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ABSTRACT

The current use of formal definitions of programming languages is very
small, largely because of a lack of a fully developed technology and user
resistance to the poor human engineering of the definitions themselves. Never-
theless, usable formal definitions are essential for the effective analysis
of programming languages and their orderly development and standardization.

We present four well-known formal definition techniques, W-grammars, At-

tribute Grammars, Production Systems with Hoare Axioms, and the Vienna Defini-

tion Language. Each technique is then applied to define the same small pro-
gramming language. These definitions provide a basis for a discussion of the
relative clarity of the different methods and for a review of some of the de-
batable issues of formal definition. Among these issues are the advantages, if
any, to the definition of an underlying machine model, the precise nature of a
valid program, the relative merits of generative and analytic definitions, and
the place of implementation defined features in the definition.

In conclusion, a case is made for the importance of fdrma] definitions and

the need for a significant effort to make definitions suitable for human con-

sumption.



"From a purely scientific viewpoint, the members of the various
working groups concerned with programming language standardization
really ought to report to their parent committees that their as-
signed task is impossible without a major prior effort by the tech-
nical community; and that this prior effort would have to produce
an effective procedure for describing the languages that are of
concern."

Thomas B. Steel, Jr. [S4]

1. INTRODUCTION

The programming language Tower of Babel is well known. Less discussed is

Eﬁ
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the Tower of Metabable, symbolic of the many ways that programming languages are

described and defined. The methods used range all the way from natural language

to the ultra-mathematical. The former are subject to all the vagaries and incon-

sistencies that result from use of normal prose, and the latter frequently have

their meaning hidden under abstruse notation.

Sometimes a mixture of methods is used. The formalism is then generally

1imited to the use of Backus Naur Form (BNF), or some equivalent, to define
the context-free aspects of the language. The context;sensitive restrictions
and the semantics are then defined by some other method, usually prose. In

this paper, we confine ourselves completely to full definitions.

All metﬁods of definition treat the following gemeral problem. Given an

alphabet of symbols S, the set S* ig the set of all possible symbol strings

that can be constructed from S. A definition provides rules for selecting the

gset P c S* of "legal" programs of the language being defined, and for each legal

program p € P, the definition also specifiesﬁits "meaning".

There is considerable difference in the way the various definition methods

gelect and specify the set of legal programs and their meaning. These differ-

ences give rise to the following questions:

V"3 |



1. Should the definition model be based on the notion of an under-
lying machine?

2. What precisely constitutes a valid program, one whose context-
free syntax is correct, one whose context-sensitive syntax is
correct, or one that does not infringe any of the semantic rules
of the language during execution?

3. How should a formal definition show errors, explicitly in the
definition, or implicitly by rules that only generate valid
programs?

4. Should a definition attempt to indicate the places that an im-
plementation may introduce restrictions, and is it possible to

forsee all such restrictions?

Indeed, we, the authors, have differing views on these questions. *

In this paper, we make the assumption that the raison d'étre of a language o
definition is to‘provide information, and in particular, to answer questions about
a language. The questions may vary from the very generai, "What data types are ]
supported in the language?" to the most detailed, "Are both parts of a disjunc-
-
tion always evaluated?" The usefulness of a definition can, therefore, be judged
by the quality of the answers it provides. -
Several characteristics are important to the successful use of any method.
Among these are: ) ™

1. Completeness. There must be no gaps in the definition. 1In par-
ticular, there should be no questions about the syntax or seman- Gj
tics of the language that cannot be answered from the definition.

2. Clarity. The user of the definition must be able to understand
the definition and find answers to his questions easily. While
it is obvious that some facility with the notation is essential
before being able to understand it fully, the amount of effort -
required should be small.

3. Naturalness. The naturalness of a notation has a very large ef-
fect on the ability to use a definitiomn approach. The natural-
ness of a nmotation is more important than its conciseness, al-
though there is some relation between the two. We have, there-
fore, used notational abbreviations only where there was a real m™
gain in clarity, and have chosen mnemonic names wherever possible

4. Realism. Although the designer of a language may like to think
in a universe free from mundane restrictions like finite ranges
for number values and bounded storage, these are the realities of
the implementor's world. The definition given him by the design-+
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he can make restrictions or choices, and where the designer's
unobstructed landscape must be modelled exactly.

We present here a prose description and four very different formal definitions
of the same language. We then examine the ease with which answers to typical ques-
tions about the language can be obtained. The language used in the -dnalysis is
ASPLE [Cl], where it is defined by a W-grammar, an extension of the method developed
by van Wijngaarden [W2] to define ALGOL 68. Our first formal definition of ASPLE
is derived from the definition in [Cl]. During the development of the other formal
definitions, this W-grammar definitioﬁ was taken as the final arbiter on the syntax
and semantics of ASPLE.

A W-grammar consists of two sets of productions, the meta~productions and the
kyper-rules. These combine to permit the formation of a potentially infinite set
of productions, which are used to define the syntax and the context-sensitive re-
quirements. The semantics are specified by using these productiens to generate

all possible execution sequences for a valid program.

The seeond formal definitiem- is a developneat of the Preduetien Systews ap-

proach of Ledeard [L2 L3l._ Production Systems are used to construct a generative

grammar that directly specifies both the context-free and the context-sensitive

requirements of the language syntax. The semantics are specified by a second set

of productions that map legal programs into another target language. In this paper,

the axiomatic approach of Hoare [H1] is used as the basis for such a target language.
The next formal definition uses the Vienna Definition Language [L6,L7,L4,Wl].

In this method, a procedure is defined that takes a program string and transforms

it into a tree representation according to the context-free syntax of the language.

This tree is then converted into an abstracted form that retains only those parts

of the program that are required to express its meaning. During this conversion,

the context-sensitive requirements of the language are checked. Finally, the

meaning of the abstracted program is defined by its execution on an abstract machine.



The last formal definition technique is that of Attribute Grammars [kK1,L5,B1].
In this approach, a context-free grammar is augmented with "attributes" attached to
the syntactic categories. These attributes are given values computed from the pro-
ductions of the parent or descendant nodes in the derivation tree for a program.
This technique allows one to specify the context-sensitive requirements of a lan-
guage and the meaning of a program by translating it into a separately defined
sequence of actions.

One other major definition approach, that of Scott and Strachey [S2], is not
considered in this paper. For more detail and a complete bibliography on this
method, the reader is referred to a recent paper by Tennant ([T1].

We make no attempt at a formal proof of the equivalence of the four defini-

tions of ASPLE, but have relied on our own careful checking of the definitions. To
assist the reader, we have included comments in the bod

These are separated from the formal part by being enclosed in brackets.

g ! f,’
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ies of the actual definitions.
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2. AN INFORMAL DESCRIPTION OF ASPLE

ASPLE is a very small language derived from ALGOL 68. 1Its context-—free
syntax is defined in Table 2.1 using Backus-Naur Form.

An ASPLE program consists of declarations followed by a sequence of exe-
cutable statements. Each identifier used in an executable statement must appear
once and only once in the declarations. A declaration associates a "mode" with
one or more identifiers. The mode of an identifier specifies: (a) the type of
the value, integer or boolean, to which it may refer, and (b) whether the refer-
ence is direct or through a declared number of pointers. The executable statements

of ASPLE are assignments, if-then-else conditionmals, while-do loops, input and out-

put atatementa, all of familiar syntax.

As an example of an ASPLE program, consider the following.

begin
int X, Y, %;
input X;
Y ;= 1;
Z :=1;
if (X # 0) then
while (2 # X) do
Z

=7+ 1;
Y=Y *72
end
fis
output Y

This program reads in a positive integer value, then computes and prints its
factorial. The program declares three integer variables X, Y, and Z. It starts
by reading the value into X from the input file and setting the values of Y and Z

both to 1. If the value of X is not zero, the factorial is computed by successively

multiplying Y by increasing values of Z until X equals Z. The final yalue of Y,

the factorial of X, is then printed on the output file.
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Table 2.1 BNF DESCRIPTION OF ASPLE "1
(801 ] <program> 1= begin <dcl train> ; <stm train> end "']
(B02] «<dcl train> ::= <«declaration>
| <«declaration> ; <dcl train>
[BO3] «<stm train> 1= <statement> F}
| <statement> ; <stm train>
[B04] <declaration> ti= cmode>, <idlist> '_]
[B05] <mode> 2= bool
| int .
| ref <mode> "'}
[B0OB] <idlist> 12 <dd> |
’ | <id> , <idlist>
(807] <statement> 1:= <asgt stm>
| <cond stm> : _ :
| <loop stm> =
| <transput stm>
(B08] <asqt stm> 12 <id> = <<exp>
ot
[B09) <cond stm> ::= if <exp> then <stm train> fi
| if <exp> then <stm train>
_ else <stm train> fi
(B10]  <loop stm> 11z while <exp> do <stm train> end
[B11]  <transput stm> i:= input <id>
| output <exp> ,_]
(B12]  <exp> 1= <factor>

| <exp> + <factor>

(B13]1 <factor> 1= primary>
| <factor> + <primary>

e <id>

| <constant>
| (<exp>)

I (<compare>)

(B14]1  <primary> H

[B15]  <compare> 13 <@Xp> = <exp>

| <exp> # <exp>

.1 3 __3

[B161] <constant> ::=  <bool constant> W\
' | <int constant> - |
8171 <bool constant> sim true
| false w!
{3131 <int constant> ez <number>
[819]  <number> 1= <digit> nj
' !

<number> <digit>

ol1l... |39

<letter>
<id> <Jetter>

(8201 <digit>
(8211  <id>

— 1

.e
.o
-— N

(822] <letter> AlBl.. 12
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This sample ASPLE program uses only identifiers that refer directly to

imnmlnhm,mfmgm@h,memﬂﬁhAinme@dnuum

int A

This variable, like all variables in ASPLE, must be given a value either by
assignment or input before it can be used in an expression. Since A refers
to integral values, its mode is reference-to-integral. This declaration of A

may be contrasted with a variable B declared as:

ref int B

Here B is a variable that refers to an integral value through a single level of in-

direction. Thus the mode of B is reference-to-reference-to-integral. Executing

the assignment:

B:= A

sets the value of B to a reference to A, which in turn refers directly to an

integral value. Executing the assignment:

A,‘-7

does not change the value of B, still a reference to A, but changes the integral
value to which A refers, the value that B refers to indirectly. To obtain the in-

tegral value to which B refers, the value of B must be "dereferenced" twice. This

mechanism is extended for variables declared with multiple levels of indirection,

and applies to boolean values as well.



To evaluate an expression consisting of two identifiers separated by a

"gt or "x"  the value of each of the identifiers must be dereferenced as many

times as needed to obtain a primitive value of mode integral or boolean. The

modes of the two values thus obtained must be identical. The operations + and

2 between integral values represent addition and multiplication respectively.

Between boolean values they represent the logical "or" and "and" respectively.

The operations = and # apply only to integral values and yleld a Boolean value

as a result. An expression in parentheses always yields a primitive value.

In an assignment statement, the mode of the identifiers on the left side

must be compatible with the mode of the val

ble, two conditions must be satisfied:

1. It must be possible, by dereferencing s
primitive mode from both sides.

2. If the mode of the identif

of "reference-to" and the mode of the val
n, such occurrences, then the relationng-l s n,

For example, given the declarations:

int A;

bool B;

ref int C;
ref ref int D;

both the assignments:

16 ng=1, n,=0

A
C =D ng=2, n,=3

satisfy the two compatibility requirements.

ue on the right side. To be compati-
ufficiently, to obtain the same

jer on the left side contains n, occurrences
uve of the right side contains

On the other hand, the assignment

1 3 _3 _1
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violates the first condition, and the assignments

Q
lli

20 n2=2, n =0

D :=A n =3, n =1

both violate the second condition and are thus illegal.

The process of assignment takes place as follows:

1. The right side is evaluated to obtain a value v.

2. The value v is dereferenced sufficiently so that the mode of the
value obtained contains one fewer occurrence of "reference-to"

than does the mode of the identifier on the left side.

3. The value referred to by the identifier on the left side is re-
placed by the value obtained in Step 2,

To illustrate the mechanism of the assignment statement, consider the

following program: (The line numbers are for reference only.)

begin 01
int INTA, INTB: 02
ref int REFINTA, REFINTB; 03
rey ref int REFREFINTA, REFREFINTB; 04

INTA := 100; 05
INTB := 200; 06
REFINTA := INTA; 07
REFINTB := INTB; 08
REFREFINTA := REFINTA; 09
REFINTA := INTB; 10
INTB := REFREFINTA; 11
input REFREFINTA; 12
output REFINTB 13
end 14

After the line 09 has been executed, two chains of references will have been set

up. The state is shown schematically in Figure 2,1,



INTA

Note that REFREFINTB has not been assigned

causes REFINTA to refer to INTB, no other value being changed.

100

INTB

= 200

-10-
REFREFINTA REFINTA
/
REFINTA = 'INTA
- REFREFINTB REFINTB
INTB
Figure 2.1

at this point is shown in Figure 2.2,

a value.

The assignment of line 10

The situation

INTA

A

100

- INTB

> 200

REFREFINTA REFINTA’
/
REFINTA INTB
. REFREFINTB REFINTB
INTB
Figure 2.2

3 __13
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The assignment of line 1l makes no change in the value of INTB because of the
effect of statement 10. The imput statement of line 10 causes a value, say
300, to be read from the input file and assigned to the variable found by fol-
lowing the chain starting at REFREFINTA. ( The semantics of ASPLE require that

this chain be set up by a sequence of assignment statements before a input state-

ment is executed.) The result is as depicted in Figure 2.3.

REFREFINTA. REFINTA INTA .
: b
REFINTA INTB 100
. REFREFINTB REFINTB 1 INTB
INTB 300
Figure 2.3

The final statement thus prints the value 300, An attempt to execute

output REFREFINTB;

in place of line 13 is illegal, since the value of REFREFINTB is undefined and

cannot be dereferenced to produce a primitive value.



-]12-

There are a number of details of ASPLE which are left for the implementor

to define. For example, the context-free syntax makes no limit on the number of

 variables that can be declared or the length of the program. Any actual imple-

mentation will be bounded by machine constraints in these areas. Table 2.2 lists

r must supply information to complete the defi-

3 -3 3 __2

the points at which the implemento

nition of the language.

3

As a final note, this informal introduction makes no pfetense of being a com—

plete definition of ASPLE. Indeed, it is our contention that a complete defini-

—13

tion is almost impossible without the use of a full formal definition method.

Table 2.2 Implementation defined features of ASPLE "]
1. The maximum length of an ASPLE program, R, A
2. The maximum number of declared identifiers, ny
3. The maximum number of digits in an integer constant, nj ]
4. The maximum number of letters in an identifier, ng -
5. The maximum value that can be taken by an integer variable, ng,

1

and the value obtained from the addition and multiplication
operations if the actual result exceeds ng.

6. The maximum size of the output file, ng

-3 _13
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3. W-GRAMMARS

The use of two-level grammars known as 'W-grammars" as a definition tech-
nique was developed by van Wijngaarden and used for the description of Algol 68
[W2]. Cleveland and Uzgalis, who have given an easy to read exposition [Cl] of
W-grammars, are the source of the definition of ASPLE from which we have derived
the W-grammar presented in this section. To maintain a consistent notation through-

out this paper, we have departed slightly from the usage of [Ccl,w2].

3.1. The Notion of Meta-Productions

The restriction of BNF productions to the definition of the context-free parts
of languages is due to the requirement that the number of productions be finite.
W-grammars are able to define context-sensitive restrictions and semantics by using
an infinite set of productions generated from a finite set of rules. These rules

are divided into two groups, the meta-productions and the hyper-rules. The hyper-

rules are prototypes for context-free productions, and the meta-productions de-

scribe how the context-free productions are to be derived.

Meta-productions are context-free productions. The non—-terminals, called

meta-notions, are written in upper-case letters, e.g. INTBOOL. The terminals,

called proto-notions, are written in lower-case characters, e.g. letter. 1In this

context, "lower-case characters", include all the symbols used for writing ASPLE

programs. For example, ":=" and int are both proto-notions.

Consider the following meta-productions taken from the W-grammar of ASPLE

in Table 3.1.

