e

-l

Lomws IR

Pattern Recognition Pcrgamon Press 1976. Vol. 8, pp. 35-45. Printed in Great Britain

CONTEXT IN WORD RECOGNITION

A. R. HansoN*, E. M. Risemant and E. FisHERT

* Division of Language and Communication, Hampshire College. Amherst,
Massachusetts 01002, U.S.A.
+ Department of Computer and Information Science. University of Massachusetts, Amherst.
Massachusetts 01002, U.S.A.

Received 25 October 1974 and in revised form 19 May 1975)

Abstract—Relatively low character error rates can often lead to prohibitive levels of word error rates.
This paper examines several techniques for integrating an independent contextual postprocessor (CPP)
into a full classification system. Using positional binary n-grams the CPP can correct many errors
directly. In those cases where the correction process leads to ambiguity, the CPP can direct additional
processing. Experimental results demonstrate that almost all of the derived improvement results from
CPP-directed reclassification. This only requires that the CPP have the classifter likelihood fed forward
to it. Therefore, a standardized CPP can be built independently of the rest of the classification system.
An initial 45% word error rate is reduced to about a 2% word error rate and a 1% reject rate.
Presence of a dictionary allows these figures to be reduced even further.

Context Contextual postprocessor
Error detection Error correction.

1. INTRODUCTION

If pattern recognition machines are to process text
in any reliable fashion, the error rates that are often
reported in the literature must be reduced by at least
an order of magnitude. Typical character error rates
of 4-25% result in word error rates (in six-letter
words for example) ranging from 21 to 86, assuming
that errors are independently distributed. .

Thus, even a 4% character error rate leads to an
unacceptably large proportion of words in error.
However, 4% is approximately the error rate of hu-
mans when they view isolated hand-printed charac-
ters.”? It is obvious that our use of context allows
us to make at least an order of magnitude improve-
ment in the character error rate so that very few
words are actually mistaken. It is contextual processes
such as these that are often lacking in the design of
character recognition systems.

There have been a number of contextual processing
schemes investigated.>~'* Many of the effective sys-
tems use a dictionary or else estimate the likelihood
of letter sequences with letter pair (digram) or letter
triplet (trigram) probabilities. Although the use of a
dictionary is more effective than n-gram probabili-
ties,>~" these systems suffer from slow correction
speeds in language domains of any practical size. On
the other hand, systems which use n-gram probabili-
ties usually suffer from one or more of several com-
mon difficulties: introduction of undesired complexity
in the classification process, exorbitant amounts of
storage, or only modest reduction in error-reject
rates.(.-12)

This research was supported by the Office of Naval Re-
search under Grant ONR 049-332.

35

Character recognition

Positional binary n-grams

This paper extends the independent contextual
postprocessor described in ref. 5 by examining the
alternatives available for integrating it into a full clas-
sification system. Our overall classification system as
shown in Fig. 1 is viewed as a network of 3 subsys-
tems: a feature selection/measurement subsystem, a
classifier and a contextual postprocessor. The patterns
upon which the system operates consist of individual
words input as a sequence of characters. The first
two subsystems operate on individual characters
while the postprocessor operates on sequences of
characters forming words. There have been attempts
at integrating the designs of the last two of these sub-
systems. However, this often leads to an increase in
complexity, as in Raviv’s® integration of context (as
trigram probabilities) within a decision-theoretic clas-
sifier. Many systems that are interesting from a theor-
etical perspective turn out to be impractical in appli-
cation. It is far simpler to build each of these subsys-
tems as an independent module. In this paper, we
will examine a character recognition system that is
very simple but whose power resides in the key role
played by an independently operating contextual
postprocessor.

Let us briefly discuss the system which is depicted
in Fig. 1 and the environment in which it operates.
Conceptually, we think of the feature subsystem as
a composite of the following: (a) a large pool of fea-
tures, (b) a process by which a subset of the pool
is selected. usuvally based upon information from a
training set, and (c) a process which measures the
value of each feature when a pattern is presented. The
features contained in our pool are random n-tuples,
line intersections, amount of mass within various win-
dows, and only a very few topological features. Very

74HC -6

36 A. R. HansoN, E. M. RiseMAN and E. FiSHER

CONTEXTUAL
SYSTEM
CLASSIFIER . POST = ourpur
PROCESSOR

PATTERN FEATIRE
SPACE MEASUREMENT
FEATWRE
SELECTION
FEATURE POOL

Fig. 1. The three subsystems of a character recognition system: feature subsystem, classifier, contextual
postprocessor.

little effort was made to obtain a good pool of fea-
tures because very good features (such as topologi-
cally invariant features) often require large amounts
of computation.

The feature selection algorithm is the study of a
separate paper '3 the algorithm employs thresholded
measures of non-redundant class pair separation in
order to select features. This algorithm was used to
select 50 of the 200 features in the pool to act as
our primary feature set for classifying characters.

The classifier is quite straightforward. There was
virtually no attempt to design a sophisticated decision
mechanism. The classifier employed here is a simple
Bayesian classifier: select class j(C = j) such that j
maximizes the product P(X|C =j)P(C =j) where
X = (xq,. .., X,) is the vector of measurements on the
upknown sample. We made a typical simplifying as-
sumption that the individual measurements x; € X
are independent.* Most assumptions of this type are
not valid, but are made to avoid either prohibitively
large training sets for estimating the class conditional
densities or prohibitive amounts of computation. In
any case, we expect errors to occur due to both the
violation of such assumptions as well as variations
of the character set not accounted for in the training
set.

