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Abstract

Some progress has been made in scene analysis in finding boundaries

between textured objects.

However, standard line-finding and region

growing algorithms have not been able to deal with strong local var-
jations of intensity and color that repeat themselves more globally

in images of natural scenes.

These problems are significant with

respect to both micro-texture, say the leaves of a tree, as well as
macro-texture, the light green of leafy branches vs. dark green or

black shadows between branches in a tree.

How can local variations

be globally bound together into a cohesive region for perceptual

identification.

The approach that is being examined involves the reduction in size
of the image while extracting features such as intensity, color, and

color variation in local windows across the image.

Two-dimensional

histograms are being used to determine clusters of points with sim-

ilar characteristics.

Major clusters are labelled and the corres-
ponding points in the reduced image are also labelled.
rectly detect regions of homogeneous micro-texture.

This can di-
Now an adjacen-

cy matrix of N x N clusters will denote the types of image points

adjacent to each other.
macro-texture.

Peaks in the adjacency matrix can determine

All of this information can be used to grow regions in the reduced

image and then in the detailed image.

Experimental results on color

images of natural outdoor scenes will demonstrate our resuits.

1. INTRODUCTION

One of the primary problems in scene anal-
ysis of natural two-dimensional images is
the segmentation of the image into mean-
ingful regions. Usually, the goal of
such low level processing is to define re-
gions whose identity can be used to form
conceptual models of the world being
viewed. Current region growing techniques
work well in ideal environments, i.e., im
ages in which regicns are basically homo-
geneous with small variations in intensity
(little texture). For this reason, imag-
es with highly textured regions contain-
ing variations in texture coarseness, di-
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rectionality, and homogeneity are usually
not examined. A notable exception to the
constrained environment in which region
growing takes place is the work of Yakim-
ovsky and Feidman [1]. Extensive semantic
direction for merging small regions was
successfully applied to outdoor road
scenes. However, we believe that the de-
cision-theoretic techniques cannot deal

.with the wide variety of textures fcund in

most natural scenes. Few researchers have
examined the texture of a tree: in summer
both the micro-texture of leaves and the
macro-texture of shadows between leafy
branches; in winter the micro-texture of
webbed branches and the macro-texture of



blue sky showing through the branches.

Both region growers and line finders are
subject to similar difficulties due to the
variety of textures which may be present.
Texture may involve a simple statistical
distribution (in 2 dimensions) of intensi-
ty; it might involve a mixture of two or
more colors (hues); there might be a struc
tural relationship between the size and ad
jacency of several micro-textures in form-
ing a macro-texture; in fact, there could
be a variation in saturation as exhibited
by clouds in a wispy sort of white and
blue sky. We are therefore using the tem
"texture" in a wide sense; it may involve
variation in any measurable perceptual at-
tribute. When a local boundary is found
is this part of some global boundary that
separates distinct regions or is this lo-
cal texture that is a defining character-
istic across this region? The line find-
er does not know whether to track the lo-
cal boundary; the region grower does not
know whether to jump the boundary. Al-
though algorithms have been suggested,
ngne have proven to be sufficiently reli-
able.

The problems we wish to adress ourselves
to are:

a) what features of texture should be
extracted in order to deal with nat-
ural scenes.

b) how can local characteristics of tex-
ture elements of varying color, size,
and shape be globally bound together
into a perceptual region. And

¢) how can an algorithm deal flexibly
with micro- and macro-texture.

Previous research has examined a number of
characteristics of texture. Rosenfeld [2,
3] has examined texture in order to find
boundaries between regions of distinct tex
ture by looking for variations in either
average gray level or edge/unit area (i.e.
average amount of variation). This is one
of the few attempts to deal with micro-
and macro-texture simultaneously. He has
2)lso worked on measures of texture orien-
tation and coarseness, but the techniques
have not been applied to the full complex-
ity of natural scene analysis.

