these two regions. The segmentation stage
Projects to two other stages. Stage 1 has high threshold neurons and
can only be activated in the region corresponding to high activity in
the segmentation stage. Object recdgnition is carried out on the input
‘to stage 1. The segmentation stage also projects to the lower thres-
hold stage 2. The region corresponding to high activity in the segmen-
tation stage receives inhibitory input from stage 1. Thus stage 2

computes only on input from outside the segment region.

Separation of computation may be achieved by other means.
Temporal separation, for example, may occur if information from regions
of high activity progresses through successive stages with shorter

latencies than does information from regions of low activity.

Stage 2, which receives input from all areas -outside the
segment region, may also carry out a recognition procedure, and may be
the location at which the perception of 'ground' occurs (while per-
ception of the 'figure' occurs in stage 1). A characteristic of the

'ground' is that, even though it may be interrupted by several objects,
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it 1s still recognized as one entity. Input to stage 2 is interrupted
in the region corresponding to the segment which projects to stage 1,
gnd any recogﬁition procedure must span this gap in the input. It is
possible that a similar mechanism applies to the 'completion' that is‘
seen across smalllsco;oma. The blank in the visual field that should
be produced by the scotoma is often not perceived, and the ground is

perceived as continuous across that region. However, any details

lying within that region are lost.

In general, there is more than one segment present in the
visual field. These give rise to high-activity regions at different
locations in the different feature-detector arrays. Again, only the
region with the highest activity pProjects to stage 1 and is recognized.
For the pattern recognition‘procedure to operate on the other segments
as well, a feedback inhibitory process must exist which inhibits those

regions in the segmentation stage which have projected to stage 1.

4. Mathematical Analysis of‘the Segmentation Stage
Figure 1 outlined the neural connectivity of the segmentation
array. Neurons detecting similar features have eicitatory interconnec-
tions. A population of inhibitory neurons is interspersed among the
feature detectors, receiving input from all feature detectors and inhib-

iting all feature detectors non~-specifically.

Input to the segmentation array is a spatial pattern.of light
intensity. Feature detectors in the segmentation array extract features
from this inténsity pattern. Corresponding to each small region of the
visual field, a number of features are extracted by the array. Some of

- .
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these features are common to a number of adjacent regions, and form

the basis for segmentation.

The following secéion presents a mathematical analysis of the
dynamics of the segmentation array, showing that:
a) when a number of different features are extracted from a region of
the visual field, activated neuroﬁs detecting similar features tend to
increase in activity because of their excitatory interconnections (posi-
\tive feedback).
b) activity of the other feature detectors in that region is reduced

because of the non-specific inhibition and the lack of other activated

neurons detecting similar features.

_ Thus segmentation is achieved by a process of facilitory

e
concensus (between similar feature detectors) and inhibitory suppression

(against other, scattered feature ‘detectors).

The interacting feature detectors are formally defined as N
disjoint subpopulations of excitatory neurons and one subpopulation of‘
inhibitory neurons (Fig. 3). The excitatory subRopulatiOné do not
interact with each other. Howevér, within each of these subpopulations,
the neuronal interaction is excitatory. The N excitatory subpopulations
also excite the single inhibitsry subpopulation. Each inhibitory neuron
inhibits other neurons in its topographic area, inclﬁding dther inhib-

itory neurons.

Each excitatory subpopulation consists of neurons which detect
identical features. Thus, there is excitatory interactionhbetween‘

neurons detecting identical features but no interaction between neurons
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detecting different featureé, except through the population of inhibitory

neurons.

4.1. Dynamics of Population Interaction

In this section, the interaction of N excitatory éubpopulations
and one inhibitory subpopulation is investigated. The parameter of
spatial location is ignored. Hence, it is the behavior of ensembles
that is being considered. 1In Sec. 4.2, we will return to the investi-

gation of spatial arrays.

Each ensemble is composed of discrete units, namely neurons.

The quantity of interest is the number of neurons activated in each

k|

the subpopulation or ensemble of interest. Equation 2.1 shows how this

ensemble. This is termed E,, where j=1,2,...N is the index denoting

quantity, E,, is determined by the number of aEtivated neurons in each

J

ensemble at the preceding instant. For the purpose of analysis, we

also choose to examine the system at discrete points in time.

Just as gj denotes the number of active neurons in the jth
excitatory ensemble, I denotes the same quantity in the inhibitory
- subpopulation. Since the number of active neurons cannot fall below

zero, Ej and I are never negative. P, denotes the feature input to the

, ]
jth ensemble, and Q denotes the input to the inhibitory ensemble.

