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1. The Role of a Top-Down Approach to Brain Theory

A truly satisfying theory of any brain would place it in an
evolutionary and socio-biological context. It would build upon a careful
analysis of the co-evolution of -the patterns of individual and social
behavior which enable the animal's species to survive, and of the brain
structures which enable the animal to exhibit that behavior. However,
the neurophysiological and evolutionary branches of theoretical biology
have been seldom conjoined. 1In fact, much theoretical neurophysiology
can be characterized as 'bottom-up', analyzing the function of the neuron
in terms of membrane properties or the behavior of small or uniformly
structured neural networks in terms of simple models of neural function.

I would suggest that a 'top-down' approach to brain theory can provide a

bridge between 'bottom-up' neural modelling and a full-blown evolutionary

and socio-biological study.

The problem is essentially this: near the periphery of the

nervous system--a neuron or two in from the sensory receptors or the muscle



fibers themselves--single-cell neurophysiology allows us to make moderately
useful statements about the functions of the neural networks. Thus, in
these peripheral regions, the task of the neural modeller is fairly well-
defined: to refine the description of the individual neurons, and to suggest
missing details about their interconnections which will allow the overall
network to exhibit the posited behavior. He may also, at a more abstract
ievel, try to analyze--as, for example, Wilson and Cowan have done--the
possible modes of activity of a network of a given structure. However, as
we move away from the periphery, the situation becomes less clear. A given
region of the brain interacts with many other regions of the brain, and it
becomes increasingly hard to state unequivocally what role it plays in sub-
serving some overall behavior of the organism. Again, the remoteness of
the region from the periphery, and the multiplicity of its qonnections,
makes it increasingly hard to determine by the methods of single-cell neuro-
physiology what the 'natural' patterns of afferent stimulation to that
region may be. Thus, not only are we at a loss to tell what the region
does on the basis of experimentation alone, but our theoretical study of
modes of response of abstract networks becomes less compelling when we must
expect the input to the region to be of a highly specialized kind which is
unknown to us. Finally, we may expect that central regions will often be
involved in ‘computational bookkeeping', so that their activity will cor-
relate poorly with stimuli or activity; and, in fact, their activity will
be well nigh incoﬁprehensible without an appropriate theory of computation.
It thus seems to me that we must complement the bottom-up approach
to neural modelling of small or highly structured neural nets by what I may

call the 'top-down' approach to brain theory: given some overall function

.



3.

of the organism which is of interest to us, we must seek to analyze how

that function is achieved by the cooperative computation of a number of

brain regions, with the corollary specification of the natural patterns of
communication between regions, and thus the specification of natural inputs
for each region. It should, of course, be stressed that this theory--like
any science--must succeed by successive approximations. We must start with

the analysis of relatively simple functions whose operation can be approxi-

mated by the cooperative computation of relatively few regions. As simple
models of this kind succeed, we may then look at more subtle descriptions
of behavior, and take further account of the modulating influence of other
regions. At the same time, we can expect that developments in the evolu-
tionary and sociobiological analysis referred to above will provide us with
more sophisticated descriptions of behavior with which to confront our
'top-dow-' brain theory.

wWhile about half of this chapter will be devoted to successful
brain models, the other half will be more programmatic than substantive.
There are few proven methods of top-down analysis of brain function. Rather,
it seems to me that further success in 'top-down' brain theory will require
the injection--with substantial modification!--of many of the ideas developed

in the field of artificial intelligence. This is the field in which computer

scientists and cognitive psychologists have been working (sometimes together)
to design computer programs which can represent knowledge, solve problems,
exhibit aspects of natural language understanding, plan, etc. Attempts to
truly understand the brain's higher cognitive functions may have little
success without the sort of vocabulary that workers in artificial intelli-
gence are trying to develop; but it must be stressed that workers in

artificial intelligence have paid too little attention to parallelism.



In fact, of course, one of the most striking aspects of the brain is the
topographical organization of its computational subsystems, and one of the
major thrusts of this chapter will be to call for new concepts in a theory

of cooperative computation which is adequate to handle this type of com-

putational geography.
The aim of this chapter is not to give an exhaustive view of brain
theory, but rather to exemplify the thesis of this introductory section.

A more thorough review appears in Annals of Biomedical Engineering under

the title "Artificial Intelligence and Brain Theory: Unities and Diversities",

and, at even greater length, in my book Brain Theory and Artificial Intelli-~

gence (Academic Press, 1976).



2. Segmentation in Visual Perception

For many animals, a crucial part of perception is to recognize
objects--in a broad sense that includes other organisms, as well as arrays
of smaller objects--to the extent that the animal is able to appropriately
interact with them. Thus, a full theory must model the range of activity
of the organism, and analyze the perceptual clues required to extract
information appropriate to this range of interaction. However, in this
section I want to focus on a much simpler observation. It is clear that
most environments present an animal-~let us say one with a visual system--
with a complex array of stimulation which is highly unlikely to come from
a spatial arrangement of objects that the animal has ever encountered before.
It thus becomes important to simplify the task of recognition by breaking
it up into subproblems which include breaking the scene into regions--we

call this task segmentation--and aggregating regions as aspects of a single

object (or as jointly constituting cues for a certain course of action, etc.).
Segmentation may proceed both upward from low-level cues such as depth,

color, and texture; and downward from high-level cues provided by context,

or overall patterns of local features.

In the remainder of this section, we present two models of seg-
mentation: one which is neurally based and segments on depth features; and
one which evolves from work on robot vision and uses segmentation on color
and texture. In Section 5, we shall study a model which uses high-level
semantic information to aggregate regions into collections which constitute
different portions of a single object. To place these models in methodo-

logical context: the first is an example of neural modelling; the second



is in a form which sudgests possible neural implementation; while the third
is far indeed from a neural network implementation, and suggests, rather,
the types of data structures which must be implemented in any complex per-
ceptual system. In terms of our comments about analyzing relatively s$mple
functions, it must be noted that each of these systems is an isolated
subsystem at present. A challenge for future research is to explicate how
such sybsystems can work together in a system in which depth cues, color

cues, and high-level semantic cues supplement each other.

2A. Segmentation on Prewired Features!

While each retina provides only a two-dimensional map of the
visual world; the two retinae between them brovide information from which
can be reconstructed the three-dimensional location of all unoccluded points
in visual space. We indicate this in Figure 1, where the right retina can
not distinguish A, B or C (AR = BR = CR), and where the left retina can
distinguish them but cannot determine where they lie along their ray. The
two retinae can actually locate them on the ray: (AL, AR) fixes A, (BL, BR)

fixes B, and (CL, CR) fixes C. There are two problems:

N Vieth-Motier
Horopter Circle

Figure 1l:
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.1 The treatment in this section follows Arbib, Boylls and Dev [1975, Sec. 2].



The first is that our observation that the two retinae contain
enough information to determine the three-dimensional_location of
a point in no way implies that there exists a neural mechanism to
use that information. However, Barlow, Blakemore and Pettigrew
[1967]), Pettigrew, Nikara and Pishop [1968], and others find cells
in visual cortex which not only respond best to a given orientation
of a line stimulus, but do so with a response which is sharply
tuned to the disparity of the effect of the stimulus upon the two
retinae.

The second problem is that information is given about three-
dimensional location of points only when the corresponding points
of activity on the retinae have been correctly paired. If the
only stimuli activated in Figure 1 were at the focal point and

at A, then A can only be accurately located if AL is paired with

A_--were A_ to be paired with F

R 1 , the system would 'perceive' an

R

'imaginary' stimulus at W.

The main thrust of the model presented below will be to suggest
how disparity-detecting neurons might be connected to restrict ambiguities
resulting from false correlations between pairs of retinal stimulation. But
before giving the details, let us examine some psychological data which
define the overall function of the model. Normal stereograms are made by
photographing a scene with two cameras, with relative position roughly that
of a human's two eyes. When a human views the resultant stereogram--with
‘each eye viewing only the photograph made by the corresponding camera--he
can usually fuse the two images to see the scene in depth. Julesz [1971]

has invented the ingenious technique of random-dot stereograms to show,



inter alia, that this depth perception can arise even in the absence of

the cues provided by monocular perception of familiar objects. The slide
for the left eye is prepared by simply filling in, completely at random,
50% of the squares of an array. The slide for the right eye is prepared by
transforming the first slide by shifting sections of the original pattern
some small distance (without changing the pattern within the section) and
otherwise leaving the overall pattern unchanged, save to fill in at random
squares thus left blank. With Julesz's arrays, one slide presented to each
eye, subjects start by perceiving visual 'noise' but eventually come to

_ perceive the 'noise' as played out on surfaces at differing distances in
space corresponding td the differing disparities of the noise patterns which
constitute them.

Note well that both stimuli of the stereogram pair are random
patterns. Interesting information is only contained in the correlations
between the two--the fact that substantial regions of one slide are identi-
cal, save for their location, with regions of the other slide. Then the
visual system is able to detect these correlations. If the correlations
involve many regions of differing disparities, the subject may take seconds
to perceive so complex a stereogram--during which time the subjective
reports will be of periods in which no change is perceived followed by the
sudden emergence Qf yet another surface from the undifferentiated noise.

To clarify ﬁhe ambiguity of disparity in Julesz stereograms, let
us caracature the rectangular arrays by the linear arrays of Figure 2. The
top line shows the 21 randomly generated O's and 1's which constitute the
'left eye input', while the second line is the 'right eye input' obtained
by displacing bits 7 through 13 two places left (so that the bit at i posi-

tion goes to position i-2 for 7<i<13) while the bits at position 12 and 13

ra



thus left vacant are filled in at random (in this case, the new bits equal
the old bits--and event with probability 1/4), with all other bits left
unchanged. Then in the remaining 5 lines of the figure we show a disparity
array, with the ith bit of the disparity of line D being a 1 if and only if
the ith bit of the 'right eye input' equals the (i+d)th bit of the left
eye input.

