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If Al is taller than Bill and Bill.is taller than Charlie, we
may conclude that Al is taller than Charlie. This fact is abstracted
mathematically by the statement that the relation "is taller than" ié a
transitive relation. Many other relations are also transitive: e.g.,
"greater than", "less than', "is isomorphic to", and "equals".

Certainly, if all relations were transitive, it would not be
an interesting property to study. The relation "does not divide"‘
(written [) is not transitive, for from the facts 3 ] 5 and 5 } 12, it
does not follow that 3 f 12.

Intuitively one feels that relations having to do with dominance
like "is better than" or "wins at chess from" or "is wiser than" should
be transiti;e. But they are not, and this is surprising. Stories abound
of chess masters who can beat everybody but a certain nemesis. This
nemesis may be a rather second-rate player and be beaten regularly by
many of the players that the chess master beats. Thus we have a case
where A (the master) beats B and B beats C (the nemesis), but C beats A.

This example is to a certain extent unsatisfying because the
reasons for it are unclear, or at least the problem may not be mathematical.
Perhaps the fault lies in some imprecision in the definitions. So let us
consider a better defined situation, one involving objects and events that
can be described in detail, and one which involves some interesting

mathematics.
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We will consider a game between two players involving three
dice, colored red, white, and blue for purposes of identification. Each
player chooses a die and rolls it, and the one who rolis the higher number
wins. The dice have been specially made for the game, and each face has
an integer between one and nine on it; opposite faces of each die are
identical; and the dice are fair in the sense that each side is equally
likely. Surprisingly, this game, which sounds perfectly fair, can be
rigged in such a way that the player who chooses the first die will lose
an average of five out of nine games. Let us see how this is possible.
The three dice have the following distinct numbers on their faces (each
repeated twice, recall).

red: 1 5 9
white: 3 L 8
blue: 2 6 7

If the first player chooses blue, the second chooses white; if
the first chooses white, the second chooses red; and if the first chooses
red, the second chooses blue. Look at the possible outcomes of rolling
two dice in each case (asterisks mark those for which the second player

wins):



blue - white white - red red - blue

2 3% 3 1l . 1 %
2 Ly 3 5% 1 6%
2 g% 3 g% 1 7%
6 3 y 1 5 2

6 Y 4 5% .5 6*
6 8% 4 g% 5 7%
7 3 8 1 9 2

7 y 8 5 9 6

7 8% 8 g% 9 7

5 wins for white 5 wins for red 5 wins for blue

The "dominant" die wins five out of the nine possible rolls, and thus
whichever die the first player chooses, there remains a "better'" die for
the second player to choose. |

In two recent columns [1, 2] Martin Gardner has presented a
number of other non-transitive games and situations. In particular there
is what is known as the voters' paradox in which the voters when presented
with pair-wise choices prefer A to B, B to C, and C to A. This is sometimes
called the cyclic majority problem. This problem has been studied by
several people [3, 4], and Usiskin shows that as the number of candidates
increases without bound there is a limit to how many of the voters prefer
A to B, B.to C, etc. (assuming that all such preferences are equal). This
limit is 3/4 of the voters preferring the stronger candidate and 1/4 the
weaker. For small numbers N of candidates, Usiskin derives values for P
the maximum preference: for N =3, P = ,618; for N = 4, P = 2/3; for

N = 10, P = ,732,



In his column [1] Gardner notes that Efron was the first to point
out the symmetry between the cyclic majority paradox and the non-transitive
dominance relation among dice, with dice playing the role of candidates and
the odds in favor of the dominant die being equivalent to the preference
for the stronger candidate of each pair. |

In this paper we will do two things: first we will show that
as the number of sides per die increases there is also a bound on the odds
in favor of the dominant die and that this bound tends toward 3/4 as the
number of sides goes to infinity. Second, we will present an algorithm

for finding sets of dice with d dice of s sides each.

The 0dds as a Function of the Number of Sides

Standard dice are made of cubes with 6 sides. Other regular
solids have 4, 8, 12 and 20 sides. Given N, an integer greater than 2,
one might be able to construct a solid with N sides each'equally likely
to "come up". Rather simpler is the resort to an old child's toy called
a dreidel. Historically a dreidel consists of a top with four flat faces
each bearing one of four letters of the Hebrew alphabet. This top is
spun and when it settles, one of the four faces is uppermost. It is easy
to conceive of an N-sided dreidel. This requires that for N odd one
either reads the face touching the floor, or better, replaces the N-agon
by a 2N-agon and duplicates each face retaining thus N different faces,
each appearing exactly twice.

