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I. INTRODUCTION

. This paper describes a new feature selection algorithm, called the
threshold selection algorithm, which is an extension of the sequential pro-
cedure studied by Estes [1]. The method allows the selection of a subset of
features from a predefined pool of features and takes into account both global
and local characteristics of the subset selected. The threshold selection
algorithm provides a set of parameters which are dynamically variable by the
system employing the algorithm or which may be preset by the designer of the
system. It allows a tremendous degree of flexibility in tuning the feature
selection phase to the recognition problem under consideration.

Briefly, associated with each class pair in pattern space is a thresh-
0ld which provides information to the selection algorithm specifying the amount
of effort to be expended in selecting features which separate the class pair.
In this way, more effort may be expended for those class pairs which are par-
ticularly troublesome to the classifier and following systems (e.g., a con-
textual postprocessor). The algorithm maintains a global perspective by con-
sidering all class pairs which have not yet received the effort indicated by
the thresholds while at the same time considering more heavily those class
pairs which are further from their thresholds.

A variable emphasis may be placed on different class pairs according
to the wishes of the system or the designer. For example, in the case of
alphabetic recognition problems, it may be desirable to select more powerful
features for discrimination between topologically similar characters (U and
V, for example). On the other hand, since some class pairs are topologically
similar, effective features for discriminating between these pairs may not be

present in the pool. Consequently, the selection algorithm should not concen-



trate unduly on a-priori troublesome class pairs; we might be content with
concentrating on the easier cases, allowing the remainder of the system (in
particular a contextual postprocessor [2,3]) to handle the difficult classes.
Similarly, if one knew which classifier errors are most troublesome to the
contextual postprocessor, the threshold associated with each of these pairs
may be raised in an effort to reduce the number of errors from the classi-
fier which are not correctable by the contextual subsystem. For example, if
the classifier substitutes an E for an A, and the contextual subsystem is
frequently unable to correct this particular error, the class pair AE should
receive more attention.

The feature selection problem which we consider here is the selection
of a subset of N features from an available pool of %% features,

). That is, G? contains features thought to be useful for

0 - (Fpo -ees By
recognition in a particular problem domain and we wish to select
that subset which is the 'best,' perhaps yielding the lowest system
error rate, or the least computationally expensive, etc. In most cases, the
number of possible subsets of size N from a set of features of size k 1is
too large to permit exhaustive evaluation of each subset. For example, if
k = 200 and N = 30, as it is in some of the experiments described later, the
number of subsets which must be evaluated is on the order of 4.1 x 1036.
Therefore, we must relax the constraints and accept suboptimal feature sub-
sets.

Various methods have been proposed for selecting a ''good" subset of
features [1,4-8]. These methods generally select a set of features which

maximizes the inter-class distances in the transformed space based upon a

training set. Multi-class problems are normally treated as separate pairwise
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two-class problems [8]. Furthermore, simplifying assumptions concerning
independence of the feature measurements are usually made to facilitate the
selection process. Once this assumption is made, the distances associated
with individual features comprising a subset may be added to yield a measure
of the overall effectiveness of the entire subset. In actual practice, this
condition is rarely met and the result is a set of features which may be
highly redundant and whose quality is uncertain. Since the classifier is
also very often designed with an assumption of independence, the problem is

compounded and the overall system error rate is increased.

IT. DISCRIMINANT MEASURES

Many distance measures have been proposed in the literature for
feature evaluation; most of these are summarized in [8,9]. We have chosen a
distance measure originally proposed by Bakis, Herbst, and Nagy [10] because
of its computational simplicity. However, the general conclusions reached
are not dependent upon the choice of measure. It is our contention that
very simple measures are suitable if the remainder of the system is designed
properly.

Very briefly, for each feature Fj(l < j £ k) in the pool G) we

compute the sample mean and variance of Fj when applied to each character

class; thus ui and 0& are, respectively, the mean and variance of the

measurement F. when applied to the sample characters labelled o in the
training set; o ranges over the entire set of classes, here A - Z. A
measure of the utility of Fj in discriminating between the class pair

of is given by fiB as defined in (1).

e —
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The jth feature is thus characterized by a vector of values féB, where

a,8 ¢ {A,B,...,2}, 1 £ j <k and o # B.