The disparity array of Figure 2Asuggests the stripped-down cari-
cature of visual cortex which we shall use for our model. Rather than mimic
a columnar organization, we segregate our mock cortex into layers, with the
initial activity of a cell in position i of layer d corresponding to the
presence or absence of a match for the activity of cell i of the right
'retina' and cell i+d of the left retina. (This positioning of the elements
aids our conceptualization. It is not the positioning of neurons that should
be subject to experimental test, but rather the relationships that we shall
posit between them.) As we see in Figure 2, the initial activity in these
layers‘not only signals the 'true' correlations (A signals the central
‘surface'; B and D signal the 'background'), but we also see 'spurious
signals' (the clumps of activity at C and E in addition to the scattered
1's, resulting from the probability of 1/2 that a random pair of bits will

agree) which obscure the 'true' correlations.

o 1t 1 0 1 1]e 1 1 0 06 0 1]06 06 1 06 0 ¥ 1 1
uoxnoox’xooonloxcolcolxu

ytald élepovity ervay:

Figure 2:

o 31 1 o0 @O0 1 o o0 1 0 1 1

o1 o t{r 1 1 111y

o 6 1 0 0|2 0 0 1 0 1 1 %

Segmentation on Disparity Cues

1 3 0 ) 9|0 v 0 0 O 1+ % X

1 02 3 4 % 8 1 § 9 1031 17 1) 13 161710 MY 0N



10.

Let us now place this in a more general context (Dev [1975]), in

which we have any set of prewired features--with one spatially coded array

of detectors for each feature. We then have the following situation for the
problem of segmentation of prewired features:
Conceptualization: 'Layers' of cells (they are really in 'columns'), one
for each prewired feature.
Principle: Minimize the number of connected regions.
'Possible Solution: Moderate local crbss-excitation within layers; increasing

inhibition between layers as difference in feature increases.

Can we, then, interconnect the 'layers' in such a way that clearly
defined segments will form? We might imagine (but only as a crude first
approximation) the resultant array of activity as then providing suitable
input for a higher-level pattern-recognition device which can in some sense
recognize the three-dimensional object whose visible surfaces have been so
clearly represented in the brain.

While we do not have a precise functional 'regién measure' which
we have minimized, we do have a plausible interconnection schéme which yields
qualitatively appropriate behavior of the array: The essential idea is
given by the rule that there be moderate local cross-excitation within a
layer; énd inhibition between layers which increases as the difference in
feature increases. Let then xdi(t) represent the activity of the cell in
position i of layer d at time t (where we now let activity vary continuously
between 0 and 1); and let h(j) and k(j) be functions of the form indi-
cated by Figure 3. Then the change of activity of a cell is given in our

model by the eguation

(1) xdi(t+l) =31z h(d-d')k(i-i')xd,i,(t) + x

()
a'i’

di 0
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where it is understood that the sum 'saturates' at 0 and at 1.

(1{}]
M)

aNDitory wmierachon Qxciratory iaferocthion
of loyers of newghdorng celly

Figure 3:

Interaction Coefficients

Whét this scheme does is allow a clump of active cells in one
layer to 'gang up' on cells with scattereé activity in the same region but
in other layers, while at the same time recruiting moderately active cells
which' are nearby in their own layer. The system then tends to a condition
in which the activity is clearly separated into }regions', with each region
having its own unique feature (layer of activity). In other words, such a
scheme resolves feature ambiguity through suppression of scattered activity,
thus permitting activity related to only one feature in any one locale.
Moreover, returning to the stereopsis example, the dynamics of the model
does represent the Julesz phenomenon of a noise stereogram taking some time
to be perceived, with each new surface being perceived rather abruptly.
This is simulated in the model by the fact that, once a sufficient number
of clumps achieve high activity, the recruiting effect fills in the gaps
between the clumps to form a good approximation to its final extent.

Before closing our discussion-of this model, we should note that
equation (1) can be rewritten in a fashion which suggests a plausible scheme
of neural interconnection.

We decree that the neurons of the above array all be excitatory.
We now introduce a layer of inhibitory interneurons, one for each spatial
direction, the ith of which has activity at time t given by the simple
equation

Yi(t) = g xdi(t).
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Let us now pick a constant H such that h(j) = H+h(j) 2 0 for all j.

We may then rewrite (1) in the form

(2) xg; (E+1) = d):' iz. (A(d-a") ~mk(i-1i")xg, , (£) +xg. (t))

di'"o

so that

(3) x4, (£+1) {z zﬁ(d-d')k(i-i')xd,i.(t)} -iz' L -iy,, (&) +xg, (£)

dl il 0

where 1(i-1i') Hk(i-i'). Thus (3) shows that our model may be given

structural expression in a form in which the x_.. are all excitatory, with

di
excitation being appropriately counteracted by inhibition from single layer

of inhibitory interneurons.

2B. Segmentation on Ad-Hoc Features

While anyone whc has used the focus control of a camera finds it
plaﬁsible that a small number of different disparities can give a tolerable
set of depth cues to aid other mechanisms for locating objects in the world,
credulity would be strained by the suggestion that we have a prewired set
of features for every color or texture which will prove of value in setting
off one region of the visual world from another. In this section, then, we
present a scheme which creates ad hoc features for segmenting visual input.
It is due to Hanson, Riseman and Nagin [1975], who give full references to
related literature. The scheme is part of a preprocessor for the visual
system of a robot which is to analyze outdoor scenes. In what follows, I
describe a scheme of segmentation based on their model, rather than detailing
their computer implementation. Some of the computations in the scheme have
clear neural implementations; other parts challenge us to find neural

implementations.
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The system input consists of three spatially coded intensity
arrays, one each for the red, green and blue components of the visual input.

The first task of the system is to extract microtextures--features, such

as hue, which describe'small 'windows' in the scene. Even in the foliage
of a single tree, or in a patch of clear blue sky, the hue will change from
window to window, and the system-must be able to recognize the commonality
amongst the variations. However, in segmenting a natural scene, macro-

texture will be more important than microtexture. Macrotexture is a pattern

of repetition of (one or more) microtextures across many ldcal windows, and
its recognition requires the analysis of structural relationships between
types of microtexture. For example, the branching of a tree would have the
microtexture of leaves interspersed with that of shadows in summer; while
the microtextures of branches and of sky might characterize its winter
appearance.

We extract microtexture first. The aim is to do this without
using predefined features. The general method is as follows: pick n

feature parameters; map each image point into the feature space forming an

n-dimensional histogram. Then apply a clustering algorithm to segregate

the points into a small number of clusters in feature space. Each cluster
then forms a candidate for a microtexture of use in segmenting the original
image! The point is that, for example, while tree foliage and grass may
each yield a range of greens, the feature points of the two regions should
form two clusters with relatively little overlap. The result of the

clustering soperation is suggested by the (hypothetical) example of Figure 4.
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Figure 4.

An image of a tree in a field is mapped into feature space.

The four microtextures of blue of sky, green of foliage,

green of grass, and brown of tree trunk define four clusters

in feature space. The lines drawn to separate clusters are

somewhat arbitrary, and further processing is required to

settle 'demarcation disputes’.

Once the clusters have been formed, each may be assigned a
distinct label. Returning to the original image, a cluster label may be
associated with each point, which thus has a tentative, and ad hoc, micro-
texture associated with it. So far, however, no spatial information has
been used to bind texture elements together. If N clusters had been formed,
spatial information is used to constrict an N by N adjacency matrix, in
which the (i, j) element records. The number of times a point labelled i
is adjacent to a point labelled j (i.e. bearing the microtexture label of

.t . . . .
the j h cluster). A homogeneous region of points from a single cluster j
will yield large values of the (j, j) element of the matrix. A large
number of adjacencies between points of two cluster types may signal a
cohesive region that has a repetitive mixture of cluster types—--in which

case it determines a microtexture. [However, note that two microtextures

may be interdistributed in different ways to determine macrotextures.]
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Macrotextures suggested by large (i,j) entries can then be used as labels
for the final pass of region-growing on the image.

The contribution from a boundary between two homogeneneous regions
of types i and j, respectively, would distort the (i,j) entry. To avoid this,
it pays to remove large connected homogeneous regions, and then form a modified
adjacency matrix without these boundary contributions. Another boundary-
value problem (!; is that clustering may yield a cluster due to windows
overlapping 2 regions. However, if we apply curve-following, as well as
region-growing, algorithms to the cluster types, we can generate boundaries
directly to supplement our region-growing process.

The resultant regions, labelled by macrotexture features, can then

provide the input to a semantic labelling process of the kind we shall discuss

in Section 5.
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3. Competition and Cooperation in Neural Networks

Selfridge [1959] posited a character recognition system, called
Pandemonium, which would behave as if there were a number of different
‘demons’' sampling the input. Each demon was an expert in recognizing a
particular classification and would yell out the strength of its conviction.
An executive demon would then decree that the input belonged to the class

of whichever demon heard yelling the loudest.

"Executive"

Demon

T
AN

INPUT

Figure 5.

Pandemonium

Oﬁ the other hand, Kilmer, McCulloch and Blum [1969], in modelling
the reticular formation, posited a system without executive control. Rather,
each of an array of modules sampled the input and made a preliminary decision
to the relative weights of different modes as being appropriate to the
overall commitment of the organism. The modules were then coupled in a back-
and-forth fashion so that eventually a majority of the modules would agree
on the appropriate mode--at which stage the system would be committed to
action. A reasonable analogy is a panel of physicians sharing symptoms and

coming to a consensus about a diagnosis for a patient. (This suggests that

Q-
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social analogies may once again play an important role in brain theory.)

Module Module Module
Ml M2 Mi
Pia Poa Pia
'y > | —
P1p Pos Pim
N . .
INPUT
Figure 6.
S-RETIC

Here is the operation of the model, S-RETIC, in more detail. Each
module Mi receives a sample Yy of the input lines, with more nearby modules
tending to receivé more highly overlapping samples. At each time period, Mi
emits as output a probability vector p, = (pil""'Pim)' where pij is the
weight that Ml currently assigns to the hypothesis that the system input
justifies the system committing itself to mode j of overall activity.

