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Our basic aim here is to analyze models which bridge the gap between
studies of changes in the behavior or overall function of an organism (the
psychology of learning) and the study of changes in properties of neurons
(as afforded by the neuroanatomy of synaptic change and single-cell neuro-
physiology). We seek to understand how the brain enables an organism to
interact with its world in an adaptive way.

In trying to provide a perspective on neural models and memory, we
might have adopted any one of the following strategies:

(1) To provide an exhaustive review of models of neural nets

(ii) To review models of different parts of the brain, and suggest

ways in which they might be refined by incorporating memory
mechanisms; or

(iii) To provide a "tép—down" approach, in which a major effort is
placed on what memory models should do, rather than review what
current models can do.

Our strategy is a compromise between (i) and (iii). Sections 1 and 3
provide a perspective of kind (iii); while the other sections provide a
fragment of the exhaustive review called for under (i). Special attention
is given to neural modification in visual cortex; to ethological evidence

for learning predispositions; and to models of hippocampal adaptation.

Preparation of this paper was supported in part by Public Health Service
under Grant No. 5ROI NS09755-03 COM from NINDS and 7ROI MH25329-01 from
NIMH.



1. A PERSPEC'I‘IVE.I~

If a neural network is to change its overall behavior, then individual
neurons of the network must change, at least in their connections. Thus the
problem of training a network can be broken, somewhat crudely, into two
parts: |

(a) What formulae describe the way in which a neuron (including its
connections) will change its behavior over time on the basis of
its input-state-output history? [i.e. how may we represent a
neuron as an adaptive system?]

(b) Given the adaptive nature of its neurons, how must a network be
structured if the cooperative effect of change in the individual
neurons is to yield improvement, in some sense, of the function of
the overall network?

Of course, these questions reflect but two levels in a hierarchy.

The neurochemist will ask what changes in membrane/transmitter/DNA/RNA
characteristics will cooperate to yield the neuronal changés of (a); and

the neuropsychologist must seek to characterize what constitutes adaptive
change in one brain region when it only affects the organigm's overt behavior
in concert with many other brain regions (as will be suggested by our brief
mention of Luria below. We focus on (a) in Section 2 and (b)

in Section 3. Then in sections 4 we comingle the two questibns as we examine
learning schemes posited for hippocampus.

It is inadequate to view an organism as simply responding to a succession
of stimuli--rather the internal state of the organism will determine, in

great part, to what it will attend (its input) and how it will act upon its

t For a more general perspective on neural modelling, less attracted to memory

problems, see Arbib (1974).



environment (its output). An organism, then, must also model the salient
features of its environment and place its activity in the context of
dynamic interaction. Below, we shall develop the "slide-box" metaphor for
internal models which - with its picture of many slides continually interacting
and being updated, with no single locus of exclusive serial processing -
serves to emphasize our need to understand how computations may take place
in a highly parallel network of dynamically interacting subsystems. Such
an understanding may also help us probe the effect of brain damage upon
behavior.

In 1929, Karl Lashley published a book "Brain Mechanisms and Intelligence"
in which he reported that the impairment in maze-running behavior caused
by removing portions of a rat's cortex did not seem to depend on what part

of the cortex was removed. He thus formulated two "laws": the "law" of

mass action - that damage depended on the amount removed - and the "law"

of equipotentiality - that every part of the brain can make the same contri-

bution to problem-solving. Such data have seemed to many irreconcilable

with any view of the brain as a precise computing network - but we may effect

a reconciliation if we stress (with Luria - see below) the notion of a
computation involving the cooperation of many subroutines that are working
simultaneously in parallel. Often, a computation can be effected by a

subset of the routines. 1In general, removing subroutines will lower efficiency,
though for some tasks the missing subroutines may be irrelevant, so that

their removal saves the system from wasting time on them when other tasks

are to be done.

