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The ability to adapt to changes in the environment is
one of the most interesting aspects of animal behavior.
Neuronal plasticities of various sorts allow organisms to
reshape and reorder their behavioral repertoires in order
to survive in a changing world. Learning is a form of
plasticity that allows an animal to appreciate new rclations
between its behavior and things and events in {ts world.
The phenomenon of learning has been widely studied at both
the behavioral and the ncurophysiological levels. Many mathe-~
matical and computer models have becn constructed in order
to help understand the neurophysiological basis of learning
(1,2, 3, 4, 5). These models show how simple training
rules enable circuits composcd of neuron-like elements to
learn and remember. While wany of these learning models
are based on generalized circuit anatomies, others are
founded upon known structures of particular brain regions.

One such model, designed by Kilmer (1), is based on the
anatomy and physiology of a part of the mammalian hippo-
campus.

The hippocampus is a region of cerebral cortex that
has been implicated in a variety of functiouns, many of
which require that the hippocampus learn to respond in
particular ways to its inputs (6, 7). The inputs to the
hippocampus consist of pre-processed sensory information
and motivational information, and its outputs go to motor
and motivational regions of the brain. The hippocampus
i8 made up of a number of subregions. One of the main out-
puts of the hippocampus stems from region CA3, which was
wodeled by Kilmer (1). 1In Kilmer's model, circuit elements
representing cells that give rise to this output path are
trained to respond to particular input patterns. This model
shows how positive and negative feedback can be used to
shape circuit response. In order to extend this work, we
have .considered a circuit model of another region of the
hippocampal complex called the dentate gyrus. The den-
tate gyrus also receives sensory and motivational informat-

-don, and its outputs go to the CA3 region. While the

dentate gyrus may serve a variety of functions in the over-
all hippocampal system, we have modeled the dentate gyrus
as an habituation circuit, following a suggestion of
Mclardy (8).

Babituation is a form of plasticity that allows an
animal to ignore those things in its world that are of no
iomediate consequence, Habituation is defined as a rever-
sible decrement of response to repeated stimulation, and
1s displayed by organisms from mollusc to man. The revers-
1bility of habituation s=ts it apart from fatigue and accom-
modation. An habituated stimulus may once again evoke a res-—
ponse following presentation of a novel stimulus. This
phenomenon is known as dishabituation, and rules out sensory
and motor fatigue as the bases of the response decrement.

Habituation, like learning, has been studied at both
the behavioral and physiological levels. Several circuit
models have been designed that rcalize many of the detailed
properties of habituation (9, 10, 11). In these models,
each measurable attribute of a stimulus is coded in terms
of the firing of 'a cell or a group of cells. Upon repeated
presentation of the stimulus, the outputs of these cells
are depressed by a buildup of inhibition or by a decrease
in synaptic efficacy or cell sensitivity. The known ana-
tomy and physiology of the dentate gyrus may be related to
these circuit models in a straightforward way to investigate
ways the dentate gyrus might display many of the properties
of habituation.

One property of habituation has not been satisfactorily
dealt with in terms of the detailed workings of a neuronal
system, however. It is known that, following habituation to
a regularly repeated stimulus, changes in stimulus duration
or interstimulus interval can bring about dishabituation
(12). There must be some mechanism, then, that codes the
temporal qualities of the stimulus, just as the other
qualities sre coded. A number of tewporal meuory models
exist that could be applied to the problem of temporal

coding (9, 13, 14, 15), but none can be readily related to
the structure of the dentate gyrus. Accordingly, we have
designed a temporal scquence mewory Mased on the anatony of
the dentate gyrus. The hippocampal system could usce such
a memory to anticipate the arrival of a regularly repeared,
short duration input, as described below.

TEMPORAL MEMORY OPERATTON AND THE HITPOCAMPUS

The temporal sequence memory presented here is so
designed that once it has been sufficiently exposed to a
sequence of inputs seperated by particular time intervals,
it can reproduce the sequence with proper timine If cued
by an initial portion oi the scquence. The system thus
learns by rote the interstimulus intervals involved in a
given repetitive sequence. Predictions gencrated by the
memory may be used with match-uismatch circuits of the sort
considered by Horn (9) as a part of 2 habituation systen.

The outputs of the temporal match-mismatceh clrcuits,
together with the outputs of filters sensitive to other
stimulus qualities, may be used as L:e inputs to circuits of
the sort referred to ahbove that embely the processes of
habituation and dishabituation and t:at realize the detailed
properties of habituation (sece Fig. 13). [If the mecory is
able to anticipate an input, then, the tewmporal qualizies
of that input can be habituated to, along with its cther
qualities. Any subsequent variation in the temporal
characteristics of the habituated drput will give rise to
a mismatch signal, causing dishabituition of the overail
system response. Inputs that do not repeat in a regulav
pattern, or that repeat against chanzing backuround cendit-
ions, give rise to continual miswatcaes, and eventuall-
cause the habituation circuitry to come to ignorc the vari-
able properties of the stimulus in a process of general-
ization.

