OBSERVATIONS ON THE ATTRIBUTES
OF DATABASE SETS*

By

Robert W. Taylor
Computer and Information Science
University of Massachusetts
Amherst, MA 01002

COINS Technical Report 75A-1
January 1974

%
The research reported in this paper was supported in part by the National
Science Foundation under grant No. NSF GJ 41829 and in part by a grant
from Control Data Corporation.

OBSERVATIONS ON THE ATTRIBUTES
OF DATABASE SETS

Robert W. Taylor
Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01002

1. INTRODUCTION

Sets have been one of the most widely debated aspects of the 1971 CODASYL
DBTG Report [1] and its schema language successor defined in the CODASYL Data Des-
cription Language Journal of Development [2]. Depending on one's viewpoint, sets
are the most powerful and simultaneously the most dangerous data structuring fea-
ture of the report--powerful because they allow network structures among a diver-
sity of record types, dangerous because they tend to add complexity to the program-
mer's task. Further, sets tend to bind program to data structure rather tightly
in the sense that the allowable database traversals invoked by various forms of
the FIND verb depend on the continued existence of these sets--thus limiting a
database administrator's ability to change the explicitly represented access paths
(Codd in [3] called this phenomenon "access path dependence.")

To review briefly, a database set type is a declared association between one
designated record type, called the owner record type, and one or more additional
record types distinct from the owner, called the member record type(s). A data-
base set occurrence is one occurrence of the owner record type together with zero
or more occurrences of each member record type(s). A member record occurrence may
be associated with at most one occurrence of a given set type.

By declaring a set type in the database schema language, a database adminis-—
trator implies the existence of an access path from the owner record occurrence
through the associated member record occurrences such that a programmer, if per-

mitted, may traverse the access path using Data Manipulation Language statements
such as FIND NEXT, FIND PRIOR, FIND ItP and FIND OWNER.

Along with its name, a database set carries a number of additional attributes.
Among these are:

1) Ordering - the member record occurrences may be declared to be in a
given order, which will then be maintained by the system.

2) Prior Processable/linked to owner - linkages are maintained by the sys-
tem to allow efficient processing in the "prior" and "owner"
as well as the "next" directions.

3) System Lwned (singular) - the "owner" is the database management system.

This is useful for providing an access path through all occur-
rences of a given record type.

4) Dynamic - A set ,can have an occurrence of any record type as a member.

5) System maintained insertion/removal - record types in their capacity
as members of a set type may have attributes which govern
whether or not a programmer must explicitly INSERT them in a

set occurrence, and whether or not they may be REMOVED from a
set occurrence.

D

ROBERT W. TAYLOR

The rest of this paper will examine these last two database set attributes in
Fume detail. There appear to be certain problems in the definition of DYNAMIC
sets, and the paper suggests revisions which, in the author's opinion, do not lim-
it the usefulness of DYNAMIC sets, while at the same time avoiding some of their
problems. With respect to system maintained insertion/removal, suggestions are
made which would allow the. extension of these capabilities in certain cases. Fi-
nally, a few remarks are made concerning additional attributes which could aid in

set occurrence verification by database utilities.

2. DYNAMIC SETS

A DYNAMIC databse set has a declared owner record type, an ordering, and per-
haps privacy lock and ON condition database procedures. to be called. It has no
declared member record types. The semantics of a DYNAMIC declaration is that an
occurrence of any record type may be INSERTed into and REMOVED from the dynamic
set associated with a given occurrence of the owner record type.

Such a facility is useful in applications which need some "scratch" sets in
which record occurrences may be collected. Because of the CODASYL architecture,
in which all database sets are declared at schema definition/schema compile time,
the provision of such "scratch' access paths must be the responsibility of the
database administrator. A programmer has no ability to add additional "scratch"
sets associated with his particular run-unit. But at the same time, it would be
an unwarranted burden on a database administrator to have to anticipate and name
the scratch sets that might be needed for each applicaticn program; hence the fa-
cility for a few scratch sets which can have any type of record occurrence as a
member.

We turn now to some of the problems arising from the DYNAMIC set attribute.
It is interesting to note that the 1971 DBTG Report [1] referred to this attribute
as POINTER ARRAY DYNAMIC and proposed a conceptual implementation strategy as
shown in Figure 1. This may appear at first to be a feasible implementation stra-
tegy. Note that there is no access path from the member record occurrences back

OWNER LIST OF
RECORD MEMBERS
| S
e — — e e
MEMBER <
RECORD
MEMBER ¢
RECORD

M = MEMBER POINTERS

Figure 1. Dynamic Pointer Arrays in the DBTG Report.