Intuitively, ng is an inverse measure of the overlap of the class
conditional probability density functions since it is an increasing function
of the squared difference between the class conditional means and a decreasing

function of the sum of the class conditional variances of Fj' One disad-

vantage is that f&B is most reliable when the class-conditional probability

densities are Gaussian [9]. Multimodality and skewness are not adequately

represented by means and variances; therefore, these characteristics are not

accurately described by the utility measure.

I1I. EXPERIMENTAL DESIGN

The pool of features Cp = (Fl, ceey Fk)’ for the experiments described
in the following sections was of size 200, consisting of 52 randomly designed
n-tuples, 22 hand-picked n-tuples, 45 high information n-tuples, 8 topological
measurements, and 25 windows. A more detailed description of the feature
pool may be found in Appendix A. The goal of the experiments described be-
low was to select from this pool a subset consisting of approximately 20 to 50
features. Virtually no effort was made to hand-tailor the pool to ensure a
set of good features.

The data upon which the experiments are based were derived from the
IEEE data set consisting of Munson's multi-author hand-printed characters
[11]. Three sets of alphabetic characters from each of 49 authors resulted

in a set of 3,722 characters. The feature subsets were selected and tested
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on the basis of statistics gathered from a training set of 98 alphabets
(two per author) while the remaining 49 alphabets constituted the test set.
The characters from this test set were used to create 6-letter English words

which formed the actual input to the system (character by character). The

classifier employed throughout the experiments is the simplest Bayesian clas-
sifier, assuming independence of measurements and no underlying parametric
distributions; similar results were obtained assuming normal, distributed

measurements with equal covariance matrices.

Error rates quoted throughout the remainder of this paper were com-
puted by assuming that the characters of the test set occurred in proportion
to their occurrence in English text [12] since the input to the system is a
sequence of characters which are ultimately viewed as whole words. These
error rates were estimated as in (2).

26

E = 121 P, (C)P, (2)
Pe(Ci) is the expectation that the classifier makes an error on a test
sample from the ith class and Pi is the a-priori probability of occurrence
of class i. In addition, error rates were also computed assuming that the
characters occur uniformly in the pattern space. While these results are
not reported here, they are consistent with those of Hussain, Toussaint, and
Donaldson [13] in that textual error rate estimates are almost always lower
than those estimates obtained by assuming equi-probable characters. We
should emphasize that the error rates reported here do not reflect the sub-
stantial reduction achieved after contextual postprocessing [3]. They are

based solely on the Bayesian classifier statistics.



IV. SELECTION METHODS

The feature selection schemes investigated here are multi-step pro-
cesses. We distinguish between two general methods for subset generation:
sequential selectioﬁ and sequential rejection. TFor sequential selection,
the subset to be chosen is initially empty; features are selected from the
pool according to the criteria discussed below. In feature rejection, the
subset to be chosen is assumed to consist initially of the entire pool; fea-
tures are rejected from the subset until the desired size is reached. We
now compare the results of feature subset selection using random selection,

sequential selection and sequential rejection.

Random Selection

The simplest algorithm would be to simply use all available features,
in this case 200. This method is not to be seriously considered for compu-
tational reasons; in general, the size of the pool can exceed available re-
sources and a method is needed to reduce the set. The resultant error rate
is 8.2%. This error rate is not to be construed as any sort of limit since
there exist many dependencies among the features in the pool.

The next algorithm to be considered simply selects features from the
pool at random until the requisite number of features has been obtained. Ten
different subsets ranging in size from 10 features to 100 features were
selected and tested. The results are summarized in Table 1. For the re-
sults quoted in this table, each subset of size n is a proper subset of
features of size n + 10.

