——

-~

By

756~/

MICHAEL A. ARBIB AND ERNEST G. MANES

A CATEGORY-THEORETIC APPROACH TO
SYSTEMS IN A FUZZY WORLD*

The last 30 years have seen the growth of a new branch of mathematics
called CATEGORY THEORY which provides a general perspective on
many different branches of mathematics. Many workers (see Lawvere,
1972) have argued that it is category theory, rather than SET THEORY,
that provides the proper setting for the study of the FOUNDATIONS
OF MATHEMATICS.

The aim of this paper is to show that problems in APPLIED MATH-
EMATICS, too, may find their proper foundation in the language of
category theory. We do this by introducing a number of concepts of
SYSTEM THEORY which we unify in our theory of MACHINES IN
A CATEGORY. We write as system theorists, not as philosophers.
Our hope is to stimulate a dialogue with philosophers of science as
to the proper role for category theory in a systematic analysis of a
fuzzy world. We do not discuss applications to biology or psychology -
the framework presented here is at a very high level of generality, and
does not address the particularities which give these disciplines their
distinctive flavor.

This paper is divided into two Sections. In Section I, we sketch how the
subjects of control theory, computers and formal language have grown
out of the urdisciplines of MECHANICS and LOGIC; and then present
the formal concepts of sequential machine, linear machine, and tree auto-
maton. We sho how our notion of MACHINE IN A CATEGORY
provides an uncluttered generalization of these three concepts.

In Section II, we introduce the ‘fuzzy world’. Although the study of
quantum mechanics provides the best known framework, we stay within
system theory, showing how PROBABILITY, MECHANICS and LOGIC
gave rise to the study of markov chains, structural stability and multi-
valued logics. We then present the formal concepts of nondeterministic
sequential machine, stochastic automaton and fuzzy-set automaton. Our
notion of FUZZY MACHINE will generalize all three. Of particular
interest will be the demonstration that, although fuzzy machines generalize
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382 MICHAEL A. ARBIB AND ERNEST G. MANES

machines in a category, we can — by a suitable enlargement of viewpoint —
regard them as a special case.

The paper is self-contained both as to system theory and to category
theory — but many topics must be but briefly outlined in an expository
paper of this kind. The reader wishing a fuller introduction to category
theory is referred to our book (Arbib and Manes, 1975); a text on control
theory is Athans and Falb (1966); for system theory see Padulo and
Arbib (1974) and Kalman et al. (1969); many other concepts of machine
theory appear in Bobrow and Arbib (1974); our theory of machines in a
category appeared in Padulo and Arbib (1974), Bobrow and Arbib (1974),
Arbib and Manes (1974a), while the technical details of fuzzy machines
appear in Arbib and Manes (to appear). The state of the art in applying
category theory to systems and automata is reflected in Manes (1975b).

I. MACHINES IN A CATEGORY

In Figure 1, we schematize the evolution of Machines in a Category from
concepts in generalized mechanics and formal logic through the study of
control theory, the impact of computers, and notions of formal linguistics.
The paragraphs below are lettered with the arrows they describe:

A Building on the work of Newton and its refinement by such workers
as Legendre, Hamilton, in the middle of the 19th Century, gave the fol-
lowing formulation of generalized mechanics: The vector of generalized
positions, g=(qy,..., g,), one for each degree of freedom of the system
must be augmented by p=(p;, ..., p,), the vector of generalized momenta,
one for each degree of freedom of the system. There is then a function
H(p, q), the Hamiltonian, of these variables, in terms of which we may
express the system dynamics:

JdH
q’,=a— for 1<J<n
Py

oH
== for 1<j<n.
aqj

Thus, with Hamilton we see very vividly that we may study systems
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which are described by the evolution of state vectors over time, with this
evolution governed by vector differential equations of the form

4=/

where now the state ¢ includes position, momentum, and any other rele-
vant variables as components.

Generalized Formal
Mechanics Logic
A
c E

Control Theory

B( ) Computers Post
c lv E
Discrete Linear Sequential Chomsky
Systems Machines Formal
Languages
E E
b D

Tree Automata

3

MACHINES IN A CATEGORY
Fig. 1.

The transition to control theory comes when we emphasize that the
differential equation describing the evolution of the state of a system
contains a number of parameters, representing forces, which can be mani-
pulated from outside the system, so that we may write down the change
of state as a function

§4=r(g, x) @

not only of the state vector itself, as in the classical formulation, but also
as a function of a control vector x. We should also note that only certain
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aspects of the state will actually be measurable at any time, so that we
may introduce an output vector y which is a function

y=P8(@) ()

of the instantaneous state. For example, in classical mechanical systems,
we can observe only the positions ‘instantaneously’, while the momenta —
or the related velocity variables ~ must be built up from observation of
changes in position over some period of time.

