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ABSTRACT

This paper updates our design of a semantically directed vision pro-
cessor. The system will carry out model-directed analysis of outdoor scenes
by applying semantic knowledge at an early stage of processing. The goal is
to quickly and flexibly interface low-level visual features (e.g., edge de-
tectors, texture and color analyses) and high-level conceptual knowledge (e.g.,
trees stem from the ground, general knowledge associated with road scenes,
and the like) in the perceotion of complex images.

The computational structure for rapidly extracting visual features
is called a '"processing cone.”" The cone consists of parallel spatial arrays
of micro-computing elements, each of which operate on a local window to reduce
the data layer by layer. Information flows up, down, and laterally in the
cone via a sequence of local parallel operations. Routines for detecting
objects will examine the data at the top of the cone and will selectively an-
alyze the lower level mass of data. Rough confidences of the presence of ob-
jects in various regions will be passed to the model builder.

Model construction will employ many types of information in modular
subsystems. Perspective and occlusion routines which utilize heuristic and
mathematical analyses can be applied in both procedural and declarative form.
The presence of partial models can be used to direct the system through
a search space of possible models. Semantic information structured as sub-
models will be used wherever possible to direct this complex process. A
deductive system will be employed to check for model consistency at each

stage.
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I. INTRODUCTION

I.1. Low-level Processes and Semantics

Much of the previous research in computer vision ar scene analysis
has been concentrated in the constrained worlds of "blocks" or laboratories
with objects of simple shape, straight lines, and little texture and color
[1-8]. This concentration is understandable and valuable insights into com-
plex processes have been provided from this domain. Some of the techniques
developed will undoubtedly continue to form a basic library for some years to
come; many others will be discarded almost immediately. However, it is gen-
erally agreed among researchers in this area of artificial intelligence that
the world of polyhedra has served its purpose and that there appear to be
two long-range directions for vision research to take.

First, there is a need to cope with the enormous complexity of real
world scenes. This will force consideration of many global properties of
scenes as opposed to the micro properties employed in the block's world and
elsewhere. The second direction involves the interface of computer vision
research with powerful semantic techniques with the ultimate goal that percep-
tion will take place as a knowledge-directed process. As Tenenbaum [9]
points out:

We feel that the time is now ripe to confront a number of these

crucial perceptual issues--information overload, segementation of

textured objects, representation of irregular objects, generality

of strategies--that do not arise in the blocks world. Instead of

simplifying the environment, we must learn to cope with the com-

plexity of real-world scenes by capitalizing upon their natural
redundancy of descriptive features and contextual constraints.

These two avenues co-exist in several pieces of recent research [9-16]

including our own [18-21]. Consideration of both avenues simultaneously is
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a reasonable approach. Lately, work in speech recognition [25-26] has been
blending the syntactic and semantic approaches of natural language processing
with the more classical approaches of pattern recognition applied to acous-
tical data. The redundancy of information present in the complexity of the
real world, in both vision and speech, provides opportunity for applying
high level information in a very natural way, thereby affecting computational
savings which the complexity alone would belie.

The "semantics" or "meaning" associated with a visual image depends
to a great extent upon the intent of the system perceiving the image. This
is particularly true of biological systems, which seem to tune their percep-
tual system as a function of the goal of the organism, e.g., driving a car or
searching for a lost set of keys. This "tuning'" suggests a considerable
amount of goal-directed processing, even to the lowest levels in the percep-
tual system.

It is very difficult to conceive of a perceptual system using local
analysis isolated from the context, meaning, and goals existing at higher
levels. On the other hand, it is fairly easy to see how the interplay of
low-level analysis and higher-level processing can be very valuable. By al-
lowing semantic feedback to direct complex processes such as region forma-
tion and edge detection in the presence of texture, color variation, and
shadowing, problems which are unyielding to isolated analysis may succumb
to an integrated approach. It very well may be true that no region forma-
tion algorithm can ever work properly without semantic feedback. We may
have to let the low-level systems take guesses at parameter settings and
tune in one direction or another as a result of difficulties in interpreta-

tion in distinct subareas.



I.2. A Cognitive Experiment

As a simple demonstration of our use of internal models and semantics,
one need only look at his own surroundings through a tube of rolled up paper
and examine what he "sees" as opposed to what he "knows" is there. The
junction of low-level processes and model building can be examined in a human
perception experiment of constrained vision. Suppose we supply a person with
a large photograph 1 foot square, and constrain his view of it through a
movable cardboard sheet with a 1/2" diameter circuiar window so that at any
single moment he sees a very local region of the photograph. If this indi-
vidual is given the problem of determining roughly what is in the picture,
we feel that he will use very different procedures than those used by the
current vision systems. Rather than attempting to construct an outline draw-
ing, he will look for prominent features as clues to what the image repre-
sents. He will probably scan quickly in many different directiomns, but once
he finds a prominent feature, his strategy might become highly context sensi-
tive and model-directed. He might form hypotheses which encompass large
numbers of assumptions and use these to direct the processing until they are
ve;ified or disproven.

Informal experiments of these conjectures were conducted using pro-
jections of 35 mm slides. A half dozen individuals in group discussion car-
ried out an analysis of the images. We were able to observe the entire image as
well as the position of the moving window. The window was small enough so
that texture was discerned somewhat, but difficult to use. The result of the
analysis was very similar to the feature search and model building process
described above. The final models of the natural scenes were usually correct

although quite rough. An interesting note is that 70-90% of the information
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in the final model was obtained during the first 30 seconds when the stu-
dents were allowed to view the scene for 5 minutes.

Our interest here is not to assert a model of human problem-solving,
but rather to emphasize the need for higher-level approaches to computer vi-
sion. The difficulty of human perception in this kind of experiment gives a
useful persepective on computer vision and its difficulty. We have é hard
time when absorbing information locally and sequeﬁtially. The implications
are that we use very different kinds of processes; otherwise we should lower
our expectations of performance of computer vision systems. Before accepting

the latter conclusion, it would be wise to explore the former possibility.

I.3. An Overview of the System

As we see it, one of the crucial problems is the interface between low
level visual information associated with local features and high level con-
ceptual knowledge. We propose that this can be done by quickly filtering up-
ward processed information from local features, finding prominent features and
possible objects in the scene, and then invoking world knowledge to direct
further processing. Thus, the procéssing initially will be bottom-up until
hypotheses are formed and then will switch to top-down. The desigﬁ that we
outline is an ambitious project. Consequently, we will discuss some of the
distiﬁct subproblems whose solﬁtion will contribute to an effective vision
processor, but which can be independently investigated.