In general, the results quoted for the different selection algorithms
must be interpreted with care. For example, the apparent limit in Table 1

may be as much due to the fact that there are only 200 features in the pool
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as the presence of any real "limit" in the performance of the system. TFor
feature subsets containing a reasonably large fraction of the pool,

any selection algorithm which assumes independence will necessarily

n: number of features
Set i 10 20 30 40 50 60 70 80 90 100
1 53.0 27.6 24.4  20.7 16..5 15.9 12.5 12.2 11.6 10.9
2 55.4  35.1 25.8 17.4 17.8 16.7 15.2 130 12.0 11.0
3 5564 37.4 23.0 20.1 17.7 14.15 14.0 12.4 12.3 11.5
Average 54.7 33.4 24.4 0 19.2 17.3 15.7 13.9 12:5 12,0 1l.1

Table 1. Error rates (%) randomly selected feature sets.

choose redundant features, assuming no effort is made to pre-condition the

feature pcol.

Sequential Selection and Rejection

We first treat the case of sequential selection. At each step there
is a set of n features; we then select the best additional feature given
those first n features. That is, given what is known about the discrimin-
ating ability of the first n features,l it is desirable to select a fea-
ture which, when added to that subset, will in some way improve its discrim-
inating ability. The difference between the various algorithms to be des-
cribed is the method of determining the "best" additional feature. The pro-
cess terminates when enough features have been selected or a good enough

subset has been obtained.

—

lThe information content of these n features collectively is less
than or equal to the sum of the information measures taken for the n fea-
tures independently.

— e ———
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In notational terms, we say that at the (n+l)-th step in the selection

process, we have a subset %E c 6) where %ﬁ = {F, ,F, ,...,F, 1} i.e., contains
n n n i, i, i n

n features from the pool 6). Then we must select a feature Fi so that
n+1
42 = #2 u {F, } is a better set of features than ?ﬁ . The criterion for
n+l n ln+l n

selection of a feature Fj is a function of the set of class pair utility mea-
sures assigned to the feature. Recall that Fj has an associated set of util-

3

AC,...,féz}. The sequential procedures each utilize a set

ity measures {fJ , £

of accumulators {aA }, such that, at the (n+l)-th step, each ac-

W Voaiian

cumulator is defined as in (3).

a =

;s (3)
o Fieﬁnus

Thus, the accumulator aaB provides a measure of the total amount of separation
or discriminating ability between & and B in 5#;; and the entire set of ac-
cumulators describes the worth of the set %%1 over all class pairs.

For the sequential selection procedure, the feature set #i may be arbi-
trarily selected; for the results quoted here, that feature Fj is chosen such
that

£
a?B o
a#B
is a maximum—-but :ﬁl could be selected by any technique and may be defined as
containing more than one feature. Then, at each subsequent step, the accumu-

lators are computed and the smallest accumulator, a is determined. The

af ’
feature selected is that feature Fj £ Gl-qgn for which £ is a maximum.

af

Intuitively, this means that we determine that pair of classes for which the
feature set has the least discriminating ability; afeature is then selected

from the pool which does more for that class pair than does any of the other



features left in the pool.

Bakis, et al., [10] used a sequential rejection scheme in which the ini-
tial set of features contained the entire pool and the accumulators were de-
fined as

a

)

- 76 (4
of F e@otB )

At each step the smallest aaB is determined and that feature F. for which

fie is a minimum is deleted from ?i to form 2; that is, a search is made

for that pair of classes which is most poorly discéiminated (according to our
measure) and the feature which provides the least discrimination for that
pair of classes is deleted. The process continues until a set of features
:?n is obtained of the desired size.

In each of these two techniques, a feature is selected or deleted on the
basis of its performance in discriminating between the members of a particular
pair of classes; thus, a feature which could always discriminate between 0
and V might not be selected (or might be deleted) because the algorithm spends
a great deal of effort searching for discriminators between O and D. Note
that this only implies that agy > a but says nothing about their relative
magnitudes. These algorithms are unsatisfactory for problems with a great num-
ber of classes because they disregard the global capabilities of features in
favor of a single point at which most of the features are weak. 1In their at-

tempt to give best possible discrimination between the worst class pairs, these

algorithms may give nearly random discrimination for most other decisions.

