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ABSTRACT

This paper outlines the design of a system that will exhibit a sig-
nificant degree of independent learning in a complex spatio-temporal domain.
This research will address a number of basic issues involved in the cognitive
processes of learning and forming theories. The knowledge structure, the or-
ganization of logical processes, the ability to form hypotheses and conjectures,
and the development of a system whose common-sense reasoning can be analysed

are important facets of our research.

The domain in which we will test our ideas is the action-oriented
game world of baseball. The goal is to develop general strategies which
enable a system to pass from the description of simple low-level action
primitives of running, swinging the bat, and throwing the ball, to a higher-
level semantic description in terms of runs and innings, etc. Inference of
rules that govern behavior becomes a process of inferring the logical and
physical constraints placed on the actions of people and their hypothesized
goals. The semantic analysis is éuided by a database of general knowledge of
the world, including information about the intuitive physical laws of the
universe, the behavior of people, and action-oriented games. First, biolog-
ically motivated syntactic operations filter and reduce the initial mass of
data. Then, semantic analysis proceeds in two stages: a) the system heuris-
tically hypothesizes the goals of the individuals in the current action sequence;
and b) it generalizes that hypothesized goal sequence according to some measure
of similarity to include prior sequences of activity. The hierarchical struc-
ture of the database permits the hypotheses under consideration to call in

the appropriate level of world knowledge.



This research will open avenues for investigating how people form con-
ceptual structures since the system should exhibit human-like reasoning.
It should allow manipulation of both the knowledge base as well as the
mechanism for focussing attention, forming conjectures, and verifying gener-
alized hypotheses. This would be a powerful tool for computer aided instruc-
tion since learning difficulties can be examined by proper questioning of
the system. The ability to abstract concepts from a set of examples wiil
allow an instructor to determine the quality of -that set of examples. There
are numerous applications to education and learning if the underlying princi-

ples can be established in this work.
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1. INTRODUCTION

In our daily lives, we constantly observe and interact with events
and objects in the world. Plotting our own course over the sands of space and
time is complicated by the desires, needs, and whims which motivate the other
animate beings in the world. Obviously, understanding these drives is not
simply a matter of solving a set of equations. Rather, to function in the
world, we must understand the goals (and their corresponding constraints)
which structure the existence of animate creatures. This understanding pro-
vides insights that enable us to answer the following types of questions:
Why did an event happen? Why was it surprising? What else might have
happened?:

In order to acquire this understanding, we must make use of a great
deal of knowledge. Since we are not born with all of this knowledge, we
must possess mechanisms for ''learning' it. What are these mechanisms for
learning? How can we come to understand the motives that are behind people's
actions? We will examine these questions in terms of a mechanical learning

system possessing human-like cognitive abilities. In particular, this paper

examines a system which can form theories to explain in a common-sense
fashion its observations of people's interactions in a constrained spatio-
temporal domain. |t uses conceptual knowledge to hypothesize, generalize,
and integrate with prior knowledge the underlying '"rules' which structure
that activity.

The problem environments which we will address are action-oriented
worlds parameterized in four dimensions: action, actor, location, and time.
Namely, consider the game of baseball, and consider the stereotyped Mr. and

Mrs. Baseball fan sitting In the bleachers watching their favorite sport.
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The Mr. is drinking beer and enjoying the ''subtle'' managerial ploys--the hit
and run, the stolen base, etc. Meanwhile, the Mrs. is complaining that she
still does not understand what is going on. In fact, she probably understands
much more than she gives herself credit for. With a little more patience and
directed attention, she might master many of the rules. Certainly, with the
benefit of critical advice, much of the activity should be understandable.

Similarly, the goal of our system is to observe simulated digitized
games of baseball and infer the structure aAd many of the rules that govern
play, without requiring a teacher. Certainly our system can be designed with
""]patience' so that's no problem. In addition, we give the machine a significant
degree of semantic information. Initially, the system knows about the behavior
of people in game-type situations, the primitive physical acts performed by
people, and enough about the laws of physics to understand the physical rela-
tfonshlp between the objects and actions involved in the game. |

At the outset, let us make clear what we mean by\“rules,“ and what
approach we will take in order to discover them. Observe that

the rules of an action-oriented game are essentially the logical

and physical constraints placed on the players as they attempt to
achieve their goals.

By physical constraints we mean, for example, that a player can't jump 30 feet
into the air to catch a ball or that a player is not able to hit every pitch
out of the ballpark, even though he may want to. The system is provided infor-
mation on the range of the general physical constraints on people's actions.
And by logical constraints we mean, for example; that a player must not run

to third base before he runs to second base, or that after making three "outs"
a team loses its opportunity to make any further score that inning.

Notice that the observation above implies that the rules of the game
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are not abstract concepts divorced from the motives, constraints, and observed
actions of the players. Quite the contrary. This intimate relationship will
permit our system to discover the rules through a common-sense reasoning pro-
cess which uses facts about the world, general facts about people's purposes
and of course, the observed actions.

Let us consider the meaning of ''rules' more carefully. The concepts

that our system is to learn more closely resemble the structure or conventions

that are exhibited in baseball games rather than the formal rules of baseball.
For example, our system may develop (among others) the conventions that
"players often walk to the dugout after an out' or '"the catcher throws the ball
back to the pitcher.'"" These are not the necessary truths of baseball as stated
in the rule book. Nonetheless, they are relevant to the structure of the game,
i.e., observed activity on the field. In order to explain and understand that
observed activity, our system will not generate a baseball rule. Rather, our
system will seek to explain and understand baseball by a) inferring the goals
of the players and b) inferring the logical constraints placed on the players

as they attempt to achieve their goals.

This approach is partially based on four fundamental characteristics
of the real world:

1) people act in accordance with purpose or goals; there are
reasons to explain actions.

2) information is redundantly encoded; there are lots of cues or
paths to aid in the process of understanding.

3) events that are important recur; not until one understands
the significance of repetitive events can one comprehend a
novel event.

4) events are interpreted in terms of a higher level context; unless
one has the general frame of reference, one will probably not
understand the specifics of a situation.