We now turn (Box 1) to three mathematical problems of control theory,
which underpin the central problem of optimization.

Given a system described by a pair of equations giving (1) the rate of
change of the state and (2) the observable output as a function of the
state, we are to find a control signal which will drive the system from some
initial state to a desired final state in the quickest possible way, or with
the least use of energy - as, for example, of firing the rockets of a satellite
in such a way as to bring it into a desired stable configuration. Clearly,

Three Problems of Control Theory

4=1r(q,x)

Given a system
y {y=ﬂ@)

we may ask:

Is it reachable? Can we control it in such a way as to drive it from
some initial state to any desired final state?

Is it observable? Given the system in an unknown state, can we
conduct experiments upon it (apply controls, measure outputs) in
such a way as to eventually determine the system’s state.

Given a system whose equations are unknown, the realization prob-
lem is to determine a set of states, a dynamics f, and an output
function B which correctly describe the observed input-output be-
havior of the system.

Box 1
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however, before we analyze what is the most efficient way to bring it into
position, we must know whether any suitable control exists at all, and
this is the question of reachability. [Incidentally, it is worth noting that
optimal control is closely based on the work of Hamilton, for Hamilton
had observed that the trajectory of a system following given laws of mo-
tion was such as to minimize the value of a certain function. It is a natural
transition, then, to apply these techniques to seek an input — or control —
trajectory which will minimize some evaluation of the cost or time of
system performance, and this approach is the basis of Pontryagin’s maxi-
mum principle, one of the fundamental techniques of optimal control.]

If reachability is an important question in the design of feedback con-
trol systems — given a state, does there exist a control we can apply to
move the system from that state to some other, desired, state — then
no less important a question must be the one of observability. We have
already commented that the instantaneous output of the system will in
general tell us only some small portion of what we need to know about
its state. But feedback control usually requires that we know all of the
state before we can determine what is the proper input to apply. Thus, it
is our concern to determine when a system is observable: namely, we wish
to know how, given the system in an unknown state, we can conduct
experiments upon it — namely by applying controls and measuring the
consequent outputs — in such a way as to eventually determine the system’s
current state. Thereafter, our knowledge of the dynamics will allow us to
update the state as we apply the appropriate controls to its behavior.

The above prescription is based upon our knowing the Equations (1, 2)
which govern the system. This of course raises the very realistic problem
of how we might find these equations in the first place. In general, if we
come upon a system to which we can apply certain inputs, and for which
we can observe certain outputs, we wish to determine a state-space which
can mediate the relationship between the inputs and the outputs, and we
then wish to determine the dynamics and the output function which cor-
rectly describe the observed input/output behavior of the given system.
This is the realization problem, and we are frequently concerned to find a
realization which is minimal in the sense of having the smallest state-
space possible. One of the most pleasing general results of control theory
is that if a realization is indeed minimal, then it must be both reachable
and observable.
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B However, the treatment of arbitrary systems described by differential
equations is too complex for efficient mathematical solution. One of the
most common ways of approximating a complex system is by using linear
equations. Moreover, the advent of the computer as the tool par excellence
for controlling a system has led us to move from continuous time systems
described by differential equations to discrete time systems in which we
sample the behavior of the system, and apply inputs, at regular intervals,
so that we describe the system in terms of equations which show how it
changes from one sampling period to the next. In fact by using an ap-
proximation to the rate of change predicted by the derivative, and by using
Taylor series, we can come up with a linear approximation to the change
in state of the system over the sampling period which is linear, and we
may also approximate the output by a linear function of the state:

q(t+ 40 = q@® + f(g(), x (1) 4t

=q()+ ?{ q(®) At+ o x(t) At

&) =Fq()+ Gx(t)
where
aof of
[I+AIEJ, G= At—é;.
0
y(r)égg-q(t)
4 =Hq(?)
where
_%
H—E'

It is an empirical fact that many control systems can be usefully approx-
imated by descriptions of the form (3)/(4) using constant matrices F, G
and H.

C If computers encouraged the passage from general differential equa-
tions to discrete linear systems — or linear machines as we will call them
from now on - they also gave rise to new discrete systems in their own
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right, which in no way were to be considered as approximations to con-
tinuous systems. The concepts of truth values in a two-valued logic which
could be computed upon in a numerical-like but non-numerical way, due
to George Boole, provided the proper framework in the 1930’s and 1940’s
for the development of a formal theory both of relay switching networks
and the McCulloch-Pitts theory of formal networks. These led to the
general theory of sequential machines, which — among other things —
provided the proper formal framework for talking about the various sub-
systems of a computer. For example (Figure 2) we can describe a vending
machine which accepts nickels, dimes and rests — the set of inputs is
X,={n, d, R}. It vends a candy bar, C, when 15¢ has been received from
the initial state, puts out 20¢ if it has received either 2 dimes or 2 nickels
and a dime starting from the initial state, and otherwise emits nothing,
@ — so that the output set is ¥'= {0, C, 20¢}. The current state and current
input determine the next state via a function & — an arrow leads from node
g via arrow x to node (g, x). The current output is a function B of the
current state — we mark the node for state g with the notation g/(g).