Q may be considered a bias input related to the level of arousal.

The degree of interaction between the ensembles is specified

s b,y c,, d

b RO R DA
In Sec. 2.4.2, the definition of these factors is extended to make '

by theweighting factors a » & and h, as shown in eqn. 2.1.

them spatial weighting factors.
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Given the number of active neurons at time t, activation

at time (t+l) is given by

Ej(t+l) = aj.Ej(c) - bj.I(t) + cj.Pj(t) (1 )
where j=1,2,...N, and
+ N )
I(t+l) = I d,.E,(t) - g.I(t) + h.Q(t) . ( 2 )

At equilibrium, (that is, for Ej(t+l) = Ej(t), I(t+l) = I(t),
for all t), for constant Pj and Q, a2 unique solution exists for this
set of simultaneous equations. .The exact solutions for the various Ej

and I are functions of P, and Q.

3

The behaviour of these interacting populations is examined in
greater detail for the system with only two excitatory subpopulations,

that is, for N = 2,

For N = 2, eqns. 1 and 2 - reduce to the following set:

Ej(t+l) = a;.E (t) + by.I(t) + ¢ P (t) (3 )
E2(t+1) = a5.E,(t) + by.I(t) + c2.Pp(t) (4 )
I (t+1) = d1.E1(t) + dp.Ep(t) - g.I(t) + h.Q(t) (5 )

Assume now that

ay = a3 £ a, (6 )
b1 = bz = b, and (7 )
dy = d; = d. v 4 (8 )

This implies that the excitatory subpopulations have identical inter-

action parameters. With these conditions, the situation at equilibrium is
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El d acEl ket b.I + c.Pl ’ ( 9 )
E2 = a.E2 -~ b.I + ¢.P; , and { 10 )

I =d.(E: +E;) - g.I + h.qQ. (¢ 1)

Solving for E;, E; and I gives

- ‘e _ bde "~ _ bde bh(l - a)
E; {1_a A 1P =i P2 - Qs ( 12 )
a {-—C bdc _bde , _bh(l - a

2
and I =9£1A—‘31.(r, + Pg) +l‘-§1—£—‘9—.q , (.14 )

A 2 (1-a){(1-a)@+g) + 2pd} . (.15 )

From tbese results, the following conclusions can be drawn:
a) If P, = P,, then E: = Ez, because the populations have identical
parameters.
b) Increase in P, causes an increase in E; and a decrease in E;, when
i—f—; >'9%£; (It.is easily shown that this condition is satisfied when
all the coefficients are positive, and a < 1.)

¢) The ordering of E; and E, corresponds to the ofdering of P, aﬁd Py,
that is, if P; > Py, then E; > E2, for the same coqditions as above.
d) for“the isol#ted excitatory population, given by

E(t+l) = a.E(t) + c.P(t), ( 16 )

the equilibrium value of E is

Ea—c_

' : 17
I-at" ( )
Thus, interaction with other excitatory populatiéns, via an_inhibitory
population, reduces the equilibrium value of E; and E,.

e) A change in input, 6P , causes the changes -

C bde ' (

6E = { 77— -2551.6P, and 18 )
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6E; = - 2C.p, ( 19 )

c
1-a’

Therefore, SE; - 8E; = &P, . ( 20 )

For the isolated population, a change 8P causes the change

= L
l1-a2a°

6k oP .

Thus, though interaction lowers the absolute value of activity,
the amount of change in activity for change in input is not altered.

Hence the relative amount of change in activity is increased.

However, we cannot say yet whether this equilibrium point
is stable or not. The stability of the system can be investigated

by determination of its various eigenvalues.
[Given a system characterised by the equation
x(t+1) = A.x(t) + B.u(t) (21 )

where A and § are matrices, x and u are vectors, the stability of the
system can be expressed in terms of its eigenvalues. For the autonomous

system, that is, u(t) = 0 for all t,
x(t+l) = A.x(t) . ’ ( 22 )

The system is stable if the eigenvalues, Ai; of A, satisfy the following

condition:
IAil < 1, for all of the eigenvalues.

For the system with n excitatory subpopulations,

Fa; -bl-
az -bz - ’
A = . C 23 )
- a =b
n n
.,dl dz... dn -g_j
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The characteristic equation (A - AI) = 0 can then be solved for its

eigenvalues. ]

In solving for the eigenvalues of the system, we first

obtain the characteristic equation

_ls + Az(—al—az-i»g) + )\(-a2g+bgdz+a1az-alg-b1d1) . N

+ (ajazg-aibada+azbid;) = 0 ( 246 )

For a;uazéa, ( 6 )
by =by=b, . (7 )

dy =d; =d, ( 8 )

the eigenvalues are found to be simply

' &, a’ and -gn

Both a and g are positive as assumed befére. Hence the
system is stable as long as

asl. . (25 )
This implies that, if the jth population receives no external inputs
from other neural populations, then Ej(t+1) < E(t) for all t. 1If

a <1, the activity of the population decreases to zero.