Figure 1 is a sketch of the major subsystems and information flow in
the vision processor, called VISIONS (for Visual Integration by Semantic In-
terpretation of Natural Scenes). Although there have been refinements, this

block diagram will serve as a reasonable overview. The goal of the system
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is to develop a conceptual three-dimensional (3D) model of the important in-
formation perceived in a two-dimensional (2D) image. This model might in-
clude the labelling of all major regions ("objects'") visible in the 2D image;
the 3D model might take the form of a graph structure whose nodes and arcs
show the relevant attribute-value pairs associated with each object and the
relationships (spatial, functional, temporal) between all objects in the scene.
This would allow a robot to both answer questions about the scene and to
achieve goals (e.g., generate navigation plans) using information from the
scene. In a system expanded past the point discussed here, the 'plans' gener-
ated by an organism might be used to modify the visual processing itself,

thereby facilitating the execution of those plans.

The system functions by applying parallel local operators designed to
reduce the considerable amount of information present in the scene. Parallel
line finders, region growers, texture analyses, color mappings, etc., will
operate on a 2562 grid of the original image and reduce it layer by layer to
an image on a 162 grid or even less; in fact the cone reduces to the 1 x 1
level so that parameters such as global average gray level and variance can

be extracted.

The vision routines examine fairly completely the upper layers of the
cone, and much more selectively, the large arrays af the lower levels. They
return a value denoting the confidence that a particular object is present.
Thus, the bulk of the volume of data can be examined under the direction of

the model builder which uses information in the upper layers as well as sem-

antic knowledge, a partially completed model, and expectations concerning the
general setting of the image.
Construction of a plausible model will involve retrieval of conceptu-

al information from a base of world knowledge. There is a wide degree of

latitude in the form of the semantic base; it could range from a semantic
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net to an extended theorem prover or deductive system. The model builder,

however, must be a flexible system which accesses and manipulates many forms
of information: the output of procedures operating upon visual data in the
cone, semantic knowledge of the world (cars move on roads), procedures which
deal heuristically with perspective, occlusion, horizons, the context of the
scene (e.g., afternoon, summer, wooded area far from ocean), etc. Some of
the latter information could be embodied in frame-like submodels [27], called

context frames, so that expected or typical subscenes and contexts could be

dealt with. This allows the horizon dividing the ground plane to be an ex-
pected scenario; or a road scene with a road, cars, trees, and telephone
poles to be treated as a unit.

Minsky [27] has argued that at some high level of cognitive processing,
sequential analysis becomes necessary--that parallel processing mechanisms
which have been proposed fail to deal with the figure-ground problem, perspec-
tive, occlusion, and the need to deal with complex symbolic structures as
units. We fully agree that for many of these problems, the more intuitive
sequential processes may be appropriate. However, we have been motivated by
the idea that the sheer masses of visual data that are input to the human
brain cannot be sequentially processed. Sequential analysis of two adjacent
textured regions might be a computational quagmire; however, once the homo-
geneity of texture and therefore the distinctness of each region is estab-
lished, then very possibly sequential processes might be appropriate. Now,
this in no way implies the sufficiency of parallel processes for perception,
but we believe many of the early stages of machine processing (defining
major regions, boundaries, textures, colors, etc.) are more appropriate for
parallel processes of the type we will describe. In fact, the interface

between these parallel processes and the higher level sequential processes
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occurs quite naturally at the top of the cone in the system we propose.

I.4. Review of Previous Research

We review briefly those areas of research which are, we believe, in
keeping with this philosophy and which are most similar to our approach. We
also note in passing that most of the more successful recent projects in
AI share the general philosophy of utilization of semantic information coupled
with model-directed processing [e.g., 11,25,28,29].

Tenenbaum [9] has described the preliminary structure of a knowledge-
based perceptual system. Though this system operates in a constrained world
of walls, doors, desks, chairs and telephones, it begins to utilize higher
level semantic information. Tenenbaum's approach is to define a two-stage
procedure for distinguishing the object sought from other objects appearing
in a scene. The system relies heavily on such data as color and range (rel-
ative size) to quickly eliminate most objects from the set of possible ob-
jects. After this reduced set is found, features which pairwise disambiguate
the objects are employed. Contextual information is utilized to form strat-
egies directing search for a particular object or hypothesizing objects which
might be nearby any objects found. Currently, the SRI work is organized to
interactively develop both the features sufficient to distinguish individual
objects and the strategies that can efficiently use them. A general model
of each object in the scene is stored internally; when an object is found,
its size and orientation is correlated with the internal model which is
then displayed via a graphics display.

Possibly the most successful effort to date in the analysis of out-
door scenes is that of Yakimovsky and Feldman [11]. They utilized semantic
information in a decision-theoretic approach to the analysis of several road

scenes. The information includes properties of the boundaries between re-
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gions (e.g., how likely is the adjacency of two regions) and properties

of the regions themselves (color, shape, etc.). After initial clustering
of picture points to form regions, a decision-tree analysis is used to
further join and then identify regions according to a maximum likelihood
analysis based on these properties. For more complex environments, we feel
that the a-priori conditional probability of a feature given a region cannot
be reliably estimated (usually the number of samples is very small) and
changes drastically with respect to a different context and over time.
Thus, it is becoming apparent that the inclusion of more complex semantic
information is necessary; furthermore, the nature of this information must
be such that it can be utilized in a highly flexible manner.

Our layered parallel processing structure (described in Section II)
is very similar to the "recognition cones" of Uhr [30,31] and we have borrowed
a portion of that name for our computational structure. Uhr describes a cone
that transforms and reduces information layer by layer to a single cell. Al-
though he discusses a number of possible preprocessing techniques for machine
vision, real scenes were not examined; most of his effort has been directed
towards classifying, describing, and in general applying parallel conceptual
processes to simplified symbolic problem domains. Our focus is the develop-
ment of techniques that work on real visual data from complex scenes.

In the conical structure, we seek the computational reductions that
seem intuitively possible. In the spirit of Kelly [22], we wish to use
small am&unts of processed data to direct the examination of the vast amount
of raw data. Kelly examined the problem of face recognition by averaging
8 x 8 arrays of raw data to get an averaged reduced picture. Lines found by

sequential techniques in the reduced image are used as plans to sequentially
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find lines in the 64-fold larger image. Kelly reports a 40 to 1 reduction
in computation using only this one stage of data reduction. He has effec-
tively demonstrated the power of this hierarchical direction. Our work that
is in progress makes available a whole range of parallel operations, gener-
alizes the degree and type of transformation, and allows parallel projection
back into the expanded image.

Bajcsy has been systematically investigating texture measures [12],
based on Fourier techniques applied to both aerial photographs and outdoor
scenes, as features for higher level analysis. Coupled with this analysis
has been a constrained semantic network characterizing features of the scenes
and relations aﬁong regions and objects with good results reported. Bajcsy
and Lieberman [13] have attempted to extend this work to outdoor scenes where
the descriptions include color and texture at the micro-level (e.g., color
and shape of a grass blade) which are then structurally joined, producing a
description of the entire image. This effort is still underway and results
are inconclusive but promising.