[w01] ALPHA 2 alb|...] z]| begin
| | int | bool | ref | input
| imput | output | true
| false | if | fi | then | olae
| white | o |=|#|+]*
[ o=l

{MP03] NOTION 13 ALPHA
[MP07] INTBOOL I int

[MPO8] MODE t:  INTBOOL



i
Table 3.1: Metaproductions for the W-grammar Definition of ASPLE

—3 -3 3 1

[MP01] ALPHA 2z alb | ... | z]| begin [MP22] SMAPSETY  :: E%ﬁ
| end | int | boot | ref | input N
| fatse | if | fi | then | eles { space VALUE DATA
| white |do | =1#1+]" [HP24] FILE :: DATA end of file
2 2] P :
~' el [MP25] RELATE o=
{MP0O2] EMPTY- : . | ¢
[MP03] NOTION :: ALPHA ‘ [M26] OPER + ™
{ NOTION ALPHA * |
! RELATE !
MPO4] NOTETY t: NOTION ~
L ! | EMPTY [mP27] EXP HH 'IifﬁEEXP OPER EXP right
: VAL P‘
[MPOS] TAG HH LmEEETTE | DEREFSETY TAG
TAG R
l [MP28] DEREFSETY :: EMPTY ‘
[MPO6] LETTER  :: A4 | B | ... | 2 | deref DEREFSETY j
[MPO7] INTBOOL 2 int [MP29] REFS ref
| bool | REFS ref
MO ::  INTBOOL [MP30] STMT i1 EMPTY '_I
(MPO8] MODE | ref MODE | if EXP then STMIS else STMIS fi
| while EXP do STMTS end
[MPO9] ONES i one | TAG becomes EXP val :
| ONES one | DEREFSETY TAG input “]
| EXP output }
MP10] NUMBER :: ONES
P10 | EMPTY [MP31] sTMTS : STMT
| STMTS STMT "7
“P11] RADIX :: one one one one one
tend one one one one one [MP32] STMTSETY :: STMTS
} EMPTY
P12 A : :
(MP12] BOOL ‘ ;:z:a [(MP33] ALPHABET  :: ABCDEFGHIJKLMNOPQRSTUVWXYZ 7
[MP13] VALUE ::  NUMBER : [MP34] MAXLEN TR '
-} BoOL [implementation defined measure ™
of maximum program tength n]] l
B8OX ]
[#P14] i 3‘,}5251,,9,, [MP35] MAXTABLE  :: LOC LOC . . . LOC
| TAG [The number of occurrences of “LOC"
) is the implementation defined j
(18] Loc :: Toc TAG has MODE refers BOX end quantity n,] |
.. [MP36] MAXDIG :: ONES token ONES token . . . GNES token
[wP16] Locs ‘ llﬁgccs Loc [the maximum number of digits in ’
the implementation defined ,;1
(MP17] LOCSETY  :: LOCS quantity nsl
| EwpTY [MP37] rEAﬁLENGIg i3 LETTER LETTER . . . LETTER |
.. the number of occurrences of “LETTER" 7 ‘
(MP18] TasLE 2 LOCS is the implementation defined quantity n4] R
[MP19] UNIT :: loop ‘ [MP38] MAXINT :: one one.. . .one
) assignment [the number of occurrences of "one" ‘j
} conditional is the implementation defined \
| transput quantity n5]
[MP20] SNAP :: memory LOCS FI [MP39] MAXFILELEN :: ...
y LE FILE
i S . [implementation defined measure of
[(MP21] SNAPS 12 SNAP maximum size of an output file ng]
{ SNAPS SNAP

—3 __3

1
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Using these meta-productions, we can generate:
[MPO1] From the meta-notion ALPHA, any lower case symbol or blank [denoted by "¥"]
[MPO3] From the meta-notion NOTION, any sequence of lower case symbols and
blanks
[MPO7] From the meta-notion INTBOOL, "int"™ and "bool"
[MPOg] From the meta-notion MODE, infinitely many proto-notions comsisting of
a (possibly empty) sequence of the symbols "ref" followed by "int" or
"bool".
A hyper-rule is a blueprint from which context-free productions can be gen-
erated. A context-free production is obtained from a hyper-rule by replacing each
meta-notion by a proto-notion derived from the meta-productions. In the hyper-

rule, all occurrences of the same meta-notion must be replaced by the same proto-

notion. This is the uniform replacement rule.

For example, the hyper-rule,

[1ns9) NOTION sequence ::=  NOTION,
. HOTION sequence,
NOTION,

when used in conjunction with the meta-productionms, [MPO1] and [MP03]}, can generate

an infinite set of productions. Two of these are:

value sequence ::= value,

| value sequence, value,

abc sequence ::= abc,

| abc sequence, abc,

since both value and abc can be derived from NOTION. However, the production

value sequence ::= abc,

| value sequence, abc,
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cannot be obtained since the uniform replacement rule would be violated. This
simple substitution technique is used to generate the infinite set of context-
free productions required for the specification of the context-sensitive require-
ments and semantics of a language.

Part of the philosophy of W-grammars is that the context-free productions,
although generated mechanically, should be read almost like prose. To accomplish
this, the nqn-terminals of the context-free productions generally define phrases,
and the right sides of productions generally define sequences of other phrases

separated by commas.

3.2. Overview of the W-grammar Definition of ASPLE

The meta-productions in Table 3.1 and the hyper-rules in Table 3.2 form a W-
grammar that defines all aspects of the syntax and semantics of ASPLE. The start-
ing hyper-rule, [HRO1], shown here with line numbers added for reference, affords

an overview of these three segments.

[ HROT] program ::= begin . 01.
. ~ dcl train of TABLE,; 02.
TABLEy restrictions, 03.

TABLE] STMTS stm train, 04,

end, 05.

FILEy stream, 06

FILE2 stream, 07-

execute STMTS with 08

memory TABLEy FILE; end of file 09,

SNAPSETY 10.

memory TABLE, FILE3 FILE, 11-

3

Line Ol specifies that a program always starts with the'symbol begin. Line

02 specifies a declare train. It contains the meta-notion TABLE] from which a

proto-notion corresponding to the "symbol table" of the program can be derived.

The subscript on TABLE, serves to distinguish this meta-notion from the meta-

—3

—3 _3
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PP,

- W e e
.

(HRO1]

[Hro2]

[HRO3]

fHro4]

[HrOS2

[HRoS]

[1RrO71

{nros]

(HR09]

[HR10]

-17-

Table 3.2 Hyper-rules fpr the W-grammar Definition of ASPLE

Legin,

del train of TABLE].
TABLE, restrictions,
TNSLEl STMTS stm train,
end,

program  ::®

whera MAXLEN contains begin TABLE, STMTS end

FlLE] stream,

FII.E2 strean,

execute STMTS with
memory TABLEl I’ILEl end of file
SHAPSETY
memory TABLE, FILEy Fll.Ez.

dc) train of LOCS LOCSETY ::= MOOE,

ref MODE definitions of LOCS,

dc) train of LOCSETY,
| where LOCSETY is EMPTY,
MODE declarer,

ref MODE definitions of LOCS,

.
(2 4

WODE definitions of loc TAG has MODE refers undefined end LOCSETY ::=

where TIAG1 is not in loc TA(Sz ‘has MODE refers undefined end LOCSETY ::=

LOCSETY loc TAG has MODE refers undefined end restrictions

TABLE STMT UNIT,
X3

TABLE STHTSETY stmts,

TABLE STMT STMISETY stmts ::=

TAS,

‘_I
MODE definitions of LOCSETY,
| where LOCSETY is EMPTY,
T,
where TAGI differs from TAGZ.
where TAGI {s not in LOCSETY,

| where LOCSETY is EMPTY,
where TAG1 differs from TAGZ,

::a=  where TAG is not in LOCSETY,
where MAXTABLE contains LOC LOCSETY,
LOCSETY restrictions,

| where LOCSETY is EMPTY,

| where STMTSETY is EMPTY,

TABLE STMT UNIT,
TABLE TAG becomes EXP val assignment

23z TABLE »ef MODE TAG identifiers,

TABLE EXP MODE value,

TABLE if EXP then STHTS‘ else STHTSZ fi conditional ::=

TABLE STMTS elsend ::= fi,

where STMTS is EMPTY,

| elae,
TABLE STMTS stmts,

£

TABLE while EXP do STMTS end loop ::= Vhiles

if,

TABLE EXP bool value,

then,

TABLE STMTS‘ stots,

TABLE STHTS2 elsend, .

TASLE EXP hool value,

do,

TACLE STMTS stmts,

ond,
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[HR11)

{Hr12]

HR13]

[KR14]
BHR15]

{nr16]

7]

[wr18]

fHR19]
[krz0]

(Hr21] .

[HR22]

[HR23]

[HR24]
[HR25)
[HR26]
[HR27]
[HR28)
[HR29)
[HR30]
[HR31]
{HRr32]
[4R33)

[HRr34]
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~Table 3.2 Continued

TABLE EXP input transput ::= input, )
string TABLE EXP ref INTBOOL identifier,

TABLE EXP output transput ::=  output,
: TABLE EXP INTBOOL value,

TABLE left EXP.l plus EX!"2 right INTBOOL value ::= TABLE EXP‘ INTBOOL value,
+, .

TABLE expz'lmsool. value,

.

TABLE EXP MODE value ::=  TABLE EXP MODE factor,

TABLE left E)(l’l times EXF’2 right INTBOOL factor ::= TABLE E)(P.| INTBOOL factor,
L ]

TABLE EXP, INTBOOL primary,

TABLE EXP MODE factor ::=  TABLE EXP MODE primary,

TABLE EXP MODE primary ::= strong TABLE EXP MODE {dentifier,
| TABLE EXP MODE value pack,

| where MODE fs INTBCOL,
MODE EXP denotation,

| where MODE is bool,

. TABLE EXP compare pack,

TABLE left EXP1 RELATE E)(P2 right compare ::= TABLE E)(P.l int value,
RELATE,
TABLE EXP, int value,

strong TABLE deref EXP MODE identifier ::° strong TABLE EXP ref MODE identifier,
strong TABLE TAG MODE jdentifier :i= ' TABLE MODE TAG identifier,

TABLE MODE TAG identifier ::= TAG,
' where TABLE contains loc TAG has MODE,
where MAXLENGID contains TAG,

bool, BOOL demotation ::= BOOL,

int NWBER] denotation ::= Nurll!lf.kl token,

| int NUMBER, denotation,
NUMBER token, i

where KUMBER, = l‘lllMI!ER2 times RADIX.
where KUMBER, = NUMBER, plus NUMBER:,.

where MAXDIG contains NUMBER, denotation,
token ::= O,
one token ::= 1,
one one token i 2,
one one one token iz 3,
one one one one token = 4,
one one one one one token ::= 5,

one one one one one one token  :i® 6

one one one one one one onec token  i:i® 7,
one one cne one ane one one one token :i* &
one one one one one one one cne one token i %
space VALUE FILE stream ::=  VALUE denotation,
EN
FILE stream,
| VALUE denotation,
eof,

where FILE is end of file,

3 -3 3

3
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[HR35]

[HR36]

[HR37]

[rr38]

[HR39]

[1ra0]

[HR&1]

[ura2]
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Table 3.2 Continued

execute STMT STMTS with SNAPS, SNAP SHAPS, ::=  execute STMT with SNAPS, SNAP,
execute STMTS with SHAP SHAPS,,

execute if EXP then STMTS.I else STMTS2 £1 with SNAP SNAPS  ::= evaluate EXP from SNAP giving true,
execute STMTSl with SNAP SHMAPS,

| evaluate EXP from SNAP giving falae,
execute STMTSz with SNAP SNAPS,

execute while EXP do STMTS end with SNAP‘ SNAPS‘TY] smpz SNI\I’SETY2 ::= evaluate EXP from SNAP] giving
. . false,
where SNAP] is SNAPZ.
where SNAPSETY‘ SNAPSETY2 is
EMPTY,

evaluate EXP from SNAPl giving
true,
execute STMTS with SNAP‘ SHAPSETY1
SHAP,,
execute while EXP do STMTS end with
SNAP2 SNAPSETYZ.
execute TAG becomes EXP val with SNAP] SNAP2 ::= evaluate EXP from SNAP.I giving Boxz.
where SNAP.l is
memory L()t:SET'Yl
loc TAG has MODE refers BDX] end
L()(‘.SEW2 FILE, FILE,,
where SNi\P2 is
memory LOCSETY.|
loc TAG has MODE refers soxz end
!.(‘IZSE‘!'Y2 FILE] FILEZ.

execute DEREFSETY TAGy input with SNAP] SNAP,  ::= evaluate DEREFSETY TAG1 from SNAP, giving TAGz,
where SNAP1 is
) memory LOCSETY,
loc TI\GZ has ref INTBOOL refers BOX.l end
LOCSETYZ space VALUE FILE] FILEZ.

where SNAPZ is
memory LOCSliTYl
loc TA(;2 has ref INTBOOL refers VALUE and
LOCSETY, space VALUE FILE, FILE,,

where VALUE matches INTBOOL,

where SNAP] is memory LOCS end of file FILE,
{end of §ile erron) abnormal termination,

where NUMBER matches INTBOOL ::= where INTBOOL is int,

| where INTBOOL is beol,
{input enron) abnormal termination,

where BOOL matches INTBCOL ::=  where INTBOOL {s bool,

| where INTBOOL {5 int,
{input erron) abnormal termination,

execute EXP output with SNAP] SRI\P2 13 evaluate EXP from SNI\P1 giving VALUE,
where SNI\P] {s memory LOCS FlLE] DATA end of file,
where SNI\P2 {s memory L.OCS FILEI DATA space VALUE end of FILE,

where MAXDATA contains DATA space VALUE end of file,

| evaluate EXP from SNAP, giving VALUE,
where SNAP, is memory LOCS FILE, DATA end of file,
where SN'\P2 {s memory LOCS FlLI:l DATA space VALUE end of file,
where DATA space VALUL cnd of file contains MAXDATA,

foadpit g<de avoiglons abnorimal torinaetion,
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[HR44]

[HR45)

[HR46]

[HR47]

[HR48]

[HR49]

[Hrso0]
(HRS1]

[HR52]

[HRS53]

[HRS4]

[iR55]
[Hrs6]
[nrs7]
[Hrs8]
[HRS9]

[HR60]

[Hre1]
[HRe2]
[HR63]

[HRr64]

[11R65]
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Table 3.2 Continued

execute empty with SNAP SHAP  ::= true,

evaluate left EXP] OPER EXP2 right from SHAP giving VALUE‘ 1te evaluate EXPI Tro SAP giving VALUEZ.
evaluate EXP2 from SNAP giving VALUEJ,

vhere W\LUE‘ equals W\LUEz OPER VAI.UEa.

evaluate deref DEREFSETY TAG from SNAP giving aoxl ..=  evaluate DEREFSETY BOX from SNAP giving BOX.].
where SHAP contains 1oc TAG has MCDE refers
80X _ end,

evaluate BOX from SNAP giving BOX ::= where BOX differs from undefined,
| where BOX is undefined,
(unénitialized voriable reference ennox} abnormal termination.

where NUMBER.. equals NUI"IBER2 + HUP'BERJ :3=  where MAXINT contains NUMBER2 NUP%BER3.
where NUMBER‘ is HUMBERZ NUMBERS.

| where NUMBER, NUMBERy ome contains MAXINT,

where NUMBER] equals N!.IMBER2 * NUMBER3 one ::= where MAXINT contains NUMBER],
where NUMBER] is NUMBER4 NUMBERZ.

where NUMBER4 equals HUMBER2 * NUM8ER3,

| where NUMBER, WUMBER, one contains MAXINT,
vhere NUMBER‘ equals NUMBERz * NUMBER3.

where NUMBER equals NUMBER * one ::= true,
where EMPTY equals NUMBER * EMPTY  ::= true,

where true equals BO()L1 + BO(}Lz ::e  where !3001..l is true,
| where BO[)L2 is true,

where falee equals false + false ::* true,

where faloe equals BOOL, * BOOL, ::° where BOOL, is false,
| where BOOLZ is false,
where trus equals true * true ii®  trug,..
where true equals NUMBER = NUMBER ::=  true,
where false equals MUMBER; = NUMBER, ::» where NUMBER, differs from NUMBER,
where falae equals NUMBER ¢ HUMBER  ::=  true,
vhere true equals NUMBER # NUMBER,K  :i= where NUMBER; differs from NUMBER,

HOTION sequence ::=  ROTION,
| NOTION sequence,
NOTION,

HOTION pack ::= (.
NOTION,

where NOTETY is NOTETY ::=  truye,

where NOTETYy NOTION NOTETY; contains NOTION ::=  true,

where NOTETY ALPIIAy differs from NOTETY, ALPHAy  ::=  where NOTETYy differs from NOTETY, ,
| where ALPN;\] precedes m.mez in ALPHABET,
| where ALPiiA; precedes ALPMA, in ALPHABET,

where ALPHA) precedes ALPHA in NOTETYy ALPHAy NOTETY; ALPHA; NOTETY3 ::=  true,

1

-3 _3 _.3 -3 __3 __3

.3 _% .3 __3 _3 _23

-3
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notion TABLEZ in line 11, since the uniform replacement rule applies only to
non-terminals with identical subscripts. Other hyper-rules in Table 3.2 insure
that the symbol table corresponds exactly to the declare train of the program.

In addition to serving as a symbol table, TABLE] also serves as the initial memory
state for the execution of the program, with all variables having the initial
value "undefined."

Line 03 applies the context-sensitive restrictions to the symbol table TABLE]
resulting from the declare train. This is done through [HR05], which checks that
no identifier is declared more than once and that the number of declared identi-
fiers is not more than the implementation-defined maximum.

Line 04 specifies a statement train and uses the symbol table TABLE; to check
the context-sensitive requirements on statements. Line 04 also contains a meta-
notion STMTS, which is replaced by an abstracted form of the statément train suita-
ble for execution. It is this abstracted form of the program that will be used to
specify the semantics of the program.

Lines 06 -and 07 generate the input and output files. FILE] denotes the input

file and FILEZ denotes the output file obtained after execution of a program. Lines

. 08 through 11 specify the semantics of executing STMTS, starting with the initial memory .

state in TABLE] and the input file FILE]. The initial state of the output file is
empty and this is represented by end of file. SNAPSETY, which is generated by
other hyper-rules, is used to derive a series of "snapshots" that record the se-
quence of memory states caused by the execution of STMTS. Each snapshot contains
the current memory state and the state of the input and output files. By the uni-
form replacement rule, the proto-notion replacing FILE2 must be the same as the one
in line 07, which generates the final output file.

