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ABSTRACT

This paper presents the formalism of Production Systems and investigates
its application to define the syntax and translation of programming languages.
Several properties appear well-suited to this task:

(1) The formalism can be used to specify exactly the syntax of a
computer language, including context-sensitive requirements.

(2) The specification of the context-sensitive requirements on
syntax can be isolated from the context-free requirements.

(3) The same formalism can be used to specify the translation of
one language into another.

The notation has been developed with readability as a prime design issue.
The following examples are given:

(1) A specification of the syntax of a small but difficult subset
of PL/I.

(2) A specification of the translation of lambda-calculus expres-
sions into normal form,
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1. INTRODUCTION

It is almost impossible to overestimate the value of formal definitions
in the language area: wunduly complicated constructs, omissions of critical
detail, different interpretations of a given construct, incompatible implementa-
tions of a language standard, and repeated user confusion are commonplace. One
major part of this difficulfy is due to a poor technology for providing readable
methods for complete definitions,

This paper presents a formal notation capable of fully defining what
strings in a language are legal programs and what the legal programs "mean" in
terms of some suitable target language. Perhaps the most important reason for
the widespread use of context-free grammars, notably Backus-Naur form, is the
clarity with which context-free portions of syntax can be specified. Owing to
the more complex nature of context-sensitive requirements and the specification
of translation, some additional complexity in a formal notation must be expected.
For clarity, the conceptual framework of a notation is vital in that the con-
ceptual framework either lends itself naturally or unnaturally to the application.

The conceptual notions of "generative productions", "sets", and "strings"
underlie all Production Systems specifications given here and lends a uniformity
of approach. Rather than talk about tables of identifiers, parsing schemes for
scanning programs, or algorithms for computing functions, we talk about sets of
identifiers, sets of programs, and sets of n-tuples that define functions.
Superimposed on the generative nofation for Production System is a notation for
defining functions. Via this notation, portions of a Produc+ion Systems appear
algorithmic in that, given arguments of a function, the productions may be used

to compute the result. The function-like notation greatly relieves the difficulty

‘with Production Systems that all sets are defined generatively.



The mathematical underpinnings of Production Systems are due to Emi|
Post [10] and Raymond Smullyan [12]. With suitable syntactic changes Production
Systems are equivalent to Smullyan's "elementary formal sysféms“ [12], which can
be used to specify any recursively enumerable set. The set of sfrfngs comprising
all syntactically legal programs in a computer language and the set of pairs of
strings comprléing all éynTacTIcally legal programs and their translations Into
a target language are just two examples of recursively enumerable sets. Thé
notation and terminology for Producffon Systems presented here stems from Post
and Smullyan, but for the most part is new. A more detailed history of Production
Systems is given in [5,4,3]. A detailed exposition of ofher formal systems, as

well as a discussion of the importance of formal definitions, is.given in [8].
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Before discussing the formalism of Production Systems, we present a small
subset of PL/I called PL.1. This subset was chosen before its syntax was
defined via Production Systems. The PL.l subset was selected to embody several
difficult aspects of a full PL/I syntax and to reflect several major kinds of
typical syntactic requirements; for example, block structure, compatibility of
declaration and use, use of mujfiple data types, and conversion rules. A
context-free description of PL.1 using Production Systems (in abbreviated form)
is given in Table 1.

For example, this subset contains the simple procedure,

P: PROCEDURE;
DECLARE A FIXED;
DECLARE B FLOAT;

A = 0;
B = 8;
L: A = A+1;
IF A > B THEN GOTO L;-

ERD P;

as well as, the procedure of Table 2, which constructs binary tree | inkages
similar to those that might be needed in the symbol table of a compiler. Note:
the pointers NEWPTR and TREEPTR are assumed to point to structures allocated
in a calling procedure.

Pl.1 contains numerous context-sensitive requirements on its syntax.
Table 3 contains a list of some relevant statements adapted from the PL/TI Language
standard [13]. These statements illustrate the variety and complexity of the
full PL/I syntax. |t should be pointed out here that a significant effort is

required to organize these requirements so that a coherent view of PL/I syﬁfax

results,



Note for PL/I Programmers: In the sequel, a number of PL/I examples are

given, some of whigch contain errors and some of which contain constructs that .

perhaps ceuld be better replaced by constructs not in the PL.1 subset. In
cases where errors occur, we are concerned here only with syntactic errors,

T.e. those that are picked up by a PL/I compiler, and not semantic or run-time

errors,
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[c. Declarations])

del

TAﬁLE 1: CONTEXT-FREE SYNTAX OF PL.1

Units]

PROGRAM <id: PROCEDURE: unit1 unit2
UNIT <exec-unit | del-unit>.
EXECUTABLE UNIT <id: exec-unit | stm>.

DECLARATIVE UNIT <id: del-unit | del>.

atements]
ASSIGNMENT STM <ref = exp;>.
GOTO STM <GOTO id;>.

IF STM <IF exp THEN exec-unit>.

e unitn END id;>.

ALLOCATE STM <ALLOCATE id; | ALLOCATE id, SET(id2)5>.>

FREE STM <FREE id; | FREE id; » idy;>.

RETURN STM <RETURN;>.

BLOCK <BEGIN; unit1 unit2 .o unitn END;>.

ELEMENT DECLARATION <DECLARE id elem-atr-list;>.

STRUCTURE DECLARATION <DECLARE 1 id struc-atr-list, minor-struc-list;>.

Fmelem-atr-list ELEMENT ATTRIBUTE LIST <type-atr o scope-atr o storage-atr>.

struc-atr-list
IH minor-struc-list
succ
f“ type-atr
scope-atr

storage-atr

exp
ref
op
id

a9

STRUCTURE ATTRIBUTE LIST <scope-atr ¢ storage-atr>.

MINOR STRUCTURE LIST <ny 1dl succy, N, 1d2 succ,,

< Dy ldk succk>.

STRUCTURE SUCCESSOR <type-atr | n id minor-struc-list>.

DATA TYPE ATR <A | FIXED | FLOAT | BIT(n) | CHAR(n)>.

SCOPE ATR <A | INTERNAL | EXTERNAL>.

STORAGE ATR <A | STATIC | AUTOMATIC | BASED(id)>.

[d. Expressions and Atomic Components]

EXPRESSION <n | "ejc,...c " | wvLr | ref | ADDR(ref)
REFERENCE <id | id; ~ i4, | id,.idy ... Wi
OPERATOR <+ | < | = | > ».

IDENTIFIER <21£2 ce- £n>.

LETTER <4 | B | ... | 2>.
NUMBER <dd, ... d_>.
DIGIT <0 | 1 | ... | 9>.

CHARACTER <£ | d>.

| exp, op, exp,>.



Table 2: A PROCEDURE TO CONSTRUCT BINARY TREES

BUILD:  PROCEDURE;

DECLARE NEWPTR POINTER EXTERNAL;
DECLARE TREEPTR POINTER EXTERNAL;
DECLARE P POINTER;
DECLARE 1 TREE BASED(P),
' 2 ID CHAR(6),
2 VALUE FIXED,
2 LEFTPTR POINTER,
2 RIGHTPTR POINTER;
DECLARE 1 LEAF BASED(NEWPTR),
B ID CHAR(6),
VALUE FIXED,
LEFTPTR POINTER,
RIGHTPTR POINTER;

[\CJN .U U L)

IF TREEPTR = NULL THEN
BEGIN; :
TREEPTR = NEWPTR;
RETURN;
END;

P = TREEPTR;

L: IF TREE.ID < LEAF.ID THEN
BEGIN;
IF TREE.LEFTPTR = NULL
THEN BEGIN;
TREE.LEFTPTR = NEWPTR;

RETURN;
END;
P = TREE.LEFTPTR;
GOTO L;
END;

IF TREE.ID = LEAF.ID THEN
RETURN ;

IF TREE.ID > LEAF.ID THEN
BEGIN;
IF TREE.RIGHTPTR = NULL
THEN BEGIN;
TREE.RIGHTPTR = NEWPTR;

RETURN;
END;
P = TREE.RIGHTPTR;
GOTO L;
END;
END BUILD;
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TABLE 3: SOME REQUIREMENTS ON THE SYNTAX OF PL.1

An identifier specified in a declaration as a structure or variable
is said to be explicitly declared.