A group at Carnegie~Mellon [23] is preparing to extrapolate to a vis-
ion system the hypothesis and test paradigm successfully used in the HEARSAY
System [25]. This paradigm involves hypothesizing a partial model with one
type of information, testing its validity with other types, reformulating
the model, etc.; its application to vision is still in an early stage of
development and looks like an interesting effort.

Preparata and Ray [15] have described an approach to the recognition
of events in two dimensional natural outdoor scenes. While their approach
has some interesting formalizations at the conceptual model building level,

it has some basic weaknesses in terms of practical applications. They util-
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ize an input which is essentially the scene segmented into regions according
to color and avoid dealing with the full complexity of visual data. A graph
structure is created based on length of common boundaries and the vertical
relationships between all regions in the image, along with the size of each
region. The goal is to match this graph with a roughly similar subgraph ex-
tracted from a semantic network. However, problems of perspective, occlu-
sion, and variability of spatial location of three dimensional objects in a
two-dimensional image make this measure quite weak. We feel that it would
be exceedingly difficult to extend this approach to handle the full range of
complexity inherent in most outdoor scenes.

Bullock [17] has an excelient review of edge detection operators
applied to real world scenes. The problems of finding boundaries of texture
elements (micro-structure) and boundaries of objects with surface texture
(macro-structure) are fully discussed. Extensive experimental results com-
pare the performance of several algorithms. -The problems of edge-detection
on the two levels bear resemblance to some of our current work on region
growing across both micro- and macro-texture [20] by extracting properties
of local regions and structurally relating them. Bullock's work is also
leading towards the inclusion of semantic information for higher level
scene analysis [16].

Color is an area that is not very well understood. Many of the groups
that are developing complex systems for scene analysis are employing color
attributes of some form. However, the difficulties of mapping visual tri-
stimulus color data into symbolic descriptors are formidable. A straight-
forward but effective use of color and color differences in region growing

was reported by Yachida and Tsuji [24]. Again, the application was con-
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strained to homogeneous solid colors of known type; this approach provides
only limited insight to the problems we face.

We should also mention that a number of researchers are currently
examining the effectiveness and economy of multi-semnsory data from touch-
sensors, mechanical position sensors on wheels or camera, radar, etc. [9,32,33].
In the system to be described below, only visual data is considered since we
are trying to develop techniques to deal with this rich source of information.
However, we are in no way precluding the use of additional data; in fact,
it can be incorporated in a natural way into the system we envision.

We make no claims regarding the completeness of this overview. There
are important areas ignored such as parallel machines for image processing
[34~41], mathematical formalisms for systems [42-43], biologically oriented
systems [44-46], aﬁd various sub-areas including a multitude of methods for
dealing with texture, color, shape, structural description, segmentation,
etc., which should be included in a comprehensive review. It does, how-
ever, provide a flavor for some of the recent research in this area and pro-

vides a context for a discussion of the system proposed here.
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II. LOCAL FEATURES AND PARALLEL PROCESSING

II.1. Hints from Pattern Recognition

Research in pattern recognition has made it unmistakably clear that
identification of the category of a pattern of information cannot be separ-
ated from either selection of the features to be employed or the pragmatic
consideration of the dimensionality of this data. Suppose we utilize an ar-
ray of input points that ensures fairly good resolution, say 256 x 256. Then
each snapshot of a scene is comprised of 64K points; each point consists
of 6 bits (64 distinct levels) of intensity for each of 3 colors. In
terms of the classical approaches to pattern recognition, this is a stagger-
ing computational overload. From this point of view, an immediate necessity
is the reduction of this data to a manageable level while retaining a subset
of the most relevant data or by carrying out a transformation which empha-
sizes that data useful for classification. However, the problem we have here
is far more complex than the typical pattern recognition problem, irrespec-
tive of the dimensionality of the patterns. Nevertheless, we ask the same
questions: How can the data be usefully reduced in size and which features

should be employed?

1I.2. Data Reduction

Many of the approaches in scene analysis to date have operated on the
raw digitized data exclusively. Visual systems in the animal world, however,
carry out extensive parallel preprocessing. We think this is highly desir-
able in our problem domain. By automatically reducing the data and preserv-

ing coarse, though significant, information, detailed analysis of critical
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regions of the image can be selectively carried out where it would not be
practical across the whole scene. Our goal here is to specify the type of
information that should be retained and a simple structure for this data
reduction.

Figure 2 is a sketch of a computational "processing éone" [19].
It represents a parallel structure which transforms and reduces large amounts
of visual data in a layered fashion. The raw data is depicted at level 0 on

a 2562 grid. The remaining layers are square arrays of size: 1282, 642, e e e

22, 1 (although the top of the cone is not shown in Figure 1), with each point
at a particular level storing the information extracted from a subcone below
it. In this way, spatial relationships of extracted features are preserved.
This system generalizes the computational advantages described by Kelly in
his face recognition system [22].

The goal of the structure is to bring in uniform, automatic,
cessing functions which reduce the dimensionality® of huge arrays of data in
such a way as to enhance various features useful to perception of 2D images.
Obviously, this requires exploration of the utility of the various charac-
teristics (boundaries, regions, texture, color, shape, etc.) in the image,
the techniques for quantifying each, and finally their mapping into symbolic
information at the upper levels of the cone (say the 162.or 82 levels).

Information flows up, down, and laterally within the cone via a se-
quence of local parallel functions. Each function will be a procedure spec-
ified by a computer program (subroutine) operating on its window of input
values. Thus, we simulate an array of general purpose micro-computers.

These three major types of transformations have been labelled reduction, pro-

*
Note: By dimensionality, we refer to the number of points in an
array, not the two dimensions of the planar array.
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jection, and iteration, respectively. At any moment in time, a particular
array is operated upon by a set of identical local functions that is uniform-
ly duplicated across the entire array, each with its own window. The windows
are currently of size 4 x 4 or 5 x 5, and are somewhat overlapping to avoid
problems such as line boundaries falling on window borders. Let us describe

each of the forms of computation within the cone.

Reduction (Upward Processing)

As we have already described, a function maps a 4 x & array (which is
associated with its 2 x 2 center) of values on level n into a single value
on level n + 1.% Adjacent windows shown in Figure 3 are placed on non-
overlapping 2 x 2 centers of 4 x 4 neighborhoods. As an example application,
a local function which outputs the average of the 2 x 2 center, if repeated
between all levels, will produce an "average" picture at the 16 x 16 level.

Each point on level 4 will be the average of the 16 x 16 subcone below it at

level O.

REDUCTION

One should note that 4 levels of reduction have been performed but that only

a single function definition is required.

o .