In particular, these four aspects are true in the action-oriented game
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world of baseball, and they attest to its richness and robustness. The games
of a society mirror in a stylized way the real-life activities of a society
[30]. They capture people's actions and goals, as applied to a self-contained
mini-world. At the same time, issues of time, space, and causality, which are
an integral part of all real-life situations, are also at the heart of action-
oriented games such as the world of baseball. The techniques we develop in
thisi-particular domain for interpreting and learning about people's actions,
goals, and constraints should provide insights to corresponding problems in
similar complex, real-world environments. The action-oriented worlds of the
traffic corner, restaurant, grocery store, etc., all seem open to this analysis.
Moreover, forming theories by abstracting an understanding of the rules from
observations is similar to the problem of a student forming a "theory'" from
"observations'' of a course protocol.

This paper is an outline of the design of a system currently being
developed. Many aspects are treated briefly and a number of areas await care-
ful development. In the following sections we will present the system depicted
in Figure 1. The representation of events and knowledge in the . system will be
followed by a brief overview of the functional units of the system. First,
there are heuristic algorithms that focus the attention of the system by filter-
ing and processing the input data. As a TV camera seems to naturally follow
the action, our system also is capable of attending to those features of the
environment that appear innately and/or motivationally interesting. Next, there
is a description of how the active semantic data base generates plausible
hypotheses about the goals and constraints of the players, The system's use
of ''common-sense'' inferencing allows its ''reasons' for making these decisions

to be readily discernable. As experience accumulates, the system can generalize
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and integrate these hypotheses to encompass repetitive, though somewhat
different, events. As the system operates, higher level and more abstract
concepts are hierarchically built from simpler and more concrete hypotheses.

The goal is to explain an out or an inning in terms of the semantics of gaming.



It

..7_

Il. REVIEW OF RELEVANT LITERATURE

In this brief review of the literature we will be looking mainly at
the contributions of Al to learning and theory formation. Though the psychol-
ogy literature is rich, and does provide a solid background, nonetheless, it
usually does not address itself to the major problems with which our system
must deal. Notable exceptions to this are the work in cognitive psychology
and Al--Newell [1] and Simon [2], Norman, et al., [3], and Winograd [ul.
Similarly, much literature in the philosophy of science [5,6] and inductive

logic [7,8,9] deals with theory formation and the nature of explanation.

These discussions are relevant, but the offerings are too general or too
abstract. With these omissions then, let us proceed to the major work in
machine learning.

Samuel's [10] checkers playing program is the classic example of
computerized learning. Evaluation of a particular board was based on a linear
function of a set of parameters which were the features of the game. During
play, weights of these parameters were adjusted to reflect the ''goodness and
badness'' of those features. Samuel achieved a great deal of success with
this scheme in the checkers domain. However, by and large it has failed to
generalize to more complex domains, e.g., chess. From a cognitive point of
view, even if such a scheme were to work, what could we learn from it?

Minsky [11] calls numeric learning schemes ''evaluations'' as opposed to "sum-
maries." He argues that an intelligent entity ought to reflect on the consid-
erations that formed that number, i.e., its history. Non-symbolic learning
retains little information that would permit further analysis. The impact

of Minsky's comments are clear: in order to gain insight into higher level
cognitive learning, we should explore symbolic learning systems.

Fikes, Hart, Nilsson [12] have developed extensions to their problem-
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solving system STRIPS [13] for a robot living in a laboratory environment.

The system is allowed to generalize and store the plans-of-action produced

by STRIPS. A generalized plan can then be used by STRIPS under circumstances
different than when it was first learned. The results of this system are
impressive. However, they are due at least in part to a judicious choice of

a constrained domain. The number of'parameters in the plans is relative small,
so syntactic generalization techniques appear to work. In a less constrained
problem environment, semantic criteria will be needed to process efficiently
and effectively.

Winston [14) made a contribution to symbolic learning. The operational
goal of his system was to learn themeaning of various objects (arches and other
physical structures) after having been presented with some examples. The ob-
jects were represented internally as graph structures, with the nodes and
links having conceptual labels (supported by, left-of, etc.). A teacher was
required to present a good well-ordered training set of examples and non-
examples (labelled as "near miss").

Winston's system generalized its descriptions of an object by finding
differences in the structural and physical degcriptions of a series of examples.
In order to keep the difference finding routine stable, the system was given
an ordering on the importance of the differences. Though successful in the
blocks domain, the sophistication and extensibility of Winston's techniques
is quite another question. For example, the concepts that Winston's system
learned (arch, pyramid) were only 1 level removed from the primitive descrip-
tors (left-of, supported-by). Second, if the descriptions become at all com-

plex, trying to syntactically match subgraph isomorphisms is doomed to failure.

Third, requiring the teacher to lead the system ''inch by inch'" in forming and
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modi fying concepts seems like too severe a constraint for all types of
learning. We will be suggesting an approach and techniques which would remedy
some of these drawbacks.

A system which extends Winston's work is the HACKER program of Sussman
[15]. The goal of this system is to learn to build structures in the blocks
world, e.g., towers, stacks, etc. It does this by 'writing and debugging"
computer programs that perform the required tasks. The system comes equipped
with some primitive subroutines and extensive knowledge about programming.
When a program is generated from canned subroutines, little ''bugs' in the logic
are apt to appear. Using its given knowledge about bugs, HACKER makes a
patch to correct the errant program. Like Winston, Sussman's system requires
that a teacher present a well-ordered training set of problems to enable
HACKER to bulld the '‘right' programs first. Unlike Winston, Sussman's system
can often discover for itself when it has failed. The performance of HACKER
was intended to model the acquisition of a skill by an apprentice or novice.
Sussman's system is promising and if the constraints on the ''teacher' were
relaxed, it would make the system even better.

The work done on Meta-Dendral [16,17] by Buchanan, et al., addresses
itself to some of the similar issues our system will be facing. The goal of
their system is to discover theories of mass spectroscopy which the performance
program DENDRAL [18] uses. That is, DENDRAL uses a set of rules to'output a
molecular structure inferred from mass spectrograph input of the test samples.