Generalized Sequential Selection and Rejection

A generalization of these techniques which suggests itself is that we

select a parameter m and at each step, instead of optimizing our discrimin-



=10~

ation on the single worst class pair, we optimize on the m worst class pairs.

This would be expected to yield a better set of features since it increases the

size of the local area in the class-pair space involved in the selection (rejec-
tion) decision.

Table 2 presents the results of experiments with these algorithms for sets
of ten to one hundred features. Several conclusions may be drawn from these
data. Sequential selection yields better results when m = 50 than when m = 1.
Sequential rejection is not better than a random selection of features (Table 1)
when m = 1 but achieves significant improvements when m = 10 and m = 50.
The sequential selection scheme is significantly better than sequential rejec—

tion until m = 50 at which point there is little difference between them. In

the range of thirty to sixty features per set, we have what are apparently the

best results for the two techniques at m = 50.

nf: Number of features
m 10 20 30 40 50 60 70 80 90 100
Sequential Selection
1 31.9 20.0 15.0 14.1 14.7 11.6 11.5 10.5 10.5 9.2
10 22.7 15.4 15.7 12.6 11.4 1E.7 9.6 10.3 [ 9.2
25 24.3 17.4 16.3 12.9 11.1 111 11.3 10.7 10.5 10.3
50 25.1 18.8 14.2 11.5 10.5 10.6 10.2 10.6 9.6 10.3
100 25.1 17.9 15.1 12.8 12.1 10.5 11.6 10.4 9.4 9.8
Sequential Rejection
1 53.6 38.3 27.0 22.4 19.6 16.6 17.3 13.0 124 10.9
10 39.2 22.5 19.7 16.6 13.5 11.5 10.7 9.9 9.9 9, 3
25 31.3 20.4 157 14.6 13.3 11.7 10.4 9.6 9.6 8.7
50 34.9 18.6 14.2 11.6 10.9 10.7 9.7 10.0 9.7 10.2
100 30.1 16.7 14.3 12.0 12.0 11.3 10.1 9.2 8.8 8.8

Table 2. Error rate estimates from feature subsets selected by the
sequential selection and sequential rejection techniques.
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Estes [1] (using different utility measures) concluded that under cer-
tain circumstances sequential selection and rejection lead to equivalent
results and that sequential rejection was probably not worth the additiomal
computation. Since our primary interest in the experiments reported here was
for the cases in which the size of the selected subset was small compared to
the size of the pool, say 20 to 40 features from 200, we concur with this
observation. From our results, we might conjecture that the two methods
yield similar results when the appropriate proportion of class pairs are con-
sidered for worst case analysis. Bakis, et al., considered the case of hand-
printed numerals in which there are 45 class pairs instead of the 325 of the
alphabetic character problem; thus, m = 1 was probably very meaningful for
their study but too small to be useful in ours. However, we expect that m

in the range of 2 to 8 would have produced better results in their case.

V. THRESHOLD SELECTION ALGORITHMS

Even with the improvement obtained by considering several class pairs
for worst case analysis, it seems that much of the discriminating ability of
the selected feature sets is somewhat randomly distributed among the class
pairs. A more globally oriented technique would pay attention first to the
entire set of class pairs and then to some smaller set of those which seem
to need additional discrimination. In the algorithm described here, a thresh-
old is associated with each class pair. The threshold eaB represents the
total separation desired for the af class pair; i.e., eaB is the value
which the accumulator aaB is expected to achieve. At each step, the algor-

ithm selects the feature which minimizes the global (total) difference between

the thresholds and the accumulators. When an accumulator reaches its threshold,
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no further improvement is sought for its class pair. The contribution cj
of feature Fj is computed as
< 3
€5 7 ) kaB (5)
o, B
a#B

where

0 if a =0

oR af
i _ i . i < _
kuB = faB if faB < euB aaB
. j _
GaB - aaB if faB > eaB 258

Thus, in the initial steps the threshold selection procedure attempts
to minimize the total difference between the thresholds and the accumulators.
A global outlook is maintained since the algorithm considers all class pairs
until their thresholds are reached. However, the accumulators often achieve
or exceed their respective thresholds since there are many class pairs which
are well discriminated. Consequently, in the later steps, the algorithm se-

lects features in an attempt to minimize the threshold-accumulator differences

for the remaining class pairs.