At many stages in the application of the productions, there are checks that

certain proto-notions correspond according to the rules of ASPLE. For example in
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line 02, TABI.E.l must be derivable from the declare trainm, and in line 08, the

sequence of memory snapshots must follow from the abstracted program STMTS. m[
These checks are accomplished by rules in the grammar that ensure that only the |
allowable combinations reduce to EMPTY, i.e. nothing. ' Thus, a legal program and
its meaning is defined by a W-grammar as a program for which there exists a deriva—.j
tion tree whose terminals are the written form of an ASPLE program and an appro-

priate pair of imput and output files, and where all auz;:lliary non-terminals reducem}

to the empty string. ”1

3.3 The Symbol Table

The symbol table of & Wt is the major vehicle for the specification r—T
of the context-sensitive requirements and semantics of ASPLE. A symbol table is |
a proto-notion derived from the meta-notion TABLE, In this section, we will follow |
in detail the derivation of a valid declare train from a symbol table. This deri- =)
vation is typical of the rest of the W-grammar. ]‘

[#P18) TABLE 2 LOCS

Loc

16] LOCS .2
06l | Lcs Lo

-3 _3

These meta-productions define a TABLE as a non-empty sequence of proto-notions

. derived from LOC:

[#r15] toc s loc TAG has MODE refers BOX end

Here, "loc " "has.," "refers " and "end" serve as delimiters to simplify the read-

ing and make the proto-notion unambiguous. The meta-notion TAG is defined as:

[(wP05] TAG H

s LETTER
| TAG LETTER
[MPO6] LETTER 2 4)lB| .. | B

-3

-3
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Thus, TAG produces a proto-notion that represents an identifier. As given earlier,
the meta-notion MODE generates proto-notions for the mode of an identifier. The

meta-notion BOX, which holds the value of an identifier, is defined as:

[#14] BOX :

In TABLE], BOX is~initially replaced by "undefined", showing that the initial value

of an identifier is undefined.

The proto-notion derived from TABLE that corresponds to the declare train

int A;
bool AB;
ref int C

is thus

loc 4 has ref int refers undefined end
loc 4B has ref bool refers undefined end

lToc @ has ref ref int refers undefined end

Substituting this proto-notion in line 2 of [HRO1], we obtain the proto-notion:

dcl travin of loc 4 has ref int refers undefined end
loc 4B has ref bool refers undefined end

loc @ has ref ref int refers undefined end

The first part of the hyper-rule:
{1r02]  ¢el train of LOCS LOCSETY ::=  KODE,
: . seg WOOE definitions of LOCS,

3
del train of LOCSETY,

| where LOCSETY s ENPTY,

WNODE declarver,
raf WODE definitions of LOCS,

3o
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allows the generation of the production

dc) train of loc 4 has ref int refers undefined end
10¢ 4B has ref bool refers undefined end .

loc ¢ has ref ref int refers undefined end
i int,

ref int definitions of loc 4 has ref int refers
undefined end,

,dé'l train of loc 4B has ref bool refers undefined end

loc C has yaf rof int refersdundefined
end,

3 3

Using [HRO3]

(HR03]  MODE definitions of loc TAG has MODE refers undefined end LOCSETY
si= TAS,

&
WOOE definitions of LOCSETY,

| where LOCSETY is EMPTY,
1“'

3 3 3

we can derive the production

ref int definitions of loc 4 has ref int refers undefined end EMPTY
1= where EMPTY {s EMPTY, -

From =~ '““:
. . ﬁpnlﬂﬂﬂl;mwntrzu true, -

we have the production ]
where EMPTY is EMPTY ::= true m

!
o]

notions for the remainder of the declare train. A similar technique will generateml

Using these productions we are left with " int A';" from [HRO2] and [HRO3] plus prot

the complete declare train from the symbol table.

|

3.4 The Internal Representation of the Statement Train
Fv'-“}
_ . }
To specify the semantics of ASPLE, the W-grammar also uses an internal repre~
sentation of the statement train of the source program. This internal repre- A

sentation is a proto-notion thag can be derived from the meta-notion STMTS. For

example, the proto-notion: ' L—i
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¢ becomes A val,
A input,
déref deref C output,

represents the statement train of the program:

respondence between this proto-notion and the written form of the state-

The cor
as the correspondence between TABLE and

ments is established in the same way the

written form of the declare train in Section 3.3.

The rules that establish this correspondence als

requirements of ASPLE. For example, for the assignment statement, the hyper rule:

TABLE ref MODE TAG tdentifiers,

.
vO-

[Ro7]  TABLE TAG becoses EXP val assignment

ta}
TABLE EXP MOOE value,

igs based on the written form of the statement

identifier := value
The left-side part "TAG becomes EXP val" is the internal representation of the

statement. On the right side, the MODE of the identifier and the MODE of the

ession value must be compatible, that is, their primitive modes must be the

expr
contain one less refthan the declared mode

same and the mode of the value must

This agreement is enforced by a production

of the identifier in’ the TABLE.

generated from:

o specify the context-sensitive
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(WR21] - TABLE MSDE TAS jdentifier ::= TAG,
- whare TABLE contains loc TAG has MODE,

where MAXLEXGID contains TAG,

3.5 The Semantic Definition

The execution of a program is defined by the sequence of states through
which the memory and the input and output files pass. The transition from one
state to the next corresponds to the execution of a statement of the program.
The sequence of states is represented by the proto-notion derived from SNAPSETY.
This is a sequence of proto-notions derived from SNAP (meaning "snapshot") which
is of the form "memory LOCS FILE FILE". As we have already seen, LOCS generates
a proto-notion that records the values of the variables and was initially set up
as part of TABLE], The two proto-notions derived from FILE represent the input

and output files. Line 8 of LHRU1] provides the root of the derivation tree for

the execution:
execute STMTS with
memory TABLE] FILE1 end of file
SNAPSETY
memory TABLE2 FILE3 FILE2

The initial snapshot is "memory TABLE, FILE. end of file" where TABLE, is the

2 1 1

symbol table where all the variables have the value undefined, FILE] is the

input file and the output file is empty since it consists only of end of file.

The final snapshot contains the output file FILEZ which, by the uniform replace

ment ryle will be the same as the proto-notion substituted into line 07 of [HRO1l].
Line 08 of_{HROl] will reduce to EMPTY only if this sequence of snapshots cor-

;ggpqusVEEggE;y to the execution of the proto-notion derived from STMTS.

The starting and final snapshots corresponding to the execution of the ASPLE

program given in the previous section are:

3

-3 -3 -3 -3 __3 _3

3 3 13

3 3

3
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memory A4 1oc 4 has ref bool refers undefined end
loc ¢ has ref ref bool refers undefined end
space true space true space true end of file

end of file
and
memory loc 4 has ref bool refers true end
loc ¢ has ref ref bool refers end
space true space true end of file
space true end of file
respectively.

The execution semantics of the assignment is described by the hyper-rule:

[#238]  execute TAG becomes EXP val with SNAP‘ SNAP2 ::= evaluate EXP from SNAP' giving BOX

where SNAI’l is
memory LOCSETY]
loc TAG has MODE refers E!O)(1 end
LOCSETVZ FXLE, FILE-‘,.

where SNAP.‘, is
nemory LOCSETY‘
loc TAG has MODE refers Box2 end
LOCSE‘IY2 I"ILEl FILEZ.

2°

This hyper-rule specifies that the snapshot before execution, SNAP], is identical

to the snapshot after execution, SNAPZ, except that the BOX] to which TAG refers in
SNAP. has been replaced by BOX2 which contains the result of evaluating the ex-

1
pression EXP with the variable values of snapshot SNAP].

The arithmetic of expression evaluation is performed with numbers expressed
in an internal form consisting of strings of the digit one. The meta-notion MAXTNT
is used to apply the implementation defined restriction on the maximum value that
can be taken by an integer value.

A similar technique is used to define the semantics of all the ASPLE state-~

ments. The series of snapshots traces the execution of the proeram and the output

file shows the result of the computation.
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4. PRODUCTION SYSTEMS AND HOARE'S AXIOMATIC APPROACH

3

We next explore the use of Ledgard's Production Systems [L2,L3] and Hoare's

axiomatic approach [H1] to define the syntax and the semantics of ASPLE. The

13

Production Systems approach has had a long history, stemming originally from the

Production Systems of Post [P1l], and later developed by Smullyan [S3], Donovan

—3

and Ledgard [D1], and again by Ledgard, which after several iterations resulted

in [L3]. ”1
Production Systems are a generative grammar somewhat like BNF. The addition-

al power of Production Systems over BNF allows one to define sets of n-tuples and

to name specific components of n-tuples. These capabilities are sufficiently power-

ful to describe any recursively enumberable set, including the set of syntactically -~

legal programs in a language and the translation of programs into a target language.mj
In addition to the use of a theoretically well-based formal system, the recent

development of the Production Svatems netation has been‘zuided by principles be- ”7

lieved important to a clear and concise notation. These principles include:

(a) The keeping of the basic notation to a minimum

(b) The introduction of abbreviations to the notation only when a sub-
stantial gain is manifest

___j 3

(¢c) The need to isolate the contexc—freg from the context-sensitive
requirements on syntax

3

(d) The need to appeal to context-sensitive requirements on syntax in =
the definition of translation |

(e) The recognition that many aspects of a definition are better suited
to an algorithmic (versus generative) notation. ”1

These principles are more fully described in [L3].

m’,’
Hoare's axiomatic approach is used as a target language to define the seman- i
tics of ASPLE, and will be discussed in Section 4.2, =
J
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4.1. Syntax

A definition of the complete ASPLE syntax, including context-sensitive re-
quirements, is given in Table 4.1. To understand this definition, the concept of
a syntactic "environment" must first be clarified. An environment is a correspon-
dence between identifiers and modes. The environment for a program is computed by

applying the function "DECLARED ENV' [PS25] to the declare train of a program. For

example, applying this function to the declare train
int A;
ref int B;
ref ref int C

yields the environment

pl = A - REF INTEGER,
B -+ REF REF INTEGER,
C -+ REF REF REF INTEGER
To specify the context-sensitive requirements on ASPLE, several other

functions are defined. The "DOMAIN" [PS47] of an environment o is the list

of identifiers occurring in p. For example, using p, above,

DOMAIN(p;) = A,B,C

The function "DECLARED MODE" [PS27] operates over pairs. Given an expression

and an environment, this function yields the mode of the expression obtained by

using the modes of Che_identifiers declared in p. Using Py above,

REF INTEGER

DECLARED MODE(B:pl)

INTEGER

DECLARED MODE(A+B:p1)

The declared mode of "A+X" is P1 i{s undefined (in the sense of being not de-

rivable, since X has not been declared). A function 'DECLARED PRIM MODE" [PS37]

is also defined, which given an expression and an environment, yields the primi-

tive mode obtained by dereferencing the declared mode to obtain one of the prim-

tive modes, INTEGER or BOOLEAN. For example:
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(Main Froductions)

(Ps01)

{ps02) dt

[pso3] d

(Ps04]

{Ps05)

[Ps06]

(Ps07)

[Ps08}

st

Table 4.1
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Production System Specifying th2 Complete ASPLE Syntax

PROGRAM<begin dt ; st end>
+ p £ DECLARED ENV(dt) &
DIFF IDLIST<DOMAIN(p)> .&

[All declared identifiers must be differant)
1EGAL<stip> & ‘
[The atatamdnt train munt he lesal in p)
n) *® LENGTH(%).
[ny t8 the marimm program ngth]
DECLARE TRAIN<«d,; ... .d >,
> NUM DECLARED 1D (%)

[naiathammmbarofdeclaredida]

DECLARATION<@n !.1. ver "'n"
+ dm & DERIVED MODE(m) &

MODE<int | bool | ref w>.

STH TRAIN<o,; ...3%5> & LEGAL<#:0>

+ LBGAL<31=p> 1.6, & ..s & LEGAL<Hp>

[A statement train te legal in p only
if all statement are legal in p)

STATEMERT<s>

‘4 ( ASGT STM<s>
| coxp smM<e>
| LooP sTM<e>
| 10 sTM<e> ).

ASGT STM<i':'me> & LEGAL<R3p>

- dni £ DECLARED MODE(i:p) &

dne = DECLARED MODE(e:p) &
PRIM KODE(du’.) = ?Rm HDDE(dm‘).
(The primitive modes of i and @ inp
must be idanticall

n1 3 NiM RES(dui) &
L g NUM REFS(due) &
L < ne+l.
[The mode of ¢ must be obtainable from
tha mode of e by dereferencing @)

COND STM<if e then st fi> & LEGAL<*:p>
+ DECLARED PRIM MODE(e:p) = BOOLEAN §
{The mode of e in p must be boolean)
LEGAL<st:p>.
(ot rust also ba lagal in o)

(PS09]

[(pS10]}

[Ps11]

(Ps12)

(Ps13]

(ps14]

Cps1s5)

[PS16]

[Ps17]

(Ps18)

[(PS19])

[(Pps20)

{Ps21)

o

P

fat

~ FACTOR<p>

COND STM<if e then sty alse st, fi> & LEGAL<*:p>

+ DECLARED PRIM MODE(e:p) = BOOLEAN, &
LBGAL<at1=p> & LEGAL<sty:p>.

LOOP STM<while e do st end> & LECAL<#zp>
+ DECLARED PRIM MODE(e:p) = BOOLEAN &
LEGAL<gt:p>.
10 STM<input 1> & LEGAL<#*:p>
+ 1 ¢ DOMAIN(p).
(£ must be declared in p).

10 SDM<output e>
+ LEGAL<e:p>;

&.. LEGAL<#:0>

EXPRESSION<f>
+ LEGAL<f2p>.

& LEGAL<#*:p>

EXPRESSION<e+f> & LEGAL<#*:p>

+ DECLARED PRIM MODE(e:p)
= DECLARED PRIM MODE(f:p).

(The primitive modes of e and f in o muat
be identicall

& LEGAL<#*:p>
+ LEGAL<p:p>.
FACTOR<p'*'f> & LEGAL<#Hip>
<+ DECLARED PRIM MODE(p:p)
» DECLARED PRIM MODE(f:p).

PRD‘!ARY<(¢1-¢2) | (31*e2)> & LEGAL<#H3p>
+ DECLARED PRIM MODE(GISD) = INTEGER &
DECLARED PRIM MODE(e,:p) = INTEGER.

PRIMARY<(e)> & LEGAL<#3p>
+ LEGAL<e:p>,

PRIMARY<i> ‘& LEGAL<#30>
+ 1 ¢ DOMAIN(p).
[ must be declared in p)

PRIMARY<trug | false |int> & LEGAL<*:p>,
INTEGER<d, ... an>

- :13 2 u.
[n3 ta the max length of {ntegers)

3

-3 -3 _.3r¥ -3 _3 __3 _13

3

3 _13



[PS22) 1 IDENTIFIER<t; ., 1>
. +n, 2o, ,
[nh Ls the maxr length of identifiers)
(ps23] 4 DIGIT< 0| 1| ... |9>.
: LETTER<A | B | ... |2>.

'PS24 | dn  DER.VED ASPLE MODE <INTEGER | BOOLEAN | REF dw>,

[Awxiliary Punctional_

(Ps25) DECLARED ENV(d,; ... d,)

2 DECLARED ENV(dl) o'

DECLARED ENV (dn) .

[PS26] DECLARED ENV(m 11, vee ,ln)
H il*dm. csey 1n¢dg
+ do = DERIVED MODE(m).

r—'\‘!“g

{PS27) DECLARED MODE(e+f:p)
= INTEGER
+ DECLARED PRIM MODE(e:p) = INTEGER &°
DECLARED PRIM MODE(f:p) = INTEGER.

[PS28] DECLARED MODE (e+£:p)
2 BOOLEAN
+ DECLARED PRIM MODE(e:p) = BOOLEAN §
DECLARFED PRIM MODE(f:p) BOOLEAN,

{PS29] DECLARED MODE(f'#'p:p)
2 DECLARED MODE(ftp:p).

(PS30) DECLARED MODE('('ej=e')' :p)
= BOULEAN
+ DECLARED PRIM MODE(e,:p) = INTEGER &
DECLARED PRIM MODE(e,:p) = INTEGER.

[ps31) DECLARED Monr.(-('el,te,,')'m)
T DECLARED HODE('(felfez')' ).

[PS32] DECLARED MODE{*(‘'e')':p)
T DECLARED PRIM MODE(e:p).

(ps37 DECLARED MODE(i:p)
s dm
+ {+dm ¢ p.
(i*dm muat occur in p)
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Table 4.1 Continued

[PS34] DECLARFD MODE(true:p) = BOOLEAN.
(PS35 ) DECLARFD “ODE(false:p) = BOOLEAN.
[PS36 ) DLCLARED MODE(n:p) £ INTEGER.

[PS37] DECLARED FRIM MODE(e:p) = dm'

S=LLARED PRIM MODE
+ dm = DECLARED MODE(e:p) &

da' = PRIM MODE(dnm).

4

[Ps38} PRTM MODE(INTEGER) = INTEGER.
[ps39] priM ¥ODE(BOOLEAN) = BOOLEAN.
[PS40] PRIM MODE(REF dm) = PRDM MODE(dm).

————

(Ps41) DERIVED MODE(int) = REF INTEGER.
{ps42) DERIVED MODE(Eo0l) 3 REF BOOLEAN.

{ps43) DERIVED MODE(ref m) = REF dm
+ dm = DERIVED MODE(m).

[PS44] NUM REFS(INTEGER) = 0.
(Ps451 NUM REFS(BOOLEAN) = o,
{ps46) NUM REFS(REF dm) = 1 + wum REFS (dm).
[ps47) DOMAIN(1) +dm), ... 4 +dn)
n . a

i, ., 1.

Lhoctions for Implementation Dependent Requirements)

[PS48) MNUM DECLARED IDS(¢ ; ...; )
% NUM DECLARED IDS(4,) +
see +

NUM DECLARED IDsS ).

[PS49 ] NUM DECLARED IDS(m 4., ..., 1)
e ettt 1 » n

£ .

[PSSO] LexcTH [irplamentation d;afinad

function to corrute the length
of a progran n;)
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DECLARED PRIM MODE(B:py) ~= _JNTEGEK -
DECLARED PRIM MODE(AtB:p,) = INTEGER

Similarly, the functions "PRIM MODE" [PS38] and "NUM REFS" [PS44] when applied

to a mode yield the corresponding primitive mode and the number of references.