Thus equipotentiality is really only valid if we use rather gross measure-
ments of change in behavior - the underlying reality would seem to be the

removal of subsystems which can make quite different contributions to a given



level of performance. The brain theorist may thus find intriguing the notion

of neuroheuristic programming: structuring a heuristic program in terms of

concurrently active subsystems, with anatomical correlates. 1In this context

it is worth recalling Luria's [1973] statement that the concept of localization of
function has come to mean a network of complex dynamic structures or combin-
ation centers, consisting of mosaics of distant points of the nervous system,
united in a common task. Function is understood to be a complex and plastic
system performing a particular adaptive task and composed of a highly differ-
entiated group of interchangeable elements. The fact that the elements are
interchangeable would allow transfer of function to occur. He goes on to

state that the smooth execution of each act or function requires a series of
both simultaneously and successively excited connections.

One of Luria's case studies was of a woman who had probably bilateral
lesions involving predominantly the parieto-occipital region. She could neither
copy letters, nor write them from dictation, but was able to write these
letters if they were included in whole well-assimilated words. She could
also write the alphabet correctly. In our computer jargom, we might say that

it was as if the patient could no longer go from the name of a subroutine

to its entry point, but could use the subroutine in those programs which

already included the entry point, rather than requiring explicit generation

of the entry point anew each time the routine was required. The vividness
of this simile encourages our interest in developing models of distributed
computation appropriate to bréin function.

Within this general context, we may now consider the memory structures
required by any system which is to be said to perceive: A human knows that
if he presses his hands in a downward direction at a fairly large velocity

towards a rectangular surface (a table top) which he has sensed only visually,



his hands will not go through the surface, and a noise will ensue. But
it is no trivial task to program a computer to take so little visual infor-
mation, and make predictions about the trajectory that it could get with

its effectors, and the resultant feedback, constraints, and sound. Such

predictions are the essence of perception, extrapolating from partial sensory

information a great deal in many modalities besides those sensed, that is

relevant to action.

Here, then, is the by now well-known idea of a lohg-term model of the
world (see, e.g., Craik [1943], Gregory [1969]), something that tells us
that when we see suffaces of a certain kind, they are associated with certain
textures, feelings, constraints on action, etec. We further posit that we
have a short-term memory which contains information representing our model
of the current state of the environment. Rather than every millisecond
having to recognize the scene anew, we just notice discrepancies and use
this greatly reduced information flow to update the short-term model
which guides our activities. It is the long-term model that allows us to
build up these short-term models using only partial information to gain
access to far more information relevant to action. [This is an analysis-

by-synthesis view of perception.]

Our crucial thesis is that perception is inseparable from memory,
which in turn is meaningless without reference to the action of the organism -
or, more properly, the interaction of the organism with the environment.
Perception can be seen as the construction of a partially predictive internal
(short-term) model, using long-term memory to incorporate information about
action possibilities, and about sensory information from modalities besides
those cuing. Perception is dynamic - both in that current information tends

to be treated in the context of an existent short-term model, and also in



that the extant model "unfolds" with time.
Clearly, then, information - save at such high levels as involved in
human linguistic activity - must be continually referred to what we shall

call the ACTION FRAME, namely, the frame of reference induced by the postural

and effector mechanisms of the organism, the former serving to stabilize
the frame offered by the latter. The repertoire of possible actions of an

organism, and of possible questions it may ask, helps to determine the most

appropriate neural representation of information. In particular, the
organism may encode stimuli in different ways on different occasions
depending on the questions prevailing at the time.

Perhaps some more insight into our notions of models of the world may
be gained by a metaphor drawn (Arbib, 1972) from the making of movie
cartoons. Drawing each frame individually is too inefficient, and so instead
use is made of the layering technique. One might go for a whole minute
of the cartoon without the background changing, so one could draw it just
once. In the middle ground, there might be a tree, say, about which nothing
particularly changes during a certain period of time except its position
relative to the background. It could thus be drawn on a separate layer,
which could then be displaced for succeeding frames. Finally, in the
foreground, it may well be that one could draw most portions of the actors
for repeated use, and then position the arms, facial expressions, etc.,
individually for each frame. The layers can then be photographed appropriately
positioned in a slide-box for each frame, with only a fevaarameter changes
and minimal redrawing required between each frame.