To shorten up the following discussion we present a few

definitions and conventions:



The dreidels are numbered 1, 2, ..., d, and when
considered as pairs i dominates i + 1 where arithmetic

is done cyclicly so that d - 1 dominates 4 and d
dominates 1, etc.

Each of the d:s faces will contain a unique integer drawn
from the set {1, ..., d-s}.

The number on the jth face of the ith dreidel will be
symbolized by Ai,j' We agree to order the faces on each
dreidel in monotonically increasing order so that

<A for all i and all j. Sometimes we will

A3 < AL
refer to the ith dreidel as Ai'

3 is defined to be the number of different rolls of
dreidels i and i + 1 such that i wins from i + 1
(i.e., X is the number of pairs <j, k> such that

A. . > A k). Since there are s? possible rolls of

1,5 . Ti+l,
two s-sided dreidels, the probability that i wins is
2
xi/s .
Since the first player (otherwise known as the shill)
is presumed to be intelligent and is free to pick any
dreidel he wishes, we would like to make the smallest
of the xi's as large as possible. Usiskin shows, and
a moments thought will convince the reader, that this

can still occur when all the xi's are equal.

is defined as the number of faces of dreidel i + 1
h

o, .
1,]
that the jt face of dreidel i is larger than., It is the
number of ways that i can still win from i + 1 given that

the ith dreidel came up Ai 5° We have immediately that
2



Further we know that if side j of dreidel i is larger
than aij faces of dreidel i + 1 then side j + 1 of
dreidel i must be larger than at least aij faces of
dreidel i + 1, (ai,j+l 2 al,j) since Ai,j+l > Ai,j
by assumption 3.
Now we are ready to find the bounds on X, as a function of s.
Consider any column j in the table Aij' For some adjacent pair
(i, i + 1) it must be the case that A, . < A, . (because < is transitive
1,] i+l,]
and each of {A, ., ..., A, .} is distinct). Let us refer to dreidels A,
1,3 d,J 1
and Ai+l as B and C to simplify subscripts. For this pair, the maximum
possible advantage of B over C would be achieved if all the sides
Bj+l’ ceey BS were greater than all the sides of C. This would allow B
to win over C in s(s - j) of the possible spins. Furthermore, to maximize

the chance of B winning over C, B,, ..., B. should be chosen large enough
1 J

to win against C 3

C. ., even though they must looée to Cj, cees CS

l, o009 J—l

in short, they can account for j(j - 1) winning spins. Adding these

together, we see that the advantage x of B over C is bounded by

x<s(s -3)+3(3 -1) =82

.2 .
- s, + -
j ] J
and this bound must hold for each column j. We now ask for which column j
does this analysis give the smallest x? Simple calculus and some integer
arithmetic shows that the value j = [gl is the most constraining (where

[5] is the smallest integer = z). This gives a bound on x of

m

warned that there are two cases to consider: one for even s and another

X < lgg—-:—zﬁJ (where l}d is the largest integer < z). (The reader is

for odd s; the formula holds for both cases.)
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Table 1 displays the probability that dreidel i will win from
dreidel i + 1. This probability, p, is found by dividing x by 32; it
approaches 3/4 as s approaches infinity, which is the same limit found
by Usiskin as d approaches infinity. We will show by construction that
this bound on x can be reached when d is large enough so this is a tight
bound. For the general set of d dreidels with s sides the smaller of

the two bounds (ours and Usiskin's) applies.

Table 1

Maximum probability of winning (p) for various numbers of sides (s)

s P

2 1/2 .500
3 5/9 .555
4 5/8 .625
5 16/25 .640
6 2/3 .666
10 7/10 .%00

w 3/ .750



Construction of Dreidels

One may now ask how to construct all sets of d dreidels with
s sides for which dreidel i will win x out of the s2 possible rolls with
dreidel i + 1. The construction consists of three phases: first, generate
all appropriate partitions of x; second, build advantage tables from the
partitions; and third, attempt to construct sets of dreidels corresponding
to advantage tables.