In particular, consider the proddction for assignment statements

[PSO7] ASGT STM<1"‘=e> & LEGAL<* p>
+ dm1 DECLARED MODE(i:p) &
dm DECLARED MODE(e:p) &

e
PRIM MODE(dmy) = PRIM MODE(dm,) &

ny = NUM REFS(dmy) &
n, = NUM REFS(dm,) &

In detail this production may be read: A string of the form_

————e e e+ —eeiim t e s v emIE

i1 :=e
is an assignment statement, and the pair
<i':'=e : p>

is a member of the set LEGAL, if

i is an identifier, and
e 1s an expression, and
p is an environment, and
dm, and dm_ are modes derived from ASPLE declarations, and

n, and n, are integers,

and 1if

dmi is obtained by applying the function "DECLARED MODE" to (i:p), and

dm is obtained by applying the function "DECLARED MODE" to (e:p), and
the function "PRIM MODE" maps dm and dm into identical

 primitive modes, and

RIEE Y

is obtained by applying the function "NUM REFS" to dmi, and
is obtained by applying the function "NUM REFS" to dm,, and
4 18 less than or equal to ne+1.

ne
n

.3 3 3 3 __3

1

3

3 __3 |
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Here the symbol "*" in the conclusion for LEGAL is used in place of the string
iz:=e

being defined, and the production system variables i, e, p, dm, and n (possibly

with subscripts) are defined in subsequent productions. The quotes on the symbol

"." are used to specify that the ":" is an object symbol, and not a production

system punctuation mark separating items in an n-tuple.
More briefly, we shall read several productions from Table 4.1.
[PSO]] PROGRAM<begin dt ; st end”
<« p = DECLARED ENV(dt) &
DIFF IDLIST<DOMAIN(p)> &

LEGAL<st:p> &
> LENGTH(*).

"L

A string of the form
begin dt ; st end
is a valid program if

dt is a declare train, and

st is a statement train, and

p 1s the declared environment obtained from dt, and

the domain of p 1is a list of different identifiers, and
st is legal in o, and

n, is greater than the implementation defined length of the program.

[PSO5]  gm TRAINGS)5 ... 38> & LEGAL<*:p>

+ LEGAL<8 0> &... & LEGAL<sn:p$.

A sequence of statements of the form

S.3 eee3 S
1’ > “n

is a statement train and the statement train is legal in p , if

-'”EI’EErougﬁ §_ are statements, and
84 through s, are legal in p.

[PS14] ExPRESSION<e+f> & LEGAL<*:p>
+ DECLARED PRIM MODE(e:p) = DECLARED PRIM MODE(f:p).

A string of the form

e+f



- 34 -

is an expression and the expression is legal in o, i€

e is an expression, and

f is a factor, and
the declared primitive mode of e in is identical to the declared

primitive mode of f in op.

We next consider two ASPLE programs, the first of which is syntactically legal,

and the second is not. The two programs differ only in the declared modes of B.

Program 1 Program 2
begin begin
int A; int A;.
ref int B; int B;
ref ref int C; ref ref int C;
A :=R00; A := 100;
B := A; B := A;
C :=B; C := B;
input C; input C;
output A output A
end end
Using the productiens fer “BEGLARFD ENY" {PS25], the envireumeats for the two
programs arel |
A » REF INTEGER, A - REF INTEGER,
B +_REF REF INTEGER, B + REF INTEGER,

C -+ REF REF REF INTEGER C - REF REF REF INTEGER

From the premise "LEGAL<st:p>" in the production for "PROGRAM" [PS01], the state-
ment trains are legal only if the statement trains are legal using Py and Py
respectively. Using the productions for "gTM TRAIN" [PSO5], each statement in a
statement train is legal only if each individual statement is legal using Py
and p, respectively.

Using the production for "ASGT STM" [PS07], a statement of the form

i :=e

3

.
)

3 -3 3 __3

-3 3 3 3 __3
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(a) dm.i is the declared mode of i in p, and
(b) dm, is the declared mode of e in p» and

(c) the primitive modes obtained from dm, and dme are identical, and

i

(d) the number of references in dm, is less than or equal to one

i
plus the number of references in dme.

For the two programs given earlier, the statement "A := 100" is legal, since both

p=olando=oz-

dmi = DECLARED MODE(A:p) REF INTEGER
dme DECLARED MODE(100:p) = INTEGER
PRIM MODE(dmi) = INTEGER = PRIM MODE(dme)
NUM REFS(dmi) 1

NUM REFS(dme) 0

n, +1

1]
)

ny

A

On the other hand, the assignment "C := B" is legal in Pys but not in Py

since

Q_I_‘ pl for pz
n; =3 n, =
= n =1
n, < ne + 1 ni > ne +1

The productions of Table 4.1 should now be clear to the reader. For more

detail, the reader is referred to [L3].

4.2 Semantics

The Production Systems approach given here relies on another language for

defining semantics. The only role of production systems in defining "semantics”
is the specification of a mapping of legal programs into a target language that

expresses the meaning of a program.* In this section, we shall use the axiomatic

*Note: Production systems could be used directly to define semantics by specifying

a set of triples <program : input file : output file> for each legal program. This

aporoach has not been tried.
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approach of Ebare [H1l] as the basis for such a target language. A mapping of r?
syntactically legal ASPLE programs into this target language is given in Table 4.2.”1
The axiomatic approach differs significantly from the other semantic approaches
in this paper in that the approach is entirely "gynthetic", and thus does not rely }
on any execution model. To define semantics using an axiomatic approach, the follqu-
ing question is addressed: Upon termination of a program, what assertions can be maue?
The axiomatic approach of Hoare [H1] is based on the first-order predicate calculus™]
which permits assertions about the membership of objects in sets and the results of

applying operations to objects, e.g. the kinds of objects stored on some external nw

This correspondence has two basic parts: a specification of assertions ”1

medium and the values of expressions. To define the semantics of “programs', a

correspondence between programs and the relevant assertions must be defined.

that can be generated directly from the program text, and a specification of

points where the user must derive new assertions based on those already generated.mw

In the paper by Hoare [H1], no attempt is made to separate these two parts. We

believe this separation to be important, for it shows the user when one can r1
proceed automatically and when one must make "mental leaps' in the attempt to mT

prove a program correct.

3

In the specification of ASPLE semantics here, we adopt the following

conventions:

(1) SEM is the name of a production system function
mapping legal ASPLE programs and statements into
assertions that can be generated automatically.

(2) PROVABLE is a production system predicate naming a
set of ordered pairs <a1: 2>, where al gnd a, are

assertions. This predicate is true only if a, can be

derived from a; by the user. The rules for deriving

a, from a, are those of the predicate calculus, and

are not given in this paper.

R

3) a, a1, 29, etc. are production system variable; de~-
noting members of the set of assertions. The class
of well-formed assertions is not defined here, but
may be readily generated by inspection of Table 4.2.

The first production of Table 4.2 specifies the overall assertions for

.3 _13
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Table 4.2 Production System Mapping Legal ASPLE Programs

into Proof Verification Rules

- [assertions for Programs)

LPTUl] SEM(begin dt ; st end)

= true (%} a”
+ a = DECLARED ASSERTIONS(dt) &
I\fi'n'ﬂhfout-[] &

a' 28 Ad, A%,

] DECLARED ENV(dt) &
SEM STM(st:p) = a' {st} a"
la are the assevtions for expressions]

[a i1e 9T the assertions for the inpu
frie ond output files) .

[8 i the user supplied input filal

{Assertions for Declarations)

LPTU¢T DECLARED ASSERTIONS(d;; «.. d)

S ..l A s A %
+ DECLARED ASSERTIONS (dl) H al [

T ees &
DECLARED ASSERTIONS(d ) 8.

(PT03] - DECLARED ASSERTIONS(m 1,, ««o o1))
S 11cdm A cee A 1ncdm
<+ dm = DERIVED MODE(m).

[Assertions for Statemants)

p) = a; 1%} a
SENM Sm(slzo) S a'_l (al} a, &
SEM STH(sZ:p)

{PT04] SEM Sm(sl;az; ees 38y 3
+PR0VABLE<51:3'1> &
PROVABLE<aZ:a"2> &

LR 2] &

oat
PROVABLEmn.a n> 5

= ot
za'y (sz) a, &

SEM S'm(sv:o)

H a_'_n (snl an

(Before statements, a new assertion a's may need to
be areated and derived from ai]

[PT05]. SEM STM(L ':'=e : p)
: (*} a

s a‘ﬂle'n:ef (e,n)

« dm, = DECLARED MODE(i:p) &
dl::le = DECLARED MODZ(e:p) &
By = NUM REFS(dmi) &

o, = NUM REFS(dme) &

S (n° -_?1) + 1.

(1f the number n. of refs to © is 1, them n=n_, i.e.
the value of é is dereferenced once to obtain a
primitive value]

[PT06] - SEM _STM(if ‘e then st fi : )
S a {#})a'
+ SEM STM(st:p) = a A primval(e) {st} a' &
PROVABLE<a A -primval(e) : a'>.

[°T07] SEM STM(if e then sty ‘elaa sc, fi: p)
2 a {*} a'
+ SEM S‘m(stl) Z a A primval(e) (acl} a' &

SEM STM(st,) 2 a A vprimval(e) {stz} a'.

SEM STM(while e do st end : o)

g a (*} a, A primval(e)

<+ PROVABLE<a : a 1nv’ &

SEM STM(st:p) = 3 av A primval(e) {st} 8.

(1087

[a{n " ig the invariant for the loopl

[PT09] SEM STM(input 1 : p)
= ‘r:::(f ) 1%%22"‘;
e~ "{n —————1"1n

A _t;iﬁ(fm) € dm:l. {*} a.
DECLARED PRIM MODE(i:p) &
n = NUM REFS (dm) .,

’-dmie

[Deréfereneing i by n refs must yield
an identifier)

[The firet value in f;y, must be contained
in the set of valués denoted by dni]
SEM STM(output e : p)
s 4 Ut
cat(fou:. primval(e))

£PT10]

(*} a.

[4ssertions a exp fOr Ezpressions]

[4ssertions for primval]

[PTiL) primval(e) e NUMBER
- > prioval(e+f) = sum(primval(e), primval(f)).

[PT12] primval(p) e NUMBER )

® primval(paf) = product(primval(p), primval(f)).
{PT13] primval(e) e BOOLEAN

> primval(e+f) = or (primval(e), primval (f)).

[PT14) primval(p) & BOOLEAN

> primval(p*f) = and (primval(p), primval(f)).

[PTLS] grlmval(el) - grimval(ez)
> primval (.‘(.el-ez')') = true.

[PT16]) grimv;xl(el) ¥ grimal(oz)
> primval ('('01-62')') * falsa.
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Table 4.2 Continued

{PT17) prizval ('("e;fe,")")

= primval ('(‘e;=c,')’).
[PT18] & = ¢v

> prinval(L) = primval(v)
{pT19] primval(int) = iat.

[PT20) primval (trus) = true.
[PT21) primval (false) = falsa.

[Assertions for dereferencing)

(PT22] deref(v,0) = v

+ (IDENTIFIER<v> | INTEGER<v> | BOOLEAR<v>).’

[PT23) 1 = ¢v.

> deref(i,n) = deref (v, n-1)

« (IDENTIFIER<v> | INTEGER<v> | BOOLEAN<v>),
[Assertions for Integers]

[PT24] 0, IMAX ¢ INTEGER.

{IMAX i8 the implementation defined
quantity ngl

[PT25] int ¢ IMAX > succ(int) ¢ INTEGER.
[PT26) int = IMAX > succ(int) = ...

{Implementation defined value
upon arithmetic overflow]

[

[PT27) int 4 0 > pred(int) ¢ INTEGER.
[PT28] sum(int,0) = int.
[PT29} 1nt1 $0A intl ¢ IMAX
> _g__m_n_(intl. 1nt2) - gg(uucc(intl). gred(intz))

[The conventional axioms for non-negative integers}

(PT30) and(true, true) = true
[PT31]) and(true, false) = false

[The conventional axioms for Booleans]

[Assertions afile Input and O_utput.i‘ilqa]
) [ib ¢ INTEGER  BOOLEAN])
(£ ¢ FILE]

(] ¢ FILE. .
cat(ib,f) ¢ PILE,
«ng > FILELENGTH(£)

[FILELENGTH is the implementation
defined quantity for computing
file lengths "8]

first(cat(ib,f)) = 1b,
rest (cat(ib,f)) = £,
eof([]) = true,

eof (cat(ib,f) = falsa,
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[PTul]  SEM(begin dt ; st end)
= true (x} a"
DECLARED ASSERTIONS(dt) &
a' =a A aexp A 3fite " fin =8 A fout =01 &
p DECLARED ENV(dt) &
 SEM STM(st:p) = a' {st} a".

<« a

This production may be read: 4if

is the assertion generated from the declare train dt, and

a
8gxp ig the assertion for expressions (to be discussed later), and
a is the assertion for input and output files (to be discussed

file later) , and
) is the user supplied input file, and

£, ,f are files, where fin = 8 and fou is empty, and

in’ “out
a' is the assertion
a A aexp A 3file

t
A fin=8 A fou,tn [ ] and

a" is the assertion obtained from the statement train, given that
a' is true before the statement train.

then

a® is the assertion upon termination ef thg;program.

The assertions generated from ASPLE declare trains [PTO2] are simply the

assertions of set membership for each declared idemtifier. For example, the

declare train

ref int A;
ref bool B

yields the assertions

A € REF REF INTEGER A
B € REF REF BOOLEAN

For statement trains [PTO4], the generation of a terminal assertion involves two

steps:



T

(a) a proof that the usertm ai hefore each

statement is provable from the . p:evieua assertion ai'
(b) the generation of the assertion ay,; wupon termination of each
statement
For example, the semantics of a statement train with two statements is specified

by the following production .obteined from [PT04];

SEM STM(s, 38, * p) = a]_' {*} 2,
+PBOVABLE<al:a'1> & §E‘[ S’I’M(slzp)

PROVABLE<aZ:a"2> & SEM STM(szzp)

n

]

a'y {sl} a, &
1.

a', {sz} aqe

This crestion of new assertfons a) and a) that are provable from a, and e

a, respectively reflects the "mental leaps" required by the user for proofs abeut

subsequent statements.

Each statement in a statement train gives rise to a production of the form

SEM STM(S) = 81 {*} az ’ T
*P]_' P2y e Py

Here 3, is any assertion that is true before execution of the statement, a,.

is the assertion derived from a; after execution of the statement, and pl
through p, are the predicates that must be true in order to generate as from
al‘

The semantics of assignment statements and while-do statements are particu-

larly important. For assigmment we have:

{PT05] sEM SEM STM(1':'= e : p)

+deref(e,n){ }a
- dm £ DECLARED MODE(:I. p) &
dme = DECLARED MODE(e:p) &
1 = NUM REFS(dmi) &
ne = NUM REFS (dme) &
mn = (ne—‘ni)-i-l.

n

3

13

3 3 _73,
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This production may be read

the assertion a may be derived from the assertion a
t+deref(e,n)

if

dmi and dme are the derived modes of i and e in p, and

n and n, are the numbef of refs in i and e, and

i
n equals (ne-ni) + 1.

The up-arrow "4" denotes a "pointer" to a value. In general, the notation at

denotes the assertion obtained from a by replacing all free occurrences of 1

by v. In the above production, v is tderef(e,n), i.e. a pointer to the dereferenced

values of e. This value must be well-defined (i.e. not undefined), and the

i
assertion before the assignment must be identical to 3 deref(e,n) . In a sense

the proof rule for assignment appears the wrong way around, for the assertion

replacing i by a value appears before the statement. This initially counter-

intuitive definition reflects two facts:
(a) the value of e must be obtained before the statement is executed.

(b) any assertions involving 1 before execution of the statement must

be true when i 1is replaced by a pointer to the primitive value of

e.

For while-do loops, the rule is:

[PT08]  SEM STM(while e do st end : p)
‘ = a {*} a, A primval(e)
< PROVABLE<a : a > & .
. inv .
SEM STM(stfp) = éinv A primval(e) {st} 3y v

Here the predicate PROVABLE must be used to derive the loop invariant a,; o from

any assertion a that is true before the loop, and SEM STM(st:p) must be shown

to not alter the truth of ainv when the primitive value of e is true. The



1nva¥£an£inainv of this production is a free variable, and thus must be devised
by the user. The creation of this invariant is the major "mental leap" required
by the user in the correctness proofs of ASPLE programs.

The axioms for ASPLE expressions:are quite straightforwar&. For numeric

expressions, .-for example:

(pT12] primval(e) e NUMBER
. > primval(e+f) = sum(primval(e), primval(f)).

e
-

[PT12] primval(p) e NUMBER ‘ ' : _
) 2 primval(paf) = product(primval(p), primval(f)).

The basic axioms for “gym" and "product" over positive integers follow the usual

rules for finite arithmetic:

[PT24] O, IMAX € INTEGER.

For dereferencing identifiers we have:
—_— -
(pT22]| dpref(v,0) = v Lo
+ (IDENTIFIER<v> | INTEGER<v> | BOOLEAN<v>),

i.e. dereferencing a value by zero refs yields the value itself, and

[p123)) 1= tv.

'3 deref(4,n) = deref (v, n-1)

'+ (IDENTIFIER<v> | INTEGER<v> | BOOLEAN<v>).

i.e. dereferencing a value by m refs results in removal of n refs.
Finally, one important point. In the production system of Table 4.2, no

explicit mention is made of cases where syntactically legal programs result in

semantic errors. Like BNF and Production Systems in the specification of syntax,

semantic errors can be deduced only by the impossibility of deriving a valid re-

sult. For example, in the semantic definition of assingment statements, the

attempt to evaluate an arithmetic expression containing an undefined identifier

results in an execution error. This error can only be deduced by observing that

no assertions can be derived from an identifier whose derefenced value is not
defined.