A label identifier prefixing a statement is said to be explicitly declared.

An identifier that has not been declared explicitly is contextually declared
if it appears in the BASED attribute, in a SET option, or on the left-hand side
of a pointer qualification symbol. In these cases the identifier is given the
POINTER type attribute.

An identifier that appears in a program and is not explicitly or contextually
declared is said fo be implicitly declared. |In these cases, the identifier
is given the FIXED type attribute.

The scope of a contextual or implicit declaration is determined as if the
declaration were made in a DECLARE statement immediately following the PROCEDURE
statement of the program.

Multiple declarations are in error. That is, within a given scope, an identifier
can have one and only one meaning. For example, the same identifier cannot be
declared both as a pointer and as a floating-point variable.

If no storage class attribute is specified and the scope is internal, the storage
class attribute AUTOMATIC is assumed. |f no storage class attribute is specified
and the scope is external, STATIC is assumed. |f neither a storage class nor a
scope atfribute is specified, then AUTOMATIC is assumed.

Automatic and based variables can have INTERNAL scope only.
Storage class and scope attributes cannot be specified for members of structures.

tn all of the EXTERNAL declarations for the same identifier, the attributes
declared must be consistent.

All structure variables in a structure expression must have identical structuring.
Identical structuring means that structures must have the same minor structuring
and the same number of contained elements and arrays. The positioning of the
elements and arrays within the structure must be identical. Identifiers of
corresponding elements do not have to be the same, and data types of corresponding
elements do not have to be the same as long as valid conversion can be performed.

In an assignment to a structured variable, all the structure operands on the
right-hand side must have the same number of contained items as the structure
variable on the left-hand side.

The based variable appearing in an ALLOCATE statement must be an element
variable or a major structure.

Pointer variables cannot be operands of any operators except the comparison
operator "=". Assignment of a pointer can be made only to another pointer
variable.



The context-sensitive requirements of PL.| rule out many potential PL/I

programs. The program

Q: PROCBDURE;
L: X = 1;
. L: Y = 1;
END Q;

is illegal due to a multiple label declaration. The program

BR: PROCEDURE;
DECLARE P POINTER;
P=l;
END R;

Is illegal due to an assignment of an arithmetic value to a pointer. The

program

8:  PROCEDURE;
X = 1;
BEGIN;
X = JULL;
BND;
X = X+1;
ERD S;

is [llegal since X is implicitly declared with the attribute FIXED and hence
the assignment of a NULL pointer to X in the BEGIN-END block is illegal.
Consider the procedure BUILD given earlier. The replacement of
DECLARE NENPTR POINTER EXTERNAL;
by

DECLARE KEWPTR FIXED EXTERNAL;

is illegal since all subsequent uses of NEWPTR require a variable with the

attribute POINTER. The replacement of

| 8 LEPTPTR POINTER,
In the declaration of TREE by

2 LEFTPTR FIXED,

causes a fype error in the comparison of TREE.LEFTPTR with NULL.
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One could go on and on listing numerous examples of illegal programs.
Suffice it fo say that the context-sensitive requirements on PL.1l impose many
constraints on the writing of legal programs.

The process of writing a formal definition forces one to resolve issues
that might easily be overiooked in an informal definition. A complete formal
definition of syntax must weed out the problems, and a good formal definition
must provide a coherent framework within which these problems may be explained.
It is my contention that the complexity of the Production System defining the

complete syntax of PL.1 well illustrates an overly complex language design.
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3. PRODUCTION SYSTEMS

3.1 Basic Formation Rules

A Production System consists of a collection of the following items:

an
(2)

(3)
(4)

(5)

An alphabet called the object alphabet.

An alphabet called the predicate alphabet, each of whose members
is assigned a unique positive integer called its degree.

An alphabet called the variable alphabet.
An alphabet called the punctuation alphabet.

A finite collection of productions, each of which is well-formed
according to the definition given below.

In a well-formed production it is necessary to be able to determine the alphabet

from which each symbol is drawn. The following symbols are used for Production

Systems:
(1) strings of capital letters (possibly interlaced with spaces) for
predicate alphabet symbols;
(2) strings of lower case letters (possibly hyphenated, subscripted,
or superscripted) for variable alphabet symbols;
(3) the symbols:
< implication symbol
& conjunction symbol
tuple symbol
< > left and right tuple bracket symbols
L 1 teft and right comment bracket symbols
. termination symbol
for punctuation symbols
(4) symbols not in the predicate, variable, or punctuation alphabets
for object alphabet symbols. :
(Note: In the sequel, | will introduce a few additional symbols and conventions

relevant to the definition of programming languages.)
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A well-formed term consists of a concatenated sequence of variable and
object alphabet symbols, e.g. "id", "expI + expz", and "ref = exp;". A
wel l-formed term tuple consists of a sequence of n terms each separated by a
tuple sign and enclosed by a left and right angle bracket sign, e.g. "<ref = exp;>"

and "<idI : idy>."  The degree of fhe term tuple is the number of terms, n.
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Table 4: SWRMMARY OF PROGUCTION SYSTEM NOTATION AND TERMINOLOGY
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A wel|-formed atomic formula consists of a predicate alphabet symbol of
degree n followed by a well-formed Térm-TupIe of degree n, for example,
ASSIGNMENT STij <ref = exp; >

NOT i HE
IN <1d1 1d2>

where "ASSIGNMENT STM" and "NOT IN" are predicates of degrees | and 2
respectively. A well-formed production consists of

(a) an atomic formula fol lowed by a termination symbol, or

(b)  an atomic formula followed by the implication sign, a sequence

of atomic formulas each separated by the conjunction sign, and

a termination bymbol.
An atomic formula preceeding the implication sign or occurring alone is called
a conclusion. An atomic formula following the implication sign is called a
premise.

In the specification of written expressions in computer languages, it
will often be necessary to use the symbols in the predicate, or variable alpha-
bet as members of the object alphabet. Since capital letters, digits, and the
punctuation symbols

« & .
cannot occur within the brackets of a term tuple as predicate, variable, or
punctuation alphabet symbols, these symbols can be unambiguously used in a
term as object alphabet symbols. Furthermore, strings containing other
variable or punctuation symbols will be used as members of the object
alphabet provided that the symbols are underlined; for example aor ;.
Table 4 gives a summary of the notation. '

Consider the productions of Table 5. Here, the symbols "A" through "Z"
enclosed in angle brackets are object alphabet symbols. The symbols "id!",

"idz", and "" are variable alphabet symbols.
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Table 5: UNABBREVIATED PRODUCTIONS
ID <4>.
ID <B>.
iD <Z>.,
DIFF ID <4 ::B>.
DIFF ID <4 : C>,
DIFF ID <2 : Y>.
IDLIST <id»>
« ID<id>.
IDLIST <2,id»> .
+« IDLIST<%> & ID<id>,
NOT IN <id1 : id2>
“ ID<idl> & & ID<id2S &
DIFF ID<id; : id,>i
NOT IN <id; : #,id,>
« ID<idl> & ID<id2> & )
IDLIST<4%> & DIFF ID<id1 : id2> &

NOT IN<id, ::22.