A similar strategy for obtaining a very economical description of
what happens over a long period of time might be used in the brain, with

a long-term memory (LTM) corresponding to a "slide file" and short-term



memory (STM) corresponding to a "slide-box". The act of perception might

then be compared to using sensory information to retrieve appropriate slides
from the file to replace or augment those already in the slide box, experiment-
ing to decide whether a newly retrieved slide fits sensory input "better"

than one currently in the slide-box. Also, part of the action of the organism
in changing its relationship with the environment might be viewed as designed
to obtain input which will help update the STM, by deciding between "competing"
slides, as well as helping update the LTM, by "redrawing" and "editing" the

slides.

The theory and modelling which occupies us in the rest of the paper
focuses on neural adaptation in circumscribed regions of the brain. The
fact that we shall close with little feeling for how to "wire-up" a neural
"slide-box system" is a measure of how much further both neurophysiology
and neural modelling have to go if we are to understand the neural mechanisms
of memory. Time and again, we shall be struck by the question of how changes
which should be effected at the level of organismic behavior can in fact be
yielded by appropriate changes at the neural level. To put it in crude terms,

we should continually ask ourselves:
"What is in it for the neuron?'!

Unfortunately, we shall be able to do little more than suggest how synaptic

changes might be able to yield adaptive changes in the behavior of a single

neural network--the other levels of discussion must be left to other papers.
Before turning, however, to the organizational principles which give meaning
to the overall behavior within which the activity of such neural networks

must be imbedded, it is perhaps worth commenting that vertebrate strategies



of learning by the organism may be essentially different from those of
invertebrates. Thus, studies of learning in such invertebrate preparations

as Aplysia may only contribute to mammalian studies at the level of determining
the mechanisms of neural modification, rather than at the level of seeing

how such modifications may contribute to change in network behavior. And,
even at the level of component mechanisms, we may run into some trouble

since one may caricature the difference between invertebrates and mammals

by stressing the uniqueness of cells in Aplysia, and the essentially layered
structure of cell tissues in the latter. It may be that visual systems

of fly and octopus may provide an appropriate bridge between the two.

One final comment about the problem of level, as we try to relate the
overall function of an organism to changes in the individual neurons; that
is the gross difference in time scale, where a human may learn complex
intellectual structures on a time scale froﬁAseconds to years, whereas
the individual action of neurons is on a millisecond time scale. We shall
get some feel for this when we look at the convergence schemes for percep-
trons in the next Section--but it must be stressed that a full understanding
of human learning cannot proceed without ideas whose faint glimmerings
are seen in the data structures being evolved by workers in artificial

intelligence, as in such works as Schank & Colby (1973).



2, TWO BASIC SCHEMES FOR NEURAL LEARNING.

In this Section, we shall stpdy two mathematical models of neural change.
To focus the discussion, we consider the system shown in Fig. 1. We view

the preprocessor as a mechanism that extracts from the environmental input

a set of d real numbers. The set will be called a pattern and the numbers

components of the pattern. The pattern recogniser then takes the pattern

and produces a response which may have one of N distinct values where

there are N categories into which the patterns must be sorted.

VI — X
R
ON ; Preprocessor Y X, Pattern —> 1,...,0r N
MEN . Recognizer
———-—.)‘ » .
T .
" *q
Figure 1

The two classic learning schemes for McCulloch-Pitts type formal neurons
are the Hebb [1949] scheme (strengthen an active synapse if the efferent
neuron fires) and the Perceptron scheme of Rosenblatt [1961] (strengthen
an active synapse if the efferent neuron fails when it should have fired;
weaken an active synapse if the efferent neuron fires when it should not have
fired).

The Hebb scheme has been elaborated by Brindley [1969] whose ideas have
been developed by Marr [1969, 1970, 1971] in models of cerebellum, hippo-
campus (see Section 4) and neocortex which provide ingenious mechanisms of
codon selection, adjustment for level of background activity, etc. While

these constitute an important contribution to our growing array of tools
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for the synthesis of neural networks with specified properties, we remain
sceptical of their value as an analysis of the given regions of brain.
Grossberg (see, e.g., [1972]) has many studies of learning networks, with com-
ponents ranging from the neural to the psychological, which make rich contact
with studies of conditioning and of motivation. Kilmer and Olinski's [1974]
study of learning in hippocampus (Section 4) is especially interesting for

its use of developmental stages in tuning up the system.