Bullock [4] has recently carried out an
excellent comparison of several edge de-
tection operators. He presents extensive
experimental results showing the confusion
between detection of "micro-structure edg-
es" of texture elements, and "macro edges"
of major surface boundaries. This work
seems to have goals similar to those repor
ted here. However, we believe the extrac-
tion of multiple features of a region may
prove more powerful than the edge charac-
teristics.

Haralick [5] has examined micro-texture
using spatial gray level adjacency matri-
ces. Here an adjacency matrix of gray le-
vel i vs. gray level j for all gray levels
can characterize various types of texture.

Bajcsy [6] has applied Fourier analysis to
extract characteristics of texture orienta
tion and texture gradients in natural
scenes. However, these descriptors can
only be obtained when operating on high
resolution data and are primarily concerned
with micro-texture. It is our contention
that in fact it is often macro-texture
that is most useful in perceiving the world.
In most cases, it is not the size or shape
of an individual blade of grass or leaf
that permits us to see a lawn or the crown
of a tree, but rather the global interac-
tion of many of these micro-structures.
Thus, we seek more flexible measures on
coarser- data, both for the computational
practicality as well as utility. Conse-
quently, we have chosen measures similar to
those of Rosenfeld but generalized to col-
or space. We have embedded these in a un-
ique computational structure for adapting
to any distinctly perceivable type of mac-
ro- and micro-texture. .

II. Perceptual Motivation for
our Approach

A region that is perceived to be cohesive
is bound by some features which are rela-
tively consistent across the region. One
of these features might itself be a2 mea-
sure of the amount of local variation.
Thus, a smooth blue sky has a smaller val-
ue for the attribute '"average variation”
than a roughly textured region. Let us as
sume for the moment that we have a number
of features which can be applied to a lo-
cal window. Further, we assume that this
windew is sufficiently large so that in a
region with homogeneous texture (not nece-
ssarily color or intensity) adjacent local
windows would have approximately fhe same
amounts of variation within them. Thus,
we hypothesize that perception of a region
as some cohesive entity requires the repe-
tition of similar micro-texture across
many local windows, although these windows
need not be contiguous. This is a sort of
statistical property requiring a certain
frequency of distribution of a large num-
ber of these windows with similar proper-
ties.

The recognition of a macro-texture requires
a distinctly different kind of perspective,
one that analyzes certain structural rela-
tionships between types of micro-texture;

—
Note that veriance of these values would

become greater as the window is reduced in
size. ’
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in particular, we will confine ourselves to
the adjacencies between these types al-
though other structural relationships

could be examined. There is the trivial
case of a large homogeneous region of mic-
{o-textured windows (call them type I) ad-
jacent to each other; for example, a large
expanse of blue sky has many type I win-
dows of texture which are adjacent to each .
other.

On the other hand, an area of blue sky
highly interspersed with green foliage
should have many local windows of two types:
smooth blue (type I) and roughly varied :
green (type II). Since there are many of
each, by our first premise both will be
noticeable. By our structural mechanism,
many of these pairs are noticed to be ad-
jacent and if these pairs occur contigu-
ously across some large region, this will
be detected as a macro-texture. We con-
jecture that at first glance people exam-
ining an image do not focus attention upon
small textured areas or perceive such a
macro-texture unless there are other prom-
inent features of these regions. Thus, if
only a small ‘part of a sparse tree with
blue and green is in the picture, the mac-
ro-texture may not be picked out and imme-
diately recognized.

I1I. Computational Structure:
Preprocessing Cones

This work is part of an attempt to develop
a scene analysis system, called VISIONS
(Visual Integration by Semantic Interpre-
tation of Natural Scenes), which will
build conceptual models of 2D color images
of natural outdoor scenes [7-9].