! | IJ
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5. THE VIENNA DEFINITION LANGUAGE

One of the earliest proposals for the rigorous definition of a programming
language was the use of an actual implementation [G1]. Two major objec-
tions to this technique are the inevitable encroachment of the host hardware
and the restricted availability of the definition. To escape these objectioms,
the IBM Vienna Laboratories developed the notiom of a hypothetical machine as
proposed by McCarthy [M1,42], Landin [L1l], and Elgot [E1] on which to make

an implementation. This work led to the Vienna Definition Language, VDL, used

originally for a formal defimitiom of PL/I [L6].

S.1 An Overview of VDL

A formal definition in VDL is founded on the notion of an "abstract machine"
(see Figure 5.1). The meaning of a program is defined by the sequence of changes
in the state of the abstract machine as the program is executed. The rules of
execution are defined by an algorithm, the "Interpreter". To make a distinection
between those properties of a program that can be determined statically and those
that are intrinsically connected with the senamics of the program's execution, the
original program is transformed into an "abstracted" form before execution. This
transformation is performed by another algorithm, the "Translator", which corre-
sponds to the early phases of a compiler in a real computer system. During the
transformation, the context-sensitive requirements on syntax are checked. The
notation of VDL is fully defined in [L4, L6, L7, W1]. In this section we give
a brief description of notation, introducing only those parts that are needed for

the definition of ASPLE.
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MACHINE
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INTERPRETER
SOURCE  \ f ) ABSTRACTED . .
PROGRAM /_LTRANSL“TORJ Y —~ .
' | =2 DATA
INPUT .
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Figure 5.1 Schematic of _a Programming Language Definition in VDL

Hgg 5.2 A Composite VDL Object
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In VDL, both the abstract machine and the program are objects that can be

represented as trees. There are two classes of objects: elementary bbjects, with

no components, and composite objects, with a finite number of objects as immediate

components.

Figure 5.2 shows a representation of a composite object named A. This object

has three immediate components, each uniquely named by its selector, xl, xz,

and x3. We denote the immediate component xl of A by xl(A). This is the

elementary object B. Similarly, we denote by x4°x3(A) the component x4

of x3(A). The selector x4°x3 is a composite selector. The application of a

selector to an object with no selector of that name yields the null object, denoted by

Q. For example, x7(A) = Q and X3°X2(A) = Q.

The composite object x3(A) has two components pamed X, and Xs.  The composites

are the elementary objects named D and E, respectively. We define A and X%(A)

by a list of selector-object pairs, i.e.

A) = (A X D>, <X :E
xg( ) = (A) = (< A <,5 >)

A = (<X;:B>, <X,:C>, <X3:(<X4:D>, <Xg:E>)>)

To specify subclasses of the class of objects, predicates are defined that
are true only for members of the subclass; all such predicates have the prefix
"ig-". For example, is-0(Z) will be true if and only if Z 1is a null object.

Objects can be modified by using the u operator. The result of u(A:<xT:F>)
is an object constructed from A by deleting the X; component, if it exists,

and adding a component <x,:F>. Applying n(A:<x1:F>) to the object A of Figure

5.2 replaces the elementary object B by the elementary object F.
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A special case of this operation is the , operator which constructs a new ob-

ject from a set of selector—-elementary-object pairs.

Objecte that represent lists are often used 1n VDL. If L is an object

that represents a list of n objects, none of them null, then the elements of

L are named by the selectors, elem(i), 1<i>n. VDL also makes use of the elemen-

tary functions, length(L), head(L), tail(L), and the concatenation of two lists,

Llan, all with the usual meanings. By convention, objects satisfying the predi-

cate "is-x-1list" denote lists whose components satisfy the predicate "is-x".

5.2 The Abstract Machine

The abstract machine used to define ASPLE, the "ASPLE Machine", is specified
by its machine state £ , an object satisfying the predicate is-state. This predi-

cate is defined in Table 5.1. Rule [MOl] specifies that £ has five components,

the abstracted program to be interpreted, (described in Section 5.3), a machine-
control part, (described in Section 5.5), a storage part, and two files.

The storage part of the ASPLE Machine:

[802] 4g-storage = ({<1d: ia-value> l 13-1dent1£1er(1d)))

is a set of pairs of the form <d: is-value >, where the selector 1d satisfies
the predicate is-identifier, and the value part represents an object that can
be obtained by applying an identifier selector to the storage component of the

Machine. From [MO3]

[M03] 4s-value = is-comst V is-identifier

an ASPLE value 18 either a constant or an identifier.
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fco1]
[co2]
[co3]
[co4)
[cos]
[cos)
. fco7]
fcos]
[co9]

[c10]
{c11}
[c12]
[c13]
(c14]
[c1s]
\ [ c16]

[ c17]
(c1g]
[c19)
[ c20]
[ca1)
[c22)

r““% r‘J‘g

TABLE 5.1 DEFINITION OF THE ASPLE MACHINE STATE

[MO1] ga-state = (<s-program: is-program>, {abstraction of conorecte program}
<s-control: is-control>, [oontrol of abetract machine)
<g-store: is-storage>, . .
<g-input: ls-comst-list>, [input Jjicc]
<g-output: is-const-list>, Loutput fite)

[M02) 4gg-gtorage = ({<id: is-value> || 1s-identifier(1d)})
[each value in storage is selected by ite identifier)

[M03] 41s-value = is-const V is-identifier

(Mo4] 4s-comst = is-boolean V is~integer

[INITIAL STATE OF THE ASPLE MACHINE] .
£ = uo(<s-program: translate(r)>, {initialised by performing translate function on concrete program)

<g-control: interpret-program>,

<g-gtore: 2>, .
<s-input: [input file for program. obtained from a source outside this definition]

<g-output: 1s-<>>) [output file ie initially empty)

TABLE 5.2 DLFINITION UF PREDICATE 1S-C-PROGRAM

is-c~progran = (<sy: is-begin», <sy: is-c-dcl-train>, <s3: ie-;>, <8y: is-c-stm~-train>, <ss: is end>)
is-c-dcl-train « (<g-del: is-;>, <8): is-c-declaration>,..., <8n,: ig-c~declaration>)

is-c-stm-train = (<s-del: is-}>, <8): is-c-statement ,..., <Bp,! is-c-statement>)

{s-c~-declarations = (<8;: is-c-mode>, <s83: is-c-1dlist>)

ig-c-statewent = ig-c-asgt-stm Vv is-c-cond-stm v is-c-loop-stm v 1s-c-input-stm v is-c-output-stm

ig-c~mode = (<gy: 18-01 v (<82 16-ref>,..., 8<Bp,} 1e-ref>)>, <sp: 1s-bool V 1e-int>)
4e-c-idlist = (<g-del: 1i8-,>, <6)% is-c-1d>,..., <8p,: ig-c-1d>)

ig-c-asgt-stm = (<8y: is-c-1d>, <sp: is-3:=>, <63 18-c-exp>)

is-c-cond-stm = (<8y: 1s-1f>, <83 is-c-exp>, <83: is-then>, <8y: is-c-stw-train>,

<sg: 18-f v 1s-c-else-part>, <ag: 1s-f1>)
1g-c~loop-stm = (<gy: is-while>, <sp: is-c-exp>, <833 is-do>, <a4! ia-c-sto-train>, <ss: is-end>)
ig-c-input-stm = (<sy: ie-input>, <8yt is-c-1d>) b
is-c-output-stm = (<s;: is-output>, <8z: is-c-exp>)
{s-c-else-part = (<8;: is-else>, <83: ig-c-stm-train>)

ie-c-exp = 4g-c-factor v (<s: 1s-c-exp>, <8z: 1s-1>, <83 1s-c-factor>)
ig-c~-factor = {g-c-primary v (<s;: is-c-factor>, <sy: is-%>, <833 1g-c~primary>)
1g-c-primary = 1g-¢-id v 1g-c~bool-const v is-c-int-const V

(<8y: 18-(>, <8y: le-c-exp V 1s-c-compare>, <B3: 18-)>)
1s~c~-compare = (<8,: is-c-exp>, <833 ls-2 V is-$>, <831 1s-c-exp>)
is-c-bool-const = is-true v is-false
is-c-int-const = (<g;: 1s-c-digit>,.e.s <Bngt ig-c-digit>)

1a-c-1d = (<8): 1B-c-letter>,...s 6ng} 1e~c-letter>)
ig-c~-digit = {a-0 v 1e-1 VooV 18-9
is-c-letter = {e-A v 10-B v...v 1s-Z
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The input and output files are lists of objects satisfying the predicate is-const ﬁj

and are, therefore, lists of boolean and integer values.

The program part of the ASPLE Machine is an abstracted ASPLE program, describegj
in Section 5.3. The program part is initialized by performing the function "trans-
late" on an original source program; the Translator is described in Section 5.4. ‘J
The control part of the ASPLE Machine is initialized to the machine operation "in-
terpret-program”, which is defined in Section 5.5. The ASPLE Machine's store is
initially empty, reflecting fhe ASPLE rule that the value of all variables in in-

itially empty, reflecting the ASPLE rule that the value of all variables is in-

3 _3 __3

itially undefined. The input file is initialized to the input data for the program

and the output file, to an empty list. ”?
5.3 The VDL Representation of Programs ﬂ?
The input to the ASPLE Translator is a class of objects, "concrete programs",

that satisfy the predicate "is-c-program" defined in Table 5.2. This definition is

—J

derived directly from the context-free syntax of ASPLE shown in Table 2.1. There is

4 one-to-one correspondence between concrete programs and the character-string
representation of well-formed ASPLE programs. The definition of concrete pro-

grams makes use of certain standard selectors, 815 52’ «s.y assumed to be

mutually distinguishable. They are used to construct objects whose structure
is similar to VDL lists, except that some of the componenfs may be null.

Informally, the correspondence between the predicate "is-c-program" and

the context-free syntax of ASPLE can be seen by comparing production [BOl] of

)ﬂ,

Table 2.1: )
[BO1]  <pregram> 1% begin <dc) train> ; <stm trains> end “j

with definition [C01] of Table 5.2: )

o o
[CO1] tgwe-progran = (<83t fe-begin>, <sa: fs-c-dcl-train>, <sy: 1s=3>, <8y: ls-c-stu-train>, <ss: 18 ‘enz>)

_ i
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Cl specifies that an object satisfying is-c-program has five immediate com-

ponents, s ees »8_. The first component is an elementary object satisfying the

1!
predicate s-begin and corresponds to the begin symbol in the character-string

representation. The second component is an object satisfying is-c-dcl-trainm,

defined in production [C02]:

A declare train consists of a sequence of declarations separated by semicolons.
This production shows the VDL convention for representing a sequence of items

separated by a delimiter. The selector s-del selects an object representing

the delimiter, and the names 815 89 oo gelect the successive items of the sequence.

The ASPLE program executed by the ASPLE Machine is obtained from con-

crete programs by removing the syntactic devices that were associated with their

character-string representations. These "abstracted' programs are the essence

of the corresponding ASPLE programs. Abstracted programs are objects that satisfy

the predicate "is-program' defined in Table 5.3. The definition of the elementary

objects has been left somewhat informal, indicated by the use of italic type.

The degree of abstraction between concrete and abstracted programs is, to

a certain extent, a matter of the definer's choice. In this definition, the aim

has been to define an abstraction that leaves only those parts of an ASPLE program

required for execution.
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TABLE 5.3 DEFINITION OF THE PREDICATE IS-PROGRAM

[A01] 1g-program = ig-statement-1ist

(A02] jgg-statement = is-assignment v i{s-conditional v is-loop v is-input v is-output

[A03) is-assignment = (<target: is- identifier>, <source: is-expr>)

[AC4] gg-conditional = (<condition: is-expr>, <true-part: is-statement-list>, <false-i)arc: is-statement-11ist>)

[A05] 1s-1cop = (<condition: is-expr>, <body: is-statement-1list>)

fAce] is-hput = (<target: is-loc>, <mode: is-mode>)

[A07]1 4s-output = (<source: is-expr>)

fAe81 is-loc = (<name: is-identifier>, <deref: is-integer>)

[AN91 is-expr = {g-value v is-operation

[a10 ] is-value = is-boolean v is-integer V is-loc

{A1l ] is-operation = (<opl: is-expr>, <op2: is-expr>, <operator: is-operatob)
(a12 ] is-mode - q set of two elementary objects represented by {int, bool}

[a13 ] is-identifier = an infinite set of distinguishable elementary objects

[A14 ] is-integer = gn infinite set of elementary objects denoting the integer values. The subset that denote
the integer values less than 10 are represented by {0, 1,.., 9}

[A15] is-boolean = q set of two elementary objecte denoting truth values and represented by {thue, false}

[A16] 1s-operator = a eet of elementary objects represented by {plus, mult, ox, and, equal, notequal}

The sets of elementary objects satisfying the predicates {g-identifier, is-integer, is-boolean, ig-mode,
and is-operator are mutually exclustve.

3

3

-3 _3 _3
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Abstracted ASPLE programs are simpler than the corresponding concrete

programs. There are no declarations, and the only explicit type information is
contained in the representation of the input statement where it is needed to

check that the type of the input value matches the type of the target value.

There is, however, some implicit type jnformation contained in the representation

of operators, for example, the "4 of the original program has been translated

into pfus or on according to the operand type. This is very similar to the

situation in complied machine code where there is implicit type information con-

tained in the operation codes.

5.4 The VDL Translator

The comstruction of an abstracted program from its corresponding concrete
program is defined by an algorithm, the “translator". This algorithm checks
that the concrete program satisfies the context-sensitive requirements of ASPLE
and, if so, constructs the corresponding abstracted program. The translator
is defined as a set of functions, many of them recursive, shown in Table 5.4.

Generally, the functions consist of conditional expressions of the form

Pl -+ el, pé > e2 gaces pn g en
where Py is a predicate expression and ey is an expression defining the action
to be taken. The value of this conditional is the value of the first evaluated

expression ey where Py is true. In this definition, the conditional expressions

are all written so that at least one predicate is true.

The top-level function '"translate" is defined in [TO1]

[TO1] trenslate(e)=
program-length(t) $ ny o w(f,, < ~proRraa: tranu-program(t)>)
tive « error



- 52 -

TABLE 5.4 THE ASPLE TRANSLATOR

[101] tromsiate(e)=
program-length(t) € ny + u(E ,< -program: trans-program(t)>)
true + arror [progrum too long) .

[102] trona-program(t)e
nusber-of-identifiers(s.(t))<nz * crang-ste-train(s, (t))
truc + error [too many verichlos deolered)

[where is-c-dcl-train(s;(t)) and is-c-stm-train(s4(t))]

[103] trans-stm~tratn(e)=
slength(t) = 0 + <> ([if the statemernt trair containg ro etotement, return an cryty list;
tiic can arice vivr transleiing the eige part of a corditicnal)
true + po({<clen(d): trans-stmt(sg(t))> || 1 S 1 s alength(e)))

. {wkere 1s-c-statement(cy(t)), 1 S { < slength(t)]

[104]  trans-stamt(t)=

is-c-asgt-stn(t) - trans-asgt-ste(t)
is~c~cond-stz(t) ~ trans-cond-stm(t)
18-c~loop-stm(t) <+ trans-locp-str(t)
{s~c~input-stm(t) -+ trans-input-stm(t)
is-c-output-stm(t) -+ trans-output-stom(t)
(Tos] trans-asgt-stm(t)=
valic-mode~for-assignpent(t) -+ translate-assignment (t)
true error [modes not compatible for aseigrment)

[T06]  translate-assigament(ct)= [if the reference chain lergth of the target ie 1 then the mfghti}m:d
© [afde i tieated as an expressior, otherwise the rigkthard side is
. a reference ard the cpprcpriate amount of de-referencing must te

calculated]
ref-chain-length(s;(t)) » 1 + yp(<target: make-1d(s;(t))>, <source: trans-expr(s3(t))>)
true . + wug(<target: make-1d(s)(t))>, <source: trans-ref(sjy(t),

. ref-chain-length(s; (t))-1)>) .
[where: 1s-c~1d(s)(t)), and is~c-exp(s3(t))]
[1'07]. trans-cond-sta(t)=
primitive-node(s, (t)) = tool
po(<condition: trans-expr(sz(t))>, <true-part: trans-stat-trair(s,(t))>,

<falge-nart: trans-stmt-train(sz.ss(t))>)
true + error (mode of corditional expression not boolecn)

luhore: 1s-c-exp(sy(t)), is-c-stm-train(sy(t)), and is-c-sto-train (52485(t))]

[T08] trans-loop-stm(t)=

prinitive-mode(sa(t)) = bool <+ pg(<condition: trans-expr{sy(t))>, <body: trans-stm-train(g, (t))>)
true + error [mode of conditional expression rot boolean)

[whore: 1s-c-exp(sa(t)), and 18~c-stm-train(s, (t))}
[109]. trans-input-stum(t)= ’
vo(<target: trans-ref(sy(t) »1)>, <mode: primitive-mode(s 2(t))>) !
[vhere: 18-c-1d(s;(t)))
[noj trans-output-stm(t)=

valid-expr(t) + po(<source: trans-expr(s;(t))>) ‘
true . + error [i{nvalid expresoion) ‘

[Whera: 1a-c-expr(sy(t))]

F11] trans-expr(t)=

1s-c-bool-const(t) + nake-bool~const(t) ’
i{s~c-int-const(t) -+ make-int-const (t) ‘ '
4g-c~1d(t) + trans-ref(t,0) [Cerefercnce sufficiently to get value]
4e-c-~parenthesized~expr -+ trans-expr(sa(t)) [t <c a parenthesized czzrecoion)

true + up(<opl: trans-expr(sy(t))>, <op2: trans-expr(si(t))>,

<operator: make-operator(t)>)
{if it 18 not a conctant, identificr, or parernthasized
expression then it consiots of two operands ard an operator)

[T12) trane-ref(t,n)e [conotruct a reference to a variable such that the length of the reference
) chain of tha value ta n) . ’
vo(<naze: make-1d(t)>, <deref: ref-chain-length(t)-n>)
{T13] wake-1d(t)=
slength(t) < ny — [an elementary object eatisfying is-identifier such that
(vt1,t2) (is-c-1d(t)) & 1s-c-1d(t3) & (zake-1d(t;) = make-1d(t3) > t;=t3))]
that 8, there te a onc-to-one mapping between t and the
tho recult of this operation)

¢

true ~—+ error [identificr longer than implementation defired
lergth)

[T14 ] make-bool-const(t)=
fa-true(t) -+ Lrue e
T () - Tarse [there can be no other pooaibility) ‘'

3 i3
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TABLE 5.4 CONTLNUED page 53
[T15 ] make-int-const(t)e
valua-of~int-const(t) £ n; + value-of-int-const(t) ’
true <+ orror [intogur oonstant tvo big for implementation)

(116! value-of-int-constant (t)=
. d0-0(c) + 0 .
is 1(c) ~ I )

1a-9(t) + 9

alength(t)
slength(t) < n3; = z vnlue-of-int—couut(ti(t)) * 10 ¢ (slength(t)-1)
1=1
R truc +  l[too many digits in integer aconstant)
(whera: le-c-digit(s,(t)), 1 s £ < slength(t)}

[T17] make-operator(t)=

prioitive-mode(s)(t)) = bool & 18—+(a2(t)) + ca
primicive-node(s)(t)) = bool & is-%(az(t)) + and
prindtive-zode(s) (t)) = Tnt & fa-F(sz(t)) + PTas
prinitive-mode(s; (t)) = Tif & 15-%(sy(t)) + L‘fmu(,
primitive-node(s)(t)) = T & ts-=(sy(t)) + cgual
prinitive~zode(s;(t)) = Tif & 1a-F(s3(z)) + nofzqual

—_—

[Whore: La-c-exp(s)(t)),]

.