On the other hand, Meta-DENDRAL will try and induce those very rules.
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Meta-DENDRAL first accepts as input mass spectograph data and the
molecular structure of a sample chemical. Next, it generates hypotheses
that might explain the data using heuristics to prune the huge search space.
Plausible hypotheses are generalized and the system attempts to verify their
validity. Flnally, the discovered rules are integrated into the existing
theory.

The philosophical basis for this system is discussed in an excellent
paper by Churchman and Buchanan [19]. The authors readily admit and document
these open questions in their work--which are essentially the open questions
in the philosophy of science. Do the given pruning heuristics provide too
much direction for the system, thereby begging the question of real discovery
and theory formation? What is the actual data to which the system must attend,
i.e., does the representation provide too much structure and reflect the biases
of the authors? How are hypotheses generalized and verified? What is the
criteria for similarity? These are precisely the issues we are facing in
in our problem domain. One added difficulty these researchers have is that
their problem domain, organic chemistry, is a rather esoteric area and the
techniques developed may not be readily transportable to other more every-day
real-world domains. Nonetheless, this is a most promising and sophisticated

piece of research.

Uhr [26] stresses the importance of learning in a recent overview of
a system being developed Wwhich integrates perception, deduction, action, and
thought. In his wholistic system, multi-model sensory input passes through a
network where it is acted upon in order to recognize and understand what is 'out
there." Additional cognitive transforms triggered by this initial process

decide upon the actions to be taken by the system in response to this input.
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These decisions are mediated not only by the external demands of the world,

but also by the internal desires/states of the system. Because of the com-
plexities involved in dealing with such diverse problems, the number of trans-
formations needed by the system is quite high. He argues that only by hypoth-
esizing and evaluating the utility of new transformations can the system develop
truly powerful capabilities. The structures that Uhr deals with point direc-
tions for interesting research; however, they are too siﬁple to properly

deal with the approximated real world complexities and details we wish to
consider.

Finally, there has been much work done on sequence extrapolation prob-
lems [e.g., 27, 28]. Even if all problems in induction are logically equiva-
lent to a sequence extrapolation as Solomonoff claims [29], in practice, the
techniques uséd to deal with the latter problem cannot span the chasm of real
world induction problems. Furthermore, though some of the work attempts to
model the way humans might perform sequence extrapolation tasks, we have great
difficulty in seeing how these models can be extended to handle the more com-
plex cognitive processes necessary for dealing with the richness of real-world

learning problems.
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I11. REPRESENTATION OF THE WORLD

Essentially, there are two major levels of semantic information that
we must give the machine. The first level is an appropriate set of primitive
descriptors that parameterize the significant dimensions of an action-oriented
game world. The second level of semantic information is the cohtext infor-

mation. Baseball is in the context of competitive-conflict situations.

I1l1.1 The Primitive Descriptor Units--the Physical World

Input to the system is supplied by a program that simulates the contin-
uous game of baseball by breaking it up into discrete time intervals, called
snapshots. Each snapshot consists of a set of descriptors depicting the state
of the world at that instant in time. A descriptor is a L-tuple that captures
4 essential dimensions of such a miniworld--action, actor, location, and time.
Figure 2 lists the set of primitive action predicates that we use in our sSys=
tem. They are the natural ones for describing an action oriented game, e.g.,
RUNNING, THROWING, CATCHING, etc. Predicates like INNING, BATBOX, etc., merely
represent the various boxes on the score board. Note that the machine does
not understand the semantics of an INNING; that is what it is supposed to learn.
Other problem domains would require an augmented set, or even a different set.
For example, the set of primitive action predicates for the traffic-corner
world would include AT, ON, WALK, etc., but would also include CAR-MOVE,
BICYCLE-MOVE, LIGHT-COLOR, etc.

An example sequence of snapshots is illustrated in Figure 3. Each pred-
icate is labelled with its snapshot number to represent its time of occurrence.
In addition, each snapshot will have a parameter to indicate the number of time

units that have passed since the occurrence of the previous snapshot, i.e., the
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CATCH (PLAYER,0BJECT ,LOCATION)

THROW (PLAYER,0BJECT,LOCATION)

WALK (PLAYER,START ING-LOCATiON)
GRNDMOV ING (OBJECT,START ING-LOCATION)
AIRMOV ING (OBJECT,START ING-LOCATION)
INN ING ( INNING-NUMBER)

BATBOX (PLAYER-NAME,STRIKES ,BALLS)
TEAMBOX (TEAM NAME,NUTS,RUNS-THIS-INNING,TOTAL-RUNS)
RUN (PLAYER , START | NG-LOCAT I ON)
SWINGHIT (PLAYER,OBJECT,LOCATION)
SWINGM1SS (PLAYER ,0BJECT,LOCATION)

AT (PLAYER,LOCATION)
ON(PLAYER,LOCATION)

FAST

used as prefixes to modify actions
SLOW

The system does not understand the ''baseball'' meaning of any of the primi-
tives. In particular, it understands only that INNING, BATBOX, and
TEAMBOX are scoreboards. |t does not know which events correlate with

the counts and does not understand the concept behind INNING.

Figure 2. Listing of Primitive Descriptor Units
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COMPLETE SNAPSHOTS:

TIME: 14 15 16
AT (A1,BALL,PM) THROW(A1,BALL ,PM) AT(A1,BALL,PM)
AT (A2,HP) AT (A2,HP) AT (A2,HP)
AT (A3,FB) AT(A3,FB) AT(A3,FB)
AT (A9, RF) " AT(A9,RF) AT (A9 ,RF)
AT(B1,HP) AT(B1,HP) AT(B1,HP)
AT (B2,DUGOUTB) AT(B2,DUGOUTB) AT(B2,DUGOUTB)
AT (B3,DUGOUTB) AT(B3,DUGOUTB) AT (B3,DUGOUTB)
AT (B9,DUGOUTB) AT (B9,DUGOUTB) | AT (B9,DUGOUTB)
INNING (1) INNING(1) INNING (1)

Figure 3a. Partial raw, prefiltered snapshots

REDUCED SNAPSHOTS:
TIME: 14 15 16

AT (A1,BALL,PM) THROW(A1,BALL,PM) AT (A1,BALL,PM)

Figure 3b. Remaining primitive descriptor units after snapshots are
filtered by attention box.
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time interval of the action predicates in that snap. As activity increases,

the snapshot production increases, and therefore the waiting time between

snapshots decreases. A ''typical'' baseball game has about 6000 snapshots in

A short 1/2 inning may take less than 100 snapshots while a long one may

take upwards of 400-500 snapshots.