The third subsystem is the contextual postproces-
sor. It is this subsystem which we expect to be respon-
sible for the overall effectiveness of the character re-
cognizer. This system does not have to be complex
in order to compensate for the weaknesses in the first
two subsystems. An effective and independent contex-
tual postprocessor was presented in ref. 5. The error
rate was significantly reduced by detecting and cor-
recting a large portion of the word errors input. The
further improvements to this system are the topic of
this paper. In the next two sections, we will review
the design. operation, and effectiveness of this CPP
and compare it to one of the traditional approaches

* Results similar to those presented in this paper were
obtained under an assumption that the features were multi-
variate normal with equal covariance matrices.

for employing context in the classification of samples
of a language. Then we will examine alternatives for
further integrating the CPP into the overall system.
Experimental results will be used to assess the value
of each of these design variations.

2. PREVIOUS APPROACHES
2.1 Context as Markov dependence

A simple Bayesian classifier was constructed to
operate on characters from Munson’s handprinted
IEEE Data set.!# This data consisted of three hand-
printed alphabets from each of 49 authors; two alpha-
bets from each were used for training and one of each
was used for testing. The classifier produced a 9.7%,
character error rate on the 1274 test characters, a
value in the range of previous experimenters.! > Since
the whole system is to operate on strings of characters
forming words, the test set of characters were used
to produce a set of 2755 6-letter words'® (by random
selection among the 49 samples for each letter). The
9.7% character error rate produced a word error rate
of 45.8% on six-letter words when characters are
classified independently.

As a base against which to measure the contextual
processing systems that follow, context was intro-
duced under the assumption that the structure of the
input words obeyed a 2nd order Markov dependence;
i.e., each character is a probabilistic function of the
previous 2 characters (less at the beginning of words).
This involves using the set of 17,576 trigram probabi-
lities as a number of previous researchers®-'" have
done. In our case, we use the trigram probabilities
to directly weight the likelihoods of the individual
characters obtained from the set of features. Thus,
for sample character i, we choose j to maximize:

P()_(JC.' =jP(C; = jiCi-y =k, Ci_, =)

_where X, and C,, are the vectors of feature measure-

ments and the hypothesized identity of the mth
character in the sequence, respectively.

The results are presented in Table 1. The word er-
ror rate using the trigram probabilities is reduced,

o

X

a9,

Context in word recognition 37

Table 1. Utility of context as 2nd Order Markov dependence.
(a) Character and word error rates

CHARACTER ERROR RATE | WORD ERROR RATE
CLASSIFIER WITHOUT CONTEXT 9.72 45.82
CLASSIFIER US

PrRoBA LTI 10.22 29.2%

(b) Distribution of word errors

NONE 1 2 3 4 5 6 TOTAL
CLASSIFIER WITHOUT CONTEXT | 11841 ||7662 {2041 | 273 | 23 1 0 110,000
QLASSIFIER GRAM

mﬁ}ﬁéﬂ 15474 12621 11750 [1134 | 531 | 269 | 62 || 6.367

but only to 29.2%,. Even more surprising is the result
that the character error rate is actually increased. This
is due to the fact that once an error is made, ad-
ditional errors are more likely. Table 1 compares the
distribution of errors in the 21,841 input words. It
is clear that this use of context results in far more
words with long sequences of errors. OQur conclusion
is that this is an ineffective use of contextual informa-
tion. Although there are more sophisticated ways to
integrate the n-gram probabilities into the decision
process, these results give a sense of that approach.
We do not believe that simple and efficient techniques
under assumptions of Markov dependence will result
in highly significant reductions in the error rate.

2.2 Rejection

One processing option that others have utilized is
the rejection of characters whose confidence is below
a given threshold, say 6. Our analysis‘® shows that
for values of 6 up to 0.99, the number of incorrect
characters is about the same as the number of correct
characters rejected. Thus, the reject rate will increase
approximately twice as fast as the error rate will de-
crease. While this might be quite acceptable, the point
is usually reached quickly where a modest decrease
in error rate is obtained only at the expense of a
very large increase in the reject rate. Thus, this does
not allow the order of magnitude improvement we
have set as our goal. Reduction of the character error
rate to 2-3% leaves a 20-30%, character reject rate,
causing a very large word reject rate. Although we
have not investigated this technique further, it is poss-
ible to integrate it with some of the more powerful
systems described in later sections.

2.3 Feedback directed by the classifier

An additional extension to the classifier involves
feedback of low confidence decisions to the feature
selection/measurement subsystem. Rather than just
choose the class with the maximum likelihood. we
can require 2 minimum likelihood or “confidence” @
before permitting the classifier to output a decision.
It is possible to use the confidence threshold not to
reject the character, but rather to determine whether
to request further measurements selected from the se-

condary set of specialist features. A subset of the se-
veral most likely classes will be formed so that
specialist features can be used to reduce the uncer-
tainty between particular class pairs. Reclassification
may then be done on the basis of only the new infor-
mation or on the combined information. The utility
of this approach clearly depends upon the quality of
the “specialist” features. While results have not been
encouraging,” the features employed were drawn
from the same set as the primary features; resuits
should improve if the specialists are carefully selected
from a good set.

3. REVIEW OF THE CONTEXTUAL
POSTPROCESSOR (CPP)

The dictionary of words acceptable as input is par-
titioned by word length into subdictionaries. Al-
though the processor we are describing can operate
in general using binary n-grams, for simplicity we will
restrict the explanation to binary trigrams and allow
the reader to carry out the obvious generalizations.
For each subdictionary a triple of letter positions
(ijk) specify a 26 x 26 x 26 array D, called a posi-
tional binary trigram. The (Lm,n)th entry of Dy, is
defined to be 1 if and only if there exists some word
in the subdictionary which contains letters /, m and
n in the ith, jth and kth positions, respectively; other-
wise, it has value 0. This is equivalent to quantizing
trigram probabilities to values of 1 or 0 depending
upon whether the probability is non-zero or zero, re-
spectively.