The structure of our temporal remory network reflects
the structure of the dentate pyrus. We refer the reader to
Kilmer (7) for a discussion of the anatomy of the Mippo-
campus. Here we stress the fact that futctioually, the
hippocampus is organized into transverse slicuvs callec
lamellae (16). Most fibers Lhat euntar or originate within
the hippocampus remain largely withia such slices, display-
ing little longitudinal spread. Sersory inputs excits
granule and pyramidal cells, the main circuit elements of
the dentate gyrus and CA3, reapectively. Grunule cells give
rise to fibers that excite pyramidal cells in CAJ. The
portion of CA3 that lies closest to the dentaze gyrus is
called the endfolial or hilar reglon, and pyramidal cells
there will be denoted endfolial cells. These cells plve
rise tc fibers that spread to contac: granule cells in other
lamellae (17). This anatomy is represented in the struct-
ure of the model, as described below.

Ip simulating this system, we have expressed the opera-
tion of a region of the brain in teras of the tunctiocing
of a large network of simple elemecuts acting in parallel.
We have siculated the network itself on two levels. Ca the
level of dynamic circuit action, cach cell is represented
by a set of nonlincar differeatfal equations. Cells are
coupled so as to gemerate waves of activity. Siwmulation
shows how the nonlinearities may be used to tailor the
waves to allow the overall system to function properly. On
the second level, finite-state autozata are used to ripre-
sent groups of cells. These automata are coupled so as to
generate waves, as before. On this level, however, the
{nteractions between waves can be more easily -rudied.
Simulation of the system on thls leval shows how such a
dynamic memory can be controlled and what mechanisme are
neceasary for its proper operatlion.

We assume here, then, that a granule cell in the den-
tate gyrus that is excited Ly a system iunput spreads excit-
ation



to neighbors in its lamella, causing a wave of activity to
travel down the lamella. bDetails of the cell coupling and
dynamic properties used to produce waves are discussed in
section threec, following presentation of the model's overall
gtructure in section two. Results of simulation of the
wave-producing dynamic system are also presented in section
three. Waves generated by a given input arc associated with
granule cells excited by the following input to effect the
wemorization process, as described in section four. In
gection five we describe mechanisms added to the basic
model to surmount problems of interference and instability.
Pinally, in sections six and seven we present a simulation
of the full model, and discuss the results of simulation.

MODEL SYSTEM STRUCTURE

Like the hippocampus, the model is made up of a number
of arrays of cells called lamellae. Each model lamella
consista of four lines of neuromimes as indicated in
Pig. 1. G-neuromimes receive the system inputs and their
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‘Fig. 1. Patterns of interconnections between G and B
peuromimes and E and U interneuromimes within a lamella.
Arrows indicate excitatory influence, dots indicate inhi-
bitory influence. .

outputs constitute the outputs of the lamellae. The G-
_neuronimes are coupled to one another and to B-neuromimes
and E-neuromimes in their lamellae. B-neuromimes are
excited by the G's and {n turn inhibit them. Patterns of
connection and connection strengths between G-neuromimes
and B-neuromimes are fixed and identical for all G's and
B's. Details of these connections are discussed in the
section on wave generation. Coupling between E's and U's
49 similar to that between G's and B's, with the exception
that B's are not coupled to one another. These connections
are also fixed and identical for all E- and U-neuromimes.

Coanections between G's and E's are assigned with
some randomness in the model. Each E is connected to a
fixed number of G's in its lamella. These neuromimes are
chosen at random from a range of G's centered around the E,
as indicated in Fig. 2(a). The strengths of these connec-
tions are fixed and are identical for all connections.
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Fig. 2. Patterns of interconnection between G and E neuro-
mimes. (a) Connections from G to E within a lamella. Dashed
lines indicate range of possible contact. (b) Connections
from E to G in other lamellae.

Each E in turn gives rise to two lines, called Z-lines,

- that run perpendicular to the lamellae, making contact
with G's as indicated in Fig. 2(b). The length of each
Z-1ine 1s chosen according to a specified probability
distribution, F. G's in each lamella the Z-line passcs
through are chosen for contact with fixed probability to a

maximum range on cither side of the Z-line. These loagitud-
ina) lines are the only connections between Lumellac, and
have the only variable strengths used in the model, ay )
diacussed in section four.