For simplicity we refer here to a single value associated with
each cell at each level. Actually, each cell has a k-tuple of values for
some constant k. This allows the system to function with a memory or
carry out multiple parallel processes.
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Figure 3. Non-Overlapping 2 x 2 Centers of 4 x 4 Neighborhoods
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Iteration (Fixed Level or Lateral Processing)

Here a local function is defined to operate repeatedly on a 5 x 5
neighborhood at a given level and map the resultant value into the central
cell of that neighborhood. The size of this neighborhood has been chosen
for symmetry about the central cell and so that each window covers a reason-—
able area, but of course this could be varied. Every cell in the array looks
at a neighborhood so that all possible 5 x 5 windows are used in the computa-
tion (with suitable conventions for edge effects); two of these neighborhoods.
are depicted in Figure 4.

The iterative mapping is not significantly different from a number of
parallel processing machines. However, we do not limit ourselves to logical
functions of the points in the window. We see uses such as parallel region-
growing, low-pass filtering or blurring, color normalization of raw three-
primary color data, local examination for certain conditions or flags from

above or below, etc.

Projection (Downward Processing)

Each point, considered a member of a 2 x 2 center of a neighborhood,
has a parent cell which this neighborhood would map into by reduction. Suc-
cessive reductions denote a set of ancestral cells, exactly one cell on each
level above the given cell. If a cone has already been computed, then in-
formation can be passed down in parallel by making all the ancestral infor-
mation of a given cell available during projection.

An example of projection is the doﬁnward mapping of a mask which has
been set at the 162 level. This mask could be set in many ways. It could

be the result of growing a region about, let us say, a blue point in the
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upper portion of the image. Consider the following sequence in a simple,
well-constrained domain: reduction by averaging, region growing by iteration
at the top level, and then projection downward; this could proceed in a frac-
tion of the time required for region growing directly at the 2562 level.* oOf
course, this description ignores the practical difficulties of automatically
setting the proper thresholds in various areas of the image.

Our particular implementation of the projection process allows a mix-
ture of iterétion and projection. In addition to the 5 x 5 neighborhood dur-
ing the iteration process, the ancestors of the center cell are also provided.
Thus, a local iteration function operating on level 1 will have availabie
simultaneously all the storage elements of the 25 cells of level 1 and the
single ancestor cell from each of levels 2,3,4,...,8 (level 8 is (1 x 1). Pure
projection takes place by operating only upon the ancestral information while

combinations of iteration and projection are also possible.**

II.3. Other Local Functions

Parallel preprocessing techniques for extracting features are currently
under investigation [19,20]. These include procedures within the cone to
detect lines and boundaries, to quantify texture,coarseness and orientation,

grow regions, name colors, characterize the straightness or irregularities

*Region growing in the parallel structure proceeds by expanding the
boundary of the partially grown region. The rate at which the region is grown
depends upon the location of the "seed" point in the region. Region growing
in a single direction proceeds linearly and therefore the parallel process
of iteration on level 0 could take as many as 255 iterations before termin-
ation. :

**If combinations of reduction with iteration and projection prove
valuable, this flexibility can be provided. In the current implementation,
reduction is a distinct process. However, sequences of reduction and iter-
ation projection can achieve many of these algorithms without any changes.
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of boundaries, extract shape, features, etc. Each of these sub-problems is
quite complex and requires individual investigation.

There are many interesting ways to allow these features to interact
and produce results more useful than could be extracted individually. Two
investigations of cooperating processes are'currently underway. A conserva-
tive line-finder which returns prominent line segments can be interfaced to
a conservative region grower which returns the centers and rough size of
prominent regions. The two cooperating processes may be less sensitive to
noise, texture, and the general clutter often found in unstructured scenes.

A particularly interesting investigation involves a region grower that
is guided by both average color and texture concurrently. This takes place
near the top of the cone and may provide a flexible means of dealing with

both micro-texture and macro-texture simultaneously [20].

II.4. Focus of Attention

Now we will describe a modification in the layered data structure that
was considered. An interesting biological mechanism suggests itself as a
way to reduce the data to be processed the foveal view of the human visual
system. Only the central field of vision (several degrees) is in focus and
carries detailed information of the scéne; the remaining field of view seems
to transmit information on a relatively gross level. Motion can be detected
on the extreme periphery, but not detailed color, form, etc. As a simple
experiment, one need.only look at a particular object and examine what he
"sees" on the periphery. However, it seems we "know'" most of what is in a

particular scene by using internal models to add a large amount of informa-
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tion to the gross view.*

The suggestion for our model of a mechanical visual system is not to
process all areas of the scene with equal effort. Presumably, if the region
of interest were known, the major portion of cémputation could be carried
out on the points comprising this region and points falling outside this
region would receive only crude processing. One way in which this type of
"selective focus" may be approximated in the proposed system is by construct-
ing the first layer in the following manner. The central field samples dense
information and areas progressively further from the center sample informa-
tion with an increasingly coarser grid. The region of "focus" or central
interest is resolved at the finest level and surrounding regions become less

and less detailed, as shown in Figure 5.

256x256

128x128 64x64 32x32 16x16  8x8

\’/

Figure 5. First layer of a system employing a "foveal view"

* I3 L3

For those interested in more detailed and biologically motivated
models of vision processing that bear resemblance to the ideas in this
paper, we refer you to [44-46].
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If necessary, a layered processing system similar to the original
layered system can now be constructed by mapping central information to the
level of coarser surrounding bands and repeating this process with the new
larger central area. Of course, the region of central interest may be shift-
ed across the entire scene by altering the camera position. Although this
is an interesting structure and might be useful, it will not directly affect
the success or failure of the visual perception system propoéed here. There-

fore, we will not employ this mechanism in our initial research.

II.5. Comparison with Past Parallel Processing Machines

The various layers of processed information for each of the functions

employed will be assumed to be simultaneously available to the vision rou-

tines and model builder. One could think of computational modules at each
cell in each layer that can compute any of the necessary functions desired.
Then we would allow the higher level processes (Sections I-V) to control the
switching of the functions on all cells. In the limit one can imagine a
very simple general purpose micro-computer at each point in the array at each
layer. We feel that this can be intelligently discussed only when we under-
stand the amount, the complexity, and the manner of use of the processed data.
There has been extensive research on the design of general image
processing machines and parallel transformations from the late 1950's to the
present [34-40]. Most of that effort was not concerned with any particular
application. The design that is outlined here should not be hastily ;ompared
with such general purpose systems. Any of these structures that can effect-
ively perform our computations could be utilized in our scene analysis. For

the time being, however, we refer the interested reader to recent papers
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which will serve as an effective introduction to this area. Additionally,
it should be pointed out that the limitations associated with Perceptron-
like parallel processing [41] are not a factor here because of the fundament-

ally different structure and the nature of the processing involved (sequen-

tial aﬁd multi-layered parallel with feedback).
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III. THE VISION PROCEDURES

Once a sufficient set of features have been extracted at the top of
the cone, the vision procedures provide one form of interface between the
processed data and the model builder. The purpose of these procedures is to
determine roughly the likelihood of the presence of varioﬁs objects in the
different regions whose characteristics have been tentatively identified.