It is interesting that, in spite of all the interaction
between the populations, stability depends only on the internal

dynamics of each population.

A computer simulation of the system with two excitatory
populations was carried out. Figures 4 and 5 show the dynamics

for a step increase in input P;. In Fig. 4, these populations

-are isolated and do not interact with each other, Increase of the
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input P; causes an increase in the corresponding activity level

E1, but naturally has no effect on E;.

Introduction of a common inhibitory population (Fig. 5),
through which the excitatory populations interact with each other,
dramatically alters the neural dynamics. Now, an increase in P,,

with P, fixed causes a corresponding increase in E;, and a decrease

in Ez-

It is this suppressive effect that we will utilise in
our model, to show how spurious feature detection activity in one
subpopulaton of neurons can be suppressed by the existence of

greater activity in some other subpopulation.

By moving into the spatial domain, we observe not only
the suppression of spurious input, but also the ability of large
clumps of high activity to fill in the gaps between these clumps
by exciting neurons in these gaps, and thus building Qp and filling

out the shape of the segment.

4.2. Interaction of Spatial Arrays

The concept of interacting populations can be generalised
to that of interacting spatial arrays. Location of a neuron becomes
important, and we assume that interaction is greater between near

neighbors than across a large distance.

This is represented by making the Ej and I functions of
space as well as time. a, b, d, and g then become spatial parameters.

Therefore,

-
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Ej(x,y;t+1) = éf a(€,§)~Ej(x—E,y*C;t) dédg
4

- éf b(€,C)'I(x-€’y-c;t) dEdC
14

+ c.Pj(k,y;t) . ( 26 )

where j=l,2,...N; and j represents the jth layer of excitatory neurons.
Note that the N excitatory populations have identical interaction

parameters. Also,

N
I(x,y;t+l) = [/ d(,7). Ej(x-E.Y-C;t) d&dz
B 48 4 J=1

- éf 8(€,0) . I(x~&,y-z;t) dEde
»C

+ h.Q(x,y;t). ' (¢ 27 )

The limits for & and ¢ are defined by the individual functions
a, b, d and g; c and h are retained as constants because any actual

spatial divergence of input can be rewritten so as to obtain the

total input to each point- (x,y).

It is no longer possible to solve directly for the Ej and
I when Pj and Q are spatially varying inputs and there is lateral

interaction in the arrays.

The stability criterion for the array is very similar to
that obtained for the neural population, and can be explicitly
stated when Pi(x,y;t) and Q(x,y;t) are constant and uniform over

the array, thus causing Ej(x,y;t) and I(x,y;t) to be independent

of spatial coordinates. Thus

Pj(x,y;t) = ?j(t) = Pj, constant v ( 28 )
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"QGx,y;t) =0Q(t) = Q, constant ( 29
Ejgg,y;t) = Ej(t) R and ( 30
I(x,y;t) = I(t) . ( 31

Substituting in the previous equation,

Ej(c+15 = E,(®).J) a(£,0) 4Edg - I(t).SS B(E,L) dd

£,C £,C
+ c.Pj , and ( 32
N
I(t+l) = L Ej(t).ff d(g,z) d&dr - 1(t).SS g(&,L) dEdr
j=1 €,C £,C
+ h.Q . ( 33

Solving for eigenvalues as before, one obtains the conditon for

stability:
Jf a(E,r) d&dg < 1 , and ( 34
£,%

- /S g(E,0) dEdz <1, ( 35
Ea; . )

that is, when an array receives no input from other arrays or from
outside, activity in the array should die down (<1, condition) or

should remain constant (=1, condition), but should not increase.

Note that, though this criterion for stability is obtained
for the case of an'array_with uniform activity, it is valid even

- when the activity in an array is non-uniform, as is shown below.
Consider the isolated array

E,(x,y;t+l) = JJ a(§,T).E, (x-E,y-C;t) dEAT . ( 36
j E.C j ' !