In addition to Yy Mi receives 2 input vectors p? and p?. Each
p;g is pkj for some k > i depending on i and j; similarly pf} is a pkj
for some k < i. The k's are distributed randomly in such a way that small
values of Ik - i| are favored.

A transformation Fi transforms the sample Ys into a probability
vector pi = Fi(yi) --the best mode estimate on the base of the sample
N alone. P? and p? are normalized to yield probability vectors

H L
"o we -
Py N(pi) and pY N(pi).
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Each of the components of these 3 vectors is then operated upon
by the nonlinear function f which accentuates p—values above 0.3 and diminishes
those below 0.2. f implements ‘redundancy of potential command'--those
modules with the most information about a mode have most authority.

A secondary mode estimate is then formed by the formula

Cﬂf(p}',) + Csf(p;) +Caf(p'§'(')

cC +C_. +C
m § a

where the C“, C6 and Ca are adjustable weights, such that CTr is far greater
than CG and C6 at times of S-RETIC change; but relax to roughly equal values
thereafter. [Note the computation does not depend on the old output vector
of Mi-—it is as if Mi ﬁforgets“ what it has learnt unless somebody later
"reminds" him of it.] The vector Ei is then passed through a transform R to
form the output vector p,- R operates by accentuating differences between
small components, and shrinking between large components; édding a scalar

to all components to make them positive; reversing the first process; and then
normalizing: R = N - H—l « T - h.

We say S-RETIC converges to output mode j if more than 50% of the modules

P .t . cq s R .
indicate the j h mode with probability > 0.5. 1In computer simulations,



19.

convergence always took place in less than 25 cycles; and, once converged,
stayed converged for that input. Strong pij values for a given j are more
likely to switch the net into mode j if the i's are close than if the i's
are widely scattered.

Didday [1970], in modelling the snapping behavior of a frog confronted
with two flies, posited a system of competitive interaction in the frog's
tectum, which would‘lead in most cases to the suppression of all but one region
of 'bugness' signalling, and result in the frog's snapping at one of the flies
which caused the visual stimulation. In some cases, however, no region would
emerge victorious from the competition. More precisely, a frog confronted with
several wiggling stimuli (be they flies, or the motion of the tip of the exper-
imenter's pencil) may exhibit one of three responses:

(a) Snap at one of the stimuli

(b) Snap at the 'average position' of two stimuli

(c) Snap at none of the stimuli.

On the basis of the Pitts-McCulloch model [1947] of superior colliculus,
and the Braitenberg-Onesto model [1960] of cerebellum, Arbib [1972, Sec. 5.5]

posited the existence of a distributed motor controller which responds to

a pattern of high-level stimulations on its input surface by triggering a
motion to the center of gravity of the spatial positions encoded by the loci
of high-level inputs. [Regrettably, experimental data on type-coding vs.
target-coding of actions in mammalian brain is still very indecisive.]

Such a controller must be hierarchical since, for example, with increasing

angle, a frog's head movement requires activity mainly in neck muscles, then
trunk involvement, until with greatest angles hind-leg stepping is required.

The above considerations lead to the scheme of Figure 7.
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' bugness array’
from ganglioncells

1—‘.-”. R R, ...._-..___.w

// 'target array'
/ to distributed

/ motor controller

/

i{

Figure 7

Our task is to give a structural description of the bax M whose
input-output behavior is suggested by the experiments. Namely, given a
spatial input array I(x,y) with well-defined peaks at (xl,yl),...,(xn,yn),
say, M should emit an output array such that:

(a) Normally, the output array will have a single large peak at the
(xj,yj) for which I(xj,yj) is maximal.

(b) Occasionally, the output array will have two peaks corresponding
to the two largest I(xj,yj) --the motor controller will convert
this into a snap at the average position.

(c) No part of the output array will reach the trigger-level for the

motor controller.
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In short, M resolves the redundancy of potential commands in
I(xl,yl),...,I(xn,yn) to enable the frog to snap, normally, at one food-
worthy location. Even case (b) may be valuable, as when a frog snaps
between two wiggles which are the ends of a worm. The goal was to keep the

logic distributed rather than channeled through the serial computation of

a localized executive. This, in fact, Didday achieved using two layers of
cells, whose names suggest their relation to cell types actually observed

by Lettvin et al. [1960]:

(1) The sameness cells: sum the total 'bugness' activity outside
their own region.

(ii) The newness cells: signal change in 'bugness' in an area.

More specifically, let

f(x,y,t) = the 'bugness' evaluation made by the tectum on the basis of
ganglion cell activity; at position x,y:; at time t.

m(x,y,t) = a 'masked' evaluation of bugness--the‘dutput of M at position
X,y; at time t.

s(x,y,t) = the activity of the sameness cell at position X,y; at time t.

n(x,y,t) = the activity of the newness cell at position x,y; at time t.

These activities are then related as follows:

s(x,y,t+l) = [ . 'Z m(x’, y', t)] / [1+ , 'Z m(x', y" t)]
x'y f.’Bx'y x'y eBx,y
where Bx v is a small region around (x,y)--i.e., s(x,y) is
14
large to the extent that most m activity is outside Bx v
’
m(x,y,t+1l) = n(x,y,t+1) + {m(x,y,t) / [1 + h(s(x,y,t+1))]}
0 if s < .2
where h(s) = s if .2 < s <£1.6
2s-1.6 if s 2 1.6
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so that m remains unchanged where Bx y contains a large
r

proportion of the 'masked bugness'; and is drastically
reduced where Bx y contains very little
1 4
while

n(x,y,t+l) = increase in f(x,y,t) over f(x,y,t-1) if this is positive unless

the cell is habituated--a complication we ignore here.

Thus in the nonhabituated frog a new pattern is entered into the masked
cell layer; thereafter (for constant input) the distributed computation
iterated through the sameness cells suppresses all but the highest peak of
input activity as represented in the masked cell layer. The drawback with
this model is that the initial values entered by the newness cells are
larger than the final values to which the m(x,y,t) converge, so that one
must assume that newness activity inhibits any motor effect of m(x,y,t)
until after a convergence period. Normally the converged pattern has only
one sharp peak--whether or not it is above threshold determines whether
case (a) or (c) obtains. In some cases, two nearby peaks in f coalesce

in m, and we have case (b).

In attempting to place these studies in perspective, Montalvo
[1975] observed that we could analyze the Dev, Didday and S-RETIC models
within a common framework, with the computational subsystems arrayed along
two dimensions, one of competition and one of cooperation, as in Figure 8.

Tﬁe theme of competition and>cooperation has thus emerged in
three completely separate neural network models. As we shall see in the
next two sections, it also plays a role when we look at the way in which an

internal model of the world would operate.
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Competition and Cooperation in three neural nets.

23.



24.

4. Representing the World as an Array of Active, Tuneable Schemas

We have stressed that an organism's sensory stimuli should be
analyzed as an array of familiar 'objects'--whether the object was a single
object, such as a tree, or a composite object such as a row-of-trees.
Moreover, the representation of this array should be easily updateable.

This 'array representation’ is reminiscent of the making of movie cartoons,
where each frame is obtained by photographing the contents of a 'slide-box'--
in which are appropriately positioned slides. A backgrouhd slide may remain
the same for many successive frames; a middle-ground slide (representing,
say, a tree) may require no redr;wing, though it may requi;e repositioning
relative to the background; whereas a foreground slide (representing, say,

a person) may remain the same in gross features from frame to frame yet
require constant redrawing of details (to represent, for example, the
movements of mouth and limbs).

The basic slide-box metaphor (Arbib [1970; 1972, p. 921), then,

requires the representation of input patterns to be given as an array of
slides--appropriately located and 'tuned'--chosen from a slide-file, a
collection of standard slides, with the array 'covering', in some suitable
sense, the input. However, rather than thinking of slides in visual terms
we must regard them as cueable by various modalities--the slides are to
cover the ‘'sensible environment'--so that a cat-slide may be activated as
much to cover a meow as to cover the sight of a cat. More importantly,

though, from an action-oriented point of view, the activation of a slide is

now to be seen as giving access to programs for guiding possible interaction
of the organism (be it human, animal or robot) with the 'object' which the

slide represents.
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The important point is that we wish to analyze scenes which extend
over time, and in the slide-box representation a frame can often be obtained
from its predecessor by simply relocating the 'active' slides (i.e., those
currently in the slide-box) and updating some of their parameters--rather
than resegmenting the input and assigning tags to these regions. Of course,
when some region is no longer tolerably covered by the active slides, some
appropriate retrieval mechanism must replace one or more slides by some new
slide from the slide-file, and tune it appropriately.

But this language smacks too much of the metaphor. Let us replace
slide by the notion of a schema--an arré§ of programs to analyze a segment
of the input to determine a possible course of action. As such, a schema
must be relocatable, tuneable, and linkable with other schemas. Thus, we

have the following components of a schema:

(1) Input-Matching Routines: A routine which succeeds to the extent that
it covérs a spatial region of multi-modal input (so that a cat schema
can cover a furry region which emits meows, but not one that emits
barks). This can be biased by non-sensory context inputs. The input-
matching routines may include calls for confirming information (as in
the eye-movement calls of Didday and Arbib [1975]). The level of success
of these input-matching routines may be regarded as an 'activation’
level of the schema. The activation level of the schema increases as the
location and other parameters of the Schema are adjusted to better fit
the covered region. However, to complicate the story, the resolution
level (i.e., the precision of this parameter match) required for activa-
tion to saturate may well depend on goal settings, or other non-sensory
input to the schema--consider the different level of precision with which

we 'perceive' a tree when we intend to walk around it, as against when
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we intend to climb it (so that the placement and estimated strength
of the branches, rather than the general area they occupy becomes
important).

(ii) Action Routines: To the extent that the success of the input-matching

routines raises the activation level of a schema to that extent do
certain actions become appropriate for the organism. Programs for some
of these actions then form part of the schema. A crucial integrative

property of schemas is that increasing accuracy of parameter adjustment

by the input-matching routines automatically adjusts parameters in the

action routines in such a way that the action becomes more appropriate

for the current environment and goal structure (if the schema has been

properly ‘evolved'). A classic example is that the cat turning its head
to gaze at a mouse is automatically tuning its motor system for the
pounce.