One vision routine will be developed for each major object and/or region which
may aprear in the scenes being analyzed. Thus, the vision routines may be
considered to be procedural representations of objects as embodied in a semantic
net or axiomatized in a formal deductive system.

The purpose of these vision-routines is to examine the visual informa-
tion resident iﬁ the cones and, by using advanced pattern recognition tech-
niques (both heuristic and mathematical), to provide a likelihood that the
object which the routine is designed to detect is actually present. Each
routine contains explicit information on how to utilize the features necessary
for the recognition of a particular object and their importance.

Pattern classification is generally viewed as at least a two-part
procedure: feature extraction and classification. The selection of a set of
features upon which the decision will be based is ﬁost crucial. Reliability
of decisions is directly limited by the quality of information in the feature
measurements. We have already discussed the extraction of some features
through extensive parallel preprocessing. Now the task is to determine the
subset of information from any of the layers that signal the presence of,
say, a tree. We must decide which of the concepts associated with an object
have measurable and felatively invariant visual components (sometimes depend-

ent upon such things as the season of the year, etc.). Some features
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describing a tree are color, shape, size, and texture of the trunk and
foliage.

Features from upper levels which are simple functions of the processed
data may be quite useful. There is a great deal of flexibility in writing a
procedure to examine specific portions of the information. The uppermost
layers contain the coarsest information, but they are of low dimensionality
so they can be examined quickly in a sequential manner. The rough shape,’
color, and texturé might be sufficient to determine the likely absence or
presence of a tree. However, since any of the more detailed layers can be
accessed, as we pointed out earlier, specific areas may be selectively exam-
ined to provide whatever additional information is required. Features which
are effective in separating some pair of categories (objects) may be partic-
ularly useful in reducing critical ambiguity [9,47,48].

The second phase is the classification process. Here we view this as
determining the likelihood of the presence of the goal object given the
values of the features measured. The goal here is to get a coarse evaluation
such as "improbable," "low," "medium," "high," "almost certain." This
crude decision information will be manipulated by the model builder so that
the object identification can be integrated into a global model of the scene,
with associated global confidence.

Two different routines, say the water routine and the sky routine,
looking at the same region of the image, may report the presence of water and
sky, respectively, with differing confidences. The features extracted in

the cones might be represented as follows:
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The routine associated with sky might hypothesize that the region contains
sky with confidence .92, while the water routine may look at this same region
and hypothesize that the region is water with confidence .53. The model
builder is then responsible for determining which of the two objects is actu-
ally present using higher level information and perhaps requesting that addi-
tional measurements in the cone be made in the region under question. A
more complete discussion of the use of "fuzzy" or "imprecise" information may

be found in Section V.
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IV. REPRESENTATION OF KNOWLEDGE

One of the prime goals of this research is to determine how to bring
knowledge of the world (both general and specific) to bear upon the visual
perception of images. The image will be processed for the purpbses of iden-
tifying all large or "important" objects, and construction of a rough 3-D
model of the scene. By 'object" we mean each physical region whose bound-
aries should be identified (such as sky), although they are not literally
objects (in the sense of manipulatable objects).

Useful knowledge might be of a general form--that trees are green
and basically immobile; that people have two feet, are potentially mobile,
and often appear on sidewalks, which are elongated planar objects; and that
if the sky appears in an image, it usually appears above all other objects.
Thus, we are concerned with spatial, temporal and functional relationships
between the visual events of interest as well as 2D and 3D types of infor-
mation. The extensive base of such general information allows one to view
the world in the highly structured way in which it exists. In addition,
there might be available specific information about the environment under
consideration. This might vary from a list of the objects that are likely
to appear in the image to a complete topographical map of all objects in the
environment. This information must be organized in a form which allows easy
transformation into visual processes; that is, in such a way that it inter-

faces naturally with the visual analysis to be performed.

IV.1l. Deductive Semantic Processes

The semantic information can be embodied in many forms. The specific

structure does not seem to be critical at this point of the research, although
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two forms of representation are immediately evident, semantic networks, or

an axiomatized data base coupled with a deductive system. 1In an earlier
version of the system design, we intended to employ a semantic network. How-
ever, since then, we have decided to employ a powerful deductive system that
is being developed by D. Fishman [57].

In the first alternative, semantic information can be embedded in a
directed graph structure in which the nodes are used to represent conceptual
objects or their modifiers while arcs represent the relationships between
them. All information which bears directly or indirectly upon the visual
image or its processing should be embodied within such a network. Thus, all
physical visual attributes of an object will be associated with a node; e.g.,
a tree has a certain color, shape, texture, and size, and these can be stored
as attribute-value pairs associated with the node for tree. In fact, the
internal model of "tree" must be rich enough to embody both the general con-
cept of a tree as well as all variations of trees that might appear in the
scene being processed.

In addition to physical attributes of objects, spatial, temporal and
functional relationships between objects bear useful information. One "knows"
that trees are rooted in the ground and often appear beside sidewalks. 1In
addition, sidewalks are used by people to walk upon; therefore, one often
will find people with their feet upon them. All of this information can be
embedded in the network as a directed arc between the objects labelled with
the name of the relationship. Quillian [49] has examined various ways of
storing and retrieving information from semantic nets; e.g., the length of
the path between related objects may be used as a rough estimate of the "re-

latedness" between objects. One problem with a semantic net is that addi-
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tional processes must be employed to draw deductions not explicitly stored
in the net. Thus, a set of deductive rules and the mechanisms to apply them
are necessary. As a second alternative, semantic information would be
embedded in a modified theorem-proving enviromment [50-54]. These theorem-
provers axiomatize the semantic information at the same time that they utilize
heuristic information to efficiently direct large-scale searches.

The system we are intending to employ is under development by D.
Fishman [55-59]. As in a straightforward theorem prover, a set of rules (or
clauses) is provided describing the permissible deductions, and a set of pre-

dicates apd_functions describe the relationships between objects.

Instead of a "blind" theorem proving system which can get lost in huge sear-
ches, techniques are being developed to utilize semantic information from
the model; clues from prior proof procedures can be blended with heuristic
search procedures in order to guide the current proof procedure.

d We see a theorem prover under the direction of a model building exec-
utive which ships it individual subproblems to solve. The theorem prover can
be used as a simple information retrieval system or to solve larger prob-
lems such as consistency of a hypothesis with another set of axioms which
form a partial model. Thus, there is automatic low-level search under the
control of the theorem prover. On the other hand, high level search among
alternative models being constructed probably should be somewhat under the
" control of the model builder (and therefore the programmer). Thus, the

structure of this system allows a middle ground between automatic backtrack-

ing and CONNIVER, which forces all control on the user. Fishman is proposing
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the development of a semantic deductive system of this type embedded in an

AI language that allows the saving of multiple contexts.