R
M\
Initia!
State
R R R
§:AxX,—>Q
f3: Q—sY
/
Input Set X, ={n,a,R} Rdn

State Set” G ={q,,9,.94 9.9 T}
Output Set ¥ = {@, C, 20¢}

Fig. 2. The 15¢ machine.
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D The point to stress here is that the various input, state, and output
sets involved here are small finite sets, and are in no way the Euclidean
spaces of linear system theory. In fact (Box 2) we may see that the theory
of sequential machines and the theory of linear machines live in quite
different domains of discourse:

First, let us examine sequential machines. It is common to assign to
each machine an initial state - in this case we have represented that initial
state by the map < from the one-element set 1 to the state set Q whose
image is precisely the initial state go. The dynamics 6: 0 x X, — Q is then
a map which assigns to each state and each input of the sequential machine
the state into which it will next settle, whereas the output map :Q— ¥

Formal Definitions
Sequential Machines Linear Machines
Initial State Input Map
T:1-0 G:I-Q
Dynamics Zero-Input Dynamics
0:0xXy—Q F:0-0
Output Map Output Map
B:0-Y H:Q-Y
This lives in the This lives in the
category Set: category Vect:
each object is a set; each object is a
each morphism (arrow) vector space; each
is a map. morphism (arrow) is
a linear map.
Box 2

assigns to the current state the corresponding output. We stress that
sequential machines live in the category Set — a domain of mathematical
discourse comprising sets and arbitrary maps between those sets.

In describing a linear machine, we give an input map G: I— 0, a zero
input dynamics which is simply the map F from the state set Q into itself,
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and an output map H: Q — Y. These describe the behavior of the machine
via q(t+4t)=Fq(t)+Gx(t); y(t)=Hq(t). The appropriate domain of
discourse here is the category Vect in which now the objects are vector
spaces and each morphism - i.e., arrow going from one object to another—
is a linear map .[We have lined up elements of the definitions of sequential
machines and linear machines in Box 2 in a way that will seem mysterious
to the reader. We hope that the reason will become clear by inference
from our general definition of machines in a category in Box 4 below.]

Clearly, at this stage it is proper that we admit that the notion of a
CATEGORY or mathematical domain of discourse implicit in our above
comparison is in fact a formal concept of mathematics. In fact, we have
as the basic notions of category theory the idea of a category and of a
functor (Box 3).

A category " is a domain of mathematical discourse in which we have
a collection of objects, such as the arbitrary sets of Set or the vector spaces
of Vect, together with, for each pair 4, B of objects, a collection (4, B)
of morphisms from the first to the second — these correspond to the arbi-
trary maps of one set into another of Set, or the linear maps from one
vector space into another of Vect. As in both of these examples, we may
compose morphisms so long as the first ends where the second begins —
and the composition is associative, i.e., we may string together an arbitrary
number of composable maps and know that the overall composition is
uniquely defined, irrespective of the ‘bracketing’ of the constituent mor-
phisms. Moreover, we may associate with each object an identity mor-
phism — this corresponds to the map which sends each element to itself in
Set and Vect — which has the property that if we compose it with any
other morphism, the result is that other morphism. Incidentally, this
equivalent definition of the identity map exemplifies the difference be-
tween the set theory (define everything in terms of elements) and the
category theory (define everything in terms of morphisms) approach to
the foundations of mathematics.

So far, so good. A somewhat more technical concept basic to any use
of the language of category theory is that of a functor. Briefly put, a functor
is simply a passage from one category to another in such a way that the
identities, and the composition of morphisms, are respected. In particular,
a very useful idea in category theory has been that of ‘chasing commuta-
tive diagrams® — drawing graphs in which morphisms take us from one
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Basic Notions of Category Theory

A Category X is a domain of mathematical discourse comprising
a collection of objects
for each pair 4, B of objects a collection " (4, B) of morphisms

fiA»Bor ASB

with domain A and codomain B
together with a law of composition

gf: A-C=45B5C
which is associative and has identities id,: 4 — 4.

A functor H from category ¢ to category &

sends to
objects 4 objects AH
morphisms f: A — B morphisms fH: AH— BH
in ot in &

in a ‘nice’ way, namely

Iff=idA:A—)A then fH=idAH:AH—)AH
If f=4-%B% C then fH=AH® BH"S CH.