(iii) Competition and Cooperation Routines: To date, we have talked of a

schema as acting in isolation, attempting to raise its activation level

by proper matching of input. As we shall discuss in the next section,

the operation of competition and cooperation routines helps determine

which population of parameter-adjusted highly active schemas will constitute
the current model of the environment. Of course, there still remains the
problem of determining which of the action routines of theseschemas are

to operate-—and another network of competition and cooperation routines will
be involved in determining a compatible set of actions. [This expository
separation--scene analysis first, planning second--is misleading. At any
time, the organism is engaged in some activity, even if that be resting.

Thus it is not so much a matter of choosing a course of action as it is
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of determining whether the time has come to change the course of action
being pursued. The completion of an action may remove it from the competi-
tion. More interestingly, the execution of an action may provide new sensory
input which de-activates the slide (or drastically changes the parameter
setting) which enabled the action--as when we bite into what appears to
be a piece of fruit only to discover that it is made of wax.
Notice that all these routineé.provide the semantics of a schema--
what an object means to us comprises our knowledge of what we can do with the
object and what relations it has with the object, to the extent that our input-
matching routines can capture the effects of these actions and relationships.
In any case, we have come a long way from the original notion of a slide as
being simply a coloured transparency that approximates a region of the visual
field. Now that we have our new general notion of a schema we shall henceforth

reserve the word for its technical sense of an (input-matching; action;

cooperation and competition) set of routines, with the crucial relationship

between the parameters of the input-matching and action routines.

We must now look more carefully at the structure of parameter
sets. Minsky [1975] notes that a person cannot visualize a cube in any
perspective with great accuracy. However, I do not accept his suggestion that
we can internally represent a small population of precise parameter settings,
i.e., a precise view of cubes oriented at -45°, -30°, -15°, 0°, 15° and 30°
about a vertical axis. Rather, it seems to me better to explicitly regard
this as an example of crude parameter setting--the routine is sloppy enough
that it will, for example, accept any cube which is roughly head on, say from
-10° to 10° as satisfying a given parameter setting in the input-matching routine.

More interestingly, we may imagine levels of precision, so that one range

may be more precise than another. We thus require that the parameter sets
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in both input-matching and action routines be partially ordered sets

(posets, for short), where the relation x [~ x' is to be interpreted

as x' is a refinement of x, or as x approximates x'. For example, if Y is

a set of reachings, we might have
reaching to the left
[— reaching about 60° to the left
[— reaching 62° to the left while it is not true that “"reaching 61°

to the left

reaching 62° to the left.

I

We also assume that each set has a minimal element O

Oy forall yeY
corresponding to 'no specification at all'--so that, in the reaching set, 0
just means 'reaching', without any specification as to the direction (and so
is not to be confused with the very precise 'reaching 0° to the left', i.e.,
straight ahead).

For now, we shall assume that all schemas may continually monitor

their input pathways (though different schemas have different input sets).

In other words, the slide-file of the original metaphor becomes the total
population of (relatively high-level) schemas of the present model; the slide-
box of the original metaphor becomes the subpopulation of highly activated
schemas of the present model. As in both Pandemonium and S-RETIC (recall
Section 3), we leﬁ each schema (i.e., mode-element) continﬁally receive input.
However--unlike both Pandemonium and the original slide-box metaphor--we
shall for now try to do without a central executive overseeing the activation
of schemas and instead--in the spirit of Dev, Didday and S-RETIC--explore

what can be achieved by the schemas themselves by virtue of their cooperation
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and competition routines. My methodological point is that it is not helpful
to make a priori assumptions (whethér to fit our preconceptions about neural
net structure or‘about the utility of LISP programming) when setting up a
framework of this generality. When we actually look at restricted systems
which must be implemented in a brain or on a computer, theh we can be more
specific about the sets of executive and book-keeping routines that seem
necessary to augment the routines built into theschemaé themselves.

With this, the time has come for a formal notion of scene to replace
the "contents of the slide-box" of the old metaphor: A scene (A,e) is a set
A of schemas together with a function

e: T— |[ P
acA

where T is a time interval, Pa is the poset of parameter-settings of schema a,
and for each t € T,
e(t) = {e(t)(a)]a ¢ A}
is such that e(t)(a) ¢ Pa is the parameter-setting of schema a at time t
during scene (A,e).
Without being precise, it is part of the concept that the set A
is relatively smali--the scene (which is a potential new 'superscheme' in
our learning theory for schemas [Arbib, 1976]) is the internal representation
of a relatively homogeneous episode (i.e., one in which there are no ‘dramatic’
changes in the set of motors or their parameter settings). This does not
require all schemas in A to be active throughout the scene-- e(t)(a) =0
is permissible--but it does require that the variation of e(t)(a) over time
not change the structure of the situation too drastically (as would be the

case if you were suddenly to perceive that a lion had entered your room).
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Note that we have changed from the usual definition of scene--a

two-dimensional visual input--to a definition that is system-dependent (different

observers may activate different sets of slides in response to a given visual

input) and extends over time. This is consistent with our general theme of

" action-oriented perception--a scene is to be a meaningful episode in the life

of an organism interacting with a dynamic environment.

It is beyond the scope of this article to relateschemas to other
approaches in the literature--but a few comments are in order. The problem
of representation of knowledge has long been of great interest to psychologists.
A classic study is Bartlett's [1932] analysis of "Remembering"; and we have
gained much from Piaget's studies of schemata, especially his notions of
assimilation and accommodation--see Furth [1969] for a review. These ideas
have receﬁtly been born anew in approaches to artificial .intelligence.
Perhaps the best-known study is that of Winograd [1972, 1973), which works with
a restricted 'blocks world'. Several other approaches to this general area
are presented by Schank and Colby [1973]. Minsky [1975] has recently advanced
his concept of 'frames' as a unification of these studies. At the level of
vision and manipulation, these ideas seem bettered by our notion of a schema.
However, the idea of aschema is not yet well tuned to the problems of linguistic
and social interaction. Intriguingly, the notion of frame analysis proves not
to be peculiar to artificial intelligence. Erving Goffman's [1974] "Frame
Analysis: An Essay on the Organization of Experience" is a text in social
psychology, and many of his examples are surprisingly reminiscent of Minsky's.
A contribution to this area which seems to lie intermediate between the
straight A.I. approach and Goffman's approach is that of Bruce and Schmidt
[1974], which can be viewed as a sequel to Searle's [1965] study of 'speech
acts'. Schank's work--and the related work of Abelson--are also interesting

in this regard.
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5. Competition and Cooperation between Schemas

Imagine that a segmentation program has divided a scene into regions

such as those shown in Figure 9.

Green

Brown

Figure 9

What is it?

With only this much information available, two quite different
pairs of schemas may be activated to cover this input: in the first inter-
pretation the schemas would represent green ice-cream and a brown ice-cream
cone; in the second interpretation, the schemas would represent the foliage
and trunk of a tree. There would be competition between the pairs, and
cooperation between the schemas within each pair. Thus the system of interactions
shown in Figure 10 would have two large attractors corresponding to the two
natural interpretations, and very small attractors for the "unreal" pairings--

though these could be forced by a trick photograph or a Magritte painting.
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foliage

Figure 10

In case of blurred images, the input may start the system close to
the boundary between the two attractors. Copvergence may be slow, and even
incorrect. Context can provide a mechanism to speed, and correct, convergence.
Thus the 2 contexts in Figure lla correspond to the 2 extra schemas in Figure

11b, and in each case we expect rapid convergence to the “right" interpreta-

tion.

(a)

Green Light - - .
Brown
| S k\\\\ I .

Figure 11

The effect of context

o
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Thus an initial configuration in which the schemas for foliage, trunk, ice-
cream and cone have comparable activity will rapidly converge to a state of
high activity in foliage and trunk schemas and low activity in ice-cream and
cone schemas if the grass schema is given a higher activity level than the

hand schemas and vice versa. Incidentally, we may note that as well as. slides
for objects, we may also have more abstract schemas such as one for winter.

Now at the change of seasons, the first fall of snow may be the signal for
winter--so that we must posit the activity level of the snow-schema as providing
excitatory input to the winter-schema. However, in the normal course of events,

the organism knows that it is winter, and can use this contextual information

(Figure 12) to favour the hypothesis that a white expanse is snow rather than
burnished sand, say, or moonlit water. It is this type of reciprocal activa-
tion (whether we regard it as an additional input, or as the action of a

cooperation routine) that gives the system of schemas its heterarchical

character.

Snow

is a is a
sign of context for

winter

Figure 12

A Heterarchical Relationship.

[Strictly defined, a 'heterarchy' is a system of rule by alien leaders.
But in AI, stimulated by McCulloch (1949), it now denotes a structure in
which a subsystem A may dominate a subsystem B at one time, and yet be dominated

by B at some other time.] This notion of schema competition and cooperation
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may be seen to apply to the Dev model (Section 3) which we can recast in

terms of 7 arrays of schemas (Figure 13).

w 111 w 111
oo [

Figure 13

The Dev-model in schema format.

In this simple model, the schemas in layers 1L and‘lR are simply
ganglion cells of the retina, whose firing level is high to the extent that
some feature is present in its visual field. The activity of a schema in layer
Dk represents the presence of a feature with a given 3-dimensional location
(as coded by the disparity between the schemas in 1L and 1R which activate
it). But much of the activity here would be spurious if these schemas were
driven only by the schemas of 1L and 1lR--and so Dev postulatés competition and
cooperation routines (schemas in different D-layers compete; nearby schemas in
a given D-layer cooperate) which yield segmentation of the visual field into
relatively few regions in each of which the active D-schemas have the same
feature.

Burt [19?5] has modified the Dev model to support moving regions in
response to moving inputs. In a more elaborate model one would then posit
that--at this level--the visual field is not simply segmented into regions of
relatively homogeneous schrmas with high activation, but that the cooperation

routines have activated pointers to the activated schemas of the same region
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(cf., the welds and co-moving sets of Arbib [1969]). Thus 'higher-level'’
schemas may determine thét they are dealing with a region rather than an isolated
feature.