The Hebb model has also been used by von der Malsburg [i974] (see also
Perez, Glass and Schlear [in press]) in his model of the development of line
detectors in cat visual cortex. He uses a normalization rule; and a lateral
inhibition to stop the first "experience" from "taking over" all "learning
circuits" which was used earlier by Spinelli [1970] in his OCCAM model of spinal-
cord like circuitry for an associative memory. In fact Hirsch and Spinelli
[1970] have shown that cat visual cortex is not restricted to line detectors,
but can take the imprint of a specific visual experience, at least if the
kitten sees only one or two things. We shall consider the work of Spinelli
and von der Malsburg in Section 2.1.

The Perceptron model was put on a firm mathematical footing by Block
{1962]--and has been embedded in a good textbook treatment of "Learning
Machines" by Nilsson [1965]. We shall study the Perceptron convergence
theorem in Subsection 2.3. Minsky and Papert [1969] have shifted attention
from convergence questions to 'what can a given network learn?"; questions
which have an interesting relationship with the network complexity studies of
S. Winograd [1965] and Spira [1969]. We shall place their work in the context
of network predisposition in Section 3.2.

The hologram as a mechanism for associative memory, and the whole range
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of Fourier optics, has provided much stimulus for neural modellers, although

we shall not develop it in detail here. Gabor et. al. [1971], Willshaw

Buneman and Longuet-Higgins [1969], Kohonen [1971] and Westlake [1970] are

among the many who have molded features of holography into neural networks.
However, we think that those who, like Pribram [1974], or Pollen and Taylor

- [1974], expect the whole gamut of mathematical techniques--"the visual system
makes a Fourier transform'--to carry over from optics to neural nets are
mistaken. Such a view seems ill suited to handle our ability to perceive the
world as made up of independently moving objects. Again, the reconstructibility
of the hologram differs from our act of perception as a preparation to act,

as distinct from storing a veridical image. Blakemore et. al. [1970],

Campbell et. al. [1968] and others have stressed the role of spatial frequency
in the visual system, but it seems to us that these can provide cues (e.g.

for texture) which augment cues such as contour, rather than providing a total
frequency transform prior to "pattern recognition". However, we will not develop

the holography theme further in this article.
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2.1 Learning without a Teacher.

In this section we consider Hebb-type schemes in whichisynaptic weights

are adjusted without explicit reinforcement.

2.1.1 Experiments on Visual Memo:y+

It has been recently discovered that by limiting the visual experience
of ‘kittens to one or two simple visual patterns, it is possible to fill
up, as it were, their visual cortex with receptive fields Qhése shape
resemble the patterns in one or more details; some receptive fields are even
recognizable, though blurred, representations of the image seen by the cat.
Atrophy from dis- or misuse of visual mechanisms is well knqwn in the clinic.
Moreover, the experiments of Hubel and Wiesel (1965, 1970) had shown that
monocular suturing or squint causes loss of binocularity of cells in the visual
cortex of cats whereas binocular suturing did not. These findings combined
to suggest that by having kittens view a pattern of (three, say) vertical
lines through one eye and a pattern of horizontal lines through the other during
the critical period of development, one might be able to cause loss of binocularity
for cells with vertical and horizontally oriented receptive fields as they
were fed discordant information. To rephrase: the vertically exposed eye
was expected to have a "hole" in the distribution of orientations for verticals.
Appropriate "holes" in the behavioral repertoire, testing one eye at a ;ime,
would have betrayed the function of the missing units.

The effects that this simple procedure had on the functional properties

of visual cortex cells (Hirsch & Spinelli, [1970, 1971]); were of astonishing

For further information on this topic, see the papers by Pettigrew and by
Spinelli elsewhere in this volume.
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magnitude. There were only two types of units in the visual cortex of a

kitten so deprived:

1)

2)

Units uncommitted to specific visual features. These units did

not have a receptive field mappable by Spinelli's automated method
and did not show any selectivity to lines and edges under manual

control;

Units with elongated receptive fields. There were only two orienta-

tions. Units with vertical orientation could be mapped and/or
would respond to vertical lines only through the eye that had seen
the three vertical bars; units with horizontal orientation could

be mapped and/or would respond to horizontal lines only through the

eye that had seen the three horizontal bars.