DIFF IDLIST <id»>
+ ID<id>.

DIFF IDLIST <&,id>

+ DIFF IDLIST<2> & NOT IN<id :

L>.

2

2 3

U, [ NS T W ER Y R R

Y .3 3

3

{

[

3

—3 ]

i3 +__23



3 T3 T3 T3 T )

3.2 Deductive Rules and Interpretation

The derivable conclusions of a Production System are the conclusions

that can be obtained from the productions by a finite number of applications

of the following two rules.

Rule I:

Rule 2:

Uniform Replacement Rule:

A production P' can be obtained

from a production P by substitution of an object string
(possibly null) for each occurrence of a variable.

Implication: |f each premise in a production is derivable,
then the conclusion is derivable.

In the case of atomic productions, Rule 2 states that its conclusion can be

derived immediately.

derive the conclusions:

ID <A>
IDLIST
IDLIST
NOT IN
NOT IN

These two rules can be applied to the production to

<A>
<A,B,A>
<A : B>
<A : B,C>

DIFF IDLIST <A,8,C>

A Production System will be interpreted in the.following way. A predicate

will denote the name of a set.

for enumerating members of sets.

Productions will be viewed as rewriting rules

A term tuple of degree n following the predi-

cate of a derived conclusion will be taken as an assertion that the n-tuple is

one member of the named set.

.y

(2)
(3)

(4)

(5)

In the previously given productions of Table 5,

t+he set named ID of identifiers consists of the 26 letters of

the

the

the

the

English alphabet,

set named DIFF ID consists of all pairs of different identifiers,

set named IDLIST consists of all lists of identifiers,

set named NOT IN consists of all pairs where the first element
is an identifier and the second element is a list of identifiers
not containing the first identifier,

the set named DIFF IDLIST consists of all lists of different
identifiers.



- |6 -

4. ABBREVIATIONS TO THE BASIC NOTATION

Using only the basic notation for Production Systems, a specification for
a programming language would quickly become lengthy and cumbersome. Considerable
clarity for Production Systems has been obtained by introducing abbreviations to
the basic notation. Three principal factors have governed the kind of abbrevia-
tions introduced:

(1) an attempt to develop a conceptual framework facilitating language
speci fication,

(2) an attempt to isolate the context-free portions of syntax, context-
sensitive portions of syntax, and translation,

(3) reduction in the length of a specifiéafion.

For brevity, each abbreviation will be specified mainly by example.

Abbreviation 1: Factoring Common Variables and Predicates

I+ is somewhat more transparent to use one variable throughout a Production
System to refer to members of a single predicate. |f this convention is strictly
followed, then we may use the following abbreviation to "factor out" the premises
referring to these variables. Let v be a variable and P be its corresponding
predicate. Then v can be listed beside the productions defining members of P

and all premises of the form P<v> can be deleted. For example, the productions:

ID<A>,
ID<B>.

ID<Z>.

IDLIST <id>
"« ID<id>.

IDLIST <id,2>
« ID<id> & IDLIST<%>.

NOT IN<id, : id,>

+ ID<1dl> .3 ID<1d2> &

DIFF ID<id1 : id2>.

-NOT IN<id1 : id2,£>
- ID<id1> & ID<id2> &
IDLIST<2> & DIFF ID<idl : id2> &

* NOT IN<id2 : >,

3 3 _ 3
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~ can be abbreviated

id  ID <4>.
id ID <B>.

id ID <2>.

2 IDLIST <id>.
2 IDLIST <id,&>,

NOT IN <idl : id2>
« DIFF ID<:Ld1 : 1d2>.
NOT IN <idl : id2,£>

+ DIFF ID<:|.dl : 1d2> &.

NOT IN<id2 P R>.

Abbreviation 2: Membership is Lists, Testing for Equality, and Arithmetic Predicates

Consider the predicate NOT IN defined above. This predicate names a set
of pairs, where the first element of each pair is an identifier, and the second
element is a list of identifiers not containing the identifier. For example, the
pairs

<A : C,D,E> <X : A4,B,B,Y>

are members of NOT IN, whereas the pairs

<C : C,D,E> <B : A,B,B,Y>

are not members of NOT IN, Similarly, a predicate IN may be defined such that
the first element is an identifier and the second element is a list containing
at least one occurrence of the identifier. (NOTE: one may easily extend these
definitions to include multi-character identifiers.)

The use of these predicates is a frequent occurrence in our application
to programming languages. For simplicity, the symbols "e" and "#" will be used

used in place'of these predicates. For example, the predicates

IN <id : &>
IN <BASED : p(id)>

NOT IN <id : 2>
NOT IN <id : DOMAIN(p)>



may be abbreviated

Similarly, let s
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Id e 2
BASED € p(l1d)
Id ¢ &

1d £ DOMAIN(p)

2

be terms denoting strings, and let n and n

2 be

terms denoting numbers. The predicafes EQ, NEQ, LT, LTE, GT, GTE may be defined

such that
EQ <sI : sz> if S|
NEQ <sI Psy> if S|
LT <n| 2 ny> if_n|
LTE <nI : n2> if n
GT <nl P ny> if n,
GTE <y i ony> if n

denotes
denotes
denotes
denotes
denotes

denotes

For convenience, atomic formulas of

S| % s, S| #
nG<n, n <
NG >n, n| 2

For example, the production

may be abbreviated

52
2

L)

RESULT TYPE <type1'{
+ EQ<typel :

RESYLT TYPE <type

string that
string that

number that

o0 o0 o

number that

[s)]

number that

)]

a number that

is identical to 52

is not identical to S

is less than n,

Is less than or equal to n,
is greater than n,

is greater than or equal to nye

+he above form will be abbreviated:

1

+ type1 = ARITH

Abbreviation 3: Disjunction and the use of "|"

In many cases identical conclusions can be derived from multiple premises.

+ ot t&pe2 : ARITH>
ARITH> & BQ<type2 : ARITH>.

HEE tjpe2 ¢ ARITH>
& type, = ARITH.

In these cases, the disjunction symbol "l" is introduced. For example, the

productions:

3 3 _3
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RESULT TYPE <type; : + : 'type2 : ARITH>
+ typel = ARITH & type, = ARITH.

RESULT TYPE <'typel : ! type, : ARITH>
+ typel = ARITH type2 STRING.

oo+

+

RESULT TYPE <typel : : type2 ¢ ARITH»
+ typel = STRING & type, = ARITH.

+

RESULT TYPE <type1 : : type2 ¢ ARITH>
+ typel = STRING type2 STRING.

e

may be abbreviated

RESULT TYPE <type; : + : type, : ARITH>
+ (type; = ARITH | type; = STRING) &
(type, = ARITH | type, = STRING).

"

Similarly, multiple members of predicates can be derived from identical

(possibly null) conclusions. Thus,

ID <4>.
ID <B>.

ID <2>.

may be abbreviated

ID <A | B | ... | 2>,

Abbreviation 4: Multiple Conclusions and the Use of '"&"

In many cases, multiple conclusions can be derived from identical premises.
In these cases, the conclusions can be combined into a single production by sep-

arating the conclusions with "&". For example, the productions,

GOTO STM <GOTO id;>
+ LABEL € p(id)

LEGAL <GOTO id; : p>
<« LABEL ¢ p(id).

may be abbreviated

GOTO STM <GoTO id;> & LEGAL <@oTO idg
+ LABEL € p(id).

p>



- 20 -

Abbreviation 5: Repeated Strings and the Use of ''*"

in many cases compound conclusions are def{;ed over identical strings.
To prevent repeated use of identical strings, the symbol "¥" is used. For
example
GOTO STM <GOTO id;> & LEGAL <GOTO id;.: p>
« LABEL € p(id).
may be abbreviated

GOTO STM <GOTO id;> & LEGAL<* : p>
« LABEL ¢ p(id).