Let us now leave this general discussion, and try to put competition
and cooperation between schemas on a formal level. 1In one approach, due to Waltz
[1975] and given a parallel algorithm by Rosenfeld, Hummel and Zucker [1975],
the activation levels are O or 1, and one looks for a consistent labelling of
the regions. 1In the second approach, also due to Rosenfeld et al., one imposes
a nonlinear interation scheme on assignments of probabilities to the different
labelling hypotheses for each region. The latter approach, as we shall see,
is more satisfactory. Even more interestingly, however, is its strong formal
resemblance to the S-RETIC scheme of section 3. Thus our study of competition
and cooperation between schemas is brought firmly within our scheme of competi-

tion and cooperation in neural networks.

The Binary Model: We are given a set A = {a ..,an} of objects

1’

to be labelled, and a set A = {Al,...,Am} of labels. Let Al be the set

of those labels in A compatible with a,; and let Ay c 1’\.l x Aj be the set
of pairs of labels (A,A') such that X may occur on a, when A' occurs on aj.
We set Aii = Ai x Ai.

[In our motivating example, we have 3 regions, with Al =
{foliage, ice-cream}, A2 = {trunk, cone}, A3 = {grass, hand}, while
Al2 = {(foliage, trunk), (ice-cream, cone)}, etc.]

A labelling L = (Ll,...,Ln) assigns a set Ll c Al of labels
to each a, - The labellings form a lattice under componentwise set-inclusion.

We say that a labelling is consistent if

({2} x Lj) n Aij z @ for all X € Li' (1)
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This is a local consistency condition. We call a labelling L unambiquous
if it is consistent and each ILil = 1. Note that a consistent labelling may
not contain an unambiguous labelling. However, the task of the present model
is to find such unambiguous labellings when they exist. We first note the
obvious:
PROPOSITION The empty labelling is consistent. The union of any set of con-
sistent labellings is again consistent. There is thus a greatest consistent
labelling g:(which may be null).

Returning to the criterion, (1), for cdnsistency, let us say a label
A in set L, is isola}_tiq in L if ({A} x Lj) n AY =@ for any j. It is clear
that such a A cannot be part of a consistent sublabelling of L. This suggests
that we operate on L with A where AL is obtained from L by discarding from
each L, all labels which are isolated in L. It is clear that AL = L iff
L is consistent. More interestingly, a standard fixed-point afgument shows:

. PROPOSITION For any L, let L'™

()

be the greatest consistent labelling contained

in L. Then L is the greatest fixed point of A contained in L, and, by the

finiteness of A, we have that there exists an integer k such that

=) _ aky,

e

To find an unambiguous labelling contained in L, we build a tree (in
(=) |

the style of Waltz [1975]) of labellings, with L as the root. Then, having
obtained a node with labelling i; we construct its descendants by making all
possible choices as follows:

Pick an i such that f; is not a singleton. Pick A € fi. Set

L' = (Te-e D OALT 0o D)
If g:(m) z (f,...,9), add it to the tree as a descendant of E}

It is clear that all unambiguous labellings (if there are any)

contained in L will occur as (some of) the terminal nodes of the tree grown
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in this way.

The main problem with this algorithm is that if any region has an
empty label set Li in L, then AL will be the empty labelling. Clearly, a better
algorithm would use the 'consensus' of other regions to add labels to Li--
as when we suddenl& perceive the nature of an object purely on the basis of its
context. The next algorithm, then, allows continuously varying weights to
be assigned to each label for each region, and uses an operation which can
increase, as well as decrease, those weights. As remarked before, the scheme
is strongly reminiscent of S-RETIC, though here convergence is towards a labelling,
rather than towards consensus on a single mode.

The Nonlinear Probabilistic Model: We again have a set

A= {al,...,an} of regions, and a set A = {A ..,Am} of labels. However,

17"
a labelling p = (pl,...,pn) is now a sequence of probability vector

P, : A — (0,1], with pi(A) being the weight assigned by p to the hypothesis
that A is the correct label for a,.

We wish to design an operator F which--in the style suggested by our
discussion of Figure ll--well on iterated application move p towards a 'correct'
labelling. The key idea is that the probability pi(k) of a given label for
a; should be increased (respectively, decreased) by F if other objects that have
high probability labels are highly compatible (respectively, incompatible)

with ) at ai.

Thus, in the present model, thefgj are replaced by compatibility

functions
r..: A x A — [-1,1]
1]
which function like correlations: if A' on aj frequently co-occurs with A

on a., then rij(A,A') is positive; if they rarely co-occur, rij(A'A.)
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is ﬂegative; and if their occurrences are independent, rij(A,A') = 0.

[It is clear that the memory structures required to produce the compat-
ibility functions may be quite elaborate. Returning to our example of Figure 11,
the system would have to use the observation that regions 1 and 2 were
contiguous, with region 1 above region 2, to obtain estimates like

rlz(foliage, trunk) = 0.7

rlz(foliage, cone) = -0.8

rlz(ice-cream, cone) = 0.9, etc.
Incidentally, the very arbitrariness of these three numbers makes it clear

that the F we are constructing must be structurally stable--small changes in

the rij's must rarely perturb convergence. Unfortunately, we do not yet have
rigorous proofs of convergence--though computer simulations are encouraging--
let alone structural stability.]

To satisfy the 'key idea', we define the 'change operator' _}?

by
= ' '
(£ ) ) § dij[;:lrij()\,)\ Ypy (A1
where di' is some choice of nonnegative coefficients with each z dij = 1.
.
Each X rij(x,l')pj(k') expresses the 'consensus' of the labelling of

Al
aj by p as to the direction in which pi(k) should shift.

With this definition of‘je, one possible choice for F is then
Fp =glp+ % pl
where the normalization operator,&? replaces each qi of a vector q a corresponding
probability distribution }Eqi.
We imagine the following operation of this scheme:
(1) The segmentation routines divide the original routines into regions.
Shape and texture descriptors are used to assign initial probabilities

pi(A) to appropriate labels A for each region a.
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(2) Informaton such as relative position and the nature of the boundary would
be used to generate the compatibility coefficients rij'
(3) F would be iterated a few dozen times, say, to provide enhanced probabilities.
If the result is unambiguous, interaction with other systems--perhaps
using higher-level context more subtle than that expressible in the
rij--could be involved in disambiguation, with the possibility of
reinitiating F using a new set of probabilities.
We have already noted the similarity of the nonlinear probabilistic
model to the S-RETIC, but with the emphasis on 'proper labelling' rather than
on 'mode consensus'. Re-viewing the Dev model of segmentation on prewired
features in this light, we may note that it could be used for convergence to
a sloping surface as well as for segmentation into regions of constant disparity.
In fact, as Rosenfeld et al. [1975] note, their scheme can be used--as Dev
has already done--to allow 'clusters' of low-level features having compatible
labels to reinforce one another. For example, if the features are line orienta-
tions, we could use such a scheme to ‘'reinforce' those features which line up

with their neighbors.

In conclusion, it seems that cooperative computation--a multi-level

organization for problem-solving using many diverse, cooperating sources of
knowledge, to use the title of the paper by Erman and Lesser [1975]--will provide
the proper paradigm not only for the bottom-up and top-down approaches to brain
theory (it seems to provide the right language for analyzing the neurological
data of Luria [1973]), but also for artificial intelligence--a field which will

provide many concepts for brain theory.
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Parallelism, Slides, Schemas, and Frames

Michael A. Arbib
Computer and Information Science Department
Center for Systems Neuroscience
University of Massachusetts
Amherst, Massachusetts 01002

In BT (Brain Theory), we study nets of simultaneously active neurons,
and of interacting brain regions. In AI (Artificial Intelligence), we must
structure programs for a serial computer. However, the development of a
serial algorithm for a function does not prec;ude the existence of a more
efficient parallel algorithm. For example, when adding two numbers, the
propagation of the carry bit seems to force seriality. However, a look-ahead
adder (see Hill and Peterson [1973] for a textbook treatment) can be built
which uses parallelism based on 'carry look-ahead' to reduce addition
time from the order of n (the length of the numbers) to the order of log n
which, in fact, is thé best possible (cf. Winograd's [1965]). Our task here
is to examine the ways in which behavior is best expressed in structure, and
consider the extent to which we can expect parallelism in that structure.
Clearly, the 'precedence relations' of the real world--you must walk to the

door before you go through it, for example--impose a high-level seriality



on the flow of computation. However, within these high-level constraints,

we shall see much room for parallel computation.

1. Parallelism

There is no question of the importance of parallelism in the early
stages, at least, of visual processing. We see parallel extraction of
'bugness' in the frog retina, of contour and contrast information in mammals,
and of other features in other animal visual systems. With their preprocessing
cones, Riseman and Hanson [these proceedings) have demonstrated the usefulness
of parallel computation in layered structures as a first stage in scene
analysis.

Didday's model [1970] of the frog tectum gives a low-level example
of parallel decision-making--a network of 'sameness' and ‘'newness' elements
acts in parallel upon its input array to extract the strongest (with exceptions
analogous to those seen in frog behavior). In scene analysis, however, the
recognition of, and the choice between, local features is not sufficient.

We must pass from local to semi-global features--as when the local features of

a door-frame define the enclosed area as a space through which we can walk.
Dev [1975] has studied parallel networks for segmenting a scene into regions
in a ‘semantics-free' way, by having elements responding to a given feature
in nearby locations excite other nearby detectors of that feature and inhibit
detectors of other features. This results in the partition of the overall
scene into regions in each of which only one type of feature detector is
dominantly active. Riseman and Hanson use iterated computation up and down
their cones to grow lines or regions of given texture. Burt's [1975] studies

of networks which represent and support the movement of objects may give us



clues as to how to use motion to aid region segmentation.