Even more astounding were a few units with receptive fields that looked

like a carbon copy of the stimuli viewed during development! This almost

photographic reproduction of images seen by the kittens weeks before suggested

that one might be dealing with memory traces. Three possibilitites had to

be examined:

1)

The various classes of receptive fields one finds in the adult are
genetically preprogrammed. Presence at birth, maturation after
birth, or the necessity of environmental stimulation for the genome
to express itself are all sﬁbsumed in this hypothesis and could in
various degrees appear in the same species for various classes of
units or in different species. The hypothesis can then be made that
the unstimulated units atrophy, fail to mature or are not expressed.
This hypothesis demands clear and predictable behavioral deficits

from the kittens described above. It also predicts that once the
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damage is done, it should be permanent, i.e. letting the kittens

have further, normal experiences after the critical period should

not change the physiological picture. Further, the set of available
classes can be reduced but not changed.

Cells are genetically preprogrammed as in (1). However, during the
critical period, partial or total reprogramming under environmental
control can take place if needed; this would insure that the animal
has feature detectors optimal for the enviromment it finds itself

in. In the worst case, it would have a set of detectors, that which
has‘proven most helpful to its species through natural selection.

The transience of the critical period would be an advantage since

it would be impossible for the rest of the brain to interpret informa-
tion from detectors whose coding properties change over time (cf.
Kilmer's core vs. non-core scheme for training hippocampai circuitry,
in Section 4). This hypothesis has essentially the same predictions
as the one above, i.e. clear behavioral deficits for tasks that

demand nonexisting detectors and permanence of the physiological
effects; however, it differs from the above in that even though

there would be limits, it allows for the property of generating receptive
fields totally different from the ones originally preprogrammed.

This could be called a memory hypothesis, i.e. there are no genetically
programmed detectors: what is programmed is an adaptive network
which is capable of storing, in a very direct fashion, elementary

visual experiences. The receptive field shapes one maps in an adult

cat would be bits and pieces of what the animal has seen in his past.

This hypothesis predicts changes in the physiological picture, if
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new experiences are allowed, and also predicts no or slight (learning
capacity does decrease with age) behavioral deficits.

In real life, of course, these three possibilities would be present
in various ratios depending on the animal.

Shortly after the Spinelli-Hirsch experiment appeared in the literature,
Blakemore and Cooper (1970) published a similar experiment, though with notable
differences. They raised two kittens in the dark except for a few hours
every day when one kitten was put in a cylinder painted with vertical stripes
and the other in one with horizontal stripes. Recording from the visual
cortex after development showed that cells responded best to vertical lines,
or close to it, in the vertically exposed kitten and to horizontal lines,
or close to it, in the horizontally exposed kitten. Units were binocularly
activated.

It is Spinelli's working hypothesis at this time that the experience-
shaped receptive field map represents nothing less than that engram after
which Lashley searched in vain so long ago: to prove or disprove this hypothesis
vis a vis other possible interpretations, and to understand the adaptive
structure that brings this about, is the task for his ongoing experiments.

We now turn to models related to this phenomenon.
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2.1.2 Models of Visual Memory.

Spinelli's [1970] OCCAM (a computer model for a Content Addressable Memory
in the central nervous system) suggests a scheme for how memories might be
multiply stored in discrete neural networks. The basic neural circuit is
reminiscent of spinal mechanisms: there a specific, prewired input pattern,
e.g., an itch, elicits a specific, prewired behavior: a scratch reflex. In
OCCAM things are similarly organized except that both the input and the output
pattern are arbitrary and determined by experience. Further the model

specifies how inputs "find their way" to the appropriate memory trace, i.e.,

the OCCAM networks are content addressable. Very little, if any, preprocessing

of sensory activity is assumed. The model posits that the simplest and safest

thing for an organism is to "store" information as it arrives, "selection" of

"meaningful" stimuli is done by biasing memory at the time of action.