The set of all (5) positional binary trigrams can
be used to detect errors in m-letter words. For any
word output from the classifier (a character at a time),
the proper entry in each binary trigram is checked
to make sure it is a 1. Any entry of 0 implies that
the triple is illegal and there exists one or more errors
in the triple of positions. '

The set of binary trigrams can also be used to cor-
rect the errors detected. The position of the error is
fixed by analyzing the positions of the subset of tri-
grams which detect the error under the hypothesis
that only one error occurred. If more than one pos-
ition could account for the trigrams detecting an er-

38 A. R. HansoN, E. M. RiseMAN and E. FISHER

Table 2. Initial CPP Effectiveness, (a) Analysis of error detection and correction
as a function of the number of errors present

NUWBER OF WORDS
* INPUT TO CPP | DETECTED | CORRECTED | REJECTED | UNDETECTED ? PROPERLY
ERRORS CORRECTED
1 7662 7561 4656 2905 101 -—
2 2041 2038 611 1357 3 70
3 273 273 9 248 0 16
4 23 23 ———— 19 Q 4
s 1 1 — 1 o 0
TOTALS 10000 9896 5276 4530 194
(b) Distribution of words with N errors
) TOTAL
NUMBER OF ERRORS N N= 0 1 2 3 4 S 6 ERRORS | REJECTIONS
BEFORE CPP 11841 | 7662 | 2041 7| 23 1 o || 20000 0
AFTER CPP wur | o122 | 42 24 3 3 0 " 194 | 4s30

ror, then the correction process is attempted for each
in the hope that the ambiguity will be resolved by
determining that there is no possible correction for
all but one of the positions. If there is no single pos-
ition which could account for the trigrams which de-
tect the error, then there must be multiple errors in
the test word. An analogous procedure fixes all poss-
ible pairs of positions which could be in error, etc.

For each triple which involves only one position
in error, the characters in the two correct positions
determine which characters are alternatives for substi-
tution in the error position. This information is a pro-
jection of the data in the binary trigram associated
with the triple: it resides in the 1's and O’s of the
26-bit vector specified by the characters not in error.
We intersect these vectors from all binary trigrams
involving the position in error. If there remains only
one choice for the character in error, we carry out
the substitution. In all other cases, the word is re-
jected. The case of multiple errors in which the pos-
ition is not fixed involves still more cases and will
not be analyzed here. It should be noted, however,
that if the number of errors is correctly determined,
then the proper correction(s) must be in the set of
alternatives.

Although there may be several cases to be exam-
ined by the CPP, the detection and correction process
can be made very fast by accessing information from
the n-grams in parallel. Storage requirements are also
quite modest since probabilities are quantized.

n-error words are mistaken as m-error words, m < n.
and are mistakenly corrected. A more careful analysis
shows that the ratio of increased corrections to in-
creased errors is 64:1 and 44:1 for 1- and 2-error
words respectively. The overall resultant word error
rate is less than 19 and the character error rate is
0.23%;. However, these impressive improvements have
come at the expense of a 219, word reject rate. This
rate is in part due to the rejection of words in which
3 or more errors occurred, but is mainly due to ambi-
guity in the correction process.

The performance of the CPP can be fully appre-
ciated only if one examines some of the word errors

Table 3. Errors corrected directly by CPP. (a) Words properly

corrected.
ONE ERROR WORDS THO ERROR WORDS

INUT CLASSIFIER o INUT CASSIFIRR PP

oUTPUT ouTPUT ouTPuT
DISHAL DYSMAL DISMAL LAGOON 1AGOOH LAGOON
GOSSIP AOSSIP GossIP IMPEDE 'YHPEDE IMPEDE
HOODED HOODED HOODED LAVISH LAV LAVISH
HMBLE HWMBCE HUWBLE KNIGHT JNIGNT KNIGHT
LEAGE LEAGVE LEAGUE ENGINE BHGDE ENGINE
LAYOUT LAYOPT LAYOUT DRAGON DRABOH DRAGON
TROLPE THOUPE TROUPE ARMORY BRMOEY ARMORY

(b) Words improperly modified

THREE ERROR WORDS
Ineur CLASSIFIER

TWO ERROR WORDS

ar

The CPP is quite effective in the detection and cor- T Al o o oumur
rection of errors as shown in Table 2. About 99% - — —
of the word errors are detected and over 50% cor-
rected. It should be noted that about 1/3 of the 104 goLTY. - BoDITY BapILY WITER - WRER - NEMER

ASSENT ABSEWT ABSENT BISECT QSGECT ASPECT

MORAS! HORASS SALOON ooV
undetectable errors were undetectable because the re- s e s SAILR
. . . .« L. SINGLE JINGIE JINGLE SUMMIT SNNHIT SULIT
sulting incorrect word also appeared in the dictionary
FLANGE FLAACE FLANCE ALLIES ALISZS ARISES
and therefore would be undetectable by any process
. . USEFUL WBERWL WOEFUL FERVID FERUSO PERUSE
operating only upon independent words. The correc- SOt ReseT BmAT B

tion process does introduce new errors since some

o

Context in word recognition 39

that are properly corrected as well as mistakenly cor-
rected. Table 3 is a presentation of some of these
cases. Most people have some difficulty in correcting
two errors in 6-letter words and find 3 errors almost
impossible to correct. Although the CPP by itself only
corrects 30%, of these. some of the more powerful sys-
tems presented later handle a much larger percentage.
It seems that a large portion of the improper correc-
tions are exactly conversions of a two-error word into
a word that differed by only one character from some
other in the dictionary. These are precisely the correc-
tions that most people make, but one should note
that the CPP is carrying out these corrections without
the use of a dictionary of possible words. Hence, it
sometimes improperly corrects to words that are not
in the language, although, as one might expect. they
sound like English words. Some examples are shown
in Table 3 (b).