In this paper, we will refer only to the
front end of the system, the processing
cone. It consists of a parallel computa-
tional structure which transforms and redw
ces large. amounts of visual data in a lay-
ered fashion as shown in Figure 1. Infor-
mation flows up, down, and laterally with-
in the cone by defining local parallel
functions which are duplicated to operate
across the entire array. Parallel line
finders, region growers, texture analyses,
and color mappings, among others, operate
on a 2562 grid of raw image data and re-
duce it layer by layer to a 162 grid, and
in some cases even to the 1 x 1 level,
which contains information extracted from
the entire scene.

There are three basic forms of processing
available in the cone. The first is reduc
tion as shown in Figure 1 which allows a
function of a local window to pass a value
to the next layer; thus, at each level a
cell could have a value stored that is a
function of the subcone below it; in this
way, spatial relationships of extracted fea-

LEVEL &
l"
LEVEL 3 2
32
2
LEVEL 2 (1}
LEVEL 1
2
127
VEL 1
2567
Y
253 POINTS

(16x16)

ORIGINAL DIGITI2ED IMAGE

Figure 1. PROCESSING CONE

An iteration process
allows the function of a Tocal 5 x 5 window
to be mapped into the center cell of the
window. The last type is called proiecticn
and allows information to be passed down to
a cell from the unique ancestral cell at

tures are preserved.

each level above it. At any particular
time, only a single layer of functions are
being computed, but it is being appliedunk
formly across a layer with each local func-
tion applied to its local window. It should
also be noted that each cell has a memory
of several words so that a number of values
can be saved for one or more processes.

Algorithms for extracting features in the
cone consist of a sequence of parallel re-
ductions, iterations, and projections, pos
sibly interleaved with seauential programs
which may analyze and change information
in a layer. In order to make this process
a bit clearer, we will give a few simple
exannles of features that we will employ.
We start with digitized color data: gray
level intensities measured through blue,
green, and red filters. This raw data can
be mapped upward in the following manner.



An average image in any color combination
can be computed by let-
2 ting each local
function average
its 2 x 2 center
cells. Average
intensity (a mea
sure of the
brightness) can
be computed by
summing the three
/ﬂ AVE \ 2 components and
256 averaging upward
' Hue and satura-
tion [10) can be extracted by first norma-
lizing each color component; two of these
normalized components can then be used as
coordinates of a digitized chromaticity
diagram to map hue (the kind of color). Of
course, this computation can be performed
by our iteration type of function at any
level, on the normalized raw data at level
0 or on the normalized averaged data at a
higher level. The latter computation
would extract average hue. A simple compu
tation of saturation is a function of the
normalized components
S=1-3*% min(bn, > rn).
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All of the above functions measure some
type of average value across a local area
of the original image (whose size is depen
dent upon the level). Several measures of
variation can also be extracted. The par-
ameter that has been most valuable tec us
so far is average colior variation in 3-
space. This is just a differentiation and
averaging algorithm.
There are many possi-
ble differencing mech-
anisms; for computa-
tional simplicity, we
choose |by-ba| +
181’82| + Tl'rzl

Within the 2 x 2 cent-
er of a local window,
we choose the max in
the horizontal and ver
tical directions; i.e.,

the max of the four di-

rections shown. Thus, rﬂ
at level 3 we have com- &"J
puted the average col-

or variation in an
8 x 8 window of the original data. Al-
thoggh'we will not discuss them further,
variations of intensity, saturation, etc.,
can be computed in a similar manner.