ABBREVIATION 6: Permutations and the use of 'o"

In a few cases, we will wish to define a set as comprising permutations of

elements from other sets. We will use the notation tp oty 0 a0 0 t, to denote

any permutation of the terms tl through tn. For example, the productions

ELEMENT ATTRIBUTE LIST
<type-atr scope-atr storage-atr
type-atr storage-atr scope-atr
scope-atr type-atr storage-atr
scope-atr storage-atr type-atr

storage-atr type-atr scope-atr

. storage-atr scope-atr type-atr>.
may be abbreviated

ELEMENT ATTRIBUTE LIST.
<type-atr o scope-atr o storage-atr>

Abbreviation 7: Sequences and the use of "...,"

Consider the following recursive definition of IDLIST

IDLIST <id | 2,id>.

Conceptually, one may alternatively view a member of IDLIST as a sequence of one

or more identifiers each separated by a comma. Accordingly, we shall write the

definition of IDLIST as

IDLIST <id1,id2 . ,idn>

3 3

i
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In the sequel, the "..." notation will be used in several contexts. In some
cases the corresponding recursive definition may be difficult to write. We
shall ask some indulgence by the reader to accept that the corresponding un-

abbreviated productions can be written from such sequences.

Abbreviation 8: Notation for Functions

The notation for functions is motivated by the observation that besides
thinking in terms of "inductive" or "generative" definitions, we often think of
"algorithms" that can be used to "compute" results. The next notational con-
vention reflects this predisposition,

(8a) Let Tyr eees T, be terms and v be a variable. 1

R<t|: KRR v>
is a premise occurring in a production containing exactly
one other occurrence of v, then the premise can be deleted

from the production if the other occurrence of v is replaced

by the string

Bﬁtl: ces * tn)

(8b) | f

R<t|: eee it TV

is a conclusion occurring in a production defining the

function, then the formula may be written as

Bﬁtlz cen :tn) = v

(8c) I f
R<t|= e 3tn=V>

is a premise referencing the result v of a function, then

the formula may be written as

v = R(tl: cee )
- n



For example, the productions

STRUCTURE SUCCESSOR <n id minor-struc-list>
+ LEVEL NUM <minor-struc-list : n,> &

< .
n nl

DECLARED TYPE <n : p : ARITH>,

" IF STM <IF exp THEN exec-unit>
+ DECLARED TYPE<exp : p @ type > &
CONVERTIBLE<type, : STRING>:

may be abbreviated

STRUCTURE SUCCESSOR <n id minor-struc-lists>
« n < LEVEL NUM(minor-struc-list).

DECLARED TYPE(n : p) = ARITH.

IF STM <IF exp THEN exec-unit>
+ type; = DECLARED TYPE(exp : p) &

CONVERTIBLE<type; 3 STRING>.
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S. THE COMPLETE SYNTAX OF PL.1

The complete syntax of PL.l is indeed complex, and is given in
Appendix |. To make the task lighter, we shall introduce a few concepts
relevant to block-structured languages. The most important of these is the

concept of "syntactic environment."

5.1 A Basic Overview

Conceptually, we shall view a syntactic environment p as a function
mapping identifiers into attributes. The attributes are derived from the

declarations of the identifiers. For example, consider the following explicit
PL.l declarations

DECLARE A FIXED;
DECLARE B FLOAT;

DECLARE C POINTER EXTERNAL;
DECLARE D CHAR(5);

The syntactic environment p for this program is defined as follows:

{ 4 » ARITH, INTERNAL, AUTOMATIC,
B » ARITH, INTERNAL, AUTOMATIC,
¢ » POINTER, EXTERNAL, STATIC,
D » STRING, INTERNAL, BASED }

In order that the components in a PL.| expression or statement be
compatible with their use, the attributes of each component must be determined.
(a) Given an identifier Id and an environment p, we shall define a
function APPLY such that ﬁEEE!(p:id) equals the derived attribute list associ-

ated with id in p. For example, using p above

APPLY(p:D) = STRING, INTERNAL, BASED
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~ For brevity, we shall abbreviate

APPLY(p:id)

as

p(id)

(b) Given two type attributes fypel,

Type2 and an operator, we shall

define a function RESULT TYPE +that yields the data type obtained when the

operator is applied to two arguments of

TypeI and Typez, e.g.

RESULT TYPE(ARITH : op :

ARITH) = ARITH
+ PLUS OP<op>.
RESULT TYPE(ARITH : op : ARITH) = STRING

+ EQUALITY OP<op>.

(c) Glven an expression exp and a syntactic environment p, we shall

define a function DECLARED TYPE that computes the declared type of exp in p.

For example, given the previous environment o
DECLARED TYPE(4 : p)
= ARITH
DECLARED TYPE(I : p)
£ ARITH
DECLARED TYPE("SNOW' : p)
= STRING
DECLARED TYPE(4 + 1 : p)
= RESULT TYPE(DECLARED TYPE(4 : p) : +

DECLARED TYPE(21 : p))

RESULT TYPE(ARITH :
ARITH

m m

+ : ARITH)

—3 3 3 __A3

—3 3 _J
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(e)  Finally, we shall define a predicate CONVERTIBLE comprising all
pairs of declared types ’rypel and fypez such that 1‘ypeI can be converted

into Type2 according to the rules of PL/I, For example, the pairs

<STRING : STRING»> <ARITH : STRING>

are members of CONVERTIBLE, whereas
<STRING : POINTERs <LABEL : ARITH>

are not.

5.2 Some Simple Examples

Consider the following proposed program:

P: PROCEDURE; —
DECLARE A PUINTER;
DECLARE A FIXED;

A= 1;

END P;

The synTacfic environment for this program is

{ 4 » POINTER, INTERNAL, AUTOMATIC
4 + ARITH, INTERNAL, AUTOMATIC }

This program is ruled out in the production [01] of Appendix 1 by the premise

DIFF IDLIST<DOMAIN(p)>

Here the domain of p is the list "4,4", which is not a member of the predicate

DIFF IDLIST.
Consider next the proposed program

Q: PROCEDURE;
DECLARE A FLOAT;

A= 0.0;
L: A=A+ 1;
GOTO M;



- 26 -

The environment for the program is

{ 4 + ARITH, INTERNAL, AUTOMATIC,
L + LABEL, INTERNAL, AUTOMATIC,
M -+ ARITH, INTERNAL, AUTOMATIC }

Note that M s imolicitly declared to be arithmetic since it is not explicitly

or contextually declared. This program is ruled out bv production [08]

GOTO STM<GOTO id;> & LEGAL<*:p>
+ LABEL ¢ p(id).

since for the statement "GOTO M;"

p(M) = ARITH, INTERNAL, AUTOMATIC
LABEL ¢ ARITH, INTERNAL, AUTOMATIC

Consider also the following proposed programs

P: PROCEDURE;
DECLARE A FIXED BASED(R);
ALLOCATE A;
R4 = 1;
B = R;
END P;

Q: PROCEDURE:
DECLARE A FIXED BASED(R);
DECLARE B POINTER;
ALLOCATE A;
R+4 = 1;
B = R;
END Q;

The environments Pp and pQ for P and @ are
Pp £ 4 » ARITH, INTERNAL, BASED

8 + ARITH, INTERNAL, AUTOMATIC,
R

+

Pe E {4 + ARITH, INTERNAL, BASED,

o W
+ ¢

POINTER,IINTERNAL, AUTOMATIC }

POINTER, INTERNAL, AUTOMATIC,
'POINTER, INTERNAL, AUTOMATIC }

U R

|
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The production [07] for assignment statements is

ASGT STM <ref := exp;> & LEGAL<* : p>
+ type; DECLARED TYPE(ref : p) &
type, DECLARED TYPE(exp : p) 3

CONVERTIBLE<type2 ¢ type

moom

>.