Box 3
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object to another over diverse paths in such a way that the overall com-
position is the same. E.g., to say that

A f »B

. g > C
® k lh
D

commutes, is to say thatk-f=m, h-g=k and h-g-f=k-f=m. The iterated
application of the fact that a functor preserves identities and composition
allows us to easily deduce that it must also preserve the commutativity of
any diagram - i.e., that if we replace each object 4 by the object AH and
if we replace each morphism f by the morphism fH, then if different paths
from one initiation point to one termination have the same composition in
the original diagram, then they must have equal compositions in the
transformed diagram. For example, if (5) commutes in 5" then

AH fH —»BH gH —CH
kH hH
mH
DH

commutes in & - e.g.,, mH=(k-f) H=kH-fH.

With these concepts before us we can now present the key concept of
machines in a category 2. We should not, as we were encouraged to do in
the theory of sequential machines, think of the input of a machine as
being a set — or, more generally, an object — of inputs. Rather, we should
think of the input as being a process which transforms the state object
Q into a new state object QX. In all cases, we are to think of X as being a
functor from the given category X to itself. Then, given this object QX
upon which the dynamics is to act, a dynamics is simply a 2¢"-morphism
0:0X-0.

Returning to Box 2, we see that for sequential machines, the category
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2 is Set, and the functor X transforms a state set Q into the cartesian
product O x X, of all state-input pairs; while in the case of linear machines
we work in the category ¢ =Vect, and our functor X leaves things un-
changed so that QX=Q. [To see that these really are functors, we must
show how they act on morphisms. For /: Q — Q" in Set and X=— x X;:
Set — Set, we define fX: O x X, — Q' x X, to send (g, x) to (f(g), x). For
S: 0— Q" in Vect and X'=identity: Vect — Vect, we define fX: 0— Q' to
be simply /. The reader may check the functor conditions of Box 3.] Then,
a sequential machine has dynamics 6: Q x X, — @, while linear machines
have dynamics F: Q— Q. With this we see that both types of machine of
Box 2 are subsumed in our general notion of MACHINE IN A CATE-
GORY, summarized in Box 4. Summarizing, we see that a machine in a
category requires us to specify a functor X from 2" into itself which is a

MACHINES IN A CATEGORY

. I-Q
X-Machines {6: QX — O
f: 0-7Y

X: o — Ais a functor; T, 6 and § are #"-morphisms

We stress that input is a process which converts the state-object Q
into a new object QX on which the dynamics can operate

Box 4

process which converts the state object Q into a new object QX on which
the dynamics & can operate. We must specify a 2 -morphism 7 from 7 to
Q - in the case of sequential machines this gives us the initial state, while
it gives the input map of a linear machine. Finally, we give a morphism
f from Q to Y - which provides an output map in both cases.

E Instead of giving a formal treatment, let us just briefly note that
tree automata do indeed fit into this general framework of machines in a
category. Here, we briefly note that Post’s theory of canonical systems
was specialized by Chomsky to yield his formal theory of languages, and



CATEGORIES AND FUZZY SYSTEMS 393

that many authors soon realized that the appropriate theory for handling
the derivation trees of formal linguistics was the theory of tree automata,
which could be seen as a straightforward generalization of the theory of
sequential machines we have discussed above. Rather than give the general
definition of tree automata, however, let us content ourselves with a
simple example (Figure 3) of processing binary arithmetic trees. Here we
start at the bottom —at the ‘leaves’— and combine pairs of numbers by addi-
tion and multiplication until finally at the ‘root’ of the tree we have the
overall evaluation of the arithmetic expression represented by the tree.
Let us see how we can think of this as a machine in a category in the
sense of Box 4. Here we are to think of the state set as being the set N of
all natural numbers, and we now introduce a functor X: Set — Set on the

/\
AWAN
I\

Fig. 3. Processing binary arithmetic trees. State Set Q is N (the natural numbers) in
this example. Introduce a functor X: Set—Set

QX=0x0x{+}VQ2xQ2x{x}
Then a map 6: QX—Q gives the dynamics:

g, g2, F)=q+q2
(g1, 92, X) = q1 X ga.
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category of sets, which sends each state set Q to the union QX of two
sets, one being O x O x {+} and the other being O x @ x { x }. We then
see that a map from QX to Q gives us precisely the two maps we need to
evaluate nodes of the tree as we pass from the leaves to the root.