Although the CPP is quite effective in detecting
errors, it only carries out correction when there is
no ambiguity. It always attempts correction under the
assumption that the fewest errors possible have oc-
curred; ie., it will attempt to correct as a 1 error
word if possible, otherwise as a 2-error word, etc.
When there is more than one alternative, the CPP
we have described will reject the word. This happens
in over 45% of the errors detected (219 of all words).
In a large majority of these cases. there are only a
few choices for letter substitutions, and the remainder
of this paper examines ways of correcting these errors.
Most of the alternatives for additional processing will
be under the direction of the CPP.

4. FURTHER PROCESSING BY THE CPP

The flow of control in the system that has been
discussed is quite straightforward. Each subsystem
feeds information sequentially to the next subsystem
until the CPP outputs a decision or rejects the word.
In this section we will introduce additional paths of
data flow so that alternatives for processing a charac-
ter or word at various stages in the recognition pro-
cess will be available. These paths are shown in Fig.
2 and involve feedback from the CPP to the feature
or classifier subsystems. In addition. we will also exa-
mine the utility of employing statistics on the types
of errors made by the classifier; i.e.. the substitution
matrix (this dependency is shown as a dotted line).

The CPP has already demonstrated its power by
its ability to detect and directly correct word errors

po—mm————— -
[}]
| 1
eur FEATRE m‘m‘a‘““ |
PATTERN SBSYSTEM CLASSIFIER
PROCESSOR

Fig. 2. Additional paths of data flow (solid lines) and
design dependency (dotted line).

that are input to it. The results presented in the pre-
vious paper® were for a CPP that would reject all
words where there was any ambiguity in the correc-
tion process. In almost all cases where a word is re-
jected, however. the CPP does supply useful informa-
tion and can be used to direct a range of actions.
Let us outline the options we can make available to
the CPP during processing of a character. When an
error is detected, the CPP may:

(1) correct the word directly, and output it;
(2) determine the position(s) of the letter(s) in error
and then
(@) refer back to the classifier for reclassification
among the remaining choices; or
(b) feed back to the feature extractor for addi-
tional measurements before reclassification is
attempted;
(3) be unable to fix the position(s) of the error(s)
and either
(a) reject the word as uncorrectable (possibly
with a recommendation list); or
(b) choose the subset of alternative positions of
the error(s) and request additional measure-
ments for the letter(s) in these positions.

In this section, we will discuss each path of infor-
mation flow in more detail. Although they will be
discussed independently, any subset of them can be
used concurrently. Unfortunately, there does not seem
to be any vehicle by which the different systems can
in general be theoretically compared. They are, of
course, dependent upon the problem domain and the
specific data. The empirical results that follow com-
pare each of the alternative designs and pinpoint
which are the most powerful in this problem space
and hopefully give insight into other domains.

4.1 Classifier error matrix statistics

In the case of alternative choices of correction in
the CPP (ie., the 21% of the words rejected), any
information which might potentially reduce such un-
certainty should be examined. Vossler and Bron-
ston® utilized the classifier statistics to determine
which type of errors were more likely. In this case,
the CPP will use 26 probabilities derived from the
training set error matrix to determine which of the
candidates for the input character was more likely
to have produced the error.

In generalizing from a training set to a test data
set, one must be aware of the dangers of generalizing
from a small sample. Because of the small ratio be-
tween the number of characters per class and the
number of classes (98:26). we must admit that it is
very likely that some mistakes will be made on the
test data that were not made on the training set even
though the test data reasonably resembles the training
set. To impose our subjective evaluation of the prob-
lem upon the substitution matrix probabilitics, we
compute P(cjc;). the probability that a character is

A. R. Hanson, E. M. RiseMaN and E. FisHER

Table 4. Additional Processing by CPP

INFORMATION
ADDITIONAL WORD CORRECTIONS/ERRORS VS, CONFIDENCE LEVEL
UTILIZED

6=0 .5 .9 990 999 | .9999

@ CORRECTIONS | 3476 3349 1918 213 38 1
ERRORS 1052 752 124 4 [0

CORRECTIONS | 4120 4118 3989 3643 3464 | 3464

@ ERRORS 408 406 287 225 170 146
CORRECTIONS | 4161 4157 4063 3937 3842 | 3600

O+® | mrors 367 365 294 219 174 135
® CORRECTIONS | 3955 3955 3828 3604 3311 | 3080
ERRORS 573 571 430 287 193 145

@ . @ CORRECTIONS | 4034 4033 3911 3769 3566 1319
ERRORS 494 491 346 246 178 142

QORRECTIONS | 4131 4131 4084 3996 3305 3848

@+ ERRORS 397 393 325 283 237 207
CORRECTIONS | 4158 4158 4116 4069 3981 3882
®’®"@ ERRORS 370 365 317 256 233 211

a member of class ¢; given that it was classified as
¢t

n*
P(c|c) = 5g— wheren} =n; + h.
L]
>
=1

n;; is the number of training set characters in class
i which were classified as class j, and h is the flattening
constant discussed by Good.!!* The net effect of this
is that the substitution matrix will not absolutely rule
out any of the alternatives presented by the CPP,
though it will still provide relative likelihoods of the
alternatives.

The results of employing this information is dis-
played in Table 4. It is labelled as path () and as
a dotted line because it is not a path of information
flow. Rather, it is design information which can be
collected once and permanently incorporated in the
CPP. It is interesting that just this simple table of
676 probabilities can be used by the CPP to correct
3476 of the 4530 errors previously uncorrectable
(when no confidence level is used). This is due to the
small number of alternatives which often result. With
a confidence level of 0.5, the increased correction/er-
ror ratio is about 4.5:1. Although this is interesting,
one would probably not want to re-introduce 1000
of the almost 10,000 errors which were so effectively
detected. Here high correction rates are obtained only

*h = 1§y produced the results presented in this paper.