1

‘The instances of the corresponding premises for the statement "B = R;" in P and @

are

type; = DECLARED TYPE(B:pp)
= ARITH

type, = DECLARED TYPE(R:pP)
= POINTER

type; = DECLARED TYPB(B:pé)

: = POINTER

typé2 = DECLARED TYPE(R:pg)
s POINTER

Since the pair  <POINTER : ARITH> is not a member of CONVERTIBLE, whereas the

pair <POINTER : POINTER> is, program P is illegal and program @ is leaqal.

5.3 Computation of Environments and Block Structure

Given environments p and p', we may define the functions OVERRIDE and

PLUS such that

(1) PLUS(p:p") the environment computed by "adding" p to p'

n

(2) OVERRIDE(p:p") the environment computed from p' by "overwriting"

the identifiers declared in p.
We shall abbreviate (1) above as
(1')y p + p!
PL.1 allows three varieties of declarations. Accordingly, three functions,

EXPLICIT ENV, CONTEXTUAL ENV, and IMPLICIT ENV are defined. These functions

map a PL.1l unit sequence into environments corresponding to the identifiers



- 28 -

that are declared explicitly, contextually, or implicitly. Since contextual
declarations are only applied to identifiers not declared explicitly, and
implicit declarations are only applied to identifiers not declared explicitiy

or ¢
contextually, the resulting environment components pexp’ Peont? and p,mp
‘défined over a unit sequence
‘>unit-seq 2 unit1 unit2 cee unitn
are:

°exp H EXPLICIT ENV(unit-seq)
Poont = CONTEXTUAL ENV(unit-seq : o )

exp

Ps & IMPLICIT ENV it- :
imp : (unit-seq : Pexp + ®cont’

For example, consider the program

P: PROCEDURE;
DECLARE A FLOAT BASED(Q);

1 THEN ALLOCATE A SET (R);

Here the identifier A is declared explicitly, hence
_pexp g {4 + ARITH, INTERNAL, BASED}

Two contextual declarations appear, the BASED attribute declaration of @ and

the SET option declaration of R. Hence

Peont = {@ + POINTER, INTERNAL, AUTOMATIC, *

" R + POINTER, INTERNAL, AUTOMATIC}

One remaining identifier B is declared implicitly, hence

p {B + ARITH, INTERNAL, AUTOMATIC)}

imp
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The total environment p is thus given as

+

p = {4 ARITH, INTERNAL, BASED,
Q POINTER, INTERNAL, AUTOMATIC,
R + POINTER, INTERNAL, AUTOMATIC,
B + ARITH, INTERNAL, AUTOMATIC}

+

Using the total environment p, each of the executable statements in P can be
derived as legal statements.

Two basic requirements follow from adding block structure: (a) an
identifier declared local to an inner block has a separate existence within
its own scope, (b) an identifier declared outslide an Inner block and not
declared locally has a scope that includes the inner block. To reflect these
requirements, the environment for a block

BEGIN; unitl unit2 vee unitn END;

nexted within an environment p is defined as

p!' = OVERRIDE(p, . : p)
where
unit-seq = unit1 unit2 ces unitn

Plocal & EXPLICIT ENV(unit-seq)

Al'l units within the block are then tested for legality using p'.

5.4 The Complete Production System of PL.1

A definition of the complete syntax of PL.1 is given in Appendix 1. .
The basic concepts underlying the Production System have been outlined in the
previous sections. Hopefully, the reader who wishes'any detail of information
on PL.1 may refer to Appendix 1 and find the appropriate information.
One important issue not discussed here is the use of structures in PL.1.
The main impact of structures is in the productions for RESULT TYPE, which is

defined for structured types as well as atomic types.
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6. THE TRANSLATION OF LAMBDA-CALCULUS EXPRESSION INTO FORM FORM

As a second example, we consider the mapping of A-calculus expressions into
normal form, which is given in Appendix 2. In this mapping the full power of
Production Systems must be employed, since the set of pairs

A-calculus-exp : normal-form>
is a recursively enumerable set that is not recrusive. That is, given a pair
<exp, : exp,> of well-formed lambda expressions, 1t is not decideable whether
exp, is a nermal form of exp . The primary value of the productions for this
mapping lies in a precise definition of the A-calculus substitution rule as
described by Curry and Feys [2].

The A-calculus substitution rule has a counterpart in the definition of
the call-by-name rule of ALGOL 60. Let id be an identifier representing a formal
parameter, exp be the corresponding actual parameter, and b be the A-expression

representing the body of the declared procedure. Then the value b' such that

SUBST(id : exp ¢ b) = b!

represents the body derived from b when exp Is "substituted" for id.

In particular, consider the productions

SUBST(id : exp : id) ¥ ekp
‘SUBST(id : exp idl) = idl

« DIFF ID<id : idl>.

If b is an identifier that is identical to the formafﬂpéfamefer, than b' is exp.
If b is an Identifier that is different from the formal parameter, than b' is b.

For example, consider the procedure declaration

PROCEDURE F(X);
X 2= X + ¥;
END P

and the call

P(A);

—4 _3 3 _3
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The execution of F(A) results in the execution of
A = A + Y,
That is, exp = X is replaced by A, but exp = Y is left alone.

Next consider the production

SUBST(id : exp : xidl.expl) Xid2.exp1“

+ DIFF ID<id : id1>

idl'e'FREE IDS(exp)

1 2

id2 ¢ FREE IDS(exp)

&
&
DIFF ID<id, : id,> &
&
id2 ¢ FREE IDS(expl) &

expl' = SUBST(idl : id2 : expl) &
expl“ £ SUBST(id : exp : expl').

For the procedure declaration

PROCEDURE G(Y);
B :=Y + 1;

BEGIN' INTEGER X;
X := 13
Bi=X+Y
END
END G;
and the procedure call
G(X + A);

wewish to consider the parameter replacement of id 2 Y by exp = X + 4 in the
nested BEGIN-END block. Here the local variable idI £ X is contained in the list
X,A of free identifiers of exp = X + A, Let id2 Z @ be an identifier, which is
different from id = Y and is not contained in the list of free identifiers of exp
or in the free identifiers of the block body. Replacing X in the BEGIN-END block

by @, we obtain

expl' = BEGIN INTEGER Q;

Q := 1;
B :=Q + Y
END
Having thus changed the local variable, the replacement of Y by X + 4 in the

body of the revised BEGIN-END block may be performed without considering a

possible clash of identifiers.
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7. DISCUSSION

Production Systems have placed under a single framework the complete
definition of the syntax and transiation of a programming language. While
the theoretical capability of Production Systems to define recursively
enumerable sets guarantees us that the formalism is sufficiently powerful to
define syntax and translation, the overwhelming task of this effort was to
tatlor the formalism to clear language definitions. Accordingly, the notation,
abbreviations, and conceptual view of production systems have undergone many
stages of evolution.

Besides>simpliéi+y of the formal system, human readability has been a
major goal. Necessarily, | have used my personal discretion in what constitutes
a readable notation. There exist no known metrics for measuring simplicity and
readability, for they are subject to a latitude of interpretations. This fact
should not be surprising. lIndeed, almost every computer language has at least
the theoretical capability of defining any computable algorithm, Why so many
computer language? It is presumably more natural or more concise to define
an algorithm in one language than another.