Activity at a point (x,y) increases, that is,
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‘Ej<x,y;c+1> > B, (x,y50) (37 )

only.if

i é(E,c)-E.(x-E,y-Cit) d&dg > E, (x,y;t) . ( 38 )
E\C J J

For those neurons surrounded by more active neighbours, this condition
may hold. However, there.is at least one neuron, the most active one,

for which this does not hold. Say it is located at (x',y'). For this

neuron,
Ej(x',y';t+1) = éf a(€,0) .E(x'-§,y"-z;t) d&dg . ¢ 39 )

G
But, the right hand side < E(x',y';t).fS a(E,z) d&dg ( 40 )

€,T

since E(x',y';t) is the highest level of activity. Also

J/ a(§,g) d&dz < 1 (stability criterion) ( 41 )
39 4

Therefore, the right hand side of eqn. 2.39 is less than or equal to

E(x',y';t).
Hence, ,Ej(x',y';t+l) £ E(x',y";t) , ( 42 )
and the activity of this neuron does not increase.

Even if the activity of other neurons reach this value, the

inequality of eqn. 2.40 becomes an equality, that is,

Ej(X’,y';t+l) = E(x'.y';t)-éf a(g,r) d&dg ( 43 )
sC - '

and the stability criterion is still satisfied.

Bagically, the preceding analysis states that the activity of

any neuron in an array cannot increase above the activity level of the

-26-



most active neuron in that array when there is no external input.
i

4.3. Simulation of Interacting Spatial Arrays

A system with two identical excitatory arrays and one
inﬁibitory array was simulated. The arrays are one-dimensional, and
composed of discrete units rather than being a continuous sheet. For
the present, each such unit is considered a neuron, though this is

not necessary.

The spatial functions a, b, d, and g may be of any form
such that interaction falls off with distance. For computational
ease, triangular shapes were chosen (Fig. 6). The inhibitory
parameters (b and g) extend over a larger distance than the excitatory
parameters (a and d), that is, the inhibitory influence of a neuron
extends further than its'excitatory influence. If the range of excita-
tory influence is greater, travelling waves are set up, with the

excitatory wavefront always advancing ahead of the inhibitory one.

Because of excitatory lateral interaction between neurons
in an array, it is expected that slightly separated regions of high
activity will tend to spread and coalesce with each other until the
total extent of the high activity region approximates the extent of
the segment. Further, because of the indirect reciprocal inhibition

between arrays, spurious input should be suppressed.

Figures 7 and 8 show the spatio—temporal dynamics of
such arrays. In Fig. 7, input P, is higher than input P, at all
locations except one. Here we have spurious activation of- a neuron

1y the incorrect layer, while the input to the desired layer is low.
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Fig. 6. Spatial Weighting Functions for the Simulation of
Interacting Spatial Arrays ‘
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The sequence of diagrams shows how the spurious input is suppressed,
and how the gap between two regions of high activity, in the E, layer,
is closed. Only the first eight iterations are shown, but the effect
is strong enough to reverse the normal order of activation levels at

that location, that is, though P, > P;, at that location, E; > E;.

Suppression of the spurious input is assisted by the fact
that activity levels in neighboring neurons decrease over time. However,
there ié some retardation of suppression because P, (and henée E;), at that
location is lower than over the rest of the layer. Similarly, filling-in
of the gap in activity in the E; layer is dependent on the high activity
levels in surrounding neurons. The fact that P2, and E;, are ﬁigh at

that location retards and reduces the amount of filling-in achieved.

However, if the gap between the regions of high activity is
too big (Fig. 8 and 9 ), no such reversal of order of E; and E; occurs,
that is, where P, is greater than P;, E2 is greater than E; (neglecting

edge effects). The regions of high activity remain separate.

In Fig. 8, P; is high except in the region of the gap. How-
ever, in this gap area, thére is an increase of P,. E; shows a correspond-
ing increase, resulting in a localized region of high activity in the E,
layer. Thus, a gap in an input to one layer, togéther with higher input
to a corresponding location in another layer, cauées the development of a

new region of high activity, a new segment, as long as the gap is wide enough.

In Fig. 9, the gap in the P; input is not filled by an increase
in any other input, so that no new region of high activity develops. How-
ever, the space is too wide to be bridged by the excitatory influence of
the two regions of high activity in the E; layer. Thus, without a
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sufficient‘substrate of input, activity cannot spread far outwards

from nuclei of high activity. (This is true in a linear system, and
may be different in a nonlinear onme.) Therefore, in order to form the
shape of the segment, besides localized regions of high input, scattered
input should be available in order to bridge the gaps between these

regions. .