@ To reduce ambiguity in cor-
rectlon, CPP uses probabilltles
of error matrix estimated from
the training set

®

When CPP cannot correct, reclas-
sification of the amblguous
cholces (on the basls of the
original feature measurcments)
takes place.

CPP dlrects feedbock for addl=-
tlonal speciallst features to
reduce amblguity [n correction.

at the expense of a large number of additional errors.
However, in those cases where this final error/reject
rate is tolerable, the additional cost of computation
and storage is almost nil.

4.2 CPP-directed reclassification

Let us consider the case where the position of an
error is determined but correction does not take place
because there is more than one substitution that is
admissible. Almost 80% of all 1-error words and 429,
of 2-error words had no more than 3 alternatives for
substitution for the error(s). The tail of this distribu-
tion, though, is long, and there were as many as 48
alternatives for some 2-error words. Suppose we re-
turn the subset(s) of characters to the classifier for
reclassification. Even though an error was made in-
itially, it is not unreasonable to expect that the correct
character ranked high. Thus, a simple reclassification
decision among the few characters remaining might
be all that is necessary. Although the process of re-
classification can be viewed as feedback, it should be
noted that the set of likelihoods of the 26 letters could
be fed forward for the CPP to use directly for reclassi-
fication if necessary.

The implementation of this procedure is not diffi-
cult. Because each of the alternatives for substitution
in multiple-error words might involve different pos-
itions, we can only determine the likelihood of a set
of substitutions in context. If a particular character
a; is not in error, then that might imply that some

ot

Context in word recognition 41

character o; must be in error. Thus, the CPP can
supply the set of substitutions which thereby form
each of the alternative words for correction. The
product of the likelihoods of each character in the
word is used to compute the likelihood of the whole
word and the most likely alternative is selected. This
process is computationally feasible only because it is
directed by the CPP.

One should fully appreciate the power of this pro-
cess. Initial erroneous classification has a far greater
chance of being corrected by carrying out the identi-
cal classification procedure in the restricted pattern
subspace. The pattern classes that are confused on
the basis of the measurements employed usually are
not the same pattern classes that the CPP confuses.
For example, although “O’s” and “C’s” appear visually
to be similar and might be mistaken for each other
by the classifier. in many cases the contextual statis-
tics would rule out one or the other as impossible.
Thus, the expectation is that this procedure might
boost the correction rate significantly.

Information path (2) in Table 4 presents the results
of the CPP-directed reclassification. It is extremely
powerful: the increased correction/error rate varies
from 10:1 to 24:1 as a function of the confidence
level. This process can correct about 4000 of the 4500
words initially rejected. Even in three-error words, the
system is relatively effective. Of the 273 3-error words,
177 are properly corrected while 7 are improperly re-
classified. Of course, words with more errors can be
mistaken as 3-error words and also improperly cor-
rected; this introduces 14 errors. Thus, even at-
tempted 3-error correction has a correction/error ra-
tio of over 8:1.

CPP-directed reclassification seems to be extremely
effective even on these 4500 more difficult cases. To
get some sense of the problem, Table 5 shows three
different words which are originally classified with 3
errors. The CPP using the set of binary trigrams
quickly determines substitutions which result in over
40 alternatives for each' incorrect word.* Many of
these alternatives are in fact actual words. By using
the original likelihoods with the reduced set of alter-
natives, each of the 3-error words is properly cor-
rected. Of course, information from the measurements
on the particular character samples (which are not
shown here) are being used to carry out the correc-
tion. Thus, in the case of the word ‘SHOULD’, the
errors consisted of substituting B for S. A for H, and
O for D, errors which were likely to be made and
are hard to correct due to the topological similarity
of the characters. However, the CPP can rule out
many of the difficult substitutions.

The use of both the substitution matrix and the
reclassification process is also shown in Table 4. Since
the relative importance of each type of information
was unclear, the overall likelihood was computed as

* The average is 22.6 alternatives for all three-error
words which the CPP detects but is unable to correct.

Table 5. THREE-ERROR CORRECTIONS—Three
error words which are properly corrected during
reclassification

ACTUAL ORIGINAL ACTUAL ORIGINAL ACTUAL ORIGINAL

CLASSIF, WORD QULASSIF. WORD CLASSIF.
SHOWD BAOWO BUSHEL OUSVEC DURING BVRIHG
PP PP PP
ALTERNATIVES ALTERNATIVES ALTERNATIVES
BABBLE OQUTLEY BARIAD
BADDLE OUTLEY BARIAL
BADILE OUTREN BARIAN
BAFFLE OUTREY BARIED
BAIDLY OUTSET BARIEL
BANDLE OYSVRC BARILE
BANDLY OLIVER BARILY
BANGLE BUSHEL BARINE
BANILE BUSHER BARINY
BANILY BUSKET BERIAD
BANKLE BUSTEN BERIAL
BANTLE BERIAN
BARBLE CUSSED BERIED

BARDLE CUSSEL
BARDLY CUSSER BERILE
BARELY CUSTER BERILL
BARILE DUSTEN BERILY
BARILY DUSTER BERIND
BAROLD FUSTEN BERINE
BAROLE GUSHER BERINY
BAROLY HUSSER BIRINY
BARTLE HUSTER
BASILE JUSTER BURIAN
BASILY LUSTER BURIEL
MISKET BLRILE
BATILE MUSLEN BURILY
BATILY MUSSEL BERIAG
BATTLE MUSTEN BAKING
BALBLE MUSTER BALING
BAMBOO PUSSET BATING
BLOUSE TUSSEL. 1
SHOWLD TUSSER BILING
APOLLO TUSTER BITING
PUSTIC
PURVER DURING
PLRVEY ARING
QUAVER PIRING
SURVER SIRING

the product of the probabilities obtained from each.
This is equivalent to assuming independence of the
processes. Although both techniques are better than
either alone, it is obvious that the addition of the
substitution matrix is only of a little help. One must
weigh the slight improvement due to the use of the
classifier statistics since it causes the design of the
CPP to be dependent on the classifier. This will be
discussed further in the conclusion.