Admittedly, the definition of PL/.1 is not short, and is quite complex.
I+ s my contention that a good definition mechanism displays those areas where
a language Is overly complex. The PL/I conventions for default attributes and
for contextual and Implicit declarations are a major source of complexity in
the Production System given here. The complexity of the formal definition

is an argument against the utility of these features.

3
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One theoretical difficulty with Production Systems remains to be
resolved: the decidability of the class of strings specified by @ Production
System. A Production System specifying syntax defines a class of legal
programs, but does not formally define the class of strings that are illegal.

A string is considered illegal only if the reader of a Production System is
convinced that the string cannot be derived as a legal program. While in

most examples given here the class of illegal strings is quite apparent, it
would certainly be desirable to find some constraints on the form of productions
to limit their definition to decidable sets. This would guarantee that the
Production Systems could be used as the basis for a language processor and

also allow one to refer to the complement of defined sets. A recent work by
Schuler [11] may offer a solution to this probiem.

Production Systems could be used to specify definitions and string trans-
formations much different from those given here. Outside of the examples given
here, and a few others that | have attempted, fiffle experience other than the
definition of syntax and translation with Production Systems has been obtained.
Nevertheless, based on the clarity of the definitions given here, | believe
that Production Systems provide a solid formal system for readable and precise

definitions,
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APPENDIX 1:

PRODUCTION SYSTEM SPECIFYING THE COMPLETE SYNTAX OF PL.1

[a. Programs and Units]

[01] prog PROGRAM <id: PROCEDURE; unit, unit, ... unit = END id;>
+ unit-seq = unit, unit2 ... unit, &
pexp = EXPLICIT ENV(unit-seq) 3
[Get environment from explicit dealarations]
®cont 2 CONTEXTUAL ENV(unit-seq : pexp) L3
[Get conteztual environmgnt for identifiers not
in °etp]
® imp s IMPLICIT ENV(unit-seq ®exp + °cont) &
[Get implieit environment for identifiers not in
(] or p
exp cont)
' P % Pexp * Pcont * Pimp ¢
(Get total anvironment for the program)
DIFF IDLIST<DOMAIN(p)>
[There must be no multiple declarationa])
LEGAL<unitl:p> 4 LEGAL<unit2:p> & ... 8 LEGAL<unitn:p>.
[Each unit must be legal in pJ.
[02] unit UNIT <exec-unit | del-unit>.

[03) exec-unit

EXECUTABLE UNIT <id: exec-unit>

& LEGAL<* : p>

+ LEGAL<exec-unit : p>.

[04]) exec-unit

{05] del-unit

[06] decl-unit

[b. Imperative Statements]

DECLARATIVE UNIT <id:
+ LEGAL<dcl-unit

exp; > &
z DECLARED TYPE(ref : o) 13

EXECUTABLE UNIT <stm>.

decl-unit> & LEGAL<* : p>
p>.

DECLARATIVE UNIT <dcls>.

LEGAL<®* : p>

= DECLARED TYPE(exp : p) 3

CONVERTIBLE<type2 : type1>.
[The type of the expresaion must be convertible to the

GOTO STM <GOTO id;> [

type of the left hand side reference]

LEGAL<* : p>

(The identifier id must ‘'nrrespond to a label]

[67]) stm ASGT STM <ref =
- typ‘el 2
type2
[08] stm
~+ LABEL ¢ o(id).
09] stm

+ type;

IF STM <IF exp THEN exec-unit> &

LEGAL * : o>

= DECLARED TYPE(exp : p) )
CONVERTIBLE<typel : STRING>.

(The expression must ba convertible to a (bit) string)

3
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110)

(11]

[12)

[13]

[1u]

f1s]

stm ALLOCATL STM < ALLOCATE id;> 4 LEGAL<®
« . BASIED ¢ p(id).

po
[id muat be declared as BASED)

stm ALLOCATE STM <ALLOCATE idl SET (id?);> .3 LEGAL<® : p>
« BASED ¢ p(idl) .3 POINTER ¢ o(idz).
[idl must be declared as BASED and idz as POINTER]

stm FREE STM <FREE id;> & LEGAL * : ;>
+ BASED ¢ p(id).
[i{d must be declared as BASED]

stm FREE STM <FREE idl - id2;> s LEGAL<* : p>
+ POINTER ¢ o(idl) & BASED ¢ o(idz).

stm RETURN STM <RETURN;> & LEGAL<® : o>,
stm BLOCK <BEGIN; unit1 unit2 oo unitn END> 3 LEGAL<* : p>
+ unit-seq = unitl unit2 e unitn &
Plocal = EXPLICIT ENV(unit-seq) &

(Get env for local declarations)

DIFF IDLIST<DOMAIN(oloca1)> 4

[The locally declared identifiers must each be different]
' = » .
p H OVERRIDE(plocal.p) &
CLocal declarations override those in the outer block]
LEGAL<unit1:p'> & ... 8 LEGAL<unitn:p>.

[Each local unit must be legal in the new environment)

[c. Declarations]

[16]

[17]

(18]

[19]

[20]

l21)

(2]

del ELEMENT DECLARATION <DECLARE id elem-atr-list;>.

del STRUCTURE DECLARATION <DECLARE 1 id struc-atr-list, minor-struc-list;>.
elem- atr- ELEMENT ATTRIBUTE LIST <type-atr o scope-atr o storage-atr>

list

+ (scope-atr # EXTERMNAL | storage-atr = STATIC).
[EXTERNAL identifiers cannot be AUTOMATIC or BASED]

struc-atr- STRUCTURE ATTRIBUTE LIST <scope-atr o storage-atr>
list + (scope-atr # EXTERNAL | storage-atr = STATIC).

minor-struc-  MINOR STRUCTURE LIST <y id1 succy, Ny id2 suec, ... 5Ny idk suce, >

list « DIFF IDLIST <id), id, ... ,id> &
[All minor structures at a given level must have different
names ]
ny 2 n, & nz‘z ng & ... 8 neoa 2 n,.
[Level numtera at a given level must be equal or increasing]
succ STRUCTURE SUCCESSOR <type-atr>.
suce STRUCTURE SUCCESSOR <n id minor-struc-list>

« n < LEVEL HUM(minor-struc-list).

[Major structure level numbers must be lese than each
component level numbar]
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(23] <type-atr
C24)

[25]

scope-atr

storage-atr

DATA TYPE ATR <A | FIXED | PLOAT | BIT(n) | CHAR(n)>.
SCOPE ATR <A | EXTERNAL | EXTERNAL>.

STORAGE ATR <A | STATIC | AUTOMATIC | BASED(id)>.

[d. Ezpressions, Atomic Componenta, and Dealared Types]

[26]

[27]

[28]

[29]

£30]

[31]

[32]

[33)

[34]

[35]

[36)

[37)

[38]

[391]

fuo]

[41]

(42]

exp

exp

exp

exp

exp

exp

ref

ref

ref

op

op

op

id

2

n

d

c

EXPRESSION <n»> & DECLARED TYPE(* : p) = ARITH.
EXPRESSION <"ey ¢
EXPRESSION <NULL> & DECLARED TYPE(® : p) = POINTER.

EXPRESSION <ADDR (ref)> [ DECLARED TYPE(® : p) = POINTER.
+ LABEL # DECLARED TYPE(ref : p).

EXPRESSION <refs.