5. Application of the Model: Perception of Depth Surfaces in Julesz

Random-Dot Stereograms

Random-dot stereograms consist of two slightly different, two-
dimensional random-dot pictures, one presented to each eye, whose synthesis,
at some location in the brain, causes perception of a three-dimensional

scene (Julesz, 1971).

Stereopsis, or the perception of the third dimension, is based
on the existence of retinal disparity between the input to the two eyes
(Fig. 10). All points on the fixation surface project to homotopic
points on the two retinas. However, a point not on the fixation surface
projects to two non-homotopic retinal locationms. jhe retinal disparity
between these locations is the retinal distance by which they fail to
be homotopic. The amount of retinal disparity is a measure of how far
the point lies before or behind the fixation surface. (See legend of

Fig. 10 for a more detailed exposition.)

The disparity can be detected by the visual system since some
neurons in visual cortex fire maximally when an optical stimulus (e.g.,
a bright dot or bar) illuminates non-homotopic points on the two retina.

For different neurons, the firing is maximal for different disparities
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Fig. 10. The Vieth-Muller Circle defines the locus of points
in visual space whose images fall on homotopic points
in the two retinas, such as A; and Az. Point B, which
is not on the Vieth-Muller Circle, projects to the
non-homotopic points B, and B,. The distance A,;B,
defines the retinal disparity of B. .
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~ (Barlow, Blakemore, and Pettigrew, 1967).

Consider the simplest random-dot stereogram -- a square sur-
face 'floating' above the plane of the background. The scene has surfaces
at two depths,.and generates in general two different retinal disparities.
I1f the eyes fixate on one of the surfaces, the corresponding disparity

becomes zero.

The stereogram is produced in the following manner. A random
two-dimensional pattern of dots is generated. This péttern provides the
input to one eye. If the other eye receives the same input, the two
patterns can be exactly matched. However,'for the stereogram, the input
for the second eye is obtained by using a pattern identical to the original
pattern.but with a square region of dots, in the center, displaced later-
ally by a fixed amount. Now the inputs to the two eyes no longer match
in the center, that is, the central square generafes ; retinal disparity
which is perceived as a aisplacement of the square out of the background

" plane.

Perception of retinal disparity is based on the matching of
pairs of dots, one from each eye. Since every dot is the same as evefy
other dot, tremendous ambiguity in matching occurs. Each dot may parti-
cipate in a number of such pairs, and each such pair corresponds to a

specific retinal disparity.

Perception of a flat surface implies that the same retinal
disparity is perceived at all points on the surface. However, ambiguity
in pairing causes production of a variety of retinal disparities, includ-
ing the correct one. Therefore, perception of the raised central square

depends on extraction of the disparity that is common over this region,
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as well as suppression of all spurious disparities. This is analogous
to thg problem of segmentation, where extraction of a segment is based
on the search for a region where all the locations possess some common

feature.

5.1. Computer Simulation

In this section, the segmentation model is tested through its
application to the perception of surfaces of different depths in random-
dot stereograms. A surface, at a specific depth from an observer,
presents the same r;;inal disparity over its entire extent. Thus, a
segmentation process detecting similarity of feature would segment out

regions of the visual field such that the disparity within each region

is constant.

The test is carried out by means of a computer simulation. It
is predicted that, if the segmentation process is effective, the level of
activity in the disparity-detecting neurons will reflect the existence of
- surfaces at different depths from the observer, by the development of
corresponding regions of high activity in the appropriate disparity
detectors. Disparity detectors not corresponding to an existing surface,
but activated by a match between two non-corresponding dots (one from
each eye), will have their activity suppressed, so that incorrect percep-

‘tion of disparity does not occur.

The system is simulated on the computer, as shown in Fig. 11.
For simplicity of computation, the neuronal arrays are assumed to be one-

dimensional. '

-

The system consists of two retinas, whose output is fed to the
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feature detectors, In this case, the feature detectors are disparity
detectors. The five arrays of disparity detectors interact with the
single inhibitory array to generate the segmentation process. All

disparity detectors within an array detect the same disparity.

Each retina is modelled as a one-dimensional array of 100
receptors, receivi;g a binary pattern of light intensity. The input to
the retinas is a one-dimensional random-dot Stereogram, analogous to
the two-dimensional case of a square surface raised above a background
field. It consists of a line with a central raised region. The left

and right retinas receive the left and right patterns of the random-dot

stereogram, respectively.

A random one-dimensional binary pattern of length 100 is

. generated as the input to the left retina. The right retina receives

| ﬁhe same input as the left retina does except in the ﬁiddle region,

where the central 20 units of the pattern have been shifted to the left
by 2 units. Thus, when the input patterns to the left and right retinas
are compared, the central region shows a disparity of -2 units (because
one pattern has to be slid 2 units to the left to match with the other)
while the regions on either side have a disparity of 0 units, giving rise

to the percept of a line, with the central region raised above a background.