4.3 Feedback to feature system

Although the process just described seems to be
quite effective, it is possible that a significant number
of errors would be unnecessarily produced. Consider
the following line of reasoning. Since an error did
occur, the character must in some way be distorted,
noisy, or otherwise non-standard. Therefore, the error
is caused because the correct character had a low
likelihood and might still rank low in any reduced
subset. Because of the CPP design, we can be certain
that if the position of the error(s) is correctly fixed,
then the correct character must be in the reduced
set(s). Using this rationale, rather than re-introduce
an error, it would be preferable to seek additional
measurements since the information in the original
measurements is not sufficient. The experiments about
to be reported will determine the validity of this argu-
ment.

Again we will employ a set of secondary features
for the additional measurements. The n best second- -
ary features will be chosen for every class pair in-
volved. If the number of alternative classes is reduced

)

A. R. Hanson, E. M. RiseMaN and E. FISHER

Table 6. CPP System with substitution’
matrix and reclassification ((D+(®). (@)
Final error-reject rates as a function of confi-

dence level
courlnmcs LEVEL
0=0 .999
WORD ERROR RATE 2.7 2.2 1.7
WORD REJECTION RATE 0 1.1 2.7
CHARACTER ERROR RATE 732 .63% 512

(b) Distribution of errors in the 21,841 words

NUMBER OF ERRORS TOTAL TOTAL
0 1 2 3 4 5 6 ERRORS | REJECTS
NO CONTEXT | 11841 | 7662 2041 273 23 1 0 10000
o=0 21254 345 152 58 20 9 1 585 2
o= .999 | 20885 192 107 50 16 6 1 372 584

to 4, which it usually is, then there would be only
6 class pairs to dichotomize. Taking additional
measurements to separate 4 classes should result in
the complexity of the problem being exponentially
reduced from the 26 category (325 class pair) space.

The results shown in Table 4 suggest that this pro-
cess, shown as(3), is indeed effective in dealing with
the rejected words. However, it is quite surprising that
it is not as effective as direct reclassification. This
means that our original 50 primary features (which
initially produced an error!) were still more effective
for reclassification than using a subset of specialist
features for each class pair in the reduced set. The
results shown are-for n = 3; however, even if we in-
crease the number of specialist features for each class
pair to 12, we gain only slight improvement and it
is still worse than(2). This might be a function of
the poor quality of our feature pool, although it is
unclear whether an improved pool would allow the
50 primary features to be outperformed by the few
specialists.

Once the secondary features have been selected and
measured, there is the additional possibility of includ-
ing information from thé original measurements in
the new classification instead of basing the decision
entirely on the few specialist features. This combina-

tion of information is denoted as @+@ and is-

slightly better than (2) by itself but not better than
(®+ () bringing into question the value of the use
of the secondary set of features.

4.4 Summary of whole correction process

It is worthwhile to summarize the effect of the best
version of the whole system. It is not entirely clear
which system is best because of the error-correction

tradeoff. It is clear that @ is better than @ or ®

alone. A careful examination shows that either
O+@or® +@+ @ yield the best results de-
pending on the confidence level. We will use the
simpler version ®+ (@ as the best system. However,
for purposes of independence @ alone may be the
most desirable; this choice will be discussed later in
the paper.

Table 6 gives a summary of the final correction,
error and reject rates for three confidence levels as
well as a distribution of the errors in the set of 21,841
words. The 45%, word error rate has been reduced
to the 2% range with a character error rate reduced
from 9.7% to well below 1%.

4.5 Addition of a dictionary to the CPP

We have previously argued that dictionary correc-
tion systems are inefficient because of the number of
words that must be looked up.!> It takes too long
to compare the word in error to the whole dictionary
or to look up all words differing by 1 or 2 characters.
However, the CPP system that we have described
sharply reduces this number of possibilities. If a dic-
tionary were available, then all of the CPP correc-
tions to non-legal words will be avoided. Table 7
presents the same system with a dictionary added so
that all potential corrections can be checked for dic-
tionary correctness. The error-rate is cut by more
than half and the rejection rate is reduced even more
dramatically. The reader can decide for himself
whether the additional storage for 2755 6-letter words
and the additional computation is worth this im-
provement in the system.

5. DISCUSSION

The systems we have presented seem to be highly
_effective. An unacceptably large word error rate of
45% is reduced to the 1-2% range. A classifier making
independent errors would have to have a character
error rate in the 0.2-0.3% range to obtain these word
error rates. A classifier with an initial error rate lower
than the 9.7%; used in this paper should produce very
effective final results. As the initial character error
rate is reduced, there are fewer multiple-error words
produced. Since it is easier for the CPP to fix the
position and correct single errors, we can expect both
fewer errors to be produced initially by the classifier,
as well as a larger percentage of the errors to be pro-
perly corrected. If a classifier with a character error
rate of 2% is employed (causing a word error rate

Context in word recognition 43

Table 7. CPP-Dictionary System. (a) Final
error-reject rates as a function of confidence

level
CONFIDENCE LEVEL
0=0 .9 .999
WORD ERROR RATE 1.2 1.1 .9
WORD REJECT RATE 0 .3 .7
CHARACTER ERROR RATE .432 .40% .36%

(b) Distribution of errors in the 21,841 words

NUMBER OF ERRORS ot | TomaL

0 1 2 3 4 5 6 | ERRORS | REJECTS
NO CONTEXT | 11841 | 7662 | 2041 | 273 23 1 0 10000 0
0=0 21578 9% 77 54 27 8 1 261 2
0= .999 | 21490 47 66 49 25 7 1 195 156

of over 11%), we expect the final word error-reject
rates would each be about 0.4%; without a dictionary,
0.2% with a dictionary. One should note that this
would be equivalent to about a 0.03-0.06% character
error rate, a system that would be nearly impossible
to build without the use of context if hand-printed
characters comprise the pattern space.