-3-

OBSERVATIONS ON THE ATTRIBUTES OF DATABASE SETS

_to the associated owner record occurrence. One might argue that this is appropri-
]ate since, to do otherwise, would mean the allocation of one pointer (database
key) field for every DYNAMIC set for every record occurrence in the database*, on
‘the off chance that a given record occurrence might participate in every dynamic
:set. On the other hand, since the access path from member to owner does not exist,
various traversals are precluded. The DBTG report [1] acknowledges this (page
51): "there is no provision for declaring that the owner record of a dynamic set
is to be directly accessible from its members.'" However, the implications of this
restriction are severe. For example, the DBTG report states (p. 234) that an
INSERT statement must fail if the object record occurrence is already a member of
some occurrence of the set into which the object record is being inserted. Under
normal circumstances, this is easy to enforce, since there will be a pointer field
in the record occurrence which, if non-null, indicates that the record already
participates in some set occurrence (which one can be ascertained by doing a FIND
OWNER). If dynamic sets are implemented as in Figure 1, no such field exists and
further, there is no way to know without exhaustive search whether or not a record
occurrence already participates in an occurrence of a dynamic set.

Other anomalies requiring exhaustive search are easy to construct: consider
the processing necessary to answer the questions:

a) IF RECORD MEMBER OF dynamic-set

b) FIND NEXT RECORD OF dynamic-set SET
(when the current record has been located through some independent
path.)

Thus even dynamic sets must have a direct path to the associated owner record
occurrence, and this has been recognized in [2] by removal of the original pro-
vision.**

Thus, with the access path from owner to member being a necessity, we are
back to the dilemma of many pointer fields, most of which are null most of the
time. There are, of course, several approaches to this problem. One would be to
add a system pointer field to each member occurrence, regardless of type. This
field would point to a variable length vector of pointers which would grow and
shrink dynamically as records came and went from dynamic sets. Such a strategy is
illustrated in Figure 2. For example, dynamic set 1 might be declared prior pro-
cessable with a general strategy of chaining while dynamic set 2 might be implemen-
ted using pointer array techniques. Such a strategy is, of course, flexible and
could even be used for all MANUAL sets, not just dynamic ones. It has the accom-
panying space management inefficiencies.

A second strategy, similar to that adopted in one existing implementation,
[5], would be to reserve a bit map and k pointer fields in each member record,
where k is some number less than or equal to the number of dynamic sets. The bit
map would be used to indicate which dynamic sets are participated in with the k
pointer fields used to hold the relevant pointers. Membership in more than k dy-
namic sets simultaneously would be an error. Once again, all MANUAL members could
use such a strategy together with dynamic members, and the inefficiencies are
somewhat reduced (see Figure 3).

This is only approximately true, since if there exist m dynamic sets and a
given record type is declared owner in n of them, n < m, then occurences of
this record type need only reserve m - n pointers for the other dynamic sets.

If the dynamic sets are all singular, then the statement holds.
**However, this author can find no explicit provision in [2] of what access
paths must be provided (by whatever storage organization strategy) when a set type

ROBERT W. TAYLOR

Member Record Occurrence

non-dynamic pointers

data

}other system pointers (CALC chain, etc.)

to dynamic sets |

dsetl

dset2

to owner

Figure 2: Dynamic vector for participation in dynamic sets.

Bit Map - bit i =1
indicates record is
currently a member in
the ith dynamic set.

010 01 0

K pointer fields

Figure 3. Bit map and membership in at most K dynamic sets.

OBSERVATIONS ON THE ATTRIBUTES OF DATABASE SETS

A still better solution, in the author's opinion, is to return to the basic
idea of a scratch set and how a programmer would like to use it. It seems a case
can be made for the dynamic set, defined at program compile time rather than
schema compile time, and having only one occurrence per run unit. The set is dy-
namic in that it behaves much like a temporary area--the set no longer exists when
the run unit ceases its interaction with the database management system.

Such an architecture would have the following advantages:

)

2)

3)

4)

5)

6)

It would give a programmer the ability to define as many scratch
sets as he found convenient, with no long term space commitment in
the database itself.

The ability to enforce which record types could and could not be
members of which set types would remain--a valuable run-time check
on database integrity.