1V. DETECTION OF MICRO TEXTURE

e have shown how the cone structure allaws
us to compute values for various parame-
ters (features) which characterize certain
aspects of the image. The ultimate goal
1s to extract from this information the
types of textures in various parts (re-

gions) of the image without attempting to
quantify them. by arbitrary predefined val-
ues of texture attributes. These parame-
ters may be used individually to separate
textures. For example, a histogram plot
of hue from a region may indicate the con-
tribution of the hue attribute to a per-
ceived texture. One might expect, however
that single parameters are not sufficient
to adequately define the points comprising
a textured region. Single paramter separ-
ations, such as average intensity across 2
region, fail when the region is composed
of two types of textures, both of which
exhibit the same or nearly the same aver-
age intensity. Clearly these remarks ap-
ply to any arbitrarily chosen attribute.
For example, suppose we have a region com-
posed of four texture types; we define a
texture type as characterized by distinct
values of the parameters chosen to des-
cribe the texture. Let us assume we
choose average intensity and maximum int-
ensity variation over a window as our par-
ameters. Figure 2 illustrates a histogramn
derived from an image composed of these
four textures.

Each circle in Figure 2 represents a dis-
tribution (or cluster) of image points
having similar values of the parameters.
In this case, removal of either coordinate
results in a loss of discrimination; ITI
and IV become one cluster or I and II be-
come a single cluster.

If there are n parameters, one could map
each image point into n-space, forming an
n dimensional histogram in an attempt to
discriminate texture types. We have chos-
en 2-space (two parameters) because a) the
computation described below becomes unwiel
dy in n-space even for reasonably small
values of n; and b) the cone structure is
eminently suitable for 2-space manipula-
tions in parallel as will become evident
in the following discussion.

As a further simplification, let us assume
we have only two texture types making up

a region R as shown in Figure 3. If we
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Region R

I

11

Distribution of two
Textures in R

Figure 3.

form a histogram of the values of two par-
ameters, average intensity and maximum in-
tensity variation, over each of the small
windows shown in the figure, the clusters
shown in Figure 4 could be formed. In the
ideal case, in which the clusters are well
separated, a simple region growing algor-
ithm may be applied to the histogram in
order to determine which histogram points
comprise each cluster. In effect, we have
formed a clustering algorithm in the cone
that will produce results similar to stand
ard clustering algorithms applied to two
dimensional data. The clusters are label-
led I and II as shown in Figure 4. Each
window in region R may then be labelled
type I or type II, since each of these im-
age points map into cne cluster or the
other.

A running example of this algorithm ap-
plied to real data will now be introduced.
Figure 5 is a B § W version of a digitized
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color image kindly supplied to us by R.
Reddy at Carnegie-Mellon. Interesting re-
sults have been obtained by applying the
algorithm to the following pairs of fea-
tures: .

intensity vs. color variation

hue vs. color variation

hue vs. saturation

and hue vs. intensity.

This example will be restricted to intensi-
ty vs. color variation. The average inten-
sity and average color variation from lev-
el 3 (32 x 32) in the cone is. computed as
we described in the previous section.
This level of the reduced image is chosen
because the local windows are reasonably
large (8 x 8) and the 32? image still pre-
serves some detail. These results =2re
shown in Figures 6 and 7. The reduced 32
x 32 image is now mapped into a histogram
of intensity vs. color variation, part of
which is shown in Figure 8. All values
greater than 61 are mapped into 61 so that
it is a 61 x 61 matrix.

The real data shown in Figure 8 seldom con-
forms to our ideal examples for the follow-
ing reasons. Two clusters may be linked
by "bridges" of very low values which will
cause the region growing algorithm to grow
them into one region when in fact at a
"gestalt" level, they should be distinct
clusters. Furthermore, clusters which are
distributed over an area may contain minor
breaks which would halt the region grower
before completely connecting the points
while at a "gestalt" level, the points com-
prise one cluster. This implies that int-
ermediate processing must be performed on
the histogram in order to obtain the clus-
ters.

One characteristic of clusters is that they
are composed of a set of points spatially

related according to some distance proper-
ty which provides a gestalt grouping. In-
herent in the cone structure is a similar

distance property. Points that lie within
a certain distance of each other (e.g., no
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more than one window width apart) must
end up in the same cell or in adjacent
cells at the next level in the cone; at
intervals of more than one level, the wim
dow width is the size of one side of the
subcone below a cell. We may therefore
treat the histogram as a pseudo-image and
insert it Into the cone at the appropri-
ate level; in the analyses to follow, the
histogram is inserted at the 64% level
since the values of the parameters are in
the range 0 to 63. The reason for treat-
ing the histogram-as a pseudo-image is
that we can now apply, in parallel, the
complete range of operators available in
the cone; e.g., reduction, scaling, re-
gion growing, projection, etc.