Each class pair of potentially affects the
selection decision in proportion to the difference between aaB and 6&8‘
A great deal of latitude is available in the definition of the thresh-
olds. A simple technique would make all of the thresholds the same, implying
an equal minimum discrimination is desired for all class pairs. On the other
hand, it is often very difficult to provide equal discrimination between all
class pairs; we can easily discriminate between T and O but we often con-

fuse U and V, etc. Furthermore, in some problems it is more important

for some class pairs to be well differentiated than it is for others. TFor
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example, in a contextual system, it is more important that we not mistakenly
classify an E as an I than an E as a Z since such substitutions pro-
duce more undetectable errors [2].

Thus, several alternative definitions are available. The thresholds
could all be set at some arbitrary constant, or more generally, some constant
times the number of features to be selected

eaB =c*on (6)

to allow a different threshold level for different size feature sets. To
account for the fact that it probably is not possible to differentiate all
class pairs equally well, each class pair threshold could be evaluated as a
proportion of the pool's total discriminating ability for that class pair
% = glng, CﬁuB) j )
where %&B = sz qu

or as some function of the mean and variance of the {fés}

) (8)

uB = g(nf ’UaB’UuB)

To account for our knowledge that we must provide better discrimination for

some class pairs than for others, we can define

D

B = g(nf,caB) (9)

where CuB is a measure of the con-
fusion or loss caused by classifying

o as P and/or B as .

Experiments were conducted using the threshold feature selection al-

gorithm on our pool of features. The thresholds were computed as in (6) with

; 1 1 2
the constant assuming the values 3 20 and-g. These values were chosen
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because lower values resulted in each accumulator exceeding its threshold
before the desired number of features were selected and higher values resulted
in markedly poorer performance. The resulting error rate estimates are shown
in Table 3 together with the number of accumulators which exceeded their thresh-
olds at the termination of the feature selection process. The only clear
point among these results is that the threshold selection algorithm does do
significantly better than previous algorithms for sets of up to 50 features.
For any given number of features, it seems to be necessary to apply the al-
gorithm several times since it is not apparent that one can automatically
select the proper value for the constant. However, use of (8) could allow
the system to automatically set the range as a function of the actual values

for the figure of merit.

nf: Number of features
c 10 20 30 40 50 60 70 80 90 100
1/3| E: 22.8 15.0 13.0 11.1 10.9 10.4 10.9 10.1 8.8 8.3
N: 317 322 319 317 316 315 314 313 310 308

1/21 8: 26.2 14.2 12.4 10.86 11.2 10.8 9.7 10.1 10.2 9.7
N: 311 313 309 305 303 296 293 292 286 284

2/3 |E: 23.3 15.2 10.9 11.3 10.9 10.4 99 9.7 9.7 9.1
N: 299 296 295 289 286 280 275 276 263 258

Table 3. Error rate estimates obtained from feature sets selected by the
threshold selection algorithm. E is the error rate estimate
and N is the number of accumulators which exceeded their
thresholds.
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VI. THRESHOLD SELECTION WITH REDUNDANCY MEASURES

A drawback to each of the techniques discusses is that none of them
prevents the selection of highly redundant features. However, normal proce-
dure is to use a classifier assuming statistical independence among features;
violation of this assumption will certainly degrade its performance. Although
each feature selected might be very good in its own right, the total amount
of information to be extracted about any particular character might be far
less than expected.

Redundancy among features has been studied by Mucciardi and Gose [71,
among others. A feature utility measure was defined as a weighted sum of the
probability of error (POEj), and the average correlation measure (sj) of
the feature with each of those previously selected. The (nt+l)-th feature

selected was that feature Fj for which cj is a minimum:

c, =W (POEj) + w, s,

3j 2

(10)

where s, =-l
j n

g4
n

and rij is the Pearson correlation coefficient.