EXPRESSION <exp; op exp,> & DECLARED TYPE(* : p) = type,,
+ type; = DECLARED TYPE(exp1 top) 3
type, = DECLARED TYPE(exp, : p) &
type, & RESULT TYPE(type1 : Op i type,).
REFERENCE <id»> 3 DECLARED TYPE(* : o) = typey

+ type1 e p(id).
REFERENCE <id1 -+ id2> & DECLARED TYPE(%* : p) = type2
+ POINTER ¢ p(idl) & BASED ¢ p(idz)
type, = DECLARED TYPE(id, : o).

REFERENCE <id1.id2 e .idn> 3 DECLARED TYPE(® : p) = typen
* ey = o(idl) & =

°l(id2) & ... 8 type = pn_l(idn).

OPERATOR <op>
+ (ARITH OPERATOR<op> | COMPARISON OPERATOR<op>).

ARITH OPERATOR < + >,

COMPARISON OPERATOR < < |l=1 >2>.

IDENTIFIER <£,2, .., 4.
LETTER <A [ B | ... | 2>,
NUMBER <dd, ... dg>.
DIGIT <0 | 1 | ... | 9>.

CHARACTER <Z | d>,

2 o cn"> & DECLARED TYPE(* : p) = STRING.

3
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{e. Computatione of Environmentel

[Environment from Explicit Declarations)

[u3]

[uu]

fus]

fu6]

[u7)

(48]

[u9]

£s0l

[51]

[s2]

{53]

fsul

[ss]

(561

[57]
[58]

(591

(60)

(61]

(623

(631

EXPLICIT ENV(unitl cee unitn) z EXPLICIT ENV(unitl) +
cee t+ EXPLICIT ENV(unitn).

EXPLICIT ENV{id: exec~unit)

{id + LABEL}.

EXPLICIT ENV(exec-unit) A.

EXPLICIT ENV(id: dcl-unit)

{id + LABEL} + EXPLICIT ENV(dcl-unit).

EXPLICIT ENV(DECLARE id elem-atr-list;) z {id + DECLARED ATTRIBUTES(elem-atr-list)}.

EXPLICIT ENV(DECLARE 1 id struc-atr-list, minor-struc-list;)
= {id + DLCLARED ATTRIBUTES(struc-atr-list), EXPLICIT ENV(minor-struc-list)}.

EXPLICIT ENV(nl ldl SUCCy, -.. Ry 1dk succk)

- . \ .
H EXPLICIT ENV(n1 1dl suee, ) + ... + EXPLICIT ENV(nk 1dk succk).

EXPLICIT ENV(n id type-atr)
= (id + DECLARED TYPE ATR(type-atr)).

EXPLICIT ENV(n id minor-struc-list)
z {id + EAFLICIT EhViminuvi-siruc-1ist)].

DECLARED ATTRIBUTES(type-atr o scope-atr o storage-atr)
H DECLARED TYPE ATR(type-atr), DECLARED SCOPE ATR(scope-atr),
DECLARED STORAGE ATR(storage-atr).

DECLARED TYPE ATR(A) z ARITH.
DECLARED TYPE ATR(FIXED | FLOAT) =z ARITH.
DECLARED TYPE ATR(BIT(nJ) | CHAR(n)) z STRING.
DECLARED TYPE ATR(POINTER) z POINTER.
DECLARED SCOPE ATR(A) z INTERNAL.
DECLARED SCOFE ATR(INTERNAL) z INTEPNAL.
DECLARED SCOPE ATR(EXTERNAL) z EXTERNAL.
DECLARED STOPAGE ATP(A) g AUTOMATIC.
DECLARED STOPAGE ATR(AUTOMATIC) H AUTCMATIC.
DECLARED STCPAGE ATP(STATIC) z STATIC.
DECLARED STORAGE ATR(BASED(id)) z BASED.
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[Bnvironment from contextual declarations]

{64) CONTEXTUAL ENV(unit,
CONTEXTUAL ENV(unit, : p) &

+

Py E

eee & °n
[65] CONTEXTUAL ENV(id:
(661 CONTEXTUAL ENV(GOTO id; | RETURN; | ALLOCATE id; | FREE ID; : o)

(67) CONTEXTUAL ENV(ALLOCATE idl SET(idz); : p)

i : 2 LRI
e unltn tp) z f n

=  CONTEXTUAL ENV(unitn : ).

Ph-1

CONTEXTUAL ENV(unit : o)

unit : p)

"
>

"
>

+ id, e DOMAIN(p).

.[68] CONTEXTUAL ENV(ALLOCATE idl SET(idz); t p)

- id2 £ DOMAIN(p).

[69] CONTEXTUAL ENV(FREE idl -+ idz; top)

"
>

+ id2 € DOMAIN(p).

[70] CONTEXTUAL ENV(FREE id; = id,; ¢ p)

"

« id, ¢ DOMAIN(p).

2

(711 CONTEXTUAL ENV(IF exp THEN exec-unit : p)

[72] CONTEXTUAL ENV(ref = exp; : p)

CONTEXTUAL ENV(exp : p)
+ CONTEXTUAL ENV(exec-unit :

CONTEXTUAL ENV(ref : p)
+ CONTEXTUAL ENV(exp : p).

{731 CONTEXTUAL ENV(BEGIN; unit1 e unitn END: : p)
g CONTEXTUAL ExV(unit-seq : ')

+ unit-seq

P1ocal *
p'
[Explicit

H unitl +ee unity &

EZPLICIT ENV(unit-seq) &
OVERRIDE(Dlocal tp).

local declarations override declarations of the outer block)

(74) CONTEXTUAL ENV(DECLARE id elem-atr-list; : p)

e

(78] CONTEXTUAL ENV(DECLARE 1 id struc-atr-list, minor-struc-list;

£ CONTEXTUAL ENV(elem-atr-list p).

t p)

= CONTEXTUAL ENV(struc-atr-list : p).

[76] CONTEXTUAL ENV(type-atr o scope-atr o storage-atr : p)
H {id + POINTER,INTERNAL,AUTOMATIC}

+  scope-atr

= BASED(id) & id ¢ DOMAIN(p).

{77] CONTEXTUAL ENV(type-atr o scope-atr o storage-atr : p)

s A

+  scope-atr- # BASED(id).

[78) CONTEXTUAL ENV(expl

op exp, : p)

H CONTEXTUAL ENV(exp1 :p) + CONTEZTUAL ENV(exp2 top).

(79] CONTEXTUAL ENV(n |

—_—

H A,

(80] CONTEXTUAL ENV(id | id,.id
(81] CONTEXTUAL ENV(ADDR(ref) : o)

[82]) CONTEXTUAL ENV(id, + id, : p)

” ” -
Cy €p -ee Cp | aver : o)

g ven .idn :op)

w

A,

CONTEXTUAL ENV(ref : p).

"m
£

- id1 e DOMAIN(p).

(83] CONTEXTUAL ENV(id) + id, : p)

e e i Y

"

(idl + POINTER,INTERNAL,AUTOMATIC}

+ idl ¢ DOMATN(p).

(id2 + POINTER,INTERNAL,AUTOMATIC}

(id2 + POINTER,INTERNAL,AUTOMATIC}

o).

3 3
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(Environment from Implicit Declarations]

[84] IMPLICIT ENV(unit «eo unit_ i p) = o, * +
e LY 1 n 17 e Pn
+ Dl £ IMPLICIT ENV(unitl :op) &
vee & H ! i :
oy IMPLICIT ENV(unit_ : p_ ).

[85) IMPLICIT ENV(id: unit : p)

(86) IMPLICIT ENV(del : p) £ A.
[87) IMPLICIT ENV(RETURN; : p) = A.
(88] IMPLICIT ENV(GOTO id; | ALLOCATE id; | FREE id; : p)

E IMPLICIT ENV(id:p).