With this successful subsumption of tree automata in a framework
designed to embrace sequential machines and linear machines, we have
almost completed the first part of the paper. But, before we look at what
happens to this theory in a ‘fuzzy world’, it seems worthwhile to quickly
summarize a number of results which have been obtained in the theory of
machines in a category, even if we do not have space to spell out any of
the details. In fact, given any functor X from the category o¢ into itself
we can define a category Dyn(X) of X-dynamics — the objects are precisely
the X-dynamics, while a Dyn(X)-morphism - or a dynamorphism — is a
o -morphism of state objects which ‘respects’ the dynamics — we might
either apply the dynamics and code the resulting state, or we may code
QX and then apply the second dynamics ~ the result is the same, as ex-
pressed in the commutative diagram

3
"XQJ,X—’?” Dyn(X) is a category
o'xX50 because X is a functor

This category is the setting for the major results of the theory of ma-
chines in a category which we have developed. [We should also mention
that other contributions to the theory of machines in a category — though
not using exactly the same framework as that we have developed here —
have been made by Goguen (1972, 1973), Bainbridge (1975), Ehrig
et al. (1974), Goguen et al. (1973) and others. However, the nature of our
survey does not make it appropriate to indicate here the ways in which
these different contributions are interrelated.] The results which follow
are presented far too briefly to allow comprehension — using as they do
the technical category-theoretic concept of an adjoint of a functor. How-
ever, the very point of this tantalizingly brief presentation is to stress how
important adjoints are to system theory; and we hope that many readers
will be tempted to turn to Arbib and Manes (1975), Padulo and Arbib
(1974), Bobrow and Arbib (1974), and Arbib and Manes (1974a).

We introduce a new functor U: Dyn(X) - 2 which sends an object
(Q, 9) of Dyn(X) to @ in 5, and sends a dynamorphism A: (Q, o)
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—(Q’, &) to the underlying ¢"-morphism 4: Q —» Q'. We call it the forget-

ful functor because it ‘forgets’ the dynamics é and just remembers the
underlying state-object Q.

Category theorists give a central role to the notion of adjoint of a
functor. In some circumstances we may associate to a functor H: £ -~
another functor F: X — & called the left adjoint of H. In other circum-
stances, there exists a functor G: " — & called the right adjoint of H.
The definition of adjoints is beyond the scope of this paper (see Arbib and
Manes, 1975, Chapter 7 for the details), but we note the terminology
that if H has left adjoint F and B is an object in ¢, then we say that BF
is the free Z-object over B; while if H has right adjoint G, we say that
BG is the cofree Z-object over B. With this terminology we may sum-
marize some of our results:

First, we showed that if the forgetful functor U: Dyn(X) — X from the
category of X-dynamics to the underlying category & has a left adjoint
F: o - Dyn(X) - so that we may talk of free dynamics QF in Dyn(X) -
then we can in fact construct a reachability theory and a theory of minimal
realization. This theory includes sequential machines, linear machines,
tree automata, and many other examples.

If on the other hand we require that the forgetful functor has a right
adjoint G: o —Dyn (X) — so that we may construct a cofree dynamics
QG in Dyn X - we are then able to construct an observability theory and
a cominimal realization theory — which is much the same as a minimal
realization theory, with differences that are too technical to detain us
here. In any case, we find that tree automata do not correspond to func-
tors X which yield forgetful functors with right adjoints, but sequential
and linear machines do. Thus, both sequential and linear machines are
examples of machines in a category for which the corresponding forgetful
functor has both a left and a right adjoint, and we have found that in this
case we get an exceptionally simple minimal realization theory using what
are called image factorizations, and that we also have a framework for
studying duality of systems based upon the fundamental concept of cate-
gorical duality (Arbib and Manes, 1975). In particular, of course, we may
talk about both reachability and observability for such systems. To further
tantalize the reader, we point out that, for I as in Box 4, IF is the ‘object
of input experiments’. Since IF is determined uniquely by X (Arbib and
Manes, 1975, p. 113), the nature of ‘input experiments’ is not determined
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independently by intuition — a new principle in system theory. This prin-
ciple has surprising consequences for affine machines (Goguen, 1972) and
group machines (Arbib and Manes, 1974b).

Summarizing, then, we have seen that with the idea of a functor we can
embrace a far larger class of automata than we can by restricting our-
selves to the situation in which the dynamics must act on something with
the form of Q x X,; and ~ as the above flash-through of results indicates —
the category theory concept of adjoints of functors is central to our ap-
proach to general system theory.

We reiterate that the above survey is far too brief, but it should be
sufficient to set the stage for the new perspective that is required when we
start looking at different aspects of nondeterminism in our approach to
systems in a fuzzy world.

II. FUZZY MACHINES

We have now seen how to use category theory to provide a general
perspective (Figure 1 to Box 4) for a number of apparently disparate
classes of systems: sequential machines, linear machines, and tree auto-
mata. But the time has come to face up to the fact that we live in a ‘fuzzy’
world — there is no guarantee that we can be sure of the next state of a
system in the real world. In the rest of this paper, we are going explore a
somewhat paradoxical approach to the ‘fuzziness’, namely that in which
one can give a precise prescription of the range of possibilities for the
next state from any given starting condition. (But we emphasize at once
that we will axiomatize a class of such prescriptions, frankly recognizing
that there are many different kinds of fuzziness.)