[118] pricttive-vode(t)= [ohook validity of expression and obtain ite primitive mods]

1g-c~1d(t) <+ primitive-zode-of-1d(t) .

1g~-c~bool~const + bool

1s-c-int-const - g

1s-c-parenthesized-expression(t) + Pprinitive-mode (s, (t))

valid-compare(t) + bool . L

valid-expr(t) + primitive-node(s)(t)) (primitive mode of valid expression is
primitive mode of either operand)

true + error {{mvalid ezpression]

(T19 ] ref-chain-lengeh(t)= :
1s-c-1d(t) -« Slength(s)'mode—of-1d4(c))+!  [this 10 an alementary cbject satiofying lo-integes)

true - l

where: 8 emode-of-id(t) is the list of ref's in the deolaration of the identifier t]
[120 ] primitive-code-of-Sd(t)=
. 1g-bool(ss (zode~of-1d(t))) - bool .
1s-int(s; (mode-of~1d(t)))  + Ik .

[121] modeot-14(t)=  (find deolaration that contains identi 1 to ¢ and select part
T eoirmatic fier equa se mode E
(mx) (x*82(PROG)=t) =+ g~ ((ry) (is-c-declaration(x(PROG))& (A1) (8,e82°x(PROG)=t))) (PROG)
true i . Terror  [identifier was not deolared)

[whore: 1s-c-dcl-train(sz(PROG))]
[T22] program-length(t)=
THe-slist(t) + 1

sleagth(t)
true - I progtam—lengr.h(ai(t))

i=1

[T23] number-of-fdentifiers(c)=

slengeh(t)
valid-declare-train(t) + ] slength(sz.s RO
=1
truo + error(duplicate declarations in declare train)

[where: 1n-c-id1ut(az.l1(t)). 1 £ 1 < slength(t))

[126.] valtd-declare-train(t)= .
Hax1ox2) (X1¥x2 & 1o-c=1d(x1(t)) & ta~c-2d(x2(t)) & x)(E) = x2(t))

[this iz only true of the declare train t -f there do not exiot two different
selactora that oeleot equal identifiers, i.e., if thera are no duplioate
declarations]

[‘1‘25 Jval!,d-nodea—for—suigxmeac(t)-

(prinitive-node(s)(t)) = primitive-mode(ay(t)) & (ref-chain-length(s;(t))~1 < ref-chuin-lenggh (s (t)?)
{true if the mode of the right aide of an asoigrment etatement te valid for assignment to the loft side)

{where: 1n-c-1d(ll(t)) and 1a-c-exp(l3(t))|

[126 ] valid-compare(t)=
18~c-compare(t) & primlttive-mode(sy(t)) = int s primitive-mode(sy(t)) = int

(vhere: 1a-c-exp(s(t)) & fe-c-exp(s3(t)))

[T27 ] valid-expr(t)=

Me-=(62(t)) &11e-#(03(t)) & (primitive mode(oy (t)) = primitive-mode(ay(t))) '

[whare: 1s-c-cxpr(a)(t)) & {a-c-cxpr(nz(t)))
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This rule has a single parameter, t, corresponding to an object satisfying "is-
c-program,"

| The function‘translate checks that the length of the program, calculated
by the operation program-length, is less than the implementation defined limit,
n, - If this condition is satisfied, the machine-state £ 1is constructed and
the result of evaluating trans-program(t) is attached to £ by the selector
s-program. If the length of the program is too great,.the translator termin-
ates in an error. This is typical of the checks that the translator makes.
If the program beiﬁg translated fails a test, the process is stopped and the

program is left undefined.

A vhlidity check often makes use of a predicate, for example, the predi-
cate 'valid-modes-for-assignment" defined in [T25]:

[ T25 ] walid-oodes-for-sssigrnent(t)e

(prinitive-mode(sy(t)) ~ prinitive-mode(sy(t)) & (ref-chatn-length(s}(t))-1 < ref-chain-leagth (s,(t)))

This predicate defines the rule needed for compatible modes in assignment,
i.e., the primitve modes of both sides must be identical and the number of
levels of indirection of the source and target must be compatible. The func-
tions "primitive-mbde" and "ref-chain-length" are defined in T18 and T19,
respectively.

The translation process thus consists of executing a sequence of opera-
tions that pass back a value to this caller. The final result, provided all

the vélidity checks are passed, is the translated program attached as part

of the machine state.

L2

A\ __,,‘j

3



-55-

5.5 The VDL Interpreter

In the previous sections we saw the construction of the abstracted program

and its attachment as part of the initial machine state &o of the abstract
T“ machine. The control part of o contains the operation interpret-program.
; Execution of this operation begins the interpretation of the abstracted program,

which continues until the control part becomes empty or until an error is

detected.

Informally, the control part of £ can be visualized as a stack of

machine operations, some with arguments. The operation on the top of the

stack is the next instruction to be executed and when execution is complete, it
is removed from the stack. The execution of an operation causes one of the

following:
a. The addition of new operations to the imstruction stack.
b. The insertion of a value into the argument list of an operation
already on the stack, possibly accompanied by a change to some

other components of E.

The machine operations of the ASPLE Machine are defined in Table 5.5,

r

The "interpret-program' operation is defined in I01.

[]])1].1nterpret—program = intetptet-statemcnt-list(s-progtam(ﬁ))

Its &ffect 15 to cause the operation "interpret-statement-list" to be put on
Fﬂ the operation stack with the abstracted program from & "as argument. The
abstracted program, defined in Table 53, consists of a statement list.
The operation "interpret-statement” is defined in I102:
[102] {nterprot-statepent-1list(t) =

is-<>
true

o n
- interpre:-atatement-list(tnil(t));
1nterpte:—s:a:cmenc(head(t))




. [101]
1 (102]

[103]

[104]

[105]

{106]

e,

(107]

. [108] .

. [109]

[noj .
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TABLE 5.5 DEFINITION OF THE ASPLE INTERPRETER '

interpret-program = interpret-statecent-list{s-progran(f))

intcrpret-staterent-list(t) = [daj‘inaa interpratation ccqucnce of statements in pragran ]
16=<> ..f t 18 enpty liat, o nothing]
true -> 1nterpret-statcmcn:-list(:a!.l(t)) H
interpret-statement (head(t))

interpret-statement (t)= .
i{nterpret-ascignment(t)

is-sscignment(t) -

4s-conditional(t) + interpret-conditional (t)
1s-locp(t) + interpret-loop(t)
1g-input(t) + interpret-input(t)
is-output(t) + interpret-output(t)

interpret-assignment(t)= N
assign(carget(t), val); [evaluate the right sids than pass valua to assign operation)

val: eval—cxpr(source(t)) )
(where: is-identif 1er(tnrget(t)) and is-expr(source (t.)? h|
iaterpret-conditional( t)=

eval-expr(cond(t)) = e -+ interpret-s tatement-list{true-part(t))
true + interpret-statement-list(false-part(t))

fuwhere: 1s-stateunt-nat(trua-pnr:(t)). is-statement-list(false-part(t)), and is expression(cond(t)))

intaerpret-loop(t)=
eval-expr(cond(t)) = we + interpret-loop(t);
interpret-statement-list(body(t))
true - :

[where: is-expression(cond(t)), and is-statement-list(body(t)))

interpret-input(t)=

assign(destination, val);
destination: eval-ref(name-target(t), deref oturget(c) ); i
wal: read(mode(t))

[where: 1s-loc(target(t)), 13 mode-(mode(t)))
:I.nterptet—outpu: ()=

write(value);
value: eval-expr(source(t))

eval-expr(t) =
1s-loc(t) + eval-ref (name(t), deref(t))
18-value(t) -+ PASS: t
1s~-infix-op(t) + operate(vall, val2, operator(t)):

vall: eval-expr(opl(t));
val2: ecval-expr(op2(t))

operate(vl, v2, op)=

op = plus =+ add(vl, v2)

op = mull + multiply(vl, v2)

op = OA + logical-or(vl, v2)

op = and + logical-and(vl, v2)

op = ecund + compare-equal(vl, v2)

op = naﬁuﬂl + compare~notequal(vl, v2)
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TABLE 5.5 Continued

{111} edd(a,b)=
a + b < [implementation-defined maximum]lng + PASS: a + b {te-integer(a+b)]
true ' + PASS: implementation defined result

for: is-integer(a) and is-ioteger(b)

(112 ] wultiply(a,b)=
a . b < [tnplementation defined maximumlng =+ PASS: a ., b [ts-integer(a.b)]
true ( + PASS: implementatiocn defined result

[113 ] logical-or(za,b)=
aw it + Pi1SS: Luie
aruc + PASS: b [f a is falce, the value ts tke value of b}

[114] logical-:c: (a,b)

a = {alse -+ PASS: tLuue
true + PASS: b [(if a is true, the value is the value of bl

[I15] ccepare-egugl(a,b)=

a=b + PASS: Duwe
atb + PASS: julie .

[116 ] compare-rot-equal(a,b)=
a

¢b + PASS: fafse
a=b + PASS: rue
[117] assign(target, velue)= [perjorm the cctual assignment of a value to storage)

= u(s-store(f); <target: value>)

[118 ] eval-ref(id, n)=
n=0 + PASS: id
true + eval-ref (ref, n-1)
ref: dereference(il)

[119 ] dereference(id)=
qis=-5(idos-store(E)) + PASS: idos-store(f)[obtain value of variable id from store]
true + error [referemce to value that has not been set]

{120 ] write(v)=
length(s~output(£)) < [an implementation defined marimumlng + u(E,<s-output: s-output(f)"v>)
[concatenate value v on end of output filel
-+ error

true
[number of items on output file greater then implementation
defined maximun]
[121 ] read(t;= [read ard cneck value from irput filel
1s-<> (s=-input(3)) + ertror [erd of file]

mode~of-const (kezd (s-input(£))=t = 1(£; s-input: tail(e-input(£))>)
PLSS: head(s-input(E))
true + error tmode of irput incomyatible]

[122] mode-of-const(v)= [obtain mode of value in the input file)

is-boolean(v) + P2SS: bool
© {s-integer(v) + PASS: «int
. - .
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and uses the same type of conditional expression as used in the translator.
If the statement list t is empty, the instruction being executed is
replaced in the operation stack by nothing, Q. It is in this way that the
control part of £ will become empty at the end of the interpretatiomn. If
the statement list t is not empty, the pair of operations

interpret-statement-list (tail(t));
interpret-statement (head(t))

is put on the éperation stack, with the ”in%eéf?et—statEmené” operati&ﬁ on
the top for execution next. The operation's argument is the first statement
from the statement-list t, making this statement the next ASPLE statement to
be interpreted. When this is completed, the operation "interpret-statement-
list" will become the top operation in the stack and be executed. Its argu-
ment is the statement list t with its first element deleted. This mechanism
defines the sequence of execution of the statements of the ASPLE program.

As an example of the way statements are interpreted, consider the "inter-

pret-assignment' operation defined in I04.

interpret—-assignment(t)=
[ 104 ] sssign(target(t), val)i
val: eval-expr(source(t))

e . e N i e

As before, the "interpret-assignment' operation is replaced in the stack by:
assign(target(t), val);
val: eval-expr(source(t))

The ''val:" part denotes that the execution of eval-expr will return a value, to
be known locally in "interpret-assignment' operations as '"wval," and that this
value will be substituted into the argument list of an as yet unexecuted
instruction. The value replaces the argument denoted by '"val" in the assign
operation. In this way, the value computed by the eval-expr operation is passed

to the assign operation for assignment to storage.
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The definition of "eval-expr

[109] . ‘"1::?{2.(;?:; + eval-ref (nazme(t), deref(t))

1s-value(t) - PASS: ¢t
+ operate(vall, val2, opera:nr(t\):

vall: eval-expr(opl(t));
val2: eval-expr{op2(t))

1g-infix-op(t)

shows how the return of a value is expressed. This operation has a three-way
conditional and the action depends on the kind of expression passed to the
operation as an argument. If the expression is a reference then a single new oper-
ator is put on the stack; if it is an operator with two operands then three new op-
erations are added to the stack. However, if it is a value, i.e., it corres-
ponds to a constant in the original program, the actual value is returned.

This is signified by the word "PASS:" followed by the value to be returned.

Value returning operations can also make changes to other parts of §
through the use of the U operator. For example, the 'read" operation defined
in [I21]:

[I21]  rxead(t)=
is-<>(s~inpur(%)) + error
mode-of-const (heed (s-input (£))=t + u(f; s-input: tail(s-input(£))>)
PASS: hezd(s-input(£))
true “+ error

first checks that the end of file ﬁas not been reachéd. If it has; this is an
error and interpretation stops at that point. The next check is that the mode
of the value to be read is the same as that of the variable to which it is to be
assigned This latter mode was determined by the tramnslator and inserted into
the abstracted program. If the modes are compatible, two things take place
simltaneously, the first value in the input file is deleted by the u operator
and this value is returned with the PASS: mechanism.

The definition of the interpreter instructions specifies the meaning of
every legal construct of ASPLE. By making a clear separation between the trans-

lator and interpreter, it is possible to show the difference between the static

and dynamic aspects of the language.
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6. ATTRIBUTE GRAMMARS

We next discuss the definition technique of attribute grammars originially

due to Knuth [K1]. Attribute grammars and related concepts have been described

in different places [B1,B2,K1,K2,L5]. The notation used here is closely related
to that used in [B1,B2,L5].

6.1 Overview

The context-free grammar of a language defines a derivation tree for each
syntactically correct program of the language. The attribute grammar 1is based
on this context-free grammar and associates attributes with the nodes of the
derivation tree. The attribute grammar also specifies rules for deriving values
for these attributes.

Each attribute may take values from a set of possible values.

These are two kinds of attribute: inherited attributes whose values are ob-

tained from the immediate parent node in the derivation tree and synthesized at-

tributes whose values are obtained from the immediate descendants in the tree. In
a production of the grammar, the inherited attributes of the left side and the syn-
thesized attributes of the right side represent values furnished by the surrounding
nodes in the derivation tree. The other attributes, i.e. the inherited attributes
of the right side énd the synthesized attributes of the left, must be computed ac-
cording to the evaluation rules of the given production. These attributes repre-
sent values that are passed to the surrounding nodes.

The context-sensitive constraints of the language are expressed by conditions

included in the grammar. These conditions specify relations between the attribute

values that must be satisfied.

Attribute evaluation rules other than simple value transfers are written using

action symbols. Whereas the input symbols in the production rules of the grammar

determine the form of the syntactically correct written ASPLE programs, the action
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symbols represent the translation of a program as a sequence of actioms. This
corresponds to the practice of implementing programs in two phases: compilation
followed by execution. Therefore, the meaning of a source program is specified
in terms of the sequence of action symbols and values obtained in the translation
of the source text of a program.