[89] IMPLICIT ENV(ALLOCATZ id; SET(id,); | FREE id
= IMPLICIT ENV(id:p).

2 - ldl;

[90] IMPLICIT ENV(ref = exp; : o)

H IMPLICIT ENV(ref : o) + IMPLICIT ENV(exp :
[91] IMPLICIT ENV(3eGrw; unit; ... unit  —~ EwD; : o)
= IMPLICIT ENV(unit seq : »')
+ unit-seq = ur'\ic1 ce unitr )
®local = EXPLICIT ENV(unit-seq) 3

P ov£RRIDE(°10cal T ).

[92) IMPLICIT ENV(expl op exp, : p)

H IMPLICIT ENV(exp1 :p) + IMPLICIT ENV(exp2 :

(93] IMPLICIT ENV(n | "¢y ¢p ... e " | wviz | idy. ... .id}
H A

[94) IMPLICIT ENV(ADDR(ref) : o)
z IMPLICIT ENV(ref : p)

[95] IMPLICIT ENV(id1 - idz :op)
= IMPLICIT ENV(id2 :p)

{96] IMPLICIT ENV(id : p)
= A
+ id ¢ DOMAIN(p)

[97) IMPLICIT ENV(id : o)
:  {id + ARITH, INTERNAL, AUTOMATIC)
« id ¢ DOMAIN(»)

IMPLICIT ENV(unit

:pd.

Zp)

p).

p).

2 p)

P~
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{computation of Result Typeal

[Symmetry Rulel

(98] RESULT TYPE(type; : op B type,) RESULT TYPE(type, : op : type;).

[Operations on Scalars)

(991 RESULT TYPE(type; : op : type,) z ARITH
+ PLUS OPc<op> & (type; = ARITH | type, = STRING)
& (type2 = ARITH | type, = STRING).

[100] RESULT TYPE(POINTER : op : POINTER) = STRING
+, EQUALITY OP<op>.

[101) RESULT TYPE(typé1 : Op : type,) z STRING
+  COMPARISON OP<op> & (type1 s ARITH | type; = STRING)
& (type, = ARITH | type, = STRING).
[Addition and Comparison of Structuresl
(102]) RESULT TYPE( {id; » type;, ... id |~ type,} : op : (id'1 + type'l, . ,id'n + type’n} )
z {14, -+ type"l. “e ,idn + type"n}
+ PLUS OP<op> &, RESULT TYPE(type1 EER type'l) ] type"l
& RESULT TYPE(t:ypen t o4 type'n) g type"n.
[103] RESULT TYPE((idl ~ typey, ... ,1dn + type } : op : (id'l + type'l, - ,id'n -+ type'n})
E STRING
+  COMPARISON OP<op> RESULT TYPE(type, : op : type';) = STRING
RESULT TYPE(type_ : op : type' ) = STRING.
(1041 RESULT TYPE( type : op : {id; » type;, ... ,id  + type } )’
= RESULT TYPE( {id; » type, ... ,id_ » type} : op : {id, = type;, ... ,id_ + type } ).

Lg. Miscellaneous Pradicates]

[105] type DERIVED TYPE ATR <ARITH | POINTER | STRING ]

(idl + type,, ... ,idn - typen}>.
[(106) derived-atr DERIVED ATR <INTERNAL | EXTERNAL | AUTOMATIC | STATIC | BASED | type>.

[107) derived-atr- DERIVED ATR LIST <derived-atr ,derived-a:rn>.

list 1
[{108) ENVIRONMENT <a | {idl - derived-atr-listl. v ,idn + derived-att-listn)>.
[109] DOMAIN <p> E A
+ p = 4,
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1110}

(1111

{112]

[1133

-(114]

[115]

(1161

(1171

(118]

[119]

[120]

[121]

[122]

DOMAIN <p> z idl, e ,1dn

- p.={ id1 -+ derived-atr-listl, e ,idn -+ derived-atr-listn }.

APPLY <p:id> ¢ ERROR
+ id ¢ DOMAIN(p).

APPLY <p:id> =  derived-atr-list

« p= {...id + derived-atr-list A I

PLUS(p:A)

"
©
.

PLUS(p:p"')

{x,y}
+p=(x'} & p'={y}.

DELETE(p:4) . = A
DELETE(p :1d) o0y + P

+p =0 + (id + derived-atr-list} + Pg-

DELETE(p:id,2) = DELETE(p':%)

+ p' = DELETE<p:id>.

OVERRIDE(p:p') = p + p"
+ p" = DELETE(r' : DOMAIN(p))

LEVEL NUM(n1 idl sucey, ... WMy idk succk) E

" CONVERTIBLE <type, : type,>

+ RESULT TYPE(typel : = typez) = STRING.

DIFF IDLIST <A | id>.

DIFF 1DLIST <2,id>
« id £ 2.

TRaln A ol cmwie den

-

e



Appendix 2: TRANSLATION OF \-CALCULUS EXPRESSIONS INTO NORMAL FORM

[a. Primitive Predicates]

id

exp

IDENTIFIER {An ordered set of distinot atomsl
DIFF ID (The set of all paire of different identifiers)
EXPRESSION <exp> <+ (IDENTIFIER<exp> | COMBINATION<exp> | LAMBDA EXP<exp>).

COMBINATION <expl(exp2)>.
LAMBDA EXP <iid.exp>.

[b. Free Identifiers]

FREE IDS(id) = id.
FREE_IDS(exp, (exp,) ) = UNION(FREE IDS(expl) : FREE IDS(exp2)).
FREE IDS(iid.exp) = REF COMP(FREE IDS(exp) : id).

{The functions UNION and REL COMP are etraightforward to define and are left
ae an exerciss for the readerl

[c. A-Caleculus Substitution Rulel

4.

SUBST(id : exp : id) £ exp.
SUBST(id : exp : idl) g idl ' « DIFF ID<id : id]>.

SUBST(id : exp : explfexpz))

expl'(expz')

+

exp,' = SUBST(id : exp : oxp,)
exp,' = SUBST(id : exp : exp,).

SUBST(id : exp : xid.expl) = xid.expl.
SUBST(id : exp : xidl.expl) = Aidl.expl' + DIFF ID<id : id1> 4

id, ¢_FREE IDS(exp) &
expl' 2 SUBST(id : exp : expl).
Aidz.expl" + DIFF ID<id : id1> &
idl ¢ FREE IDS(exp) &
DIFF ID(idl : id2> &
&
&

SUBST(id : exp : xidl.expl)

id, ¢ FREE IDS(exp)

id, ¢ EREE IDS(exp,)

expl' = SUBST(id; : id, : exp,)
expi“ = SUBST(id : exp : expl').

Convereion to Normal Form)

NORMAL FORM <id>.

NORMAL FORM <exp1(exp2)> + NORMAL FORM<exp1> & NORMAL FORM<exp2> &
(IDENTIFIER<exp,> |  COMBINATION<exp,>).
NORMAL FORM <Aid.exp + NORMAL FORM<exp>.
V(exp) = exp + NORMAL FORMc<exp>.

(x1d.exp) = Aid'.exp'
V(rid.exp {expl)) exp,
(expl(expz)) CONV(expl'(expz'))

exp' = SUBST(id : id' : exp').
exp, = SUBST(id : exp; : exp).

¢ ¢+ ¢

HH

TRANS TO NORMAL_FQRM(exp) = Aexp' « CONV(exp) = exp' & NORMAL FORM<exp'>.

exPl'E CONV(GXPI) & expé H CONV(expz)
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