The first way in which nondeterminism entered the world of automata
theory was through the study of nondeterministic sequential machines
(F of Figure 4). This was in part motivated by the study of formal lan-
guages — for in designing machines to parse a sentence one had to be
aware of the fact that the initial portion of a sentence could be consistent
with a number of possible parsings, so that there was no unique way to
classify the next word, but rather a number of possible ways consistent
with the information already processed. In any case, whatever the history,
there has become entrenched the idea of a nondeterministic sequential
machine — we suggest that perhaps a better word would be ‘possibilistic’ —

1o
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in which the current state and the input do not determine a single unique
next state, but rather determine a set of possible next states, so that the
dynamics maps the set of (state, input) pairs into an element of 22, the
set of subsets of the state set Q.

8:0 x Xy — 22,

The idea, then, is that in any run of the machine, one and only one state
will appear at any given time, but if state g appeared at time ¢ and input
x were then applied, the state at time £+ 1 must belong to the set 6(g, x)
of states.

Now, we may observe that the passage from Q to 22 is the object map
of a functor of the category Set into itself,

2(7): Set — Set is a functor

Q22

[f: Q- Q1= [2:22522:Sc Q- f(S) =
={f(s)|seS}= Q']
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This suggests that the nondeterministic sequential machines we have
just looked at may be considered to be a special case of dynamics ex-
pressed in the form

0:0X - QOT

for some suitable choice of a functor T. The question before us, then, is
what are suitable restrictions on functors T for the consideration of such
dynamics to be in fact the proper setting for ‘dynamics in a fuzzy world’?

G Before we turn to this rather technical question, however, it is worth
continuing the historical perspective of Figure 1 by considering, in Figure 4,
various ways in which the idea of a ‘fuzzy world’ has been approached.
Of course, this historical view of ours is a very sketchy one, and we
can only hope that some more careful historian or philosopher of science
will take this lead to more carefully chart the interconnections between
these ideas. In any case, let us briefly notice that generalized mechanics
in the classical sense has recently spawned two most important new the-
ories of mechanics, namely quantum mechanics (with crucial use of prob-
ability theory) and relativity theory. Unfortunately, we have nothing
further to say at this time about these important developments, but wish
to draw attention briefly to the fact that classical mechanics and prob-
ability theory have also given rise to statistical mechanics — namely the
description of large systems in terms of the average behavior of their
myriad deterministic (or possibly quantum mechanical) components.
The theory of statistical mechanics is still in an unsatisfactory form,
and we believe that its proper development is one of the great challenges
of system theory. Here, however, let us briefly note that Poincaré, in
pondering the various problems of celestial mechanics, came up with a
very crucial notion of structural stability — a notion very much appro-
priate to the conduct of scientific study in a fuzzy world. Briefly, he noted
that in taking any system, it is not possible to determine the parameters
of that system with complete exactitude. It is thus, then, a matter of
crucial import that no very delicate change in the parameters of the system
should drastically alter its behavior — for then we could have confidence
in the predictions that were made. This, then, is the idea of a structurally
stable system: a system whose behavior is only changed slightly by a slight
change in the parameters that describe the equations of motion of that
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system. Interestingly, these ideas of Poincaré have led to two recent devel-
opments. One is Thom’s theory of catastrophes (1972) - in which Thom
classifies those parameters of system description which lie at the borderline
between two different domains of structural stability. It is perhaps worth
noting in passage our belief that Thom’s mathematical contributions here
are of vital importance to system theory; while at the same time expressing
a measure of skepticism about the way in which Thom has suggested that
his theory of catastrophes has immediate applications to such diverse
fields of applied mathematics as theoretical embryology and linguistics.

A more direct descendent of Poincaré’s ideas is the theory of tolerance
spaces due to Zeeman, in which he replaced the idea of a topology on a
space by the more discrete notion of a tolerance: namely a reflexive and
symmetric relation which tells us of any two points of the space whether
or not they are in tolerance of one another. This then suggested to Arbib
the idea of a tolerance automaton — namely a sequential machine in which
the dynamics and output are ‘continuous’ with respect to tolerances on
the various spaces involved. It has recently been noted by Dal Cin that
we may make such tolerance automata into machines in a category in a
fairly obvious way.

With this, then, let us turn to the remaining two evolutions in Figure 4 -
namely, that from the Markov chains developed by the probability the-
orists; and that which we may recognize as part of the evolution of
multivalued and intuitionistic logics (the name of Post occurs here as
well as in the canonical systems which led to formal language theory)
from classical Boolean logic.

H Markov chains were developed in the late 1800’s as a way of
modelling the dynamics of a classical system for which one could at best
give probabilities as to the next state given the present state, rather than
the classical systems with which we started our discussion in this paper
in which the current state determined the future states for all time. The
stochastic automaton, then, is related to Markov chains just as our control
systems are related to classical mechanical systems. Namely, we introduce
a set of inputs, such that for each input there is a corresponding Markov
chain, with the probability distribution of the next state being determined
by the Markov chain indexed by the current input.