Once the histogram has been inserted in
the cone, it is reduced to the 16% level
via a scaling and averaging operation. By
only using the 2 x 2 window below each
cell during reduction from level 2 to lev-
el 4, each cell at level 4 is an average
of the 4 x 4 window in the original histo
gram. This operation has the effect of
eliminating small values bridging clusters
and tightening the clusters themselves;
e.g., significant clusters remain intact
while small diffuse clusters and stray
points are averaged out. The results of
this operation are shown in Figure 9 be-
low. The simple region grower may now be
applied to this highly reduced histogram
at the 162 level. Once the clusters have
been labelled, as shown in Figure 1Y, the
162 level may be projected down to the
642 level and the region growing algor-
ithm applied once again using the already
labelled points as the seed regions to
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Figure 9. Histogram of Figure 8
reduced to 162 level.

Note: the leftmost and rightmost columns

are zero and do not appear in Figure
9. 1In addition, the values shown in
this figure are a result of a multi
plicature scale factor of 3 (@lready

reflected in Figure 8).

the algorithm. This has the effect of ad-
ding connected fringe points to the clus-
ters identified at the higher level. The
results of this algorithm at the 16% lcvel
are shown in Figure 11. Simple additional
processing results in most histogram
points being labelled according to the
cluster (texture) type to which they be-
long; randomly scattered points, however,
are not labelled.

Returning to the original scene data at
the 32? level, a cluster label may now be
associated with each image point since an
ordered pair (intensity, color varia-
tion) of values uniquely identifies the
cluster into which it maps. The results
of labelling the original 32 x 32 reduced
image are shown in Figure 12.

V.. Detection of Macro Texture

At no point has the micro-texture analysis
utilized any spatial information which
could bind textured regions together; this
information is not reflected in the clus-
ters. Now we must try to detect the reg-
ularly occurring spatial distributions of
texture types which we call macro-texture.
By forming an adjacency matrix of N clus-
ters by N clusters, some sense of the spa-
tial relationships between texture types
may be determined. A homogeneous region
composed of points from a single cluster

i will cause large values in the adjacency
matrix on the (i,i)th diagonal element.
Macro-texture is then determined by exam-
ining the large off-diagonal entries (if
any). That is, a large number of adjacen-
cies between points of two cluster types
might signal a cohesive region that has a
Tepetitive mixture of.cluster types. The
light green and dark green of a tree in
bright sunlight is one example, as dis-
cussed above.

Again, let us assume we have determined
two micro-textures. Figures 13a and 13b

n:mx:nitt
I AR % n‘..ttt
e x:n.]‘_‘ !II
11 IIIIE: ‘I.I
T X Tig
(a) (b)

Figure 13. Example distributions of two
texture-types and their adja-
cency matrices.
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Final labelling of clusters at 162
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Figure 12, Original 322 reduced image labelled by cluster membership.
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illustrate two possible configurations of
these texture types.

An adjacency matrix of these texture types
can be formed in which aj; represents the
number of times texture-t&pe i 1is adja-
cent to texture-type j (using four neigh
bor adjacency):

1 1
I 13 3,
II a5 322

In the case of Figure 13a, a;; and a3;
are large because of the spa%xal distribu
tion of textures; a,; is small and repre-
sents the boundary between the two re-
gions. Since the adjacency matrix is sym-
metric, ap) may be ignored and set to 0.
For Figure 13b, both aj;; and ajp are large
while a2 is small due to the absence of
a homogeneous region of type II texture.