The five disparity-detecting arrays, each of length 100, detect
disparities from -2 to +2 units. Each disparity-detecting neuron receives
two inputs, one from each retina. A neuron, at a location i, and.detect-
ing a disparity of n units, receives an input from the j-th locat;on in
the left retina and from the (3-n)th location in the right retina. The

two inputs are compared, and if they are the same, the disparity detector
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is activated. Therefore, a neuron detecting a disparity of n units
compares an input from the left retina with an input from the right

retina which has been slid to the right by n units, and extracts the

modulo-2 sum as shown below:

Disparity (j) = Eye J) ®Eye (1+5) ( 44 )
. left right

for i = -2 to +2, indexes the disparity arrays corresponding to
disparities from -2 units to +2 units

j =1 to 100, indexes the location in the arrays.

The output of interest is the final state of activity of the
neurons in the disp;rity—detecting arrays. The theory predicts that the
array of neurons detecting a disparity of 0 units will show high activity
in the regions corresponding to the background line (i.e., from locations
1 to 38 and 59 to 160), while the array detecting a disparity of -2 units
will show maximum activity in the center (from locations 39 to 58),

corresponding to the raised central region of the line. Activity of any

other disparity detector is undesired and will be'suppressed or reduced.

Figure 12a shows the inputs to the two retinas. The initial
state of activity of the neurons in the disparity—éetecting arrays 1is
shown in Fig. 12b. Each neuron is in one of two states, indicating
whether or not it is receiving disparity input. As can be seen, it is
difficult to tell which disparity inputs correspond to an actual surface
and which to spurious activation of disparity detectors by the matching

of non-corresponding dots.

Figure 13 {is the activity of the disparity-detectors in' the
steady state. Three regions of high activity are clearly visible. Array

E), detecting a disparity of -2 units, shows greatest activity in the
-39~
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Fig. 13. Activity in Disparity Arrays in Response to Random-dot
Stereogram Inputs. Here the Response of each Neuron is
Linear, as described in the text.
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cenﬁer,Ainﬁicating a central raised surface (or line) in the input pat-
tern. Array E;, on the other hand, has two regioné of high activity, onev
on each side of the central peak. This array detects disparities of 0
units, thus indicating two flanking surfaces (or lines)Alying behind the

central raised region.

It shoulé be noted that some spurious activation of disparity
detectors in other arrays does occur. However, the levél of activation
is far less than the activity levels developed in the relevant regions
of arrays Ey and E3, and is at or below the level of activity that would
Se developed with noise input. This occurs both because of the suppression
exerted by the high levels of activity in 'E; and E; and also because of a
lack of the enhancement of aétivity which occurs when adjacent disparity

detectors are activated.

So far, each neuron has been modelled as a linear threshold
element. In a subsequent simulation, the effect of nonlinearity was

investigated. The nonlinearity introduced is depicted in Fig. 14.

Figure 15 shows the effect of the nonlinearity on the final
levels of activity in the disparity detector arrays. The regions of high
activity, in arrays E; and Ej, are even more clearly. visible. Spurious
activity is further reduced. However, the basic éharacteristics of the

activity pattern are similar to that of the linear case.

The introduction of nonlinearities in the response of both the
excitatory and the inhibitory arrays leads, under certain conditions, to
ghe occurrence of bistable disparity detectors, or disparity detectors
with hysteresis. (Wilson and Cowan (1971) have developed the analysis
of such a system in the case of a single excitatory and a single inhibi-

tory array.) In such a system, the regions of high and low activity are
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even more clearly defined, and the extraction of segments occurs very
suddenly. Such a system is a 'cooperative' one, because although hy-
steresis retards a change of state in the disparity detectors, when

some of the detectors switch to a state of high activity, they facilitate
a change of state in their neighbors. Segmentation, in such a system,

is resistant to adaptation of the input, because of the characteristics

of hysteresis.

While nonlinearities can improve the performance of the seg-
mentation model, the simulation shows that the basic requirement of
segmentation, that is, the development of appropriate regions of high
activity in the arrays of feature detectors, can be satisfied by the
kind of neural interaction process betwegn linear, threshold elements,

proposed in the earlier sections.