There would be no "stray'" sets around. This author can find no pro-
hibition against a run unit inserting various record occurrences in-
to dynamic sets and then terminating without removing them. This
would certainly lead to database clutter, as well as confuse later
run-units trying to re-insert the same record occurrences into dif-
ferent occurrences in the dynamie set. Such clutter would probably
occur since there is currently no DML statement to "empty" a set oc-
currence, so the "emptying'" of a set is a matter of some program-
ming.

Rather than having a programmer use scratch files outside the
reaches of the database management system, the programmer may stay
"inside'" the system and thus profit from the extended database re-
covery and other bookkeeping services. In this sense, the special
case of dynamic sets proposed here is rather similar to the idea of
temporary areas as proposed in both [1] and [2]. The approach here
is to be preferred, however, as it is not bound by the restriction
([2] page 3.25) that "records in a temporary area cannot participate
either as owner or member records, in sets which contain records
that are not in temporary areas.'" Note also that there need be no
copying of data records for the purposes of entering them in scratch
sets. This must be done when using temporary areas since the same
record occurrence cannot simultaneously exist in two areas.

Use of the SORTED INDEXED and SEARCH KEY facilities would allow pro-
grammers to specify the dynamic creation of extra indices. This
could be particularly useful if a database administrator wished to
experiment with extra indices which, if they truly improve perfor-
mance, will be added to the schema and maintained permanently when
the schema is next revised.

The ability to define extra scratch sets at program compile time
greatly enhances the ability of a macio-oriented preprocessor [6].
For example, if macro statements are added to allow selection of rec-
ords using Boolean selection expressions or other macros are allowed
for set operations (and a relational view of data [3]), scratch sets
become extremely useful.

An architecture for supporting DYNAMIC sets of this type is shown in Figure

is declared.

Presumably at least one path from owner record occurrence to associ-

ated member record occurrences and vice-versa. If this is not so, then the re-
vised Data Manipulation Language of [4] cannot be supported.

ROBERT W. TAYLOR

4. Basically, using a pointer array strategy, the members of the single occur-
rence of the dynamic set are maintained by the database management system for the

AUGMENTING SCHEMA
RUN-UNIT DELIVERED AT
REGISTRATION
+
POINTER ARRAY
FOR THE SINGLE
OCCURRENCE (PER__ \ -
RUN UNIT) OF W
THE DYNAMIC | f——X | __ _ _ ___ DMS
SET
N -
N
@b
SUB-SCHEMA —DATA BASE
FOR RUN .
UNIT L/

Figure 4. Architecture for dynamic sets.

given run unit. Member record types may be INSERTED and REMOVED and there is no
"owner pointer" within the member record type. However, the ability to get to the
"owner" pointer array is maintained because there is only one set occurrence for
the given run unit.

Because this form of dynamic set is programmer rather than database adminis-
trator defined, there remains the problem of informing the database management
system of the existence of this new set. This could be handled as follows. At
execution time, during the "registration" process that run-units undergo in order
to tell the database management system of their existence, an "augmented" sub-
schema would be delivered. Contained therein would be the names and other allowed
attributes of these additional dynamic singular sets. Thereafter, the behavior
will be as if these singular sets were contained in the schema except that the
singular occurrence will be deleted at the end of the run-unit execution. Note
that because the set is singular, there is no problem in interpreting a FIND NEXT,
FIND PRIOR, etc., because there is only one "pointer array"* for this singular

*
0f course, it need not be a pointer array, strictly.

OBSERVATIONS ON THE ATTRIBUTES OF DATABASE SETS

set (for this run unit) and that is locatable by the system. With respect to en-
forcement of the rule against duplicate INSERT of the same record occurrence into
a given set occurrence, this can be enforced in logarithmic time by searching the
pointer array or more quickly by keeping a bit map in the record occurrence
(though this latter method puts an upper bound on scratch sets as well as raising
some additional concurrency problems.)

There is, of course, an additional burden placed on the compiler (or pre-com-
piler) in that it must provide the compiled version of the augmented schema. How-
ever, this would seem to be a reasonable price to pay for these added facilities.

We thus conclude that DYNAMIC sets as they currently are constituted in [2]
could more usefully exist when defined externally to the schema itself. Rather,
dynamic sets should augment the schema. Thus DYNAMIC should be removed from the
schema language, but some provision should be made in the documentation to allow
for the concept of augmentation. That is, system designers should not be misled
into thinking that because DYNAMIC sets are not in the schema language that the
system does not support dynamic sets. .