Questions can legitimately be raised at this point concerning the prim-

itive descriptor units. We shall raise and attempt to answer the most serious

Question: Why choose this particular set of primitive actions? For

example, why not include the BEER-MAN-HAWKING-BREW or CLOUDS-MOVING?
Why choose those 4 dimensions of the world to include in a unit?
Why not encode the height, weight, hair color, etc. of the various
team members?

Answer: There are 3 arguments to support our choice of the primitive

eatures listed in Figure 2. First, we know from our own experience
that we often perceive new situations in an "appropriate'' way.

If we didn't then we would have great difficulty in understanding
the new situation. We bring a wealth of experience and knowledge
to filter out the activity that probably is not relevant to our
particular goals. Our system is initially tuned to activities on
the field and the proper numeric markers. We believe most people
roughly approach the game with this focus. Animals in general have
a predisposition to roughly attend to the relevant features of a
situation. In an action-oriented game setting, we probably wouldn't
initially perceive the beer man or the clouds moving as something
relevant to the game. However, when attempts at comprehension of

a situation fail, then we might try to incorporate the features
passed over initially.

Second, even though we have limited the number of features, the
combinations of the existing features is still quite great. The
interesting question of whether the system can discover the rela-
tionships between the features still remains.

Third, lest we be accused of finessing the problem of features
completely, we mention here that the attention algorithms that we
shall present could learn to habituate to non-essential elements in
the domain. Our system should be able to handle many types of noise.

Question: Why this particular level of description? Why not describe

the actions in terms of arm movements, muscle fiber actions,
etc?
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Answer: This question is answered, in part, in the previous paragraphs.
Furthermore, were we to perceive baseball in terms of limb move-
ments and not in the "higher" level units such as walk, run, etc.,
we would have more difficulty in learning to understand the game.
This is not to say that we wouldn't or couldn't build the structure
starting at this level. Rather, it would probably take much longer
and also confuse different levels at which the world Is perceived.
Along these lines, Kilmer [25] is working on a ''play-directed"
system that can learn to build low level action primitives up into
higher level units, in the way a child or chimpanzee might.

One could make the argument that a physical object is described
by characteristics of the molecules and atoms in it. A description
of the world must start at some level; the interesting aspect is
the relative level of the concepts formed to the primitives by which
they are expressed.

Therefore, for the reasons given above, we do not feel that our exclusion
of features or our choice of a particular level of description is cruclal to
the model of learning that we are developing.

The system does not Initially understand that, for example, a
SWINGHIT(B1,BALL,HOMEPLATE) AIRMOV ING (BALL ,HOMEPLATE)CATCH(A1,BALL,LEFTFIELD)
embedded in a sequence of snapshots is an out--that is what the system is to
learn. However, we do give the system common sense semantic information about
the primitives; without this information, neither you nor | would be able to
make any sense of the various actions. For example, Figure 4 il1lustrates a
portion of the information in the semantic data base of primitives. Under the
action THROW, we list the common sense level goals which are associated with it:
(1) to simply execute the act of throwing, (2) to propel an object (probably
inanimate) away from the thrower, (3) to propel an object towards a particular
destination (a person or place). Also associated with each action is semantic
information about the skill and energy needed to perform that action, e.g., to
merely propel an object away from-oneself requires a minimum of skill or energy;

to propel an object at a high rpte of speed towards a specific spot requires a
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THROW (X, Y,2)

where x is an object usually animate

y is an object usually inanimate
z Is a location

GOAL: to propel an object vy,
(away from, or towards)
(a person or place

PHYSICAL ENABLING CONDITIONS:
X must possess Yy

ENERGY/SKILL RELATIONSHIPS:
1) generally, Energy = HIGH
and skill = MEDIUM
2) required energy to be
expended increases with
speed of object

SWINGHIT(X,Y,Z)

where x is usually animate

y is usually inanimate
z is a location

GOAL: ta propel an object via
another object.

PHYS.ENAB.COND. :

y must be moving, or y must
be suspended, or . . .

ENERGY/SKILL RELATIONSHIPS:
1) generally, Energy = HIGH
and Skill = HIGH
2) but, if speed of object
increases, usually skill
required to hit increases

RUN(X=Z)

CATCH(X,Y,Z)

GENERAL RELATIONSHIPS:

1) SPEED(human running) vs. SPEED(ball thrown) vs. SPEED(ball hit)

or equivalently:

1\
RUN

HIT
P(X)

N

Speed

Figure 4. Common-sense facts about the primitives.
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high degree of skill and energy; to catch an object moving in the air at a
high rate of speed requires little energy but great skill. This knowledge*
allows us to make reasonable conjectures about the goals of the players in
everyday life and will be heavily utilized in our environment of continual
physical activity.

To summarize, then, the semantic information initially given to the
machine about the primitive action predicates is at a non-technical, common
sense level and is necessary for the understanding of the basics of the game.

It is the kind of knowledge that a 4-5 year old child would certainly have.

111.2  Context: The Logical World

The appropriate context in which to interpret and understand the game
of baseball is that of a competitive-conflict situation. Therefore, just as
humans have a '"'theory' of this conte*t, we must give our system a similar
theory that captures the essentials of competitive conflict and gaming. e
supply this theory in terms of '‘axioms,' or more precisely, conventions. The
system will attempt to interpret its observations in terms of this context.
If we gave the machine a set of ''axioms'' describing a religious event, it
would try to interpret the events on the field as rituals in that worship
ceremony. Why not? This is simply an implementation of Assertion 4 (cf.,

Introduction); there is a superstructure or context in which events are in-

terpreted.