J

)

F.e
i

When the weights were adjusted for optimal recognition, the average correlation
coefficient was nine times more important for selection than was the probability
of error (i.e., W, = .1 and W, = .9).

The probability of error of Mucciardi and Gose was not used as a feature
evaluation function since all of our features assume fewer than twenty-six

values; most of the features are binary. While POE is a convenient utility

measure, it does not provide a very good description of the features employed

in this study.
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Using the average correlation coefficient as a measure of redundancy
for the threshold feature selection algorithm resulted in error rates which
were consistently worse than the error rate obtained for the threshold fea-
ture selection algorithm without a redundancy measure. An average of corre-
lation coefficients is not sufficiently sensitive to highly interrelated
features. For example, suppose a feature is highly correlated to some already
selected feature. However, if many of the other correlation coefficients are
small, the average of these coefficients may result in a small average corre-
lation and allow this feature to compare favorably with other features which
are only slightly correlated with all of the selected features. This feature
should not be selected; a feature is highly redundant if it is highly corre-
lated with any feature in the set. This is not to say that small correlations
do not accumulate to form high multiple correlations, but there are so
many coefficients that many of them are spurious and must be systematically
ignored.

All of the feature selection algorithms considered may be modified
to incorporate a measure of redundancy. At the (nt+l)-th step, the propor-
tion of information represented by Fj which is not already provided by the

features selected can be approximated by tj’ computed as in

t,=1-r,

J |

rj = max_‘g rij (11)
Fie n
where r,. is the Pearson correlation

coefficient, OS|rij|S[.

The contribution of Fj to the discrimination may be found by computing a

new utility measure f&% in (12).
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f&% = féB tj for each  a,B. (12)

Intuitively, fé% is the non-redundant information provided by Fj in
distinguishing o from §.

Table 4 presents classifier error rate estimates for the threshold
selection algorithm when it was modified to include the redundancy measure
described above. By comparing with Table 3, it is apparent that incorporating
the redundancy measure into the threshold selection algorithm results in a
better set of error rates than that obtained without such a measure. Clearly,
these error rate estimates are consistently better than those obtained from

any of the earlier techniques.

ne: Number of features
c 10 20 30 40 50 60 70 80 90 100
1/3 21.8 14.0 11.0 11.3 9.3 10.4 9.5 8.3 8.6 8.7
1/2 22.5 13.4 11.6 10.3 9.4 9.3 8.9 9.5 8.8 8.7
2/3 22.5 14,1 12.1 10.8 9.9 9.0 8.8 8.3 8.7 8.0

Table 4. Error rate estimates from feature sub-sets obtained from the
threshold selection algorithm with the redundancy measure of
equation (11).

When comparing the results of the several algorithms, one is led to wonder
about the small differences obtained from the large sets of features. This
phenomenon might be explained by considering the fact that the feature pool
has only two hundred features. Sets of fifty to one hundred features represent
a large proportion of the features in the pool and have a fairly large intersec-—

tion with each other. Thus, if the pool were much larger, one might be able

to compare the algorithms' performance on larger feature sets. We believe

the threshold selection algorithm with correlation is better than any of the
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other algorithms; we suspect that the reason that it did not do a great deal
better on the larger feature sets is because of the small size of the feature
pool. We expect that any small but consistent differences would be accen-

tuated with a larger feature pool.

VII. SUMMARY AND CONCLUSIONS

A standard Bayesian classification system was applied to the IEEE
data set of Munson's multi-author hand-printed characters to compare empiri-
cally the following feature selection algorithms:

1. random selection

2. generalized sequential selection

3. generalized sequential rejection

4. threshold selection
and 5. threshold selection with a redundancy measure.
Random selection has been included for completeness; in a general sense,
it provides a basis of comparison for the remaining algorithms, although such
comparisons must be made with care. It is difficult to attach a
meaningful significance measure to the results reported here, hence compar-
isons between single error rate estimates should be made with care. On the
other hand, since we are comparing the results of competing algorithms, if
one algorithm is consistently better than another over wide variations in par-
ameters, we tend to believe that this did not occur by chance alone. We
would tend to have faith in the superiority of one algorithm, regardless of
the lack of significant differences among individual results.