More formally, a Markov chain M is given by a set {gy, ..., g} of states
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and an » x n stochastic matrix P=(P, ;) whose interpretation is that if A
is in state g, at time ¢, then it will be in state g, at time ¢+ 1 with prob-
ability p;;. A stochastic automaton has its dynamics given by a set X=
={xy, ..., Xy and a collection of m Markov chains, one P* for each input
xeX,. If M is in state g, at time ¢ and receives input x, then it will be in
state g, at time ¢+ 1 with probability pj;. Here the dynamics is

0:0xXy— QP:(q;, x) > [p’{,]
prj
where P: Set— Set is a functor with

OP=set of probability distributions on Q(If peQP, let p(q)
denote the probability of q)

SP:QP>QP: fP(p):q— 3 p(9).
qeS~1(q)

We see once again that the dynamics is of the form QX — QT, where
now T is the functor P: Set— Set which sends a set Q to the set of all
probability distributions on Q.

I For our last example of a functor T for our general theory, we turn to
Juzzy sets. This notion seems to have been independently established by
Zadeh (1965), although it is clearly a special case of ideas developed by
many authors in looking at multivalued and intuitionistic logic. Briefly,
Zadeh observed that there are many ‘sets’ in the world for which one
cannot make the confident assertions of membership or nonmembership
demanded by classical set theory. For example, the set of all ‘tall people’
is such a set. Certainly someone who is three feet tall does not belong to
the set, while someone who is seven feet tall certainly does. But what of
someone 5’3" tall? Perhaps they almost belong to it, say with ‘weight’ 0.3,
while someone of height 5’8" might belong to the set with membership
strength 0.8. On this basis, then, Zadeh defines a fuzzy set in the universe
W to simply be a map 4 from W to the continuous interval [0,1] of real
numbers, with 4 (w) being the strength of membership of w in A.
Before going further, it is perhaps worth noticing that there is a certain
horror in this approach to the problem of fuzziness ~ for if it seemed
unreasonable to simply say of any element whether or not it belonged to
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the set of tall people, surely it seems even more unreasonable in this fuzzy
world of ours to assign so precise a number as 0.7 to membership. It may
perhaps be suggested that the appropriate approach to fuzzy sets is to
realize that the fuzziness simply is imposed by the fact of undetermined
context. If we are surrounded by short people, then we will say a person
of 56" is tall; if we are meeting with the Watusi then such a person will
be short. The idea, then, that a statement may have different truth values
depending on the context suggests that there is implicit a whole series of
mechanisms such as those that are being painfully developed in artificial
intelligence approaches to the understanding of natural language (Schank
and Colby, 1973). But such an idea takes us too far afield from the partic-
ular historical domain of discourse that we have set for ourselves in this
paper, and so now we return to fuzzy sets, with the observation that one
can clearly define a suitable functor T associated with ‘fuzzing’ (indeed,
0T=[0,1]12), and that with this we may then define fuzzy-set automata
to be those with dynamics 6: QT — QT, where T is the fuzzing functor.

With these three examples, we are ready to begin the development of
our general theory. However, before we do so, it is worth making a couple
of technical observations. Firstly, we may note that a continuous interval
[0,1] may be replaced by any lattice, and that for technical reasons we
shall usually want this to be a distributive lattice, and thus what is known
as a semiring. In fact, Schiitzenberger (1962) has constructed a rich theory
of automata over semirings so that not only are fuzzy sets a particular
case of models already developed in multivalued and intuitionistic logic;
but the study of fuzzy automata is a special case of Schiitzenberger’s
theory. Secondly, we note that Goguen (1967, 1969, to appear) has studied
a category of fuzzy sets.

But all this is an aside, and it is time to return to the general study of
dynamics of the form

5:0X » QT

which provide the dynamics of what we call FUZZY MACHINES. [We
hope that Professor Zadeh will forgive us for appropriating his word for
this general setting — we use the term fuzzy-set machine to refer to his
special case.] Our first observation is that QX — QT looks like a generali-
zation of the case QX — Q which is obtained by taking T to be the identity
functor. It would be far more appealing, aesthetically, if in fact we could
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take QX — QT to be a special case. But to do this we would have to con-
sider a category 'y whose objects are the same as those of the original
category " but for which a morphism 4— B is actually a >~morphism
A - BT. In this case, a morphism QX— Q, and thus a dynamics, in our
new category X would indeed be a morphism QX - QT in 2¢".