*

It is augmented by spatial information and knowledge about the relative
physical relationships between the actions (e.g., distribution of the relative
speed of objects).
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The semantic information associated with the primitive descriptor units
captures the common-sense descriptions of those actions and the physical laws
which they obey. The contextual information captures the logical features
of an action-oriented gaming situation; the kinds of goals and arbitrary rela-
tionships that might be important and desirable (e.g., scoring, winning). This
latter knowledge, though higher level and game-independent, must interface
with the lower level knowledge about the primitive actions to enable the system
to interpret those actions. This interpretation permits the system to discover
the conventions that structure the varied sequences of those actions.

Let us examine several of the logical conventions. Consider Assertion 2
in Figure 5. Certainly, this rule plays a central part in the understanding
of competitive-conflict situations. |f one didn't understand Assertion 2, one
would have a hard time understanding any game! Next, consider assertions 7
and 11. One can roughly measure the competitive level or degree to which a
goal is being pursued in terms of the energy and skill expended in that effort.
Actions that most everyone can perform, such as walking, are not usually what
is at stake in a game. Rather, what is important are the actions and goals
that require skill and/or energy. Assertions 7 and 11 capture this powerful
concept. For example, we shall use assertion 7 to help parse the continuous
sequences of actions into: (1) segments that probably contain conflict and
should be analyzed, and (2) ritual segments which are probably not essential
and whose analysis can therefore be deferred; e.g., the man walking from the
dugout to homeplate is a ritual activity and not part of the 'game."

Assertion 10 allows the machine to possibly perceive an instance of one

of the arbitrary rules of baseball, e.g., if a man is on first base and he

wants to get to homeplate, he must first run to second base and then to third.
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Figure 5. A Representative Set of the Logical Conventions
Describing a Competitive-Conflict Situation.

The goal of an action is a) the execution of that action itself, b) the

facilitation of other actions, c) the achievement of some state of the
world, or d) some combination of the above.

'""Opposing goals' means (1) team A is trying to achieve goal x and Team B
is trying to achieve goal x, or (2) Team A is trying to prevent Team B
from achieving goal x, or (3) both.

In action-oriented games, a competitive-conflict situation is one in which
opposing teams have opposing goals.

The opposing goals are resolved in a competitive-conflict situation.

To resolve a competitive conflict situation is to succeed or fail at the
intended goals.

To succeed is to achieve a goal or prevent an opposing goal. To fail is
not to achieve a goal or not prevent an opposing goal.

A competitive conflict situation in an action-oriented world is often
indicated by a sequence of high energy/skill actions, executed by opposing

teams in a relatively short time interval.

A team is a group of people who act in concer (in sequences of possibly
concurrent actions) to achieve a common goal.

In a sequence of actions performed by a team or an individual, it is often
the case that each act facilitates the next.

If there is an obviously more efficient method of achieving a goal than that

observed, then the observed method was probably done to satisfy some
logical constraints imposed by the rules of the game.

If a high 1evel of energy and/or skill is required of a physical action,
then the actor must be trying to achieve a goal by that action. The desir-

ability of a goal is often proportional to the level of energy/skill required
to perform that action.

The Differential Analysis Procedure may be used in order to substantiate
the hypothesized goals of an observed action

a. vary the skill/energy required to perform that physical action by +A
b. note the effect of A change on the hypothesized goals of the action.

c. Any changes induced by a positive A of skill/energy is often desirable

with respect to the individual goals; changes due to negative A are
often undesirable. :

d. If there is no change on the hypothesized goal induced by a 1'A, then
possibly this was not the intended goal.
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The Locus of Activity (Closure) Analysis Procedure may be used in order to
substantiate the existence of a relationship between some successive and/or

concurrent actions.

a. Divergence and/or convergence of activity in space often implies
the goals of the activities may be related.

b. Activity that begins and/or ends at the same point in time often
implies the goals of the actions are related.

The Dependence of Convergent Activity Analysis Procedure may be used in
order to discover/substantiate the precise dependency relationship between

the individual actions.
a. Apply differential analysis procedure to individual actions.

b. If this implies that individuals on opposing teams have opposing
goals, then more confidence is given to those hypothesized goals.

c. Also, the differential analysis may provide sufficient information

to permit the labelling of success or failure on the achievement of
those individual goals.
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In terms of simple energy expenditure, that is qui te wasteful--better he should
just run back to home plate! Therefore, expending all that extra energy sug-
gests that this is required by the logical rules of the game. Another arbitrary
causal relationship, which we shall analyze later (cf. the example), is embodied
in the ground out versus the ground single. That is, these situations capture
the concept that time relationships in games (and in most aspects of life) are
important; getting the ball to first base before the runner is the deciding
factor in these events. We are presently attempting to:develop a better under-
standing of the general issues underlying these kinds of situations.

There are other still more abstract logical concepts involved in a
competitive-conflict situation. For example, there is the notion that players
have opportunities to succeed or fail at achieving major goals. Or, there is
a scoreboard that keeps count of "interesting' actions. With what are these
counts correlated? When the system has built up a set of plausible hypotheses
about subgoals such as hitting the ball, or running and stopping at first base,
it will try and integrate these abstract concepts with the intermediate level
hypotheses that have been constructed. We could allow hypotheses about such
concepts to be formed early in the observation. However, they probably would
amount to a large number of weak conjectures whicﬁ would have to be discarded.
A conscious strategy of patience appears reasonable in these situations.

This hierarchical learning process attempts to capture what studies [20] of
the learning process in children have suggested: children seem to learn in
stages, and they bring in '"new principles' as they develop.

The particular list of conventions depicted in Figure 5 is only a repre-
sentative set, and may not be complete. This is not the crucial issue. What

is important is our use of conceptual semantic information as the framework
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In which a system can work. We will be ablé to experiment with various sets
of conventions to answer questions like: Is there a fact that must be pres-
ent? Can the system still function with a ''wrong'' convention? Will the
system get swamped by a highly redundant set of conventions? Care must be
taken not to restrict the set of conventions too much; otherwise, we may have

in effect begged the question of learning.