A full definition of a language using attribute grammars must be supplemented
with a definition of the action symbols. Thus the attribute grammar approach is
not a complete method for full formal definitions. Rather than choose a rigidly
defined set of actions (for example, a particular machine language) we have,
as is customary with attribute grammars, left the meaning of the action symbols
informally defined. |

6.2 The Attribute Grammar for ASPLE

The attribute grammar for ASPLE is shown in Table 6.1

The production for <program> is shown in [AGO1l]:

(AGO1]  <program>  tmemory siw begin

«dc) train> iempty-env dzerno-ids tempty-memory tenv tnum-1ds  tmemory

H
<stm train> ‘env

ond
condition: num-ids < ny

conditfon: p;og-length <m

Here the written terminals of the language are shown in italic characters. 1In
[AGO1] these are: begin, ; and end. Associated with the syntactic category
<program> is the attribute tmemory, whose value represents the state of the pro-

gram variables, each of which are initialized to an undefined value. The upward

arrow indicates that it is a synthesized attribute. There are three inherited and

three synthesized attributes associated with <dcl train>. The attributes associ-

ated with any category are always written in the same order. The three inherited

attributes are prefixed by a downward arrow.
Attribute evaluation rules that are simple value transfers are specified by

the use of identical names. Thus the value of memory is obtained from the descen-

dants of <dcl train > and passed to <program>. The value of the attribute env
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TABLE 6.1 ATTRIBUTE LRAMMAR OF ASPLE

[AGO1]  <programs  tmemory si*  begin
<«dcl train> +iempty-env +4zeno-ids sempty-memory 4tenv +num-ids ¢memory
'
<«stm train> senv
ond
condition: num-ids < n,

[moter of declared identifiers must be leoe than the implementation defined
manker n

condition: prog-length < "M

[prog-length ic an implementation dafined attridute whose evaluation rules
must be added to the grammar)

[Ac02] <dcl train>- 0env]0num-1ds] memor,vl tenv, fnum-ids.‘,' 4memoryy

1= <declaration> +env, ¢num-ids, «memory, denv, tmum-ids, memory,

| <declaration> oenv‘ &m:m-iclsl memoryy fenvg 'fnum-ids3 .memorys
H

<dcl train> senvy nmm-ids3 imemory, tenv, tnum-ids, tmemory,

[AG03]  sstm tratin> denv 2@ <statement> +tenv
] <statement> +env

»

<stm train> denv
[AG04] <declaration>- senv, mum-idsl imemory, fenv2 nmm-idsz menory,
i :i= «mode> 4prim-mode +refs
<id-1ist> ‘env, mum-idsI +prim-mode refs smemory tenv, mum-idsz memory,

[AG05]) «<mode> + prim-mode trefs,
it=  bool . .
give value to attribute 4bool 4prim-mode
give value to attribute sone-nef n-efsl
- | int :
give value to attribute +int  +prim-mede
give value to attribute ione-xef #refs,
| ref ;
<mode> +prim-mode n-ei'sz
add one ref n'(efs2 0refs1

[AG06] <id-1ist> tenvy mm:-itisl sprim-mode ¢refs imemory,  tanv, mum-idsz +memory,

si=  <declared 1d> tenv, iprim-mode +refs omemnry1 tenv, memoryz
add one id nu.u-n-ids1 mum-ids2

| <declared id> tenvy tprim-mode +refs imemory, tenvy 4memory,

add one id murn-ids1 mum-idsa ¢

»

<id-1ist> tenvy snum-1ds; iprim-mode ¢refs imemory; tenv, toum-ids, tmemory,

[AG07)  <declared 1d> tenvy iprim-mode; irefs, imemory, tenv, tmemory, ‘
= <id> tname, 4
insert declaration tenvy  4name, 0pr1m-mode] u-efs, tenv,
include variable memory;  4name, tmemory,
(tho name io alled te momory and ite value initialised to unde §ined)

condition: J (t)(t'(name:- orin-mode, refs,) & t cenvy -8 name.,-nme‘)
[duplicate declarations are not allowed)
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[AGO8] «statement> senv 11 <asgt stm> ienv
| <cond stm> ienv
| <loop stm> ¢env
| <input stm> ienv
| <output stm> ienv

[AG09] <asgt stm> senv 11= <used 1d> senv tprim-mode; +refs; +name

subtract one ref 4refs‘ oref‘s2
<exp> +env n-ei’s2 4pr1m-modez +VALUE
STORE +name +VALUE
condition: prim-mode] = prim-modez
[primitive modes must be campatible for aseignment]

[AG10] <cond st tenv if
<exp> +env 0:ub—a¢54 tprim-mode ¢VALUE
BRANCH ON FALSE +VALUE ﬂabe'l‘
then
<stm train> ‘env
BRANCH ¢1abel,
else
Jocate +label,
<stm train> {env
ri
locate nabelz
condition: prim-mode = bool
| ir
<exp> +env izero-aefs +prim-mode ¢+VALUE
BRANCH ON FALSE +VALUE +label
M‘ .
<stm train> senv
i
locate +label
condition: prim-mode = bool

[AG11] <loop stm> +senv = while
locate +'Iabe1,
<exp> ienv ¢zero-refs +prim-mode +VALUE
BRANCH ON FALSE +VALUE nabelz
do
<stm train> senv
end
BRANCH +labe‘|,
locate nabe]z
condition: prim-mode = bool
=  dinput
<used fd> +env  4prim-mode +refs fname]
«dereference> frefs +name  +one-red QN_AMEZ
<input value> +prim-mode 4+VALUE
STORE  +NAME, +VALUE

[AG12] <input stm> +env

.
.

[A613]  <input value> sprim-mode +VALUE

ss»  READ INTEGRAL +VALUE
condition: prim-mode = int

| READ EOOLEAN VALUE
condftion: prim-mode = bool
[value input must be compatible with target]

{AG14] <output stm> ¢env i output
<exp> +tenv  +zero-nefs tprim-mode +VALUE
<gutput action> +prim-mode +VALUE

[AGI5] <output action> +prim-mode +VALUE
::s  WRITE INTEGRAL +VALUE

condition: prim-mode = int
| MRITE BOOLEAN +VALUE
condition: prim-mode = bool
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[AG16] <exp» denv irefs tprim-mode; +VALUL,

[A617] <+ action> +prim-mode JVALUE,

<factor> senv drefs oprim-mode] 0VI\LUE.‘

<exp> {env +:er0-xefs Oprun-:.ade' WALUEZ
+
<1_'act.or> senv izero-nefs tprim-mode, oVALUEa
<+ action> wrln-n-mode1 VALUE, 0VALUE3 fVAlUE]
condition: prim-mode, = prim-mode ,
(primttive modes must ecrrespond)
condition: refs = zero-neds
[the mode of the expression is without any referenceal

4VALUE, +VALUE,

ADD VALUE, 4VALUE, tVALUE,
conditfon: prim-mode = int

O0R iVALUE] {\IALI!E2 HII\LUE3
condition: prim-mode = bool

[AG18] <factor> +env 4refs epr‘lm-mode.l 0VALUE1

[AG19] <* action> +prim-mode +VALUE,

<primary> +env +refs +prim—mode] fVALUE,

<factor> +tenv  +zeno-nefs +prim-mode1 1VALUE,
E ]
<primary> +eav  +zero-aefs +prim-mode, fVALUEa
<* action> +prim-mode, +VALUE, +VALUE, +VALUE,
condition: prim-mode1 = prim-mode »
{primitive modes muat correspond]
condition: refs = zero-reds
{the mode of the factor ia without any references]

+VALUE, 4VALUE,

MULTIPLY WALUE.' HIALUI-:2 1*1Ml.l.FE3
condition: prim-mode = int

AND  +VALUE, +VALUE2 +VALUE3
conditfon: prim-mode = bool

{AG20] <primary> +env irefs) sprim-mode 4VALUE

.e
-0'

<used 1d> +env +4prim-mode 0ref‘s2 tname,

<«deref action> +name, wef’s2 &refs] +VALUE
[some dereferencing may possibly be dome)

<constant> tprim-mode  +VALUE

condition: refs.l = Zero-neds

(

<exp> 4env +zero-nefs tprim-mode +VALUE
)

condition: refs] © zeno-neds

(
<compare> +env 4VALUE
)

give value to attribute +bool +prim-mode
condition: refs] = zero-nefs

[AG21] <used 1d> +env +prim-mode +refs +name

I3
=

<id> tname :
condition: (name, prim-mode, refs) ¢ env

[AG22] <deref action> sname n‘efsl +refs, tVALUE,

give value to attribute +name 4VALUE,
condition: refs; = refs,
[no deraferencing is necesoary)

LOAD +name vaLUEZ

[an undofined otoved valus gives rise to an error oondition]

subtract one ref ivefs, srefs

<deref action> 0VALUE2 +refs3 &refsz NM.UEI

condition: refs, > rei’s2

[uwm_-al levels of derefarencing can le done recursively, The meior
of timeo the recuraion in_invoked dcpemdn on the difference of the

valurs of mrj‘n] arel r-cfn_?
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[AG23] <compare> +env HIALIJE.l 1im <exp> {env szeno-refs 0pr|m-mode‘ eVAl.UEz

<exp> ienv +zero-refds oprim-mdez QVN.UE:’
COMPARE ENUAL WAI.UEZ 0VALU£3 WRLUE]
condition: prim-mode] = int
condition: prim-modez-but

| <exp> tenv izeno-refs tprim-mode, 4VALUE,
*
<exp> ienv jzeno-nefds 9prim—modez WALUE3
COMPARE_MNOT EQUAL WALUEZ 0VALUE3 fVALUE]
condition: prim—mode] = int
condition: prim-mode, = int

[AG24] <-onstant> +prim-mode ¢value

::=  <bool censtant> ¢value
give value to attribute +bool +prim-mode

| <int constant> 4value
give value to attribute +int 4prim-mode

[AS25] <bool constant> +value 1= true

[AB26] <int constant> +value

[A627] <pumber> ynum -dfgfts,

[AG28] <digit> 4value

[A629] «<id> +tname

give value to attribute +taue +value
| false .
give value to attribute +false ¢value

tte  <number> + zero-nefs” tnum-digfts +value
condition: num-digits < ny
[maonber of digits in an integer constant must be less than the
inplementation defined moximm n,

onum-digitsz wa‘luel

= <digit> walnel
add one digit mum-digits.l fnun-digﬂsz
| <number> snum -digﬂ:sl +num -digitsa tvalue,
<«digit> nmlme3 .
multiply wuluez +10 4value‘
2dd +value, +valueg +valuey
add on‘e digit onum-digitsa fmm-digitsz

= 0,
give value to attribute +0 4+value
| 1 '
give value to attribute +1 4valus

| ¢
give value to attribute 49 +value

ii= <identifier> +¢zero-Letters tnum-letters tname
condition: num-letters <y

[maber of letters in an identifier muot be less than the implementation
defined maximem n,J

[AG30] <identifier> mb-letters] mum-!ettersz tname,

[AG31] «<letter> +name

1= <Jetter> #name,
add one letter mum-letters‘ mm-letbersz

| <identifier> #num-letters, snum-Tettersy  tname,
<letter> tname,
concatenate ona.mez tname, mm,
add one letter mum-letters3 omm-letters‘z

= A .
give value to attributé + A +name
| 8
give value to attribute + B ¢name

DTS

| 2
give value to attribute + 7 +name

page 65
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represents the environment of the program, a set of triples associating identifiers,
primitive modes and lengths of the reference chain. The value of env is obtained

from <dcl tfa1n> and is transferred to <stm train> where it has become an inherited

attribute.

There are two conditions imposed on the values of the attributes in [AGOl1].
The value of the attribute num-ids which represents the number of declared identi-

fiers in the program, must be less than the implementation defined quantity n,.

The attribute prog-]ength’ which serves to represent the length of the program,

is not associated with any category since its computation is left for implementation

definition.
The production for <dcl train> is given in [AGO02]:

[AG02]  <dc) train>- +eny, dnum-1ds, imemory, tenv, tnum-1ds, tmemory,

:i= <declaration> senv, tnum-ids , +memory, 4env, tnum-ids, memory,
| <declaration> &emf.l mum—ids] imemory, tenv, 'ﬂmm-ids3 Amemorya
;

<dcl trafn>  denv, mum-ids3 imemory, tenv, mum-idsz tmemory,

In this production, the subscripts on the attribute names distinguish between dif-

ferent instances of attributes of the same type. Attributes distinguished in this

way can have different values.

Any order of evaluation of the attributes that leads to well-defined values
in the derivation tree is allowed. If we take the second alternative in [AGO02],
the following sequénce of evaluation will be followed for the env attribute:

1 The value of env. is inherited by <dcl train> on the left side
of the production. '

2. This value is passed down to <declaration> and the attribute

value of env3 is obtained.

3. The value of env, is then passed down to <dcl train> on the right
side of the production to obtain the value of envz.

4. The value of env, is then passed us as a synthesized attribute of
<dc1 train> on t%e left side of the production.
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6.3 Action Symbols

In a production where the evaluation of an attribute value requires more
than a simple value transfer, action symbols are used. In the attribute grammar,
action symbols are always shown with underlined names. -‘The meaning of the action
and the attribute values are defined informélly in Table 6.2.

A simple example of the use of action symbols is shown in [AGO5]:

[AGOS] <mode> +prim-mode +refs,
1= bool .

give value to attribute +bool ¢prim-mode

give value to attribute jone-ref n‘ei"sl

| int

give value to attribute sint +prim-mode
give value to attribute +one-nef trefs;
| rer )

<«mode> tprim-mode mei’s2

add one ref mafsz ¢refs1

The category <mode> has two synthesized attributes prim-mode and refs1. In the
first two alternatives of [AG05], values are given to these attributes by means

of the action symbol give value to attribute, which denotes a function that takes

a value and returns an attribute with that initial value. The attribute ref rep-

resents the length of a yariable's reference chain. The action svmhnl

give value to attribute +one-zef +refs]

defines the value of the attribute PEf] to be a reference chain of length 1. 1In
the third alternative, the action symbol

add one ref +ref52 trefs,
defines the length of the reference chain represented by refs] to be one greater

than that represented by refsz.

An example of the use of action symbols and the value passing mechanism is
shown in Figure 6.1. This diagram depicts thé sequence of evaluations for the env
attribute in the derivation tree for the ASPLE program

begin
int A, B;

end
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prim-mode

refs

name

env .

value

stored-value

boolean
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TABLE 6.2 DEFINITION OF ATTRIBUTES AND ACTION SYMBOLS

[primary mode] _
values: boof and int

[length of reference chain)
values: positive integers
constants: zono-nefs = 0

one-nef =1
action symbols:

add_one re n'efs] +refs2
implies ref52 = r'efs.I +1

subtract one ref mefs1 ﬂr-efs2
implies ref‘s2 = refs] -1

[name of variable]

values: arbitrary length character strings
constants: A, B, ... ,2
action symbols:
concatenate mame-l +name2 +name3
implias name, itg¢ the concatenation of name, with name,

[enviromment, i.e. "symbol table")

values: sete of triples of the form (name, prim-mode, refs)
constants: empty-env = 9
action symbol:
ingert declaration venvy +name +prim-mode +refs tenv,
implies  env, = envy u {(name, prim-mode, refs)}

[bootean, integral, or reference valuel

. values: union of boolean, integral, and name
valuse: union of value, and {undefined)
valuss: Dwe and  false
action symbols:
or booTean] boo'leem2 boo1eam3

implies boolean3 = boo'lean] v boolean,

and boo'lean] boolean, boolean,
implies lnm‘lean3 = boo]ean] A booIeanz
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[AT08]

[AT09]

[aT10]

[AT11)

[anz]

[AT13]

TABLE 6.2 Continued

1ntegral
values: pooit'lva integers
9,10
conatants? 0, 1, vee s?y . . integral values
ng = {implementation defined maximam value for g1
ation o ! add +integral ; +integral, tintegral,
~ plics if integraly + integrals < ng
then inugrala - t'ntcyml_, + intagmlg
otherwise implementation dafinad result
multiply +integral, +integral, tintegraly
implice if integmll x integmlz <ng
then {integral, = intagrall X integmlz
. otherwise implementation defined result
compare_equal Hntegrall Hntegra'lz tboolean
implies if 1ntegral.| = ‘lntegra'l2
then boolean = twe
otherwise boolean = false
oompare not equal +integraly +integral, tboolean
implies if 1ntegr§'l‘ s 1ntegra'|2
then boolean = false
otherwise boolean = twue
memory [memory state)
values: sets of pairs of the form (name, stored-value)
congtant: empty-memony = @
aetion symbol:
i{nolude variable imemory, +name 4memory,
implies memory, = METOry, v {(name, undefined)}
prog-length [program length (implementation dsfiued)].
ecnstant: ny = implementation defined maximm
num-1ds [momber of identifiers declared]
valuge: positive integers
conatants: zeno-4ds = 0 °
ng = implementation defined mazime
action symbol:
add one id +num-1ds, tnum-1ds,
implies num-ids, = num-ids, + 1
nun-digits {menber of digits in a mmber ]
valuee: positive integers
ocongtants: zeno-ids = 0
ng = implementation defined marimm
aection symbol:
add one digit  num-digits; tnum-digits,
implies  nun-digits, = nun-digits; + 1
num-letters [member of latters in an identifier] i

values: positive integers
conatanta: zeno-Lettens = 0
"4 = implemantation defined maximm
action eymbol:
add ore 'riter onur-ictters] mum-'lettersz
implies num-lettersz - num-letters] +1

Additional Data Type for the Execution Phase

The global atate spacc €8 a product of a memory atate and two file etatce for the {nmput and output.