3. SYSTEM-MAINTAINED SETS

One of the reasons database management systems exist is to provide common
services for programmers. An example would be the set attribute AUTOMATIC com-
bined with MANDATORY. When a record occurrence is stored, it will automatically
be included in those sets in which it is an AUTOMATIC member, with set occurrence
selection being governed by the associated SET SELECTION clause in the set defin-
ition. 1If it is a MANDATORY member, it cannot be removed from the set, and will
automatically be deleted under some variations of the deletion function when the
owner is deleted. Such services are properly included in a data management sys-
tem: they not only relieve programmers of routine bookkeeping details, but also
help the database administration staff to insure database integrity--they need not
worry so much about making sure that each programmer remembers to do each inser-
tion that he is supposed to.

We ask then, if system help with bookkeeping (i.e., insertion/removal) is
desirable, how difficult would it be to extend the system's capabilities for these
semantic rules, and can this be done in a way that maintains the "inessentiality"
[7] of the set itself.

Consider the case shown in Figure 5. Here we have several sets being used to

I SYSTEM
|_—FRESHMEN

o
herarey
ALL-STUDENTS —3 | | | - SOPHOMORES
T JUNIORS
LL J SENIORS
STUDENT

Figure 5. Sets used as state indicators.

partition a set of student records into classes based on accumulated credits
(note: not all students start with zero credits because of transfers and the

ROBERT W. TAYLOR

granting of advanced standing). The use of multiple set types from an owner to a
member to indicate a "current state" of some variable is not uncommon. Yet as
currently constituted, the student record must be declared a MANUAL member in each
except that set which collects all students. Consider also thecode that a pro-
grammer might write for such a situation. This is shown in Figure 6. What would
probably happen in a current installation is that the database designer/database
administrator will know at design time the criteria under which a record will be

a member in such a set. This will be communicated to the programmer via memoranda

STORE STUDENT
IF CREDITS IS GREATER-EQUAL TO
ZERO AND LESS THAN 30 THEN
INSERT STUDENT INTO FRESHMEN
ELSE IF CREDITS IS GREATER-EQUAL TO
30 AND LESS THAN 60 THEN
INSERT STUDENT INTO SOPHOMORES

.
.

Figure 6. Typical conditional insertion code.

etc., and the programmer will write the code. How much easier it would be for the
criteria of membership to be written in the schema language. The code would then
define a database procedure to be executed on STCRE, or, if database procedures
are not implemented, the schema code could be inserted at compile directly after
any STORE statement of the designated record type. The following advantages of
this "conditional automatic' membership can be noted:

1) Increased data independence. The programmer need not be aware of these
extra access paths. They can be removed from the schema (after all, they
are inessential) without impacting the program except, perhaps, for re-
compilation.

2) A more complete schema definition of why the set exists and the condi-
tions for membership--and in a form that allows enforcement of these con-
ditionms.

3) The ability to generate validity checking programs automatically from the
schema definition. This will be discussed more fully in section 4.

A similar set of "conditions" should be included in the MEMBER record clause
to define the actions to be taken ON DELETE of the owner record of the set, ON
MODIFY of the member record, etc.

Thus it appears such a facility would enhance the schema language. There re-
mains the problem of guaranteeing the inessentiality of the set, for reasons of
data independence and compatability among data models [8]. From the definition
of an inessential set [7], it must be possible to determine the set occurrence in
which a newly stored record will be inserted directly from the stored record.

From the definition of legal set occurrence, there must exist at most one owner

record occurrence having values such that the "conditions'" are satisfied. Thus a
necessary and sufficient condition is that an item (or concatenation of items) in
an owner record which serves as the match condition governing conditional ‘automat-
ic insertion of member records, must use the DUPLICATES ARE NOT ALLOWED FOR data-
base identifier -1, -2,* In the current DDLC schema language, this clause

- ;
And, of course, there must be an independent access path to occurrences of

OBSERVATIONS ON THE ATTRIBUTES OF DATABASE SETS

is only available when the record type participates as a member type in a set type
Thus we conclude the fcllowing:

If semantic rules governing insertion and deletion of records in sets are
to replace the AUTOMATIC/MANUAL and MANDATORY/OPTIONAL attributes, as has
been suggested [8], and the idea of inessential sets is to be maintained,
then the owmer record in the set must not have duplicates on the items
participating in the rule. Hence the owner record must be a member in a
singular set which enforces these duplication conditions (one duplication
condition for each set owned) or else a similar duplication clause and
and null control must be added to the record description clause of the
schema language.