111.3. Implementation

How are these axioms, rules, conventions, represented in the computer?
The constraint that our system performs common-sense human-1like reasoning with
symbolic (non-numeric) knowledge rules out the more traditional theorem proving
and statistical approaches. A more appropriate representation is suggested
by two current artificial intelligence/brain theory models [11,21]: axioms
can be viewed as active procedures or computer programs. These “packets of
knowledge'' can ''think''--they can look at the input, call in other packets, and
generate chains of inferences and decisions.

The procedures have embedded in them more than just the content of the

axioms. Associated with each procedure is meta-information that indicates
in a rough way when a procedure is to be invoked, to what it can be applied,
what parts of the axiom are essential and non-essential, what to do in case
of trouble, where to go next, etc. The meta-information attempts to give the
system an understanding of how to use its knowledge. This is a very import-
ant facet of intelligence and an essential feature of a mechanical learning
system--as first noted by McCarthy [22] and thereafter often used to apologize
for the lack of research into mechanized learning systems, e.g., [23]. Figure
6 gives a sampling of the meta-information that is on the property list of

Rule 70
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Apply when: apply this axiom in initial phase of analysis.

Apply to what: apply to the highest skill/energy action of an
involvement chain.

If succeed, try next: check rule 9 (Figure 5) for applicability
check rule 8 (Figure 5) for applicability

If fall, try next: this may be a ''defective" competitive-conflict

situation, one in which a player failed to act.
Check this out by applying rule 12.

Figure 6. Meta-information for rule 7 (from Figure 5)
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IV. THE ATTENTION BOX

Just as in animals and humans, our system's attention box plays many

important roles. First, in order to prevent the higher level processes of
the system from being swamped by input ''sensations,' it must filter and
structure the input data. Ethological and psychological studies suggest
that animals and humans attend to change and habituate to constancy. Using
this notion, the attention box is ''programmed' to look at each snapshot and
keep only those descriptors in the snapshot that are changing in time.
More precisely, in order to decide whether to keep unit k in snapshot n,
one must consider snapshots n-1 and n+l. |If unit k does not appear in both
adjoining snapshots, then keep unit k, otherwise filter it out. This process
of filtering reduces the data to a manageable level; from 21 descriptor units
per snapshot to approximately 3-4 descriptors per snapshot. See Figure 3b for
an example of prefiltered raw data and the resultant filtered data. The system
further structures this data in accordance with rule 7 mentioned previously.
It segments the temporal sequence of activity on the basis of high energy actions.

But, this filtering and structuring is not enough. The system should
pass on to the higher centers only the more important and interesting action
segments. Therefore, the attention box notices subsequences of high energy
actions that are repetitive. High activity actions that repeat must be import-
ant to the structure of the game. It seems reasonable to try and analyze
those types of events first, before analyzing the truly novel events. This
requires that some syntactic generalization be performed acrass one or more of
the parameters of the descriptor unit. This allows different sequences to be

"matched" for similarity. For example, to even see if unit-A and unit-B match,
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the system must immediately generalize across the time parameter; in addition,
it will also be able to apply a person, place, or action generalization oper-
ator. Figure 7 gives examples of units generalized under various combinations
of operations. A more detailed discussion of generalization techniques will

be given in the section on hypothesis generalization. At this point, we need
only notice that with these syntactic operations the attention box can now dis-
.cover repetitive subsequences of activities. . During system start-up, this
ability will help the system to- focus in and analyze those events that seem to
be important.

Finally, there are feedback pathways from the higher centers to the at-
tention box that allow it to be biased to "look for particular events.'" What
the system attends to becomes, at least in part, a function of what it wants
or expects to see; the higher centers can partially "reprogram' the attention
box. Also, we can view the attention box as having a short-term memory (STM’.
Computational and memory considerations limit the number of specific events
which the attention box can be instructed to look for. We are developing

heuristics that can guide the decay and percolation of information in the STM.

V. THEORY FORMATION: HYPOTHESIS FORMATION, GENERAL)ZATION, AND
INTEGRATION

The combinatorics of this type of problem dictate that only reason-
able alternatives be generated during any phase of the theory formation pro-
cess which includes the following: hypothesis formation, hypothesis gener-
alization, and hypothesis integration. Therefore, the system must have some
guidelines for evaluating and directing its investigations. One traditional
way to achieve this is to provide the learning system with a teacher who
rewards the system when it makes a good choice (hypothesis). It is usually

argued that the teacher must present a ''good' training set, otherwise the
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Original descriptor unit: THROW(A1, FROM-HP, BALL)

Generalization of
descriptor unit

Person Operator: THROW(ANY-PERSON, FROM-HP, BALL)
Place Operator: THROW(A1, FROM-ANYPLACE,BALL)

Person and Place

THROW(ANY-PERSON, FROM-ANYPLACE, BALL)
Operators:

NOTE: There is implicit generalization over time and the system
will only generalize over action as a last resort.

Figure 7. Syntactic generalization operations
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system will flounder. |In effect, the semantic evaluation of those systems

is embodied in the teacher--he performs the critical task of evaluating the
system's hypotheses, and choosing a proper set of training events. In real
life, however, it is often the case that animals and humans learn without
teachers, hence the dictum '"'experience is the best teacher.'" Our goal is to
explore the degree to which a computer can semantically generate and evaluate

its own conjectures--i.e., organize its own ''thoughts."

V.1l. Hypothesis Formation

Psychological and computational considerations dictate that the ap-
proach to forming good hypotheses is to initially generate plausible
ones, as opposed to generating lots of them and filtering later. The
‘Eonceptual semantic knowledge of the system provides theAstructure and
direction for this to be déﬁé:w'ﬁecall“that,this_knowledge is implemented
as procedures with appropriately annotated meta-information. These procedures
look at the input data (the sequences of action in baseball) and try to dis-
cover the goals of the players performing those actions. The result of this
‘{nterpretation process will be called goal trees. For those segments passed
to it by the attention box, tﬁis subsygtem will form alternative hypotheses
about the goals of each player in the segment and output them as a goal tree.
When a player is involved in a sequence of actions, a set of goals interact and
limit the possible alternatives on the goal tree for that player. Since the
players themselves are interacting with each other's goals, even more infor-

mation is available to the ''packets of knowledge' to further structure and

limit the goal trees.