On the output side, we know that the brain uses activity in an array
of motoneurons to control the populations of muscle fibres that constitute
muscles. On the other hand, in AI the control of a stepping motor or rotary
actuator does not seem to require inherent parallelism. However, there are
other uses of parallelism. For example, Boylls [1975] modelled the cerebellum
and its associated brain-stem nuclei as parameter-setting structures. We
know that the basic algorithms for locomotion are in the spinal cord, but
that the spinal animal does not 'shape' its steps properly. Stimulation of
brainstem nuclei can increase muscular activity but--and this is the crucial
point--Orlovsky [1972] found that in a walking animal, a muscle's activity is
only increased during that phase of the step in which it should indeed be
contracting. It is as if we have a motor control computer and a parameter-
setting computer acting in parallel, but with the motor control computer only
consulting the parameter setting when it is appropriate to do so.

Selfridge [1959] posited a character recognition system Pandemonium,
which would behave as if there were a number of different 'demons' sampling
the input. Each demon was an expert in recognizing a particular classification
and would yell out the strength of its conviction. An executive demon would
then decree that the input belonged to the class of whichever demon it heard
yelling the loudest. On the other hand, Kilmer, McCulloch and Blum [1969], in
modelling the retiéular formation, posited a system without executive control.
Rather, each of an array of modules sampled the input and made a preliminary
decision to the relative weights of different modes as being appropriate to
the overall commitment of the organism. The modules were then coupled in a

back-and-forth fashion so that eventually a majority of the modules would



agree on the appropriate mode--at which stage the system would be committed
to action. A reasonable analogy is a panel of physicians sharing symptoms
and coming to a consensus about a diagnosis for a patient. (This suggests
that social analogies may once again play an important role in brain theory.)
Didday's [1970] model of the snapping behavior of a frog confronted with two
flies, already mentioned in Section 1, posited a system of competitive interaction
in the frog's tectum, which would lead in most cases to the suppression of
all but one region of 'bugness' signalling, and result in the frog's snapping
at one of the flies which caused the visual stimulation.

In attempting to place these studies in perspective, Montalvo [1975]
observed that we could analyze all three models within a common framework,
with the computational subsystems arrayed along two dimensions, one of compe-
tition and one of cooperation. In the Didday model, the cooperation dimension
is 'degenerate' and the competition dimension is 'bug location'; in the Kilmer
and McCulloch model competition is between 'modes' while cooperation is between
‘modules'; and in the Dev module, competition is between ‘disparities' and
cooperation is along the 'space' dimension. For a careful treat the theme of
competition and cooperation has thus emerged in three completely separate neural
network models. It also plays a role when we look at the way in which an
internal model of the world would operate.

Amongst the problems of a system receiving sensory input on the basis
of which it must interact with the world are:

(i) Segmentation: To partition the input into 'segments' (not necessarily

contiguous, nor confined to one modality) which define a single 'object'’
or other 'locus for possible interaction'. Dev [1975] provides a neural

net model of segmentation processes in visual perception which shows how



cooperation (consensus mechanisms) and competition of feature detectors

can form part of a very low-level input-matching process. 1In the preprocessing
cones of Hanson and Riseman [1975], more subtle routines--operating

in parallel up and down several layers of preprocessors--are being

developed for segmentation on non-primitive features, such as texture.

Burt [1975] has modified the Dev model to support moving regions in

response to moving inputs.

(ii) Characterization: The 'segments' are to be characterized in terms

of 'programs for possible interaction'. ([Stages (i) and (ii) are by
no means sequential--some success at characterization may well aid
the aggregation of distinct regions into a single 'segment'.]

(iii) Relocation: As the system moves, or as objects move in its world,
the system must be able to easily update the internal representation
of its world to take account of these changes. An important part of
the updating is that an object which is moving uniformly is expected
to continue doing so--Burt [1975] has neural net models which can support
such moving representations, although the representations do not yet
have the complex slide structure which we shall outline below.

(iv) Tuneability: With further 'exploration', or with changing goals, the
system can tune its internal representation, either by increasing the
level of resolution, or by emphasizing those features most relevant to
the current goal structure.

(v) Learning: The system should not only change its representation on the
basis of new input, but should be able to change the way in which that

representation is constructed.



Didday and Arbib [1973] have built upon Didday's model of the frog
tectum to suggest that human eye movements are controlled in part by computa-
tion in the superior colliculus akin to that taking place in the frog tectum,
put with ‘bugness' being replaced by a combination of peripheral signals,
hfpothesis signals, and mismatch signals--with the latter two classes of signals
descending from the cortex.

Rosenfeld et al.'; [1975] sé&&y of region labelling also falls within
this general theory of competition and cooperation [Arbib, 1975al, and the
notion of cooperative computation finds support in a number of neurological

studies such as those of Geschwind [1965], Luria [1973] and Nauta [1971]

(see Arbib, 1975b).

2. Slides and Schemas

The basic slide-box metaphor (Arbib {1972, p. 92]) was intended as
an antidote to a simple pattern recognition system in which the visual input
pattern was to be classified as belonging to one of a small number of classes.
Rather, the input pattern was to be analyzed as an array of familiar 'objects'--
whether the object was a single object, such as a tree, or a composite object
such as a row-of-trees--retrieving slides from a file, and arraying them in
a slide-box to represent the current scene.

A critical notion was that covering a portion of sensory input was

to give access to appropriate programs for action--though, since there are many

objects, only some of the programs can 'take control' at any time, and some
of them would be planning programs rather than programs for overt action.

Thus some mechanisms must restrict which programs amongst this redundancy of

potential command (to use McCulloch's phrase) will actually be implemented.




In an AI context, Minsky [1975] has developed a concept of frame
which in some ways overlaps the above concept of slide, though with far more
emphasis on linguistic and sociological aspects. We shall discuss frames in
more detail in Section 3. (For more on computer understanding of language,
see Schank and Colby [1973].) Intriguingly, the sociologist Erving Goffman

1974 has independently coined the term 'frame analysis' for analyzing the
organization of experience--and his analysis has many points of overlap with
Minsky's. Relevant ideas also occur in the approach to scene analysis espoused
by Hanson and Riseman [1975].

In the rest of this section we outline an updated slide-box model for
the organization of action-oriented memory for a perceiving system. A fuller
account appears in Arbib [1975a,b]. To avoid the overly pictorial connotations
of the term "slide," I have adopted Piaget's term "schema," since much of the
flavor of the tie-up between input-matching routines and action routines is con-
tained in Piaget's notion of a schema (see Furth [1969] for an exposition). My
concept is more formal and will hopefully (!) be shown to encompass all the more
valuable aspects of Piaget's notion. I thus regard a schema henceforth as an
array of programs to analyze a segment of the input to determine a possible
course of action. As such, a schema must be locatable, tuneable, and linkable
with other schemas. Thus, we have the following three components of a schema:

(i) Input-Matching Routines: A routine which succeeds to the extent that

it covers a spatial region of multi-modal input (so that a cat schema

can.cover a furry region which emits meows, but not one that emits
barks). This can be biased by non-sensory context inputs. The input-
matching routines may include calls for confirming information (as in
the eye-movement calls of Didday and Arbib [1975]--see also Szentdgothai
and Arbib [1974, PP. 335-339]). The level of success of these input-
matching routines may be regarded as an ‘'activation' level of the

schema, which increases as location and other parameters of the schema



(ii)

(1ii)

are adjusted to better fit the covered region. However,
to complicate the story, the resolution level

(i.e., the precision of this parameter match) required for activa-
tion to safurate may well depend on goal settings, or other non-

sensory input to the schema. (In the vision routines of Hanson and

Riseman [1975], the sensory input is purely visual--though contextual
input is also used--and 'suécess; simply enables the assignment of

a name to a region.)

Action Routines: The success of the input-matching routines in
raising the activation level of a schema signals that certain actions
have become éppropriate for the system. Programs for some of these
actions then form part of the schema. A crucial integrative property

of schemas is that increasing accuracy of parameter adjustment by the

input~-matching routines automatically adjusts parameters in the

action routines in such a way that the action becomes more appropriate

for the current environment and goal structure (if the schema has

been properly 'evolved').

Competition and Cooperation Routines: To date, we have talked of

a schema as acting in isolation, attempting to raise its activation

level by proper matching of input. But now we must realize that

schemas are interconnected. The operation of competition

and cooperation routines helps determine which population of parameter-
adjusted highly active schemas will constitute the current model of
the environment. There still remains the problem of determining

which of the action routines of these schemas are to operate--and

another network of competition and cooperation routines will be



involved in determining a compatible set of actions. (Since at any

time, the organism is engaged in some activity, even if that be

resting. Thus it is not so much a matter of choosing a course of
action as it is of determining whether the time has come to change
the course of action being pursued. The completion of an action may
remove it from the competition. More interestingly, the execution
of an action may provide new sensory input which de-activates the
schema (or drasticallv changes the parameter settings) which enable
the action--as when we bite into what appears to be a piece of

fruit only to discover that it is made of wax).)

Notice that all these routines provide the semantics of a schema--
what an object means to us comprises our knowledge of what we can do with the
object and what relations it has with other objects, to the extent that our input-
matching routines can capture the effects of these actions and relationships.
In any case, we've come a long way from the original notion of a slide
as being simply a colored transparency that approximates a region of the

visual field.

For now, we shall assume that all schemas may continually monitor

their input pathways (though different schemas have different input sets).

In other words, the slide-file of the original metaphor becomes the total
population of (relatively high-level) s;hemas of the present model; the slide-
box of the original metaphor becomes the subpopulation of highly activated
schemas of the present model. As in both Pandemonium and RETIC, we let each
schemas (i.e.,mode-element)continually receive input. However--unlike both
Pandemonium and the original slide-box metaphor--we shall for now try to do

without a central executive overseeing the activation of schemas, and instead--
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in the spirit of RETIC--explore what can be achieved by the schemas themselves
by virtue of their cooperation and competition routines. My methodological
point is that it is not helpful to make a priori assumptions (whether to fit
our preconceptions about neural net structure or about the utility of LISP
programming) when setting up a framework of this generality. When we actually
look at restricted systems which must be implemented in a brain or on a
computer, then we can be more specificvébout the sets of executive and book-
keeping routines that seem necessary to augment the routihes built into the
schemas themselves.