It is also worth noting that because of this condition, it is likely that rec—
ords will be members in a variety of singular sets (unless the language is extend-
ed more fully in the record section). If the problem is dealt with via singular
sets, it becomes paramount that pointer space not be committed in member records
for each singular set. The storage structure or device media control language
must provide for such an optiom.

4. SET SEMANTICS

Researchers in data management systems seem to be unanimous in their agree-
ment that at some level of specification the concept of an allowable access path
must be included. By access path specification, we mean a specification of the
circumstances under which it is meaningful for a user (or the system in the user's
behalf) to move from one record occurrence to another (possibly of a different
type) within the data base. Thus, for example, the relational model has the no-
tion of conformable domains, and one would be surprised if it were allowable to
take the equi-join of age (in years) with melting point (in degrees Kelvin). Sim-
ilarly, the schema language embodies the notion of access path in the database
set, and, for better or worse, the definition of such an access path in current
‘(non-relational) systems tends to be equated with the explicit representation of
that access path.

We do not intend to debate that point here, however. Rather, our intent is
to discuss the lack of "meaning" currently associated with the existence of a set
in the schema language. This is perhaps best done by example. Consider the data
structure diagrams shown in Figure 7. One is the traditional parts.explosion of a

PART PERSON

HAS- 1S-SPOUSE-OF
DOWN SPOUSE |,
- hd A

|REL—REC l | REL-REC

Figure 7. Syntactically equivalent data structures which
will have differing instance structures.

E

the owner record type.

=i

ROBERT W. TAYLOR

part made of sub-parts made of, etc., while the other is self-explanatory. Note
that syntactically, these two cases are identical, yet we know that the occurrence
structures which conform to these two data structure diagrams will be different——
in one case there will be symmetry (if A is married to B, B is married to A) while
in the other case, it had better not be true and we should have anti-symmetry.*
Such specification of the legal instances is particularly important in the check-
ing of database validity by background procedures.

Figure 8 offers another example. It is probably true that the set of records

‘ SALESMAN

YEAR'S- THIS-MONTH'S-SALES
SALES-TO-DATE

~

‘ ORDER

Figure 8. Sets used to represent the "state" of an object.

in an occurrence of the THIS-MONTII'S-SALES set is a subset of the set of records
in the corresponding YEAR'S-SALES-TO-DATE set occurrence. Yet there is not way to
state such a condition in the schema language. If there were, then the system
could check the truth of this assertion.

The overriding point is that, in the definition of a set type, the schema
language should provide an opportunity for the definition of the precise condi-
tions which the access path embodies. (Other data structure models, e.g., [9],
[10], have realized the importance of such a facility and have included it in
their language). When such a facility is included, the épportunity for a number
of system provided services arises. Two of these are that:

1) The system has a greater chance of determining complex traversal
for a casual user because it can determine what predicate is true
of participants on that access path and hence whether that path
will yield records which are relevant to the question (see, e.g.,

[11]).

2) The system can increase its validity checking mechanisms because it
has a definitive test for valid versus invalid structures.

Drawing from the DIAM model [9], we can make the following statements about
necessary features of the semantic rules that should be added to the language as
an attribute of sets:

1) There should be a subsetting semantic rule (as in Figure 8) for those
sets which are selecting a subset of some other set in order to speed
access. It follows that every member record in the "subset path" is
also a member of the "full set'" access path for the database to be
valid.

2) When the set is connecting dissimilar (or the same) entities (either

*
This example continues to hold, even if the necessity for the "relation-
ship record" is removed from the language.

-11-

_ OBSERVATIONS ON THE ATTRIBUTES OF DATABASE SETS

in a 1l:n or m:n fashion) there should be a rule stating what condition
must hold in order for such an access path to be built. This is equiv-
alent to saying that all sets must be inessential.

3) There should be a rule stating when two paths to a set of record oc-
currences must 'commute." An example is shown in Figure 9, where the
set of SALE records reachable via the two paths should be the same.
Such a rule provides an additional cross check on database validity.

SYSTEM
SALESMEN
— SALESMAN
SALES
SALES-BY-SALESMEN
~ N
SALE

Figure 9: Commutativity of access paths.