IV. 2. Application of Semantic Information to Scene Analysis

There has been little attempt in vision research to apply semantic in-
formation. One possible reason is that this information is not in a functional
form. If the information is stored as symbolic labels (e.g., the actual
words associated with the concepts), then it must be translated into a form
in which the knowledge may be applied to the image. This is a distinct lim-
itation of typical representations. We may retrieve the information that the
"trunks" of trees are generally "vertical." However, in terms of processing
the image, this means that the lower portion will have a narrow boundary run-
ning up and down. Winograd [28] successfully represented knowle&ge in a
procedural form in his natural language processing system. Procedural repre-
sentations can utilize declarative symbolic information in a far more flexible
manner. For example, a piece of descriptive information about some object
can be associated with a subprocedure represented by a set of programming
statements. This subprocedure can describe how the image should be analyzed
in order to detect that characteristic of the object. This representation of
information allows it to be functional, a mechanism by which it can actively
operate on the image rather than remain as a passive notation.

Some of the relationships between the real 3D world and the 2D image
upon which it is projected are embodied in rules of perspective, occlusion,
and shadows. As outlined a little later, this information can be organized
in functional modules to be applied to the 2D image. Thus, throughout the

system, various forms of information will be employed.
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3D and 2D Information

Another distinction in the type of data other than declarative-proce-
dural involves the differences in knowledge in the 2D and 3D domains. Repre-
sentation of shape, size, and orientation of objects is complicated because
three-dimensional (3D) information has a two-dimensional (2D) projection de-
pendent upon the particular perspective. For example, in 3D the sky can be
thought of as planar,* above the horizon (or high), and for our purposes, it
covers an infinite area. Once we determine that a particular region is pos-—
sibly sky, then semantic physical information allows one to interpret its
place within the model of the world: the sky is planar and above all other
objects in the image (as opposed to being a vertical plane behind the most
distant visible object on the ground plane). Thus, the conceptual 3D knowl-
edge tells us the sky can't be walked upon or bumped into.

However, the 2D projection (for a horizontal camera) of the sky often
results in its appearance at the top of the picture with any shape. Although
we usually don't talk about the 2D shape of sky, it is clear that in viewing
images we can accept any shape if the rest of the scene makes sense. The
particular shape depends upon its occlusion by objects resting on the ground
plane. If a nearby object occludes the sky at the top, it is possible for
portions to appear lower in the picture. Since trees are often the uppermost
objects occluding the sky, the bottom boundary is often irregular.

This incomplete example points out the difference in utilizing 3D and
2D information. Consequently, we intend to store conceptual information from

the "physical" 3D world--size, shape, orientation--as well as "picture" in-

* 3
Note: for simplicity, the sky is being represented as a "ceiling"
plane rather than occupying a volume.
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formation from expected 2D mappings—-size, shape, orientation, and boundary
characteristics. This last attribute could be.a simple measure of straight-
ness or irregularity of the lines bounding a region. The model builder must
use the perspective analyzer to check the consistency of an actual 2D region
with the 3D value. Although some 2D shapes will be stored (such as: a tree
trunk is composed of roughly parallel vertical lines spaced 3" to 3' wide)
they cannot be stored from all possible perspectives. More generally, the
perspective module will be able to check the consistency of the 3D value of
the shape of an object with the 2D shape of a unknown region. However, one
can still make great use of several simple types of shapes that have wide

occurrence:

[ LW

Some of these usually represent objects in the ground plane, while others

usually represent objects perpendicular to the ground plane, and some repre-
sent both (e.g.,[_______ ] can be a road running left to right or a fence
railing).

There are other simple heuristics that can be embedded in these modules
which sometimes give useful hints: e.g., the "picture area'" of a region af-
fects its likelihood of being sky. In many pictures, but obviously not all,
the sky covers 1/4 to 1/2 of the imége when the camera is held horizontal.
Also, rough distance estimates between objects may be made using perspective

information; consider the following simple scene:
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Assuming the ground is flat (perhaps not a viable assumption), one can

hypothesize that the smaller tree is farther away. This hypothesis is not

on the basis of size (which may be misleading) but by the simple heuristic

that the smaller tree is rooted to the ground plane higher in the image.
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V. MODEL BUILDING AND VISUAL PROCESSING

V.1. Gross Organization of the System

The desired objective of the model builder in this research is the
construction of a rodgh conceptual model of the scene including identification
of major objects, three dimensional information relating these objects, rela-
tive distances between objects, gross terrain features and general information
concerning the structure of the scene as a whole.

The complexity of the model building process becomes apparent if one
examines the types of information that must be utilized. Figure 6 is an
expanded view of the model builder. It is shown in a modular form because
this seems to be the only way to make the system manageable. The executive
will be a control structure which invokes each of the subprocesses when nec-
essary and which acts as a message switching center, allowing communications
between the remaining subprocesses. Then it is responsible for integrating
the responses, examining the implications, resolving conflicts, etc. However,
the control structure is not as straightforward as this discussion implies;
in many cases a more heterarchical organization is implicit.

Let us first outline the several sources of information which the
model builder must utilize and manipulate:

1) Visual data--this includes:

a. visual features extracted in the processing cones; often
they will be at the top of the cone, but sometimes more
detailed data further down must be accessed; these features

must also be mapped to symbolic terms consistent with in-
formation in the semantic data base.

b. vision routines which respond with a rough confidence for
various alternative identities of a region.

2) Semantic data base of knowledge as axioms: general knowledge
that is not scene-specific is brought in wherever applicable;
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similar to general data bases of world knowledge for natural
language processing, but with obvious emphasis on information
useful to visual perception; this information is in a dis-
tributed form in comparison to similar information in the
highly structured context frames.

3) Context frames: expected stereotypes or submodels affect model
construction; this involves information that is in the
general semantic data base but organized in a modular fashion
and in a flexible (possibly procedural) form; a road scene
with roads, cars, trees, and telephone poles alongside the
road, etc., is a unit of knowledge (some pieces of which mav
be missing) to be applied as an entire subframe.

4) Context setting: expectations about the setting of the model
‘ (time of day, season, etc.); they modify both information in
the semantic data base and some of the processes which operate
during model building. The set of active context frames em-
ployed in the development of the partial model will also be
considered as part of the context setting.

5) Partial models constructed:

2D Model--as a particular partial model of the image is con-
structed, it obviously affects further processing;
the 2D model includes information such as labelled
regions and the adjacency of visible portions of
the tentatively identified objects in the image;

3D Model--brings in the conceptual implications of the objects
tentatively identified; this includes the spatial,
functional, and temporal relationships in the 3D
world and any relevant semantic information.

6) Model Search Space: a tree of partial models under consideration
where each branch is a hypothesis about the identity of a
region or assumption about the context setting of the image;
thus, a history of the search is maintained and information
concerning the dependency of any decision upon earlier de-
cisions can be included to aid in intelligent and efficient
backtracking.