[(AN4)

file [content of the imput or output file
valuco: aoquenaen (ul, Pas ees ,v") vherec n 2 2 and the
v, (1%isn) are of tire inteqral or boolean

oonatante: ( ) = the erpty sequence [file containing enly an end of file mark]
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TABLE 6.2 Continued

Additional Actions for the Exccution Phase

(a) Interaction with the glotal memory state
Brecution ¢f load #name +stored-valuey :
f J(t) (t=(name, stored-va'luez) & t e glelal memory & stored-value ¥ unde gined)
then stored-value, = stored-value, )

osherwise exceution error [ndefined variable reference]

exeoution of atore name stored-value,:
(name, stored-valuez) ¢ global memory pasoce
trplies globsl memory, cea. = glokal memoryy.c .o ~ (name,
[the stored value of the variable name is replaced by stored-value,]

stored-vahlez) v {(name, stored-value]))

(b) Interaction with glotcl imput file astate
Bxecution ¢ read Integrel  tvalue:
if ivput fnebefore = (”2"'2""’”71) i n2l
shen if vy ig ~f type
then value = v, and input f“eafter = (vz,...,v”)
otiervise execusion error [incompatible input data typel
ctherwise oxesution error [attempt to read beyond end of input fitel
Erecution of read breclean tvalue:
if input f“ebefore = “’:"’3"“";.’ & n2l
then 17 v, is of tyrz integer
tnen value = v, and input f“eafter = ("2""’”n)
osherwies execution error Lincompatible input data tyrel
otherise ezacution error [atterpt to read beyond end of irput fz'.la]

(e) Interaction :ith glotai ousput file state
Execution of write integre. +value
if output f“ebefore = (uJ,...un) & n< n,

then outrut f”eafter = (01,...,vn, value)

otrarwise ezecution error [i;nplamentation defined gire of output file exceedeal

Brecution of write oolear.  +value

if output f“ebefore = “’1"“*”:;' & n<nmg

then outout File = (ul,...,v", value)

after
otherwiss execution error [implementation defined siae of output file exceeded]

(d) Action Symbola for Secifying Non-Sequential Ezecution

logata *label (tocatas a wnique label to which the braneihing action symbol can be
cormectad; the mext action symbol to be executed is the next one in sequence]

branoh +label [glcbal state unchanged; the next action symbol to be executed is the locate
syrbol of the same label)

branch cn_false +value +label .
[glcbal state wnchanged; if value = §alse then the mext action symbol to be
exacution is the locate symbol of the same label, othervise the next action
syrbol in sequence will be executed]

3 3 t_3
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A more complicated set of action symbols occurs in the definition of the loop

statement in [AGll].

[AG11] <loop stm> ienv i yhile

Jocate flabel]
<exp> ienv izero-xeds tprim-mode +VALUE
BRANCH ON FALSE +VALUE +1abelz

do
<stm train> ienv

end

BRANCH  +1abel,

locate f’label2

condition: prim-mode = bool

The category <exp> has two inherited attributes, env‘and refs. In this case refs

is set to zero-1efs to show that an actual primitive value is required. The syn-
thesized attribute prim-mode of <exp> gives the primi;ive mode of a value and the
condition specified in the production stipulates that this primitive mode must be
boolean. The second synthesized attribute of <e€Xp> represents the actual expression
value. This attribute is written in upper case to show that it can only be evalu-
ated during the execution of the program. The action symbols written in upper case
can be regarded as the terminals of the translation. The left-to-right order of

the italic terminals in the derivation tree sﬁecifies the written form of the source
program and the written sequence of action symbols corresponding to the source pro-
gram. During execution of the program, these symbols are interpreted strictly ac-
cording to their written sequence, except for deviations caused by the BRANCH ac-
tions. These actions change the execution sequence, making use of label attributes
that are evaluated by the locate actionm.

The production [AG22]:

[AG22] <deref action> +name irefs, direfs, 1VALUE,
s:= give value to attribute +name +VALUE,
condition: refs, = refsz

| LOAD ¢name tYALUEz

subtract one ref 4refsl irefs
<deref action> WALU[2 0refsJ srefs2 fYALUE1
condition: rcfs1 > refsz
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presents a rather special case in that it requires additions to be made to the
derivation tree during the evaluation of the attributes. This is done to gen-
erate the correct number of LOAD actions needed to perform the dereferencing.
These actions cannot be constructed until the attribute refs has been evaluated.
For example, consider the program
| begin

int A;

A=1;

output A

end

Using the productions of Table 6.1, it will be seen that after all possible at-
tributes have been evaluated, the only actions that remain are LOAD and the WRITE
INTEGRAL. This latter action is another example of something that must be added
to the derivation tree during attribute evaluation when the value of prim-mode is
known.

As shown above, the attribute grammar approach relies on the existence of
some other target language for specifying semantics. Eor ASPLE, we have used the
mechanism of action symbols. These action symbols are informally described in
Table 6.2. They operate over three global variables: the memory state, the input
tile state, and the output file state. These states are changed by a number ot

actions that take place during the execution of the program. The final meaning of

a program is taken as the final value of the output file state.
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7. DISCUSSION

The example definitions illustrate a variety of formal models upon which we

now base a more general discussion of formal definitionms.

7.1 The Individual Definitions

A formal definition of a programming language should supply information to
a variety of users. For example, serious programmers need to resolve detailed
questions about facets of the language often not described in the language

manuals. Language designers need to review their work and assess the full

impact of their design decisions. Language implementors need a precise formulation

of a language as a part of their job description. Writers of textbooks and
reference manuals need information at all levels, from the general to the
particular.

For all these users, the formal definition must be .a definitive source of
answers to their questions. Beyond this essential minimum function, the

quality of the definition is critically determined by the ease with which

users can obtain required information. As an illustration of typical questions
that might be posed about a language, Table 7.1 shows six questions that cover
a range of questions about ASPLE. To compare the four definition techniques in

their ability to answer questions, we will take Question 4:

In this example ASPLE program, is the begin

assignment of an integer constant to ref int X;
the variable X valid? X o= 2
end

and follow through the process of obtaining answers from each definition.
7.1la YW-grammars
Since the question involves the assignment statement, we first look for a
hyper-rule for assignments. While not immediately obvious, the relevant rule is
hyper-rule [HR07]:
D®R07]  TABLE TAG becomes EXP val usigment e TABLE ;;z MODE TAG 1dentifiers,

- ’ S .. TABLE EXP MODE valus,

.32 _3 3
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Table 7.1 Sample Questions on ASPLE

1. General question about the language:

What data types are available in ASPLE?

2, More detailed question on the data types of the language:

Are mixed mode expressions permitted in ASPLE?

3. Detailed question on the context-free syntax of the language:

In this example ASPLE program, is the begin

semicolon after the second input int X;
statement correct? input X;
while X # 0 do
output X;
input X;
end

4. Detailed question on the context-sensitive syntax of the language:

In this example ASPLE program, is the begin

assignment of an integer constant to ref int X;
the variable X valid? X =2
end

5. Detailed question on the semantics of the language:

In this example ASPLE program, is the begin

disjunction between two variables, bool A, B{
one of which has the value true and A := trge,
the other has an undefined value, if A+ —
legal? then B := e
else B := false
fi
end

6. Detailed quéstion on the implementation defined features of the language:

In this example ASPLE program, is the begin ye
value printed defined by the language 1”? X, ¥
or is it dependant on the implementation? § :"
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which shows that the right-hand side of the assignment statement must be deriva-
able from

TABLE EXP MODE value,

Followipg the form through several hyper-rules, we get to [HR17]:

[DR17]  TABLE EXP MODE primary ::= strong TABLE EXP MODE identifier,
} TABLE EXP MOUE value pack,

.| where MODE 1s INTBOOL,
MIDE EXP denotation,

| where MODE is bool,
TABLE EXP compare pack,

Since the right-hand side of the assignment statement is a constant,

a "denotation" in the W-grammar, we therefore choose the third alternative.
From this we find that MODE, from which the declared mode of the identifier on
the left side of the assignment can be derived, must be INTBOOL, and

thus ref int is not permitted. Therefore, the assignment statement is

illegal in the environment of the given program.

7.1b Production Systems

Here, we go directly to the production that deals with assignment statements,
[PSO7]:

(pso7] * ASGT STM<i':'=e> & LEGAL<#zp>

*» d.i. = DECLARED MODE(i:p)" &
Cl. 5 DECLARED MODE(e:p) &
PRIM HODE(dmi) = PRIM MODE(dme).

- -a’ 3 NUM REFS(dai)‘ [
5, * MM REFS(dn,) &

L n.+1.

From this we see that n,, the value of NUM REFS of the declared mode of the identifier,

must be less than or equal to n_ + 1, the value of NUM REFS of the declared mode of

the expression plus one. The value of NUM REFS for identifiers is derived from

3 3 3 3 _3

3

3
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[PS41]. through [PS46]:
(ps41] DERIVED MODE(int) = REF INTEGER.

(Ps43) DERIVED MODE(ref m) = REF da -
¢ 4o = DERIVED MODE(m).

(PS44] NUM REFS{INTEGER) = O.
(ps46] NUM REFS(REF dm) = 1 + NUM REFS(dm).

Here we see that the number of occurrences of REF for an identifier is one more than
that given in the declaration for the identifier. For X, the number of references is

2. ?he value of NUM REFS for an integer constant is obtained from [PS36] and [PS44]:

(PS36 ) DECLARED MODE(n:p) z INTEGER.

- .(PSA4] MUM REFS(INTEGER) = 0.

—

and thus is 0. Applying these values to the relation in [PSO07], "

————

n, = 2 n =0 n, >n_+ 1
i e

the assignment statement is_gpown to be illegal in the given context

7.1 ¢ The Vienna Definition Language

Since the legality of the statement can be determined statically, we start

with the function trans-asgt-stm [T05] in the translator:

-asgt-stm(t)=
[T05] “.n:aiii-node-for-assianunt(t) e translate-assigrnent(t)
error

true
- . e —— -

where we see that the operation va]id-mode-for-assignment is used to check the

statement before translation. In [T25]:

[T25] val1d-wodes~for-aasignment(t)=

(prizitive-mode(s) (t)) = pricitive-zode(sa(t)) & (ref;chnin-length(s,(t))-l < ref-chain-length (84(t)))

we see that the value of ref-chain-length for the identifier minus 1 must be

less than or equal to the value of ref-chain-length for the expression. In [T19]1:

[ T19 ] “"::::‘:;it:g th (t): slength(s) ‘mode~of-1d(t))+!
. true + ¢
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the value of ref-chain-length for the identifier is one more than the number of

3 _ 3 3

occurrences of ref in the declaration and is, therefore, 2 whereas the value of

ref-chain-length for any other type of expression is 0. Thus the relationship

3

in valid-mode-for-assignment does not hold and the statement is rejected as being

[..?\_\'1
illegal in the given context. |
7.1d Attribute Grammars r}

The production for the assignment statement is [AG09]:
ﬁz‘m‘_’
[AG09)  <asgt stm> +env iie <used 1d> Jenv tprim-mode, trefs; +¢name l
subtract one ref orefs‘ nefsz .
<exp> ienv 4refsz fprim-modez +VALUE m]
STORE 4name +VALUE !
condition: prim-model = pr-im-mode2

and the syntactic category <used id> is specified in [AG21]: m?
(AG21] <used 1d> +env tprim-mode trefs tname '
::= <id> +name =
condition: (name, prim-mode, refs) ¢ env l

which shows that the number of references associated with the identifier is to
Wj
be obtained from the environment. These were evaluated in [AGO5]: (
[AGD5] <mode> + prim-mode +refs, m

i1 bool
give value to attribute tboot tprim-mode
give value to attribute yone-ref n'efs,| ht
| int
give value to attribute +int +prim-mode
give value to attribute jone-xe frefsl

| ref -
<mode> +prim-mode mzfs2 ‘
add one ref ¢ref‘s2 orefs,
This shows that the value of the attribute refs is one greater than the number of m]

occurrences of ref in the declaration. Thus the value of refs associated with <used id>m)
_ |
in [AGO9] is 2. This is reduced to 1 by the action symbol subtract one ref to give 1 '

as the value of the inherited attribute refsz. Following the specification of <exp> h

|
takes us to [AG20]:
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Since the right-hand side of the assignment is a constant, the second alternative

applies and the condition stipulates that Y‘(—:"FS-l = zero-nefs Since the value of

refs1 is 1, the assignment statement is illegal in the given context.

The reader is urged to use the definitions to obtain answers to the other

questions in Table 7.1, and then draw conclusions on the relative clarity of the .

individual definitions.

7.2. TFormal Definitions in General

At present, the overwhelming proportion of formal definitions are exclusively
for human consumption. The direct machine use of formal definitions is limited,
and mainly used for automatic construction of a recognizer from a context-free
grammar. Even beyond their limited machine use, it is our contention that all
formal definitions must be well-suited for human consumption.

While it may seem trite to remark on the paramount importance of the clarity
in formal definitions for human use, thg subject of clarity has hitherto received
but scant attention. Completeness and conciseness have generally been considered
to be of greater importance. Completeness is indeed important, so important that
it must be assuméd in any formal definition without special comment. Conciseness,
while helpful to clarity, is a dangerous mistress. She is the same siren that
lures programmers onto the shoals of octal coding and the APL omne-liner.

The use of the diff

that clarity depends both on the formal model and the notation of the definition

method. However, even after the particular formalism and notation are chosen, there
is still room to exercise the care and talent of the writer. The choice of mmnemonic

names, the use of comments and type faces, and the general organization play a vital

part in the application of the formal mechanism.

erent definitions to answer the sample questions illustrates
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In the preparation of the example definitions in this paper, we have taken
pains with myriad "details" to promote clarity, even to its extent of choosing a

table layout that has almost doubled their conventional space requirements.

ly feel that such an investment is small compared with the improvement in clarity
and consequent usability of the definitioms.
While there can be little argument about the need for clarity in formal

definitions, there are many topics where the debate continues.

7.2a Should the Definition Model Be Based on the Notion of an Underlying Machine?

1f the model is based on an underlying machine, there may be considerable ex-

traneous detail in the definition that tends to obscure the meaning. For example,

the mechanism for 1nvok1ng operations in the VDL or Attribute Grammar def1n1-

tion has nothing directly to do with the ASPLE semantics. On the other hand, since
the concept of an implementation is familiar to users, the use of a machine or
machine-like instructions, albeit abstract, provides a readily grasped and pre-

cise metaphor that does not require the user to learn a new model of a more

abstract nature.

7.2b What Constitutes a "Valid" Program?

Since a definition provides rules for selecting the set of legal programs from

the set of all possible strings in the language, it is important that the properties

of a "valid" program be defined. There are several possible conventions, for

example, a valid program is one with:
a. No context-~free syntax errors.
b. No context-free or context-sensitive syntax errors.

¢. No syntax errors and for which execution terminates for a particu-
lar set of input data.

d. No syntax errors and for which execution terminates for all possi-
ble sets of input data.

e. No syntax errors and for which execution terminates for all possi-
ble sets of input data and produces the "correct" answer.

3 _3 3
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The point of notable debate is between levels (c) and (d). In our example

definitions, W-grammars and Attribute Grammars make no real distinction among
the levels, Production Systems draws a clear line between levels (b-c), and VDL

draws a clear line between levels (a-b) and (b-c).

7.2c How Should a Formal Definition Show Errors?

There are basically two different ways that formal definitions separate the
legal programs from the illegal ones. A definition may be "analytic" and reject
illegal programs explicitly, or the definition may be "generative" and make it im-
possible to generate an illegal program. From the user's point of view, the gen-
erative method leaves the question of whether a program is really illegal, or whether
the user has not been able to think of a way to use the grammar to generate the
program. None of our sample definitions takes a pure position in this matter. For
example, VDL rejects programs with context-dependent or semantic errors explicitly

but uses a generative approach that prevents the construction of a program with a

context-free syntax error.

7.2 @ Should a Definition Attempt to Indicate the Places Where an Implementation
May Introduce Restrictions? Furthermore, is it Possible to Foresee All
Such Restrictions? ' '

The éecond question begs the prior question, whether a language definition
should allow any implementation-defined restrictionms. If the language is
completely specified by the designer, the implementor may be forced to take
uneconomic expedients to meet the specification exactly. With the technology
available at this time, it seems that the implementor must be left with several
points at which he is free to make decisions. We contend that these implementa-
tion-defined points, if any, should not be ignored, but explicitly shown in the
formal definition. The question whether it is possible to foresee all such
restrictions is still open, although there is some evidence to suggest that it

can in fact be done even for a very large language like PL/I.
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7.3 The Importance of Formal Definitions

Because BNF is clear and is easy to learn and use, most definitions of pro-
gramming languages include a BNF description of the context-free syntax. However,
this is generally as far as the formal content of the definitions go, and as a re-
sult there is a tendemcy to believe that this is all that is required for a formal

definition. There is an analagous confusion in many textbooks on compilers where

the subject matter is limited to the theory of parsing. In formal definitioms,
the more difficult parts, the context-sensitive requirements and the

semantics, are of much greater importance to the user.

Our example definitions indicate that the technology for full definitions is
available, but there is still much work remaining before any notation achieves
the level of general acceptance of BNF. This work must overcome considerable user
resistance. This will only be done by great attention to the human engineering so
that the general user feels that the definition is understandable by other than
formal definition specialists.

Computer science has already made considerable progress without having a gen-
erally accepted technique for defining programming languaées, just as the English
language was well developed before the advent of Johnson's Dictionary of the
English Language in 1755.. However, this progress has not been without severe
consequences. For example:

a. There is still confusion over the difference between syntax and semantics.

b. Standardization efforts have been impeded by a lack of a well—~accepted
formal notation.

C. Despite the fact that there exists standards for programming languages,
it 1s still chancy to move a program from one implementation to another,

even on the same hardware.

d. It is impossible to make a contract with a vendor for a coqpiler and be
assured that the product will be an exact implementation of the language.

e. wWithout a formal definition, it is difficult to write reference manuals
and tutorial texts. :

3 3 3
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f. Frequently the answers to detailed questions about a programming language
have to be obtained by trying an implementation or hoping for a consensus
from several implementations.

Most of these problems would be avoided if there were good formal defin-

itions for the languages. There would then Be a single place for the precise
details of each language, and no question would be left unanswered. As an added
benefit, there would be a tendency to improve the design of languages by bringing
their complexities out into the open. It is easy to say that "Language X is
block-structured and jumps out of blocks are permitted," but without a formal

description of language-X, the consequences are not obvious.
Despite the pressing need for further work on the development of formal

definitions, they must never be thought of as self-contained arenas with no user.

contacts. The interface with users is the key area where most of the effort is

needed. The meta-language of a formal definition must not become a language

known to only the high priests of the cult. Tempering science with magic is a

sure way to return to the Dark Ages.
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