Anything can thus become important and facilitate its own subset of memories.
Consider, then, the memory networks of Figure 2, addressed in parallel

by stimuli entering the CNS. We shall see how they may form a content-

addressable memory, wherein providing the system with part of a chunk of

information will enable the system to play back the whole chunk.

interneurons interneurons interneurons
oO— O %
O— oO——s O—ik
o— Oo—
o—\ O— Oo—s
o— atera O >0
()____-» inhibltio
receiving Q R
cells ) % Ek
matc M
cell
match match match
input signal signal signal
v +
output input output input
t
line line line line o?ig:t

Figure 2.
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The different columns are connected by collaterals from receiving cells
and match cells which carry lateral inhibition to other input cells in nearby
networks. It is assumed that only one interneuron per column is active at
any time, and that different temporal segments of a pattern will be switched
in a regular fashion through different interneurons. [In motor nerves,
where individual fibers fire at about 10 cps, smooth contractions are obtained
by regular phasing in and out of motor units.] A crucial assumption is that
the synaptic conductivity tends in the limit to be directly proportional to
the activity which is going through the synaptic junction itself, so that
if a given quantity of activity is presented to the same synapse over and
over again, an asymptote will be reached such that the conductivity will re-
present faithfully the amount of activity that produced it.

We then assume that whenever a synaptic connection is activated, the

amount of excitatory potential generated is proportional to the synaptic

conductivity (not to the activity that generates it). If a temporal pattern

is presented to a network repeatedly, it will be stored in the synaptic conductivity
of the interneurons, which will thus cause the output cell to play out a

better simulacrum of the input pattern.

The match cell output provides a measure of the correlation in the activity
of the input cell and output cell from which it receives collaterals. The
pattern is presented to all networks in parallel. But eventually, one cell
will have a somewhat better adjustment than its neighbors, the activity in
its match cell will rise and (thanks to the lateral inhibition mechanism)
turn down the input to nearby networks--the network that gets ahead, by chance,
draws the pattern to itself, and prevents the other networks from learning

it. The number of networks that learn the same pattern is thus determined
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by the extent of the lateral inhibition. To ensure that the lateral inhibition
"gets there in time", it is assumed that each time a cell is activated, an
afterdischarge occurs--and that the longer the afterdischarge, the more the
synaptic conductivity will be changed. Thus, the longer the afterdischarge,
the faster the learning--and this afterdischarge will be cut off by lateral
inhibition if another "column" has already learnt the pattern.

When one or more patterns have been stored, it is desirable that if new
patterns are to be stored, this be done by networks that have not been previously
used. To do this a given match cell becomes harder to activate if its network
has been used often before. Then a pattern would have above-chance effect
on a network in which it was already stored, reasonable effect upon an 'un-
committed' network, and little effect on a network containing a well-learned
pattern.

Since a portion of a pattern correlates well with the whole output pattern,
the match signal can signal which output cell is playing back the pattern
of which the input is a fragment. A stimulus might then lead to the playing
back of a sequence that includes both receiving the stimulus and making
the adequate response. It should be pointed out that memory will also contain
sequences where the organism performed a response that led to undesirable
consequences, however, here is where the power of content addressable memories
comes in: a bias for the desired event will facilitate sequences that contain
it. Acceptable match indicates what portion of the input pattern must match
the output pattern for the correlation to be significant.

Pribram, Spinelli and Kamback [1967] suggest that presentation of a
stimulus will generate a playback of the whole sequence: recognition of the

stimulus, the appropriate behavior that went with the stimulus, followed
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by the expectation of the consequences of that behavior. The less of the
stimulus that is presented, the more information is in the playback, and the
more the risk is in using it. [But an animal might generate actions which
experiment to see if the situation accords with the recalled details of

the stimulus before reacting to the stimulus per se.] Ideally, then, the
acceptable match parameter should be set for that minimum value which allows
unequivocal recognition of the stimulus and thus the playback of the rest

of that memory package containing information about what to do or not to do
with it and what to expect.

The model assumes that while visual memory contains primarily visual
information, it also contains enough non-visual information to allow the read-
dressing of the system by the visually triggered memories so that auditory,
somatic, gustatory, etc., strings are subsequently called into play. The
internal addressing of the memory by internal states, which would be part of
the string, for example hunger and the disappearance of hunger, would
activate or would facilitate all those memory strings that contain such informa-
tion in themselves, and therefore produce a partial level of match. This
would then make available to the rest of the brain strings containing pertinent
information about feeding behavior.