7) Deductive System: this is a semantically guided deductive process
which is subordinate to the model builder; it is used to
check consistency of additional hypotheses with the partial
model as the search tree of models is expanded; it is used
to efficiently solve distinct subproblems provided by the
model builder; it is also used as a straightforward informa-
tion retrieval process from the semantic data base.

8) Perspective Analyzer: this module contains both procedural and
declarative information used to relate the 2D and 3D models,
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aid in object identification, and generally verify the par-
tial model; the regions associated with tentative identities
of objects in the model must satisfy perspective constraints
between focal length, the size and placement of the region
in the image and the physical size (implied by semantic data)
and physical distance; implications between all separate
objects in the model must remain consistent and thereby pro-
vide powerful clues for model verification or refutation; in
a declarative form, simple basic shapes such as

DQBH:‘

also provide information concerning the likelihood of being
ground planar or off the ground plane.

9) Occlusion Analyzer: axioms can also be used here to represent
heuristic relationships between 2D adjacent regions and
whether they represent objects in or out of the ground plane;

procedural analysis of the dominance of boundaries also pro-
vides powerful cues:

OIREa=

10) Shadow Analyzer: checks consistency of the light source and the
shadows produced by objects off the ground plane; examines
gradients of intensity on objects with approximately uniform
hue; compensates for the variation in the strength of boun-
daries of objects running in and out of shadows.

The overall control of information processing in the vision system
directly affects the strategy required to achieve the desired objective of
the system. The exgcutive in the model builder will facilitate communication
between each of the modules defined. In addition, it must contain a strategy
for correlating the diverse forms of information. Therefore, the model
builder, and in particular the executive, will be the major control center
for the system. It must have the ability to explore alternative models, form
additional hypotheses, invoke a variety of validation processes, and resolve

conflicts. The executive will allow these sources to be highly interactive,

structured predominantly in a hierarchical fashion, although heterarchical
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control is allowed where useful. Each of the modules will be able to request

further information trhough the executive of the system. This should keep

the required complex interactions reasonably under control in the design pro-

cess. Of course, multiple strategies exist for the construction and verifica-
tion of models based on the considerations outlined above ; some of these are

discussed in [21, 60-62].

V.2. TFurther Considerations: Fuzzy (or Imprecise) Information in Model
Building

A characteristic of our world is that descriptions of it and the objects
contéinedlin it are imprecise; descriptions are not provided as truth or fal-
sity of conditions, concepts, or actions. Rather many conflicting condi-
tions may be simultaneously feasible with varying degrees of confidence or
many concepts might be applicable with varying degrees of "truth" or applic-
ability. Theoretical work in fuzzy set theory and fuzzy logic [63-65] has
not provided any practical insight into analysis of natural systems in which
information is often vague and/or confusing. Our use of the term "fuzzy"
is not directly comparable to the theoretical usage; perhaps "imprecise' or
"vague" information would be more accurate.

Although we do not, as yet, know how to handle this form of informa-
tion, we do know some of the processes in which it would appear to be highly
relevant (perhaps even necessary) and some of the properties it must exhibit.
These questions and many of the ideas which follow overlap and interact;

individual discussions do not imply independence of the problems.

V.2.1. Quantification of Attributes and Symbolic Representation

In order to construct a model of a scene, one must understand the
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world being modelled. However, if one examines human descriptions of the
various features in the world, it becomes evident that we use imprecise
descriptors. A major problem that must be dealt with is the range of infor-
mation in the real world associated with a single symbolic descriptor. The
description of real objects covers an incredible variety of shapes, sizes,
colors, textures, etc., many of which apparently defy precise specification.
The measurement of the attributes of these primitives and the subsequent
assignment of symbolic descriptors remains an important area of research.
Consider the measurement versus description of the attribute/concept
"color." The term "red" conjures up a spectrum of colors ranging from pink
to deep red and from orange to purplish-red. The measurement of a particular
area in a scene, on the other hand, results in a known quantity of the red,
green and blue primaries being ascribed to that area (or alternatively,
values for hue, saturation, and intensity). The consistent naming of colors,
given the measured values, is difficult, yet the interface to the semantic
information is through exactly these symbolic descriptors. When we say "A

tree is green,"

we are willing to accept a wide range in the actual measured
values of green. Complicating the assignment of consistent symbolic descrip-
tors to color information is the fact that human perception of color is modi-
fied by the context in which the color is found (e.g., surrounding colors),
lighting, mood of the observer, surface conditions, etc. While color is

such an important attribute for recognition and perception, it is not sur-
prising that its use has been limited; color information in digital images
has been‘employed only in reasonably simple ways [10,11,13,18,23,24].

Given that the measurement of the value of an attribute can be fuzzy,

we feel that color should be quantified as a range so that subtle shadings
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of color are not of critical importance. These ranges can then be aggregated
in different ways and associated with symbolic descriptors. We now have the
requisite flexibility for specifying the green of grass to range over a large
angle of the chromaticity diagram from yelléwish-green to pure green, while
the green of pine trees can range from pure green to blue-green. Increased
flexibility can be gained by allowing modifiers of color (or hue) such as
saturation and intensity. One wants to be able to describe a pale (unsat-
urated) blue of the sky or a dark (low intensity) green for shadows within
the foliage of a tree; these descriptions may then be mapped into the "every-
day" terms for colors.

The utility of ranges is not confined to color. It allows us to deal
with intensity, saturation, texture, and in fact almost all attributes, in a
rough way. However, this does not alleviate the problem that these measure-
ments are imprecise, and that any process using the value of an attribute
must take that into account.

Consider the problem of quantifying texture; what are the proper sym-
bolic descriptors of texture? It seems clear that humans utilize texture in
their visual perception of objects or regions. However, when one attempts
to verbally describe texture, a long groping narrative with many modifiers
is likely to ensue--unless one uses a term such as "leafy" or "grass-like."
This clearly implies that texture descriptors are concepts related to visual
imagery and lacking in precise linguistic representations. Thus, a common
texture might invoke the concept of objects that exhibit that texture. It
is unclear what features of texture are being used in human perception as
well as how the measurements take place. Thus, we seek simple features of

texture which capture some aspect of the concept. If coarseness, homogeneity,
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and directionality of texture are roughly extracted, we might use a confidence
or fuzzy set membership to represent the center of a range of values. We
might have simple properties such as a linear scale from smooth to rough,

as well as homogeneous or non-homogeneous. Thus, the color and texture of

a region might be represented as .7 green and .9 rough, recognizing that such

a description is a many to one mapping and thus not unique.