The feature selection algorithms considered here depend upon the ex-

istence of a measure which is an estimate of the effectiveness of a particular
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feature. Usually, such a measure is an estimate of the separation of

the class-conditional probability densities in the feature space. This
quantity is usually related to the probability of error of the classifier
[9]. Bakis, Herbst, and Nagy [10] defined a measure related to the Bhatta-
charyya distance [9] and obtained good results in the case of hand-printed
numerals, utilizing the sequential rejection algorithm to select a feature
set from a pool of features; this measure was used in each of the algorithms
discussed here (except random selection). Sequential rejection deletes from
the pool that feature which contributes least to that class pair with the
smallest total measurement until the desired number of features remains. The
sequential selection algorithm is similar in that features are chosen sequen-
tially to aid the worst case. Both of these are esentially worst-case designs;
features which normally would provide adequate separation are discarded (or

never added) solely on the basis of their local inferiority.

Both sequential rejection and selection can be generalized by basing the
decision for rejection or selection on the m worst class pairs. For the 325
class pair problem considered, performance of the algorithms improved when m
was increased from 1 to 25 or 50 (Table 2). The generalization provides
a more global decision mechanism. Furthermore, from the results quoted pre-
viously, sequential rejection is marginally inferior to sequential selection for
small sets of features (subsets in the range of 30 to 60 features out of 200).
However, rejection is computationally more expensive for subset sizes less than
one-half of the pool size. Under these conditions, we see no reason for using
rejection techniques.

In an effort to provide a more rational decision for feature selection,
the threshold selection algorithm is proposed. This selection algorithm defines

a threshold associated with each class pair (eaB). This value represents the
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required or desired separation that should be achieved between class o and
class B by the selected set of features. Those class pairs which satisfy
their threshold no longer influence the subsequent selection process. The
feature selected next is that feature which moves the remaining class pairs
the most towards their thresholds. Features are thus selected as a weighted
measure of their "global" superiority, with more weight given to the worst
class pairs and possibly no weight given to the best class pairs. Various
methods of assigning the threshold values automatically as a function of the
measurements in the pool were presented. A very important feature of this
algorithm is the ability to vary the thresholds as a function of a priori
knowledge concerning the features in the pool and the remainder of the system
which will utilize the chosen measurements. In those cases where it is desir-
able to discriminate certain class pairs more than others, the thresholds are
modifiable and can be individually varied.

From the results shown in Table 3, the threshold selection algorithm
is uniformly superior to both generalized sequential selection and generalized
sequential rejection. Only threshold selection was discussed, although thresh-
0old rejection would be straightforward to implement if conditions warrant.

A modification to the threshold selection procedure was made to include
a measure of redundancy among the features selected. This modification em-
ploys a measure of the correlation of the feature selected (the Pearson cor-
relation coefficient). The redundancy measure is used to reduce each feature's
contribution to the overall utility of the subset. This modification may
be made to any selection or rejection algorithm employing a distance measure.
The threshold selection algorithm with this redundancy measure (Table 4) is

superior to the threshold algorithm without the measure and is markedly super-
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ior to generalized selection and rejection. The only disadvantage to in-
cluding this measure is the computational and storage costs involved. However,
in most cases, feature selection is only performed once and these costs may

not be an important factor.
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APPENDIX A: DESCRIPTION OF THE FEATURE POOL

The features chosen for inclusion in the pool reflect the types of
features commonly found in the literature. Very little effort was made to
tailor the feature pool to the problem domain described earlier. The distri-
bution of these features is as follows:

52 randomly designed n-tuples

22 hand-picked n-tuples

45 high information n-tuples
8 topological measurements

25 windows

Clearly, the performance of the system is limited by the quality of the fea-
tures contained in the pool; a more thoughtful choice of features will undoubt-
edly produce an increase in performance. However, this was not the subject
of study in this paper.