The following is the key to how such a memory structure may serve the
adaptive behavior of the organism:

1f other parts of some strings are available in the environment, a

higher level of match would be achieved for certain strings and the

connected behavior could then be played back if the acceptable level
of match is reached or exceeded. Memory is thus continuously

addressed by three agencies: internal states, external stimuli, and
recently activated memories; it is the interplay of these three

factors that give behavior its continuity, variety and purposefulness.
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How would OCCAM [Omnium-gatherum Core Content-Addressable Memory] store
patterns which are very similar, but have different meanings, as different
patterns? '"Key" endings to the two patterns would of course make them
different. Perhaps this is the way in which reinforcers act--behaviorally
and neurally two patterns which might have looked identical are really
different, because the consequences, which are part of the same memory
package, are different.

Reinforcers could also act to decrease lateral inhibition and increase
learning speed, so that an organism might learn faster and more redundantly
those strings whose information had survival value. Such reinforcers as
pain and food might be permanently wired-in, others would act on memory
only through the software, as parts of existing programs or Plans—-cf.
Pribram (1969).

Whereas the OCCAM model of 1970 had a temporal-spatial converter to
enable it to record temporal patterns, the von der Malsburg model [1973]
is closer to the spirit of the results on visual pattern memory in Section
2.1.1, being formulated to determine whether a simple circuit possessing
only a few characteristics of the cat's visual system would organize itself
into the "simple cell" receptive field patterns found by Hubel and Wiesel
in area 17 of cat visual cortex, each cell having one preferred orientation
to which it responds maximally. Malsburg thought that genetically specified
patterns of lateral excitatory and inhibitory influences in the geniculo-
striate system highly predispose this system toward its columnar organization.
He also thought that a loose genetic specification of the details of the
retino-geniculo-striate projection could be coupled with plastic synaptic

mechanisms in the projection so as to enhance the columnar organizational
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tendencies of the striate systenm.

His model to test these ideas consisted of a retina of 19 binary elements,
a geniculo-striate manifold of 169 excitatory cells (E cells) and 169
inhibitory cells (I cells) interconnected according to a simple geometric
specification. (The inhibitory interconnections serve much the same role
as the lateral inhibition in OCCAM, with the E-cells being the "match cells"
and "output cells" sinée 'recognition' rather than 'temporal playback'

is the task here.) The connection from each retinal cell Ai to each E

cell Ek is through a Hebb synapse of strength S, which is modified by

ik

ASik > 0 each "modification time step" if A, is active and if Ek fires.

i

In this case the magnitude of AS is proportional to the firing rate of

ik

Ek.

The firing rate of any E or I cell is equal to the amount by which the

*
excitatory state Hk of the cell exceeds its threshold ek. Defining Hk as

Hk if (Hk - Bk) > 0 and as 0 otherwise, the equation for Hk is
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Feh(8) = -o B (0) + (B W Hy () + 1S, X, (0),

where: @ = decay constant of Hk'

wik = synaptic strength from E or I cell i to cell k.

Xi(t) =1 if Ai is active and 0 otherwise.

Since all Asik > 0 are positive, Malsburg had to renormalize his

circuit to return to C(C a constant) after each "modification time

iEkSik
step" in order to keep his Hk bounded. He presented each retinal input with

his model in a relaxed initial state, and then waited until all Hk reached
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equilibrium (which always happened within about 20 time steps) before he
designated the next time step as a "modification time step."

He used nine different retinal inputs, each corresponding to a '"line"
of different orientation. He presented them in an appropriately mixed
order, and after 100 modification times froze the ASik and checked the retinal
input orientations that elicited maximal responses in each E cell. Fig. 3
shows the result, which is strikingly reminiscent of Hubel and Wiesel's
columnar mapping results. Malsburg's model actually did organize itself,
with the help of a very restricted set of retinal inputs, because initially
the preferred orientation map was chaotic and not at all like Fig. 3.
Though Malsburg got clusters of high E cell activity from his intrinsic
geniculo-striate dynamics before any Sik ad justments were made, his high
orientation specificity was accomplished by Sik learning.

Malsburg's model has rather severe limitations that are understood
at this stage only qualitatively. His scheme is based on a highly restricted
set of retinal inputs. His E-to-I and I-to-E influences are additive, non<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>