The knowledge procedures are active entities, but not all are applicable



..29_

to all the data. Therefore, there are pre-conditions (expressed in the meta-
information) which must be satisfied before a knowledge packet is permitted
to add its particular information to the decision. The procedures communi-
cate with each other, cooperating and competing, in their quest for good
hypotheses. The output of this distributed knowledge network are the goal

trees. An example of this process will be given shortly.

V.2. Hypothesis Generalization and Integration

The tasks of this subsystem are threefold: (1) under some generaliza-
tion(s) to collapse similar goal trees down into a generalized goal tree, there-
by abstracting the essential features; (2) to verify the validity of the pro-
posed generalized hypothesis; (3) to integrate the generalized hypothesis
into the knowledge base.

Actually applying the generalization operators is relatively straight-
forward (cf. the attention box discussion). Generalizing over a parameter
indicates a ''don't care' or '"match a whole class' in that dimension. However,
before doing generalization, the system must first find some promising candi-
dates (goal trees). Simply generalizing all the goal trees would cause
another combinatoric explosion. The system does find likely prospects by
using a novel twist of the hypothesize and test paradigm--the hypothesize
and wait paradigm. It waits and screens the output from hypothesis formation.
Then, using heuristics for similarity.of syntactic sequences as well as
hypothesized goals, it picks out some interesting goal trees to generalize.

In other words, the system can decide what to work on; it organizes its own
"thoughts,' much as we would.

Once generallized, the validity of such a hypothesis must be tested.
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Verificatior evidence is gained by waiting for more instances of the gener-
alization ard using the generalization to predict hew events. Positive con-
firming instances can only lend confidence to the proposed generalization,
whereas one negative instance can discredit it. The natural step then, is

to bias the attention box to be on the lookout for such specific events.
Should a negative instance be noticed, the system might then "debug'' its
proposed generalization, e.g., put constraints on an over-generalization, re-
lax restrictions on an under-generalization, or throw the generalization
completely away. Notice however, that deciding when in fact something counts
as a negative instance is a very subtle process.

Finally, the system must integrate the generalized hypotheses into the
knowledge base. Just because a generalized hypothesis nicely accounts for the
data, it may still not '"fit" into the set of existing theories. What pre-
cisely constitutes fitness--consistency, fuzzy consistency, simplicity, etc.,--
is still an open question. However, once a generalized hypothesis has been
integrated into the knowledge base, the system can draw on it in order to
build up higher level units. For example, the system no longer must ''think"
in terms of a [batter hitting a ball-running-remaining on first basel, but

rather in terms of a ''single."

Vi. OUTPUT

When all is said and done, what theory has the system formed? What

has the system really learned? From the introduction, we recall that the sys-
tem is forming a rich fabric of interwoven conventions and constraints that
structure the alternative events that could occur in a game. This fabric has

been arrived at by use of world knowledge and world cbservations. For example,

o
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the machine will eventually decide that ''when a batter hits the ball he may
run most probably towards Ist base, and in addition, he may also continue to
run towards the other bases. Bases seem to be special places in baseball.
Getting to first base is a desirable goal and seems to be a necessary precondi-
tion to scoring."

Let us examine one thin slice from that network, (Figure 8). The level
of the primitive descriptor units is significantly lower than the level of
the desired learned concepts. The system will hopefully come up with “primi-
tives relative to a level," e.g., XI in Figure 8. The "'levels" are ill-

defined, and certainly the set of relative primitives will not be minimal--but

pretty close, if the system is not to generate a unique description for each
sequence of events! These new primitives will facilitate a hierarchical con-
struction of concepts. As the system evolves, it develops structures that
enable it to understand more complex and disparate sequences of events. Infor-
mation will be made accessible by hanging of f each node in the network the
inference chain that explains the basis of that concept.

Finally, when can we say that the system has learned to understand
baseball? 1Is it fair to ask it to know about a balk, or a hit-and-run, or
even the infield fly rule? We have trouble with these concepts--yet we can
still play and understand the game! When the machine has iééfﬁed about hits,
runs, outs, and innings, then we can honestly say, ”The computer understands

the game of baseball."

VIl. EXAMPLE

Let us follow an example through the attention box, hypothesis forma-



SWINGHIT(p, ,1,BALL) RUN(p,,1,) BOUNCE(ij,BALL) ON(p,,1.)

k

AlRMOVlNG(lj,BALL) CATCH(pm,Im)

IIH'TH TII
\ /
\\ 7
\ /
\ /
\
N
INWNG /
\ /
\ /
\ /
\
\
GAME

Figure 8. A Slice of the Hierarchically Structured Learned Conventions
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tion, and hypothesis generalization and integration processes. Though it will
be brief and highly stylized, it should convey a sense of the expected func-
tioning of our system.

As we have said, the attention box can mark off high activity seg-
ments. By generalizing over the person and time parameters, it would discover
that the following segment recurs often: the pitcher throwing a ball, ‘a
batter hitting the ball and running, etc.

Passing this particular segment on, the hypothesis formation module
will attempt to build a goal tree for the pitcher and a separate one for the
batter. Recall that this is done by applying the knowledge procedures to the
data, if the preconditions on the procedures are satisfied. First, a MAKE-GOAL-
TREE procedure for the pitcher is created, Figure 9. Now, rule 7 of Figure §
finds itself applicable. |Is this a conflict situation? With a high degree of
probability, rule 7 reports yes, because both its preconditions appear to be
satisfied: (1) THROWing a ball at a high rate of speed does require a high
degree of energy; and (2) an opposition player, Bl the batter, is standing near
the patﬁ of the oncoming object. What now? Since there is little more infor-
mation, and since the high activity sequence continues, the system will pru-
dently suspend processing and wait to see what happens.