In addition to schemas for objects, we may also have more abstract

schemas (cf. the Hanson-Riseman context routines) such as one for 'winter’'.

Now at the change of seasons, the first fall of snow may be the signal for

winter--so that we must posit the activity level of the 'snoszchema' providing

an input to the ‘winter-schema'. However, in the normal course of events,

the organism knows that it is winter, and can use this contextual information

to favor the hypothesis that a white expanse is snow rather than burnished

Asand, say, or moonlit water. It is this type of reciprocal activation (whether

we regard it as an additional input, or as the action of a cooperation routine)

that gives the system.of schemas its heterarchical character. [Strictly defined,

a 'heterarchy' is a system'of rule by alien leaders. But in AI, stimulated

by McCulloch (1949), it now denotes a structure in which a subsystem A may
dominate a subsystem B at one time, and yet be dominated by B at some other

time.] To the extent that the activation of a small population of schemas

covers the activity of the feature-region schemas, to that extent can we say

that the organism has perceived the scene.
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Frames and Schemas

Given the complexity of physiological mechanisms that animals have

evolved, we should expect the brain to be similarly sophisticated. Minsky

[1975] thus posits a host of special-purpose mechanisms rather than a single

simple mechanism. He introduces frames as his candidate for the unit under-

lying the effectiveness of common sense thought.

(a)

(b)

(c)

There seem to be three main reactions to Minsky's "Frames" paper:

The "what a revelation" reaction 6f neSphytes who had never before realized

the importance of an internal representation of the world. Having con-

fined their reading to a few recent theses and papers in AI, they were
unaware of such contributions (to give but a limited sample) as Bartlett

[1932], craik [1943], Gregory [1969], Mackay [1955, 1963], Piaget [1954],

Minsky [1961, 1965], and Young [1964].

The "we've seen it all before" reaction. This comes in two flavours.

(i) Some AI experts, having developed their own formalism for handling
internal representations, dismiss Minsky's frames as a vague equi-
valent to their precise formulation.

(ii) Other readers, familiar with the literature in (a), feel that
Minsky was too cavalier in his brief reference to these earlier
works, and object that many aspects of frames are ideas about internal
representations with which they are long familiar.

The "mature acceptance" reaction of workers in AI who have felt the need for

a more general framework for the discussion of internal representations, and

feel that recasting their work in the language of frames is a reasonable

price to pay in moving toward such generality.

Having invested a moderate amount of effort in the slide-box metaphor

and its extension to theory of schemas of Section 2, I must confess that my ini-

tial reaction was (b.ii). It is my feeling that Minsky's treatment of frames

for scene analysis is inferior to mine in the sense that it seems too computer
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oriented rather than general enough to respond satisfactorily to the needs of
brain theory. However, I recognize that Minsky's discussion of frames for
language, understanding, and scenarios builds on recent work in computer under-
standing of natural language to handle aspects of internal representations for
which my slides and schemata are too concrete. To this extent, I sympathize
with reaction (c). The resolution of these apparently incompatible reactions
is to distinguish more carefully than Minsky does between scene analysis and
language understanding and discuss the .extent to which they demand different
styles of internal representation, the former being more slide/schema-1like,
the latter being more frame-like. The rest of this section discusses frame and
schema for scene analysis; while Section 5 discusses pressures which require
"protolinguistic"” extensions to be made to the concept of a schema.
A frame includes infofmation about

How fo use the frame

What one can expect to happen next

What to do if these expectations are not confirmed.
The top level represents things that are always true about the situation. Lower
levels have terminals (slots) which are usually filled by 'subframes' which must
meet certain conditions assigned at the terminal. 1In fact, a set of terminals
may impose relations on their mutual assignments.

To handle the dynamics of a changing world Minsky posits a system of
frames, transformations between which mirror the effects of important actions or
changes in the world. Thus: a frame-system # a schema, and a transformation %
updating schema parameters.

The theory of frames must handle change of percepts in the face of in-
consistencies, errors, or new evidence; must explain imagery (cf., Bartlett [1932])
and must show how to exploit expectations. Minsky suggest§ that, to handle expecta-
tions, a frame's terminals are normally filled with default assignments--i.e., one

cannot think of a ball without thinking of, say, a soccer ball of given size and
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colour. However Arbib [1975a] instead argues for a poset of schema-parameter
specifications-~-and I would suggest that 'default' assignments may be very
'blurry’ elements of the poset indeed, so that a ball may be little more speci-
fied than as requiring 'two hands to hold it', rather than being 'one-hand-holdable’.
This is far from the level of precision that Minsky seems to suggest.

However if Minsky ascribes precision to each frame, he is insistent

that the frame-system is far less precise than people believe their perception to

be, citing the inability of all but the best draftsman to precisely render a
variety of perspectives of a given object, and thus suggesting that a frame system
comprises very few frames indeed. Minsky does not believe that our image changes
as fast as does the scene. Rather, he posits that the illusion of continuity is
due to the persistence of assignments to terminals common to different view
frames--so that 'continuity' depends on the confirmation of expectations which
in turn depends on rapid access to remembered knowledge about the visual world.
This analysis via discrete frames may be misguided. Stressing again our
action-oriented view of perception, it is not the natural task of the system to
draw pictures or to judge the accuracy of a drawing--though draftsmen can indeed
master these skills. Rather, the task of the input matching routines is to
activate schemas in a way which sets the parameters of action routines appro-
priate to the sensory input. Thus our shortcomings as draftsmen in no way imply
a limitation of the accuracy of parameter-setting when we interact with real
objects. We need not postulate an ability of the schemas to maintain very pre-
cise metrical relationships, for once foveal scanning has activated a schema,
peripheral input--even though inadequate for object recognition--will suffice to
maintain the appropriate place information when the object is no longer fixated.
Our viewpoint, then, is that an organism interacting with its world
does not need a complete representation, but rather one that is easily updated
as action progresses. [one of the greatest problems for the Shaky robot project

was the lack of continuous visual input. In the same way, it is far easier to
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walk through a crowded room with our eyes open than it is to memorize the scene
in sufficient detail to allow us to close our eyes and then walk to the door
without bumping into anyone.] It is the range of actions in which the system
will take part that will determine the appropriate level of detail--a map may
have the metric relations all wrong so long as it reminds us to take the correct
turning when we traverse’the actual terrain--and so we see the effect of 'goal-
setting schemas' upon the level of parameter-matching that will let a slide be
sufficiently activated for its action-routines to be candidates for implementation.
In Section 1 we mentioned the work of Orlovsky as one dramatic instance
of neural parameter-setting. It is thus natural for the brain theorist to posit
a tuneable system--once an object is identified, we simply update the parameters
of the schema which represents it. By contrast (Figure 1) a frame represents an
aspect of an object--with continuous changes in the input triggering discrete
»charges of frame. Whilé this interchange of discrete structures may have some
appeal for computer imélementation, it appears unnatural for the brain, where
varying frequencies of neural firing seem so well suited to represent continually

changing quantities.
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This leads us to the second crucial concept in the schema notion--

it stresses the generative nature of the internal representations, which are

built up as 'collages' of schemas. Minsky's framework seems to lack this
concept--he talks of having one frame accessed at a time. For example, he
posits one frame (in the form of a face-relation graph) for each view of a
cube, and a different frame to represent the manipulative features of a cube.
Once a frame is proposed, a matching process tries to assign values to its
terminals--an information retrieval network- provides a replacement frame if
matching fails. More specifically, Minsky posits the following process:
(1) Once a frame is evoked, it directs a test of its appropriateness, using
the current goal list to decide which terminals must match reality.
(2) It requests information to assign values to those terminals. (Failure
may cue evocation of an alternative frame.)
(3) Informed of a transformation (e.g., an impending motion) it would trans-
fer control to the appropriate frame of the frame system.
We thus see an emphasis on frames as 'the complete internal represen-
tations of the current sensory input per se' rather than as 'a component of a
representation which prepares the organism for interaction'. The emphasis is

on a serial process of frame selection rather than the parallel process of com-

petition and cooperation posited in the schema model; and little distinction is
made between changing a parameter and changing a hypothesis.

We may concede that a room provides a frame within which the recogni-
tion of doors and windows and their relationships is simplified. However, in
many cases, the framework is unimportant, and we directly recognize a number of
objects and come to grasp the situation in terms of their directly perceived re-
lationships. When we find an elephant sitting on our best chair, we realize
what is happening in spite of the framework of our expectations. Our shock may
be a measure of this discrepancy; but our understanding is a strong argument

for the "college" approach as an important component of internal representations:
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schemas trigger frames order schemas... It is in this more liberal sense

of a frame as a surrounding that the concept seems most useful; with that
which fits in the frame, the schema, have somewhat different properties.

To the extent that we :epresent changes in objects, parameter-setting in
schemas seems appropriate. But the decomposition of the world into objects
imposes a discrete structuring onto a continuous world, and the relationships
between objects require a frame-like representation closer to linguistics
than to control theory. Perhaps a reasonable subgoal for a theory of repre-
sentations is to analyze the extent to which there is a genuine distinctién

here and to what extent we are looking at poles of a continuum.
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4. Development

Turning to developmental questions, Minsky suggests that we compare

Piaget's concrete operations to the transformations between frames of a sys-

tem (the tuning of parameters in a given schema); while the formal stage

might be characterized in terms of the ability to reason about, rather than
simply to work with, those transformations. In computer terms, we might speak
of the system developing a facility for writing 'commentaries' on its programs,
or for reading its own programs. One might imagine that an 'abstract' of each
schema comes to be developed with the schema itself, and that these are then
available to 'higher-level' schemas. Is the language of frame-systems or schemas
appropriate to the study of 'representations of representations'? I suspect
that the answer is 'Yes'.

We have stressed the idea of a heterarchy of active schemas, all the
way from 'line detectors' to abstract concepts like 'winter'. The input to
a 'snow' schema is as much the activity of a context-schema like ‘winter' as
it is the output of some texture slide. Thus we begin to dissolve a strict inter-
pretation of input-matching routines as matching sensory input, or of action
routines as controlling motor output. Instead, we have a general system which
may be involved in monitoring some schemas to better adjust the activity of
others, rather than in sensorimotor correlation. But this is still consistent
with our general definition of a schema. Thus schemas at one level can form
"jnter-schema operators" for schemas at another level. Such interschema opera-
tors would seem crucial in any theory of learning based on explicit hypothesis
formation rather than mere synaptic adjustment.