The power of the system we have described resides
in the difference between topologically similar charac-
ters and contextually similar characters. Of all the
alternative systems examined, we feel that the CPP
directly carrying out reclassification when it cannot
correct a character is all that is necessary. Clearly,
this seems to be the most effective process and allows
us to avoid going back to the original character
sample for additional measurements. This means a
standardized CPP can be constructed entirely separ-
ately from the rest of the recognition system and al-
lows the same CPP to be operated with many differ-
ent front ends. It only needs to have the classifier
Jeed forward the likelihoods used in making the deci-
sion.

The use of the substitution matrix in addition al-
lows slight. but not significant. further improvement.
The measurement of additional features directed by
the CPP did not outperform direct reclassification.
Of course, this is a function of the quality of the
secondary features employed and one must be careful
in generalizing to other problem domains.

The generalization of these results to text with er-
rors distributed in a non-random manner (run of er-
rors, characters interchanged, etc.) is of practical im-
portance. Although we have just begun to seriously

" examine these difficulties, we feel that the system de-
scribed here will have more success dealing with
problems of this type than other systems described
in the literature. Information concerning specific
characteristics of error production such as 2 charac-
ters being reversed can be incorporated in the CPP
to aid its processing. Errors caused by deletions and
insertions of characters can be corrected by inserting
a slot between each character to see if any can correct
to an admissible word. or by deleting each character

to see if it becomes admissible. Of course, this prob-
lem requires more examination because of problems
such as ambiguity between a 2-error word or a 1-error
deletion.

In order to have a complete text recognition system
that operates on words of any length, we might need
to build a memory to hold a set of binary trigrams
for each set of words of a different length. The 2755
6-letter words we used would require about 10K of
32 bit words (although it would be much more effi-
ciently organized as a special 26-bit word. or in gen-
eral as a function of the number of classes). For effi-
ciency, the memory could be partitioned to access
all binary trigrams in parallel. There is reason to be-
lieve that for shorter words, the recognition rates re-
ported would still be achieved. There are fewer binary
digrams that can be employed for shorter words but
there are also fewer words (resulting in sparser
n-grams). Error rates should decrease in longer words
because of the increase in the number of trigrams
that could be employed.

In problem domains where there is contextual
knowledge and character recognition systems cannot
achieve acceptable recognition rates, a CPP designed
in the manner we have described should provide at
least an order of magnitude improvement. Further
investigations to apply the CPP to postal reading ma-
chines are actively underway. Also, there may be
many special purpose applications where the size of
the input word set is much smaller than 2755. In these
cases, much more dramatic results can be expected.

SUMMARY

If pattern recognition machines are to process text
in any reliable fashion, the error rates that are often
reported in the literature must be reduced by at least
an order of magnitude. Typical character error rates
in the range of 4-25% (in 6-letter words) lead to pro-
hibitive word error rates ranging from 219, to 86%,
This paper examines ways to extend an independent
contextual postprocessor (CPP) developed in'" and

44 A. R. Hanson. E. M. RiseMaN and E. FiSHER

to integrate it as a major subsystem in a full classifica-
tion system.

The contextual postprocessor utilizes sets of posit-
ional binary n-grams. A binary trigram is a 26% binary
matrix Dijk; the (I, m, n)th entry is 1 if and only if
there exists some word in the input set which con-
tains letters /, m and n in the ith, jth, and kth pos-
itions, respectively; otherwise, it has value 0. This is
equivalent to quantizing trigram probabilities to va-
lues of 1 or 0 depending upon whether or not each
probability is non-zero. The binary information is
quite compact and algorithms for error detection and
correction of words are computationally very efficient.

Using the set of all positional binary trigrams, ex-
perimental results demonstrate that 99% of errors in
a set of 2755 6-letter words are detected. The CPP
can also use this information to efficiently correct
over 50% of the word errors. These results are com-
pared to integrating context into the classifier by a
straightforward Markov process (using trigram pro-
babilities) and shown to be far more effective.

Although these results demonstrate effective pro-
cessing, about 50%, of the detected word errors remain
uncorrectable. Many words are not corrected because
of ambiguity in the correction process, that is, alterna-
tive character substitutions. The remainder of the
paper examines ways of correcting these word errors
by carrying out additional processing under the
supervision of the CPP.

The CPP usually reduces the alternatives for cor-
rection down to a few choices. The latter portion of
the paper compares various types of additional pro-
cessing to improve performance. These include:

(a) request for further specification measurements
(from a secondary pool of feature specialists) by the
classifier whenever confidence of a decision is low;
this is an attempt to markedly reduce classifier errors
prior to CPP processing;

(b) use of the classifier substitution matrix to re-
solve ambiguity;

(c) CPP-directed reclassification (without further
measurements) of the reduced set of alternatives;

(d) request for further secondary measurements by
the CPP prior to reclassification; and

(e) various combinations of the above.

The techniques were compared empirically and
show that almost all of the payoff can be obtained
by CPP-directed reclassification. In order to accom-
plish this process, the CPP only needs the set of clas-
sifier likelihoods upon which the original classifier de-
cision was based. It can use this data to reclassify
in the reduced subspace. This structure allows the
CPP to be built independently of the rest of the classi-
fier and standardized. Examples of processing specific
6-letter words with one, two, and three errors give
a sense of the quality of the system. In many cases,

the system corrects multiple errors where a human
finds the task quite difficult.