5.2. Limitations and Extensions of the Model

We will consider two more complex Julesz figures; namely, the
step pyramid, because it possesses a number of flat surfaces at different
depths, and the sinusoidal trough, because of its smooth change in dis-

parity.

th is it that once one of the stages of the step pyramid is
perceived, the others become apparent so much more rapidly?‘ Why is it
4that once the slope at one point of the trough has been determined, the
remainder of the changing slope is easily séen? ‘Can a theory of seg-
mentation based on similarity, as suggested above, explain these

phenomena?

First we try to work within the framework of the theory with

-45-



disjoint sgbpopulations of neurons, each subpopulation tuﬁed to a dif-

fereqt feature or class of features.

'

In the case of the sinusoidal trough, the change in disparity

from point to pbint may be small. Detection of a épecific disparity
excites neurons in the corresponding subpopulation. If there is some
distribution in thé disparities detected by this subpopulation, detection
of one disparity makes detection of other disparities, within that distri-
bution, easier. However, if the feature distribution for the different
subpopulations are disjoint, detection of some region of the trough does

not facilitate detection of some other region.

Thus, one possible extension to the model is to permit each
subpopulation to have a broadly-tuned disparity detector function, over-
laﬁping with the disparities detected by other subpopulations. Conse-
quently, the subpopulations will no longer be disjoint. This may be

formalized as follows:

E(f;x,y;t+l) = J/S a(n;&,5) .E(f-n;x-E,y-C;3t).dn.dE.dg

née -

-1(£) /S b(E,) . I(x-E,y-L;t).dE.dL

(14

+ e B(f5x,y5¢) ( 45 )
where f is the feature dimension,

1(£) is defined as unity for all values of f,
and a (n;€,%) is a unimodal function, peaking at (f;x,y)

and indicates that a neuron receives most irput from

those neurons that are nearest to it, spatially, and

'

along the feature dimension.
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Mathematically, the variable f is similar to the variables

x and y, and the segmentation model is simply extended to a higher

dimension.

In the case of the step pyramid, a segmentation model with

disjoint subpopulations, detecting different features, does not allow
detection of one d;pth surface to facilitate detection of the adjacent
step, unless the steps are very shallow. The extended model, with the
subpopulations no longer disjoint, does permit such facilitation. The

facilitation decreases with increasing height of the steps.

This extension of the model is a testable one. The time taken
to detect the step pyramid can be measured, as a function of the height
of the step. Figure 16 1indicates the expected monotonic relationship

between detection time and the height of the step.

- Prior knowledge of what the figure is contributes to the
speed with which a Julesz figure is detected. Julesz (1971) suggests
that this is based on learning the appropriate sequence of vergence
movements. Each vergence movement brings a new surface into the
fixation plane so that it can be perceived. An alternative approach

can be based on the expectation-tuning of the function a(f3ix,y).

The function a(f;x,y) is a unimodal function indicating that
a neuron receives most input from those neurons that are nearest to it

spatially and along the feature dimension.

For the detection of flat surfaces, at different depths,
a(f;x,y) should be sharply tuned along the feature dimension, that -is,
for a particular disparity but broadly tuned in the x-y plane. Such a

-~
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system searches for large surfaces which show very little change in

disparity. -

On the other hand, when the surface slopes away, the disparity
changes smoothly with location. One possibility is an a(f;x,y) more
broadly tuned along the feature dimension. Another alternative is that
the tuning along the feature dimension remains sharp, but is a function
of (x,y). For example, a disparity detector receives from neurons
detecting small disparities on one side, but, from the other side, it
receives from those detecting large disparities. A third, and interesting
alternative is the possible existence of neurons detecting changes in
features, analogous to neurons in the auditory system sensitive to a
sweep in frequency, or to neurons in the visual system sensitive to
movement. Thus a(f;x,y) can be extended to a(f,f;x,y), and tuning for

a slope consists of sharpening the tuning for f,

This tuning of a(f,f;x,y) may be self-organizing, besides being
actuated from higher levels. Detection of a disparity, or a disparity
change, at some location, causes tuning of the feature detectors at that,
and nearby, locations thus facilitating further detection. As the region
of accurate detection spreads, the tuning effect spreads in advance

of it.

.5.3. Comparison with Other Models of Stereopsis

This segmentation model applied to stereopsis differs from others
in that it is not formulated expressly for stereopsig. In the general
case of segmentation, it proposes a neural basis for partitioning or
segmenting the visual field such that each segment_is defined by a single
feature, for example, a color or a texture. In the particular case of
stereopsis, the retinal disparity is the feature defining the depth of
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different surfaces from the observer. From experiments with random-dot
stereogramé, Julesz (1971) has shown that a cluster of similar disparities
in some location of the visual field leads to perception of a surface

of the correspohding depth even if there are no other cues indicating

the presence of the surface.