5. CONCLUSION

It has been suggested that, in the long term, a single DDL should evolve to
serve a variety of users, in particular, the "relational" user and the "naviga-
tional" user. While such a goal is certainly desirable, it can be seen from the
arguments above that the current DDL, even when various 'features" are not used,
is not currently suitable to achieve these goals. In particular, the treatment of
DYNAMIC sets is, in the author's opinion, ill suited to either class of user.
Also, the desire for inessential sets implies enforcement of more powerful dupli-
cation control rules than are currently available except through extensive use of
singular sets. Finally, the semantic rules which govern the behavior of records
in sets are not adequately covered in the DDL. None of these problems are insur-
mountable, but all must be resolved in a future design.

REFERENCES

[1] CODASYL Data Base Task Group Report, April 1971, available from ACM.

[2] CODASYL Data Description Language Journal of Development, June 1973, avail-
able from U.S. Government Printing Office, Sup. of Documents, (#C13.16/2:
113)

[3] Codd, E.F., "A Relational Model of Data for Large, Shared Data Banks," Comm.

(4]

(5]
[6]

7]

(8l

(9]
(10]

[11]

-12-

ROBERT W. TAYLOR

_ACM, 13:6, June 1970, pp. 377-387.

CODASYL Data Base Language Task Group, COBOL Data Base Facility Proposal,
March 1973, available from Canadian Government. -

Univac Corporation, DMS 1100 Schema Definition, UP7907.

Taylor, R.W., "Data Administration and the DBIG Report," Proceedings 1974 ACM
SIGFIDET Workshop, May 1-3, Ann Arbor, MI, available from ACM.

Codd, E.F., and C.J. Date, "Interactive Support for Non-Programmers, the Re-
" lational and Network Approaches," 1974 ACM SIGFIDET Workshop, Ann Arbor,
MI, available from ACM.

Nijssen, G.M., "Data Structuring in the DDL and the Relational Data Model,"
IFIP TC-2 Working Conference on Data Management Systems, North-Holland
Publishing Company, Amsterdam.

Senko, M., E.B. Altman, M.M. Astrahan, and P.L. Fehder, "Data Structures and
Accessing in Data-base Systems," IBM Systems Journal, 12:1, 1973.

Mathers, J.0. and R. W. Taylor, "The DIAM Model: A Review and Discussiomn,"
COINS Technical Report 74A~1, University of Massachusetts.

Astrahan, M.M. and S.P. Ghosh, "A Search Path Selection Algorithm for the
Data Independent Accessing Model," Proceedings of the 1974 ACM SIGFIDET
Workshop, Ann Arbor, MI, available from ACM.

ACKNOWLEDGEMENT

The research reported in this paper was supported in part by the National

Science Foundation under grant No. NSF GJ 41829 and in part by a grant from
Control Data Corporation. The author would like to acknowledge helpful dis-
cussions with R. Eckhouse, and A. Karshmer of the University of Massachusetts.

BIBLIOGRAPHIC DATA |1+ Report No. 2.
SHEET NSF-0CA-GJ41829-75A1

3. Recipient's Accession No.

4, Title and Subtitle

OBSERVATIONS ON THE ATTRIBUTES OF DATABASE SETS

5. Report Date date of issue
January 1975

7. Author(s)
Robert W. Taylor

No.

8. Performing Organization Repr.

9. Performing Organization Name and Address
Computer & Information Science Dept.
Graduate Research Center
University of Massachusetts
Amherst, MA 01002

10. Project/Task/Work Unict No.

11. Contract/Grant No.

GJ41829

12. Sponsoring Organization Name and Address
National Science Foundation
Office of Computing Activities
Washington, D.C. 20550

13. Type of Report & Period
Covered

14.

15. Supplementary Notes

In—Deﬁth Evaluation of the DDL" in Brussels, January

13-17, 1975.

Presented at the IFIP TC-2 Special Working Conference: "A Technical

16. Abstracts

Sets have been one of the most widely debated aspects of the 1971 CODASYL
DBTG report. This paper discusses various of their shortcomings with special
emphasis on "dynamic' sets and sets that are "system maintained" through the
use of an "augmented schema'" is introduced to overcome some shortcomings of
dynamic sets, and extensions to the concept of AUTOMATIC membership are
proposed. A discussion of data base validity checks is also included.

17. Key Words and Document Analysis. 17a. Descriptors

CODASYL DBTG Report
data base management systems
data structure design

17b. Identifiers /Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement

Release unlimited

19. Security Class (This 21. No. of Pages
cht*-"}
UNCLASSIFIED 14
20. Security Class (This 22. Price

Page
UNCLASSIFIED

]

FORM NTIS-35 (REV. 3-72)

THIS FORM MAY BE REPRODUCED

USCOMM-DC 14952-F72

i nad