Experimental resuits demonstrate the effectiveness
of the CPP by analyzing a character recognition sys-
tem with a weak set of features and the simplest of
classifiers. The techniques for additional processing
result in more than an order of magnitude improve-
ment. A 45% word error rate is reduced to about
2% word error rate and 1% reject rate. Presence of
a dictionary allows these figures to be reduced even
further.

REFERENCES

1. U. Neisser and P. Weene, A note on human recogni-
tion of hand-printed characters, Inf. Control. 2. 191
(1960).

2. E. M. Riseman and R. Ehrich, Contextual word recog-
nition using binary digrams, /EEE Trans. Comp. C-20.
397 (1971).

3. R. Ehrich and K. J. Koehler, Experiments in the con-
textual recognition of cursive script, IEEE Trans.
Comp. C-24. 182 (1975).

4. A. R. Hanson, E. M. Riseman and E. G. Fisher, Con-
text in word recognition, Univ. of Massachusetts.
COINS Technical Report 74C-6. August 1974.

5. E. M. Riseman and A. R. Hanson. A contextual post-
processing system for crror correction using binary
n-grams, IEEE Trans. Comp.. C-23. 480 (1974).

6. C. M. Vossler and N. M. Bronston. The use of context
for correcting garbled English text, Proc. Ass. Comput.
Mach. 19th Nat. Conf.. pp. D2.4-1-D2.4-13, Aug. 1964.

7. F. Damerau, A technique for Computer detection and
correction of spelling errors, Commun. Assn. Comput.
Mach. 1, 171 (1964).

8. J. Raviv, Decision making in Markov chains applied

to the problem of pattern recognition, IEEE Trans. -

Inf. Theory. IT-13, 536 (1967).

9. G. Carlson, Techniques for replacing characters that
are garbled on input, in 1966 Spring Joint Comput.
Conf., AFIPS Conf. Proc.. 28. 189. Washington. D.C..
Spartan, 1966.

10. R. B. Thomas, M. Kassler and G. Woolley. Advanced
character recognition study. Tech. Rep. 2 DDC-AD
435852, Dec. 1963.

11. E. J. Sitar, Machine recognition of cursive script: The
use of context for error detection and correction, Bell
Lab.. Murray Hill. N.J.. unpublished memorandum, 12
Sept., 1961.

12. E. Tanaka, T. Kasai and M. Fujino, A Correcting
Method of Garbled Languages Using Languages In-
formations, Trans. IECE, 54-C. (294-301), (1971).

13. E. G. Fisher, E. M. Riseman and A. R. Hanson. Fea-
ture selection using thresholded measures, COINS
Tech. Report 74C-9. December 1974—an earlier ver-
sion of this appeared in Proceedings of 1973 Interna-
tional Conf. on Cybernetics and Society, Nov. 1973,
pp. 94-95.

14. J. H. Munson, Experiments in the recognition of hand-
printed text, Proc. 1968-Fall Joint Comput. Conf., 33.
1125 (1968). .

15. A. B. S. Hussain, G. T. Toussaint and R. W. Donald-
son, Results obtained using a simple character recogni-
tion system on Munson’s hand-printed data, IEEE
Trans. Comput., C-21, 201 (1972).

16. 1. J. Good, The Estimation of Probabilities. Research
Monograph No. 30. Cambridge: MIT Press, 1965.

-

Context in word recognition

About the Author—EDwWARD M. RISEMAN was born in Washington. D.C.. on August 15, 1942. He
received the B.S. degree from Clarkson College of Technology, Potsdam. N.Y.. in 1964. and the M.S.
and Ph.D. degrees from Cornell University, Ithaca. N.Y.. in 1966 and 1969, respectively. all in electrical
engineering.

In 1969. he joined the Computer and Information Science Department. University of Massachusetts.
Ambherst, where he is now an Associate Professor. He has conducted research in switching theory.
feature selection, character recognition, and texturc analysis. Currently. his principal interests involve
the application of contextual information to word recognition, computer vision and .mechanized infer-
ence systems.

Dr. Riseman is a member of Tau Beta Pi. Eta Kappa Nu. Sigma Xi, IEEE. and the Pattern Recogni-
tion Society.

About the Author—ALLEN R. HANSON was born in Jamaica, N.Y. on August 4, 1942, He received
the B.S. degree from Clarkson College of Technology, Potsdam, N.Y., in 1964, the M.S. and Ph.D.
degrees from Cornell University. Ithaca. N.Y.. in 1966 and 1969. respectively. all in clectrical engineering.

In 1969. he joined the Department of Computer. Information. and Control Sciences at the University
of Minnesota. Minneapolis, as an Assistant Professor. In 1973, he joined the faculty of Hampshire
College. Amherst, Mass.. where he is responsible for computer science curriculum development. He
has conducted research in the areas of pattern recognition, artificial intelligence, adaptive systems
and medical data analysis. His current research interests include application of contextual information
to pattern recognition problems and the use of semantic structures in vision processing.

Dr. Hanson is a member of Eta Kappa Nu, Tau Beta Pi, the Association for Computing Machinery,
IEEE. and the Pattern Recognition Society.

About the Author—EDWARD G. FIsHER was born in Manchester, New Hampshire on April 19, 1946.
He received his B.S. in Mathematics from the University of New Hampshire in 1971 and his M.S.
in Computer Science from the University of Massachusetts in 1974. He is currently finishing his Ph.D.
in Computer Science at the University of Massachusetts. His dissertation topic is “Context in Text
Recognition.”

He will begin working for Pattern Analysis and Recognition Corporation. Rome, N.Y., in the fall
of 1975. His research interests include: pattern recognition, with an emphasis on the use of context;
operating systems, measurement and cvaluation; and the study of algorithms.

He is a member of ACM, IEEE. the Pattern Recognition Society, and Pi Mu Epsilon.

45