One of the problems we face is that some
entries in the adjacency matrix are arti-
ficially inflated due to the interaction
of texture types across the boundary of
adjacent regions. In Figure 13b, it is
not clear whether type 1 elements should
be grouped with type I1. 1If that is al-
lowed, one big region will be formed as
opposed to a homogeneous subregion of I's
and a macro-textured subregion of I's and
II's. The removal of the homogeneous re-
gion will make this distinction evident.
In order to remove its contribution, a
modified region growing algorithm may be
applied to the texture type labels asso-
ciated with the image points. This algor
ithm finds large connected homogeneous re
gions which are subsequently removed; con
struction of the adjacency matrix may then
proceed without the contribution of bound
ary conditions. 1In the case of Figure
13b, this results in an adjacency matrix
of the form :

I II
I x O

II X

where the circle represents a large value,
‘the contribution due to macro texture, and
the x's smaller values. Figure 14 shows
the adjacency matrices for the 5 micro-
textures appearin; in the labelled image
of Figure 12 before and after the few ma-
jor homogeneous regions (and their bound-
ary effects) are deleted. The macro-tex-
ture of types 4 and 5 in the trees on both
sides of the image are detected, but donot
stand out as strongly as we would like.

There are a number of algorithms that are
currently being examined to improve the

1 | 367

2. 121

3 | 67 10 294

4 9 43 150 300

s 4 14 47 216 178

14(a)
2 3 4 S

1
1 2
2 1 21
3 6 8§ 71
4 1 35 72 119
S 2 14 40 122 111
14(b)

Cluster-type adjacency matrix

Figure 14.
, for Figure 12.

performance of. this portion of the analy-
sis but no conclusions are available at
the time of this writing. One significant
weakness that must be dealt with is the
problem of improper placement of the local
windows (8 x 8 in our examples). Some of
the windows fall entirely across a single
type of micro-texture; others will overlap
different types. If the boundaries of the
trees (types 4 § 5) and sky (type 1) are
examined in figure 12, one will note a
line of points of type 3 which are a re-
sult of this effect. A number of ways to
suppress these points are being examined.

VI. Conclusions

The algorithms discussed in the paper rep-
resent a portion of an on-going research
effort. The power of the system resides
in the maintenance of both a local and
global perspective. The local extraction
of texture and color features is blended
with a global labelling of cluster types
in the histogram. The experiments are in-
complete and the results should be consid-
ered as preliminary. While we feel the
results conclusively reveal the merits of
this approach, several avenues of research
are still open.

The results shown here are based on inten-
sity versus color variation. While we
have mentioned several other possibilities
they have not been examined in any detail.
One of the more exciting aspects here is
the expectation that other pairs of param-
eters will yield additional information.
Redundancies will produce regions with
greater confidence. However, different
feature pairs may extract different re-
gions with different texture characterist-
ics. The integration of this different
information should yield a more complete
characterization of the image.
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The flexibility of the processing cones
allow projection of an entire region down
to lower levels of the cone. Examinations
are underway of techniques for quickly
growing regions at a relatively high level,
say 32, and refining the regions by alter
nately projecting downward and region grow-
ing at lower levels.

All of the analyses to date have been de-
rived from the original reduced image at
the 322 level. While this level is suffi-
cient for the detection of reasonably
large regions, the quantification of both
macro- and micro-texture clearly depends
upon the resolution of the original image
as well as the size and spacing of the tex
ture elements. Regions containing small
macro-texture elements or closely spaced
regions (such as the house shown in Figure
5) may be analyzed at a lower level (642
or even 128%) in precisely the same manner
as described here. Furthermore, we can
confine our processing on these lower lev-
els to only those areas of the image which
require further analysis. This type of
low-level processing is being integrated
into a full scene analysis system.
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All of this information can be used to grow regions in the reduced imagevand
then in the detailed image. Experimental results on color images of natural
outdoor scenes will demonstrate our results.
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