The easiest way to understand the construction is to work
backwards from a set of dreidels. Consider the set of three four-sided

dreidels with faces

1
A2 =4 5 6 1
A3 =2 3 9 12

For this set of dreidels, Ai wins 9 of the 16 equally likely rolls with

Aie1

. For example, face one of Al dominates no face of A2, but the other
faces of Al each dominate three faces of A2. Similarly, the first three
faces of A2 dominate only two faces of AS’ and the fourth face of A2
dominates three faces of Ag. This information can be succinctly summarized
in what we call an advantage table. For this example, the advantage table
is:

0 3 3 3

2 2 2 3

1 1 3 y
Since Ai was constructed to win 9 of the 16 equally likely rolls with

Ai+l’ each row must add to 9. Since each entry in the table represents

the number of faces of a dreidel dominated by a certain face, no number
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in the table may be larger than 4, the number of sides on a dreidel in

this example. Also, since we list the sides of dreidels in increasing
order, the entries in the rows of an advantage table must be in non-
decreasing order (see assumption 6 above). Finally, note that in column j
the smallest entry must be less than j. To see that this is true, consider
the numbers on the faces of the set of dreidels (the Ai,j'S) as a matrix.
The smallest number in column j of this matrix cannot dominate more than

j - 1 faces of its successor dreidel, for if it did, then the number for
face j of the successor dreidel would have to be smaller than this number
which was assumed the smallest in column j; a contradiction.

Note that the choice of which dreidel to label Al is arbitrary;
but once that choice is made, the other names (A2 and A3) are given by the
dominance relations that obtain.

For the case of d dreidels with s sides and an advantage of x
out of s2 between adjacent dreidels, the rows of an advantage table consist
of partitions of x into s integral parts arranged from left-to-right in
non-decreasing order, where no part is less than zero or greater than s.
The partitions of 9 into 4 parts subject to these constraints are:

P, =0 1 4 4

1 P5 =1 2 2 4

P2 =0 2 3 4
P6 =1 2 3 3

P3 =0 3 3 3
P7 =2 2 2 3

P‘+ =1 1 3 &

(An interesting side problem, not explored here, is how many such partitions
of x exist.)

One can now easily list all matrices that could be advantage
tables for d dreidels selecting d (not necessarily distinct) partitions of

x as rows, subject to the constraint that column j of the matrix have an
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entry which is less than j. In listing all such matrices, we are not
interested in those whose rows are cyclic permutations of one another.
Thus, if the matrix with rows corresponding to partitions Pl, P3, P5 were

listed, the matrices P_, P_, P, and PS’ Pl’ P3 should be omitted. When

3°* "5 "1
this is done for the example we have been considering, twenty-two potential
advantage tables are found.

Now that we see how to generate possible advantage tables, we
wish a procedure that will, if possible, assign integers to the sides of
the dreidels, and if this is not possible, will tell us so as quickly as
may be. We present an algorithm that accomplishes this with reasonable
dispatch.

With each row i of an advantage table we associate a counter Ci
and a pointer Li which tells us at which element of the row the counter
is pointing. All counters are initialized to 0 and all pointers to 1, so
that every counter points at the left most element of its row. A counter
is said to be "satisfied" if the number it holds (the contents of Ci) is
equal to the element of the advantage table at which it points.

Let N be an integer initialized to 1. The algorithm has 6 steps:

1. Find a counter Ci such that Ci is satisfied and Ci—l

is not satisfied. If no such counter exists, no set
of dreidels exists for this advantage table, and the
algorithm halts.

2. Assign the integer N to the side corresponding to the

element at which this counter is pointing. (That is,
if L; = j, assign N to side A; j')

2

3. Increment N by 1.
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4, Increment Li by 1. (Move counter i one position
to the right.)

5. Increment Ci—l by 1 (increment the unsatisfied
counter above Ci)'

6. Repeat steps 1 - 5 until either all counters move
off the right end of their rows ("moved off" counters
are considered to be not satisfied) or the algorithm
halts in step 1.

Note that Li is always exactly one greater than Ci-l for all i,
but the algorithm seems easier to understand if we introduce the pointers
explicitly.

‘ Each pass through the algorithm assigns a number to one side of
one of the dreidels so in d-s passes we are guaranteed to exit from step 6
unless we fail earlier.