The randomly designed and hand-picked n-tuple measurements are 5 X 5
matrices whose elements are zero, one, or ''don't care." The features are
"on" if a match is made at any point as the window is shifted over the char-
acter. The high-information n-tuples are masks which are either 2 x 3, 2 x5,
3x2,3x3, or 5x 2. These are each placed in a particular location on
the character and are "on" if the density (blackness) of that grid exceeds
a given threshold. The topological features measure the contour of the char-
acter as viewed from the horizontal and vertical edges. Four of these fea-
tures measure concavity and are binary features. The remaining four features
measure the straightness of the outer contour. The line intersection fea-
tures each count the number of times a line drawn through the character inter-
sects the character. The windows are those of Hussain, et al., [13]. The

value of each measurement is the density of a 4 x 4 segment of the 24 x 24
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character grid.

Table A.l is a summary of the distribution of features selected from

the pool for the sets of thirty features.

(TR
(] —~ [}
=4 o o o
=8 =] & o
o o |
o 1 = o
1 £ 0O 3]
=1 '~ o
=T e
E 9] © © b
c 2 E o0 o
0 Y S 4 o
Type of Feature 8 B & g 5 »
S 2 o 5}
ER
@ o O A
e
f Sequential Selection -
m=1 2 2 7 5 d 7
m = 50 0 3 6 7 11 3
1 Sequential Rejection
m=1 5 3 9 1 5 7
m = 50 1 0 8 5 9 7
[
( Threshold Selection
c=1/2
(same as c = 2/3) ¢ & ¢ g &
T Threshold Selection with Redundancy Measure
c=1/2 2 1 6 7 6 8
(same as ¢ = 2/3)

Table A.l. Distribution of features chosen for selected thirty
feature subsiets of



_e UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

tSecurity classilication of title, body of abstract and indexing annctation must be entered when the overall report is classified)
1. ORIGINATING ACTIVITY (Corporate author) 20. REPORTY SECURITY CLASSIFICATION
_ : UNCLASSIFIED
. . ; 2b. GROUP
University of Massachusetts, Amherst, MA 01002 ¢rou

None

3 REPORT TITLE

FEATURE SELECTION ALGORITHMS USING NON-REDUNDANT THRESHOLDED MEASURES

4. DESCRIPTIVE NOTES (Type of report and, inclusive dates)

Technical Report

S- AUTHORIS) (First name, middle initial, last name)

Edward G. Fisher
Allen R. Hanson
Edward M. Riseman

b.

d.

6. REPORY D]A)TE 1974 - 78. TOTAL NO. OF PAGES 7;. NO. OF REFS
ecember ‘ 27 13
8a. CONTRACT OR GRANT NO. ° . 9a, OR‘_GINATOR‘S REPORY NUMBERI(S)
N0001l4- 67-A-0230-0007 - COINS Technical Report 74C-9

PROJECT NO.

9b. OTHER REPORT NOIS) (Any other numbers that may be assigned
this report) .

10,

OISTRIBUTION STATEMENT

Distribution of this document is unlimited

SUPPLEMENTARY NOTES . 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research, Code 437

None Washington, D.C.

137 ABSTRACT

A new feature selection method, thé threshold selection algorithm, is
presented and compared with sequential selection and rejection algorithms. This
algorithm assumes a measure of feature discrimination exists and provides a set
of threshold parameters, associated with class pairs, which are dynamically vari-
able. These thresholds provide a local as well as a global perspective to the
problem of selection of feature subsets from a pool Each threshold parameter
provides an upper limit of class separation to be attained during feature selec-
tion; once this limit is reached, that class pair no longer affects the selection
~of features. Thus, the procedure maintains a global perspective by considering
equally all class pairs which have not achieved their thresholds and in addition,
particularly during the latter steps, focuses on the fewer local cases which have
not been discriminated sufficiently . -

The basis of comparison of the algorithms is a pattern recognition system
operating on hand-printed alphabetic characters. The threshold selection algor-
ithm provides improvement (in terms of system error rate) over sequential selec-
tion and rejection. Finally, a modified threshold selection algorithm with a
redundancy measure is described which exhibits a considerable 1mprovement in

. performance.

DD o 1473 (pace 1) UNCLASSIFIED

S/N 0102.014-6700 : Security Classification