There are attributes of objects such as shape which seem to defy
simple quantification. The shape of a tree is incredibly complex if it is
to be described in any level of detail. However, there are relatively simpler
features of shape on a grosser level of detail that must be extracted and

that might be described in a hierarchical process of subparts:

or

It is this latter level of detail that is appropriate for our purposes. We
seek to find many simple features which can be used both for discrimination
between objects and perception of objects. This is leading us to search for
ways to heuristically quantify’ complex attributes. PZ/A, a measure of com-
pactness [1], is one such simple feature. Boundary characteristics of a
region seem to carry much information about the shape of an object; techniques
such as chain encoding or finding points of maximum curvature might be used

to determine qualities of line boundaries. Orientation and skeletonization
are other features of shape that can be examined. We need a set of values

for each attribute that can be computed efficiently and map into reasonable

symbolic representations.

V.2.2. Expectation and Importance

We have discussed previously the impreciseness in the measurement of
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physical values of real-world attributes as well as the mapping into symbolic
descriptors. However, the measurement of the color of a region and its map-
ping into a value of blue, for example, includes neither the expectation that
the sky is blue nor the importance of the attribute color in the recognition
of a region as sky.

What is the degree of expectation that the sky is blue? The values
of some attributes vary or take on a few values: the sky is blue, white, and
often blue and white; sometimes it is red and orange. However, these values
take on different expectations, often dependent upon the context. If nothing
is known about the context, the expectation is high the sky is blue or white,
and low that the sky is red. If we know that we are looking west at 7:30 p.m.
in the summer, there is a much higher expectation that the sky is red. Ig-
noring the problem of varying contexts for the moment, the point we wish to
make is that it is useful to associate some degree of expectation with an at-
tribute~value pair. In summer, the color of trees in general is green with
expectation, let us say for purposes qf discussion, of .95 and maroon with
expectation .1.* This latter expectation increases sharply in the autumn in
New England. We expect grass to be green but can deal with it being brown
or yellow. We expect the sides of roads to be parallel. This type of in-
formation clearly affects the confidence of any hypothesized model.

However, the problem we are faced with is somewhat more complex. The
strong expectation that an attribute-value is associated with a particular

object may be of little aid in recognition processes if many objects have

*

Particular trees such as Japanese Maple are a deep red or maroon all
during the leafy season and turn crimson in the fall. The relative expec-
tation probably should be .00l or lower.
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that attribute value. Importance of a particular attribute-value in the
recognition process is related to a feature's ability to discriminate between
objects in the environment [9,47]. The question now arises as to how to
effectively utilize expectation and importance and where the information is
to reside. Furthermore, similar questions appear at various levels in the
organization of the entire system.

The importance of an attribute, i.e., the weighting of attributes, is
another form of vagueness in the detection of the presence of an object. The
location of the sky on the top of the picture might be more important than
an irregular boundary caused by trees at the bottom of the sky since the
trees could very well be absent or located at a great distance away. The
importance of a "feature" is also dependent upon the context. For trees in
summer, the green of the crown may be more important than the shape. This

information must be incorporated procedurally in the vision routines associ-

ated with tree and sky. Is it also necessary to place the importance of

attributes in the semantic data base for use by the model builder? The answer

is unclear at this time, but development of the model building system should
determine the need for this redundancy.

Similar questions can be directed at a still higher level. There is
a great deal of ambiguity in determining the relative importance of the parts
of an object for purposes of recognition. If a house is composed of various
planar faces (roofs, walls, doors, windows, etc.), how much weight should
be given each part in deciding a house is present? In summer, the crown of
a tree is more useful than the trunk for signalling the presence of a tree
because the green foliage often occludes much of the trunk. In winter, the

trunk is probably more helpful than the crown of branches because it is much
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more invariant than the web of branches emanating in all directions. This
weighting information can also be embodied procedurally in the pattern recog-
nition processes of the vision routines.

In many cases, recognition of an object will be based on the recogni-
tion of some or most of the constituent parts of the object. 1In some cases,
-recognition of any of the parts ("OR") is sufficient to determine the ob-
ject's presence while in other cases, all of the parts ("AND") are required.
This can be generalized to cover all situations in between by using a fuzzy
AND/OR which varies from 1("AND") to O("OR"). The interrelationships are
very complex and this approach would require considerable development.
Briefly, a value of .9 implies that "most'" of the parts must be found; for
example, all parts with a medium confidence, or 3 or 4 parts with sufficient
confidence, or 2 parts very strongly to balance one being very weak. An
AND/OR value of .1 implies a set of conditions slightly stronger than one
part of the set of parts. The manipulation of confidences in conjunction

with the AND/OR condition yields the overall confidence of the object.

V.3. Confidence in Building Models

We have already discussed the uncertainty or fuzziness of the infor-
mation that is passed on to the model builder from the vision routines and
perhaps the data base of knowledge. The vision routines for various ob-
jects pass a confidence on the basis of the relative importance of the at-
tribute-values and parts within the given context. However, the particular
partial model into which it is being fit also affects the degree of confi-
dence that the region is that object. This means that the confidence of the

 identity of a particular region must be adjusted with respect to the confi-
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dences and identities of surrounding regions. In some cases, the confidence
of an object may be sufficiently high and the possibility of fitting it into
a particular model may be sufficiently low that refutation of the model is
the only solution.

More generally, the model builder must use both the context of the
partial model under construction and the region (object) being added to vary
the confidence of the model. How well does the additional hypothesis fit the
model? The overall confidence of the model can be greatly increased or de-
creased. All the relationships between objects in the model, ﬁhe con-
text, and the object under consideration shoﬁld have a strong influence on
the acceptability of the new object and continued acceptance of the current
model., Here is where importance and/or expectation of relationships stored
in the semantic base might aid in determining this confidence. Typical
or common sets of these relationships might be called into play as contexts
or submodels constructed as simple frames.

In summary, the confidence of any given model is based upon:

a) the importance of individual attributes and parts of an
object;

b) the fuzzy measurement of the value of each relevant
attribute;

¢) the output of each vision (object) routine executed;

d) the context (e.g., season, general locality) in which the
model is being built;

e) the ease with which the parts of the model fit together; and

f) whether expected submodels are found and how well they fit
together.

We have raised many complex issues and only provided partial insight

towards their solution. Our understanding of these problems at this point
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is incomplete and we have chosen to avoid detailed speculation. For example,
in dealing with confidences, simple linear weighting schemes might be useful,
but we are cognizant of their limitations in a long history of pattern recog-
nition applications. Thus, we expect the necessity of second-order relation-
ships between some of the interacting attributes/parts/objects in determining
various confidences. However, we have pointed out in numerous places the
desirability of using more flexible heuristic mechanisms for allowing infor-
mation to come into play. At this point, we feel it would be naive to attempt
explicit descriptions which must evolve carefully and modularly.

Finally, there are a number of topics that have not been discussed in
any depth, for example shadows, reflections, and motion (in a dynamic world);
these problems might be handled by subsystems similar to perspective and oc-
clusion. Their absence does not imply a lack of importance. We expect to
tackle the problems associated with shadows at a relatively early point in
the research, although initially the simplest set of heuristics that suffice

will be employed. Reflections and motion will be topics of future study.
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