Because in step 5 we increment the counter of the row preceding
the row to which we assign the integer N, each counter tallies the number
of sides on the succeeding dreidel that have been '"taken care of" (by having
integers assigned to them). Since we are assigning integers in increasing
order, we cannot assign a value to face j of dreidel i until aij sides of
its successor have been assigned smaller integers, where (aij) is the
advantage table. Thus it is that we wish to work with satisfied counters.
But now consider two successive satisfied counters. If the lower one is
processed first, it will mean that another side of the second of the pair
of dreidels will be assigned. But since the upper counter is satisfied,
we know that we have already assigned just exactly enough sides to the
second dreidel. Consequently, we look for a satisfied counter C. such that
Ci—l is not satisfied. Figure 1 shows the application of this algorithm.

to the advantage table shown. Stars are used to mark satisfied counters.
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We have programmed this algorithm in APL (see Figure 2). The
inputs are simply ADVANTAGETABLE, the matrix (aij); D, the number of
dreidels; and SIDES, the number of sides. The output consists of a matrix
FACES, containing in the i,jth position the number of the jth face of the
ith dreidel, and a logical flag SUCCESS which is set to 1 if a set of

dreidels is constructed and to 0 if none is. This flag is used by the

output routine PRINT which displays the dreidels.

Advantage Table Faces of Dreidels
Pl =0 1 4 4 Dl =10 3
P5 =11 2 2 4 D2 = 12] 5] 6
P6 =1 2 3 3 D3 =114

Cl 0% 0 0 1% 1l 1l 2 3
Ll 1 2 2 2 3 3 3 3
C2 0 0 1% 1 1 2% 2% 2
L2 1 1 1l 2 2 2 3 4
C3 0 1% 1 1 2% 2 2 2
L3 1 1 2 2 2 3 3 3

Pass 1 2 3 L 5 6 7 8

Figure 1. A time hisfory of the assignment algorithm. In step 8 no
satisfied counter is found so the algorithm fails.
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V DREIDEL ADVANTAGETABLE:AT:FACES:CANDIDATE:POINTER:COUNTER:VALUE:SUCCESS
[1] AT«ADVANTAGETABLE ,Dp” 1
(2] VALUE+0
[3] COUNTER+«DpO
(4] POINTER+Dp1
(51 FACES+«(D,SIDES)p 1
(6] NEXT:FIND COUNTER
[7] +~QUTPUT IF~SUCCESS
(8] FACES[CANDIDATE: POINTER[CANDIDATE]]+VALUE+VALUE+1
[9] POINTER({CANDIDATE ]«+POINTER(CANDIDATE]+1
[10] COUNTER[ABOVE CANDIDATE]+COUNTER[UABOVE CANDIDATE]+1
[11] +NEXT IF(v/POINTERSSIDES)
[12) OUTPUT:PRINT

V FIND COUNTER
(1] CANDIDATE+«(((POINTER-1)GAT)( :1]=COUNTER)/\D
[2] +FAILURE IF 0=pCANDIDATE
[(3] SUCCESS+1
[u] CANDIDATE<«CANDIDATE[1]BACKUP 1+CANDIDATE
[5] +0
(6] FAILURE:SUCCESS+0

V B+C BACKUP L
(1] B+C
(2] +0 IF~(ABOVE C)ek
[3] B«(ABOVE C)BACKUP(L=ABOVE C)/L

V S«ABOVE R
[1] S+1+D|R-2

V L«A IF B
[11] L+B/A

Figure 2
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We used this routine, together with several others, to generate
advantage tables, etc., to try to construct sets of dreidels with up to

seven sides. Some of the results are tabulated in Figure 3.

ComBression

The set of four six-sided dreidels (dice) presented in Figure 3
is claimed to be the only set with an advantage of 2/3 and yet they look
almost nothing like Efron's set presented by Gardner with the same advantage.
The reason for this is that we have chosen to make eaéh side unique. To
convert our set of four six-sided dreidels to Efron's dice we employ a
technique called compression. If on one particular dreidel two successive
integers (N and N + 1) appear, replace N + 1 by N, N + 2 by N + 1 and so
on for all integers (on all the dreidels) larger than N. Repeat until no
successive integers appear on the same dreidel. This converts the set
given in Figure 3 to:

1 1 5 5 5 5
4 4 4 4 4 u
3 3 3 3 7 7
2 2 2 6 6 6
which is the same as Efron's, except that we start with 1, and he starts

with 0.
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