Going on to Figure 10 where Bl hits the ball, we see Rule 7 éctive again.
After Rule 7 decides that this Is a competitive conflict situation (details
omitted), Rule 2 returns a list of possible goals that B} might be trying to
achieve, and it also returns the physical enabling conditions associated with
each goal. A physical enabling condition (PEC) is an event that must have taken

place before the current event. Without going into details, the act of hitting an
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ANALYZE: ((AT,THROW,AT) Al,PM)

CALL MAKE-GOAL-TREE (A1)

l #

RULE 5

IS THIS A CONFLICT SITUATION?
A) Is the degree of energy/
skill required high?

--- YES

B) Is time duration short?
--- YES
C) Are opposing teams involved

or in the vicinity of involve-
ment?

--- YES, BI

T

SUSPEND

Figure 9. Goal tree analysis for the pitcher
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Analyze: ((AT,SWINGHIT) BI1,HP)

CALL- MAKE-GOAL-TREE (B1)

RULE 7

Yes, this is a competitive-
conflict situation

RULE 2
ACHIEVE WHICH GOALS? PREVENT WHICH GOALS?

GOAL1 GOAL2 GOAL3 SUSPEND
EXECUTE PROPEL OBJECT PROPEL OBJECT

SWING AND TOWARD SOMEBODY  TOWARD SOMEPLACE

HIT OBJECT

l

WERE THERE ANY
PHYSICAL ENB.
CONDITIONS?

Yes, Al threw the
BALL that Bl hit

RULE 12

IF A1 THREW BALL
WITH MORE ENERGY/
SKILL, THEN B1
WOULD REQUIRE MORE
ENERGY/SKILL TO
SWINGHIT

NOTE: PASS MESSAGE
TO MAKE-GOAL (A1)
""GOAL OF A1 IS
TO PREVENT GOAL,

OF B1-MAYBE" FIGURE 10. Goal Tree Analysis for the

l Batter.
ASSERT GOAL1
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inanimate moving object (specified by GOAL]) leads the system to examine the
PEC of how the object was caused to move. Who caused it to move? Ahal!
Al threw a ball which B1 hit. Meta-information in Rule causes it to pass
a message to Rule 12, the energy/skill analysis axiom, because now we have a
case where opposing teams are linked via a physical enabling condition.

Rule 12 is based on the belief that a person's goals are indicated,

at least in part, by the amount of energy and/or skill expended in pursuit

of the goal. In its analysis, Rule 12 first applies an energy/skill differ-

ential to the actions of Al and B1, and notices the effect on performance.
If Al used more energy, what would happen? He would throw the ball faster.
The system knows that the difficulty of hitting a moving object increases as
the rate of speed of the object increases. Therefore, if Al threw the ball
faster, B1 would have much greater difficulty in hitting it. The system also
knows that throwing objects very fast is a very high skill activity that not
many people are capable of. From all of this, the system can infer that one
goal of Al was to prevent B1 from hitting the ball, but alas, Al failed in
that difficult goal. Finally, one more piece of supportive evidence. The
system knows that hitting a moving bail requires a great deal of skill and
that not- everyone can do it. Therefore, since it saw Bl do it, it assumes
that B! did, in fact, want to execute that difficult actfon. Clearly, if

B1 wanted to not hit the ball, it would have been very easy. Rule 12 now
returns to Rule 2, with the above inferences. Rule 2 now has evidence to
assert, as one hypothesis, that the GOAL1 of Bl was to execute the act of
hitting. There would be a similar analysis for the evaluation of the other
goals. Note, in generating the éoal for B1, we discovered a possible goal

for Al: namely, to prevent Bl from hitting the ball. A message to this

»
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effect could then be passed to the MAKE-GOAL-TREE routine for Al.

Finally, let us suppose that the above scenario was an infield ground
single. Also assume that the system has a goal treé for an infield ground
out. The hypothesis generalizer would choose to work on these two scenarios
because (1) they do recur several times, and (2) both their sequences of
primitive descriptors (surface structure) and their goal trees (deep struc-
ture) are similar, although the goal trees differ in some significant aspects.
I't would then go on to discover the syntactic features that characterize
the semantic differences. After integrating these generalized hypotheses
into the knowledge base, the system might then be able to build up a more

general concept of 'out' or "sipgle."

VIII. CONCLUSION

The system described in this research will address a number of basic
issues involved in the cognitive processes of learning and forming theories.
The knowledge structure, the organization of logical processes, the ability
to form hypotheses and conjectures, and the development of a system whose
common-sense reasoning can be analyzed are important facets of our research.
In particuiar, the following are some of the issues that this research

will explore:

(a) Learning conceptual structures in real-world spatio-temporal
domains; the mechanisms involved allow the structuring of
complex information from a limited set of unordered examples.

(b) Learning exhibited by knowledge-based systems which do not rely
upon statistical or numerical techniques; we will examine the
organization of the semantic knowledge, the techniques for
retrieving and applying this knowledge, and the inference pro-
cesses for forming interesting hypotheses.

(¢) Mechanisms for focussing attention; this will involve an exam-
ination of processes for focussing upon interesting input
information on the basis of both 1) the innate ''syntactic"
cues; and 2) feedback from higher level cognitive structures
which can bias attention.



-38-

(d) Hypothesis formation; the system will attempt to generate
plausible hypotheses by allowing small 'packets' of knowledge
to infer the goals of people from observations of their actions;
in general, semantics of the problem domain will structure and
reduce the possible interpretations.

(e) Hypothesis generalization; the logical processes necessary to
collapse down similar hypotheses into the more general case,
thereby accounting for a larger class of inputs; syntactic
and semantic measures of similarity are being developed.

(f) Verifying and integrating hypotheses into a theory; a set of
generalized hypotheses must fit together into a consistent
'""theory'' to explain a complex set of examples; by our '"hypothesize-
and-wait'' paradigm, the system can evaluate its understanding of
the environment by predicting conceptual structures; in our prob-
lem domain, this involves properly anticipating activity of the
players.
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