Recalling (Box 3) the need for identities and composition in defining a
category, we can now develop a picture of what such a new category 'y
would look like. Our first requirement is that we can define identity
morphisms for this category, and our choice for this is the morphism
Ae: A— AT which tells us how to interpret pure elements as particular
examples of fuzzy elements. For example, when T=2(") we require
Ae: A— 24 to send an element a of set 4 to the singleton {a} which is an
element of the set 24 of subsets of that set. Again, for T=P, we require
Ae(a) to be the probability distribution on 4 for which @ has probability 1.
Given these identity morphisms, we can think of an ordinary morphism as
a fuzzy morphism — namely we follow the morphism 4 — B with the
‘fuzzing morphism’ Be. Our second requirement in making 2¢ ; a category
is a composition of fuzzy morphisms, so that we may compose 4 — BT
with B— CT to obtain a morphism 4 — CT - in such a way that we have
the usual axioms of a category for associativity of composition, and the
existence of the identities which we require to be the ‘fuzzing morphisms’
Ae:

o (4, BT) x A" (B, CT) - A (4, CT):(a, B) > Boo

which satisfies

(yoB)ea = yo(Boa)

aoAde = o = o0 Be.

(We also require that fo(Be-f)=p-f for f: A- B, B: B—C.) We call
T=(T, e, comp), and the category 'y it induces, a fuzzy category over 7.
(Adepts at category theory should note (MacLane, 1971; Manes, 1975a)
that the notion of a fuzzy category is equivalent to the notion of a Kleisli
category.)

Having introduced the idea of fuzzy category we find that there is a fly
in the ointment, and it must be removed: We have been looking at o¢-
morphisms QX — QT and suggesting that the corresponding morphism
from QX to Q in X'y is a dynamics. But, unfortunately, so far we have
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only required X to be a functor on 2, not a functor on Jy. This suggests,
then, that we try to ‘lift’ the functor X on X" to a functor X on 'y Clearly,
X and X must act the same on objects. However, given a £ "-morphism
A — BT, the action of X will yield a 2 -morphism AX — BTX, whereas
X will yield a o ;-morphism AX— BYX, i.e., a -morphism from AX to
BXT. We note that one way of reconciling this problem is simply to in-
troduce for each object B a distinguished morphism

BA: BTX - BXT
Then define, for g: A—B=A - BT

gX: AX— BX = AX - BXT
to equal
AxS BTX S BXT.

If X is to be a functor defined in this way, then 4 must obey certain axioms
which make it what a category theorist calls a distributive law. In fact, it
can be verified that X is a lift of X if and only if it is obtained from X by
using a distributive law A in this way. Thus, we may always denote X by
X, for the appropriate distributive law 2.

For example, in the case X=— x X, and T'=2(")

021: (29) x X, - 22%%0; (S, x) > {(s, x) | s€ S}

is the only distributive law.
More generally, replacing 2¢™ with any T': Set — Set gives rise to the
distributive law

04: OT x Xy = (@ X X,) T: (P, x) > (in,T) (P)
where
in;: Q- 0 xXy:qg—(q,x).

Thus, there are many examples !

Once we have reached the stage of realizing that the proper setting for
the study of nondeterministic automata is the category of some functor
T using a functor X on 2 which can be lifted by a distributive law A to a
functor X; on X'y (Box 5) we can in fact show that many results holding
for X are also available for X,. We can show that each X-dynamics ‘is’ an
X,-dynamics, and we can show that each X;-dynamics may be ‘simulated’
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by an X-dynamics. Moreover, if we can do reachability theory for X, we
can also do it for X;. If we can do observability theory for X we can also
do it for X, if certain conditions concerning ‘T-algebras’ are met. Finally —
and this is a technical comment whose content is clearly beyond the scope
of this exposition — we may note that the proper setting for the theory of
minimal realization for these fuzzy machines is the treatment of (X, T)-
composite algebras.

Unfortunately, there is no space here to give the necessary background
on category theory to expand upon any of these results, or the earlier
results of Section 1. However, we can summarize our discoveries quite
succinctly. The idea of a morphism

0:0X -0

in a category o is the proper setting for the study of dynamics in a
deterministic world. [We noted that the notions of left and right adjoint
of a functor were crucial in studying reachability and observability, re-
spectively, for such dynamics; as well as for approaching the theory of
minimal realization.] What is perhaps most surprising is that dynamics in
a fuzzy world is a special case, namely that in which the functor X is now
an appropriate lifted functor X, and the category in which the action
takes place is a fuzzy category for some ‘fuzzing functor’ T. It is this
‘surprise’ that suggests that our general notion of a ‘Machine in a Cate-
gory’ of Section I is indeed a proper setting for system theory: for one of
the best tests of proper generality of a theory is that it is robust in the
sense that it can admit apparent extensions as special cases, rather than
requiring a proliferation of super- and subscripts for each new variation
that arises. In conclusion, we synthesize our overview in the mandala of
Figure 5.
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