Models of the phenomenon of stereopsis are better developed
than those for segmentation. The most detailed model of stereobsis is
the spring-coupled dipole model of Julesz (1971). Others are a model
of binocular fusion by Dodwell and Engel (1963), Sperling's hypothesis
of 'stereopsis energy' (1970), and a computer model, AUTOMAP-1, by

Julesz (1962).

The‘binocular fusion Qodel presented by Dodwell and Engel
(1963) is based on parallel processing. They postulate the simultaneous
processing of many depth planeé, ﬁith the plane containing the most
activity being the one that is perceived. The concept is similar to
tﬂe'one proposed here for segmentation, but the model does not discuss
possible neural mechanisms that explain the development of high neural

activity for a particular depth plane.

The hypothesis of 'stereopsis energy' (Sperling, 1970) and
thevmodula;ion of stereopsis energy by image disparity is of conceptual
;importance. However, it is a global model, not concerned with the effect
of local variations in image disparity. Further, it does not propose
a neural mechanism for the determination of stereopsis energy or image

disparity.

The computer model, AUTOMAP-1 (Julesz, 1962) opefates on the
basis of a difference-field. The left and right retinal images are
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superposed, and subtracted point-by-point from each other to give a
difference field. The images are then shifted laterally with respect

to each other and the process is repeated for many such shifts, each
shift corresponding to a different disparity. This method detects
clusters of similar disparity, and thus detects surfaces at different
depths. Note that there is no further interaction between the difference
fields. In the segmentation model proposed here, AUTOMAP-1 corresponds

to the first step of initial activation of the disparity arrays.

The spring-coupled dipole model (Julesz, 1971) is of much
greater richness and can explain many of the phenomena associated with
stereopsis. The magnetic and spring coupling between the dipoles permits
interaction that is not permitted in the AUTOMAP-1 model, thus generating
properties such as a maintained perception of depth surface under transient
occlusion of the visual input, or the alternate perception of ambiguous
surfaces. One drawback of the model is that a serial search must be
made through the various disparities to locate clusters of similar
disparity. Further, the elements of the model, springs and dipoles, are

not explained in neurophysiological terms.

The application of our segmentation model to stereopsis generates
a system with characteristics similar to those of the spring-coupled dipole
model, but with the added advantage that the elements used are neural
and that all processing is done in parallel. Facilitatory interaction
between similar feature detectors and inhibitory interaction between
detection of dissimilar features produce system characteristics analogous
to the facilitatory (attractive) spring coupling and the inhibitoryA
(repulsive) magnetic coupling. Further, the versatility of the excitatory

feedback factor a(f;x,y), in the extension of the mathematical model
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(Sec. 2.5.2), allows investigation of complex forms of interaction that
may be difficult to model with the spring-coupled dipole system. Further

mathematical and computer analysis of the system is required.

6. Conclusion

This chapter deals with‘a process in”the analysis of visual
information, that is generally neglected in the neurosciences. Cprrent
theories aBout the neural basis of visual information processing invoke
a hierarchical form of Processing involving ever more complex combinations
of features. The neural basis of processes involving feedback and
interaction between elements of any one stage of this hierarchy are not
investigaged because of the complexity of the resulting response. The
model developed here investigates, mathematically and through computer
simulation, one such complex process, the processtof segmentation of
the visual field. The elements used in the model are neurons, with
simple patterns qf connectivity to near neighbours. The model shows
how the assumption of certain constraints on this connectivity results
in the segmentation of the visual fiéld into separate regions, each
region being characterised by a cluster of similar features. The
hypothesis is made that the simplest form of segmentation is the
.extraction of regions of similar features, and each region so defined
is operated on by a recognition process which computes on the other
features present within that region, leading to the perception of an

object or part of an object.

The segmentation model is applied to the detection of surfaces,
at different depths from the observer, in a random-dot stereogram. A
computer simulation shows how the model compares the two stereogram

dot-patterns, detecting and enhancing regions with.clusters of similar
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retinal disparities (the cue for depth perception). This .specific
application of the segmentation model is used to investigate the

limitations of the model, and possible extensions,

In conclusion, we note that the model of segmeﬁtation developed
here represents only the simplest from of the segmentation process. As
outlined in Sec. 1.1 ;egmentation may oécur through many different
processes, and their investigation may require different approaches. The
approach used here, of neural networks with excitatory and inhibitory

interactions, was considered the most appropriate for a mechanism of

segmentation that utilised detection of feature similarity.
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