Another Piagetian problem is addressed by Minsky in discussing occlusion.
There might be ad-hoc information about occlusion represented in a frame-system--
so that we might have frames for each view of a chair being progressively occluced

as it is slid under a table. Such frames probably do 'exist', but--more radically--
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one might posit-a GLOBAL OCCLUSION SYSTEM which makes all perspective frameé
subsidiary to a central, common, space-frame system. The terminals of that
subsystem would correspond to cells of a gross subjective space, whose trans-
formations represent, once and for all, facts about which cells occlude others
from different viewpoints. This certainly seems plausible for humans, and the
work of Piaget and‘Inhelder suggest that complete coordination structures of
this sort are not available to most children until they are at least ten years
old. However, it would be naive to over-estimate the accurady of this space-
fram even in adults. Nepalese villagers never identify the two faces of a
mountain if the faces can only be viewed from two different valleys separated
by such ragged mountains that one must travel 100 miles to go from one vantagé-
point to the next; and many city-dwellérs may drive a mile to get from one
building‘to another down twisting one;way streets without realizing that they

are within easy walking-distance of one another.

One of the really difficult problems of AI is to model the develop-
ment of the space concept without building mechanisms into the original system
which trivialize the whole problem. Consider, for example, hdw Ernst and

Newell [1969] trivialized the monkey-and-banana problem when they implemented

it in GPS. The monkey discovers that by moving a box and standing on that
box, it can reach a banana suspended from the ceiling, and otherwise out of
reach. But by providing their GPS simulation with 'vertical height' as

an explicit difference, and by making 'climbing on the box' the only operator
available to reduce that difference, Ernst and Newell excluded the only
process that was genuinely of interest--the monkey's discovery that it could
use the box as a tool. The question (being actively tackled by my colleague
William Kilmer) is how to give the system so little information that the
discovery is ‘'impressive', and yet enough information to enable the discovery

to be made. The idea is to give the monkey a body-centered frame of reference,
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Plus the ability to run, to bump into things, to reach and grasp, and to climb.

It can then discover, as a result of several 'crashes', that boxes are moveable,
and learn--through play--how to move them in a deliberate way. Again, it may
learn that climbing on boxes gets it further from the ground. It is a challenge
to our ability not to build too much in to make it a separate discovery--but one
not so surprising in a body-centered, as distinct from Euclidian, framework--
that this climbing also gets it closer to the ceiling. Then, and only then,

is it ready to solve the problem of reaching the bananas hanging from the ceiling.

Note here the importance of play in providing mechanisms for later problem-solving.
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5. More on Parallelism

Didday and Arbib [1975] studied eye movements and visual perception
with a hybrid model in which a 'slide-box' cortex interacted with a midbrain
system adapted from Didday's neural net model of the frog tectum. The con-
straints imposed on cortex by interfacing it with a midbrain system so structured
will suggest ways to move towards a more neural model of cortex.

We perceive a scene via a series of visual fixations, required to
bring successive regions before the fovea; although the above model suggests
that the computation required to determine the eye movement and process the
input is parallel. Is there any reason why the whole retina does not have
foveal acuity, allowing the whole process of analyzing a scene to be accomplished
in parallel upon a single fixation? The frog's ‘'bug-detectors' operate in
parallel without eye movements. But a 'SUPERFROG' should not simply snap
at flies, but should also learn about new objects in its wérld. If the whole
recognition machinery were iterated over the whole visual field, there would
be the problem of communicating information learnt about an object which has
appeared in one part of the visual field to the machinery which would
handle its appearance in each other region of the visual field. It may
well be [a‘;areful mathematical analysis is called for] that it is computa-
tionally effective to use, e.g., eye movements to route visual input to a
standard processor then it is to route learned information to a host of
parallel processors for the recognition of a given class of objects.

Serialityf then, is imposed on visual perception by the sequence of
eye movements in visual perception; and we may note, too, the seriality of

speech, as if each word were trying to direct a fixation of the attention of

the listener. Arbib [1975al] discusses the notion of building a 'superschema' from a
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repeated scene, thus providing larger units of representational activity.
This accords wéll with Minsky's view that rapid selection of large substructures--
to provide the context in which selection of 'subframes' takes place--will
speed perception and thought. Though we disagree with Minsky's insistence
on purely serial processing, the time has come to face up to the fact that
there must be limits to the parallelism which a slide-box or collage of schema
can handle.
We have talked of a schema for each concept, be it 'tree', 'winter’,
‘differential calculus' or 'ontological commitment'; and we've offered the
set of currently active schemas, together with their paraﬁeter settings, as
providing the internal representation of the current state--both internal and
external--of the organism's perceived world. But how do we handle multiple
objects? Do we imagine that we have several copies of each schema, and that
the competition routines linking them are sufficiently strong that only n
can be activated when n of the objects that schema represents are in the
environment? 1Is it, then, that for each object, there is an upper bound
on the number of instances we can apprehend--17 trees, and no more?! Certainly,
the discussion of 'superfrog' makes this option unappealing--with multiple
tree schemas, how do we share the adaptive changes in one with the other 16?
Perhaps-—-and I do not yet know how to phrase this in neural terms,
but must use a simple-minded computerese--we should imagine a single copy of
each schema, but posit that it can accomodate several pointers, with appropriate
settings of location and other parameter settings for each object which provides
the 'source' of such a pointer. Calling on the folklore of anthropology--
stories of primitive tribes that count 'one, two, three, many'--it seems reasonable
to posit an upper bound of three, say, to the number of pointers which can bear

detailed parametric information. After this, a 'lumped' form of description--
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a 'row-of-trees', say--may be the most explicit representation one can handle
without linguistic intervention. Thus a human can count 17 trees, and remember
that there are indeed seventeen--but this is a more abstract form of represen-
tation than the process of parameter tuning by input matching routines. [It

is intriqguing to speculate on the extent to which these two types of parameter
settings--linguistic and non-linquistic--may be localized in the left and right
hemispheres of humans; and to explore the role of the corpus callosum in
integrating these two types of information. It may be--returning to our dis-
cussion of Piaget--that the distinction between the hemipsheres is related to

‘ the distinction between formal and concrete operations. However, this is
probably too crude a division of labour.]

In any case, we éee that schema must be able to 'quell' several regions,
rather than simply one; and that a significant step in evolution--to avoid undue
demands on parallelism--was the ability to move from 'quelling' by precise para-
meter adjustment by the input-matching routines to 'quelling' by a more abstract,

. proto-linguistic, representation which could, for example, simply note the number
and approximate disposition of an array of similar objects. [Incidentally, I

would suggest that this multitude of simultaneous activity is what makes perception
'richer' than imagining--we not only have 'tree' schemas active during perception,
but a rich array of texture and other 'low-level' schemas, too. Note, too, that
dreaming is a natural facet of the schema model: schemas can activate one another
in complex activity patterns even with the reduced sensory input that characterizes ’
sleep.] |

The transition to proto-linguistic parameter is one way of overloading

the capacity of any one schema. Another approach is to make ‘'copies' of the schema
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tuned to different instances of a given type--as when we differentiate the
schema for 'man' into one for each of the men with which we are at all
acquainted, from a very sketchy schema for a public figure seen occasionally
in the newspaper, to a schema, far richer than the generic schema, for a verv
close friend.

What does this say for the concept of identity? At one level, we
may say an object, or a low-level pattern of schema activity, is more-or-less
identical to another to the extent that--in a given context--it yields the
same pattern of action or high-level activity. However, it is one thing for
the organism to behave as if the two are identical; it another thing for it
to be aware of this identity. Presumably, this 'awareness' requires the
'schema-abstracts' posited in the discussion of Piaget's formal operations,
together with mechanisms to compared 'abstracts' activated by the two
patterns.

In his article, 'The Architecture of Complexity', H. A. Simon argues
for hierarchical structuring of complex systems, suggesting that evolution
can more effectively act upon a system made up of functionally well-defined
subsystems. Minsky (at this N.Y.U. symposium on 'Parallel Processing in AI')
argued similarly, going from the need to debug knowledge systems (cf.
Winston's program for learning structural descriptions by debugging a preliminary
description by using examples and near-misses) to the need for structured
programs. However, he seems mistaken when he suggests (admittedly in the
role of 'Devil's Advocate') that such a structured program must be serial--
any more than the evolution of organs should require heart, lungs, and liver
to be time-shared!

Between the admittedly parallel input and output structures lies the
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region of 'cognitive computation', and Minsky claims that this is inherently
serial. In fact, we know that different regions of the brain communicate

during cognition--one can get auditory tuning curves froﬁ visual cortex
neurons--as if each region were trying to model the world on the basis of

its own primary data, and yet keep the model consistent with information about
the activity of other model builders (so that the 'internal model' in our

heads is not a unitary construct, but is a population of models, agreeing in
crude outline, but differing in type and depth of detail). However, it is
striking that while this array of parallel subsystems lets us, for example,
recognize with alacrity a sought-for object in a complex scene, our Sillions of
neurons may take several seconds to add a pair of 4-digit numbers. This suggests
that the natural parallelism expressea in our brains by the multiplicity of
anatomically distinct regions may have evolved to suit us for a primitive

hunting existence, but be little adapted for the linguistic and cultural
'computations' which mankind has evolved since our brains achieved their

present form. This may impose a semblance of seriality on many such 'computa-
tions'. However--recall the look-ahead adder--this does not preclude the
incorporation of far greater parallelism in a computational structure specifically
designed for socio/linguistic behavior.

In summary, our concern in both AI and BT is with the mediation of
complex behavior by appropriate structures. In each caée, questions of
efficiency, evolution, learning, and 'debuggability' will enter, and it can
be expected that the temporally serial execution of a variety of processes

operating in parallel will provide the proper setting for their analysis.
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