GINERATION AND PROPAGATION OF WAVES IN THE MODEL

The wave-supporting substrate of the mlel has a con-
figuration suggested by hippocampal physiolopy. IPyramidal
cells in CAJ and pranule cells in the dentate pyrus receive
excitatory influences from the hippocampal fuput pathways
(16). These cells in turn excite a variety of {nterneurons
whose axons play back onto other pyramidal und granute cells.
In both regions, a type of interneuron called a basket cell
is assumed to have a profound inhibitory cffect on pyramidal
and granule cells (18). Basket ceclls have widely branching
axonal arborizations, so excitation of a basket ccll by onc
pyramid or granule cell will depress the activity of
others nearby. In CA3, it has been shown that pyramidal
cells slso excite neighboring pyramids (1Y9). We assume
here that granule-to-granule excitation also exists in the
dentate gyrus, leading us to the circuit configuration for
G's and B's shown in Fig. 1.

The generation of single impulses in nerve cells Is a
highly nonlincar process involving a buildup of cxcitatory
potentials in dendritic membranes and the subsequent
triggering of a propagatinpg action potential (20). How-
ever, the rate of firing of a single ccll and the average
firing level of a homogeneous population of cells may
reasonably be modeled in terms of simple dynamic equatious
(3, 21, 22). Accordingly, each of our model cells obeys a
first-order differential equation, the value of which may
represent the firing rate of a single neuron, or the numher
of active cells in a population of neurons. We refer to
the model cells below in terms of output pulse rates of
single cells. ’

We assume that the output pulse rate ot a cell i3 given
by the difference between the total excitatory influence on
the cell and some function of the total inhibitory influence
on the cell. An initial set of equations for the operation
of the G and B cells under these assumptions is:
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where G, represents the total excitatory influence on the

-7 G-cell,
. Bj represents the B-cell output,

Bn and T, are connection thresholds,

vo and vy are connection weights,

I, 1s the external input to the G-cell,

c? is the output pulse rate of the G-cell,

M;x>M
Hcﬂ ax ;m<x<M
m
W3 x<m,
for m <0 <M, and
+
EJ is x 1f x > 0 and is zero otherwise.

Note that the output rate of the G-cell is constrafued to
lie between a maximum value greater than zcro and a

minimum less than zero. The maximum reflects the fact that
nerve cclls cannot fire more rapldly than some maximum rate.
The minimum i3 set to a value less than zere under Lhe
agssumption that the zero level ia the moded represents a
nonzero spontancous firing rate in the actual nerve cells.
Then the winimum value in the model corresponds to a firlng



‘rate of zero in the actual cells.

Each G and B cell is driven through weighted threshold
connections by the output rates of neighboring cells. That
18, usither is i{nfluenced by any neighbor to which it is
connected until that ncighbor begins to fire above a spec-
ified rate. The influence of the neighbor is wetighted by
a constant assoclated with the connection. Note that
neighbors firing below threshold rates and at rates below
the spontaneous level do not lead to depression of the
firing of the cell. Hence cells that are firing below the
gpontaneous rate are effectively uncoupled from the system.
We assume then that information processing and maintenance
of a background spontancous firing rate (the system equi-
1librium state) are two separable factors in our system
dynamics.

A simulation of this system of equations has been
carried out using an integration routine written in
FORTRAN. The propagating waves illustrated in Fig. 4 yere
generated with the connection template shown in Fig. 1 and
the agssociated weight and threshold profiles of Fig. 3.
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Fig, 3. Initial weight and threshold profiles. Ordinates
indicate number of neighbor relative to cell. (a) G to G
weights., (b) G to B weights. (c) G to G thresholds. (d) G
ito B thresholds.
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Fig. 4. Wave produced with profiles of Fig. 3. Dashed
1ines indicate progression of wave.

All cell values were set initfally to zero, representing an
undisturbed system displaying spontancous firing. Following
external stimulation at the position indicated by the arrow
in Fig. 4, each sufficiently excited C-ncuromime stimulated
neighboring G's according to the G-G weight and threshold
profiles and inhibited a wider range of G's according to the
G-B profiles. The indicated weight and threshold settings
allow the excitation of each G to build to a high enough
level to excite further G's before being countered by a
heavy and long-lasting inhibition arising from the central
weight and threshold of the G-B profile. This central
connection corresponds to a strong self-inhibition activated
when the cell fires enough.

A wave may travel to the ends of the lamella and die
there, or may die before reaching the ends. In the first
case, the wave propagates with a constant shape until the

end of the lamella is reached. At that point, there are

no further G cells to excite and the wave dics. Bocause of
the connection thresholds, the zero level of activity iy
stable, 8o no further activity arises in the Lamella antil a
new input {s prescated.  1a the second case, fnhihition
builds that eventually stops the wave. Here, the wave's
amplitude decays as {t travels until further propapation is
impossible. The distance traveled depends on the strength
of inhibition and on the relative B time constant. The

full memory model to be described below uses waves that die
after going a short distance rather than those that propagate
unchanged.

The strong self-inhibition employed above results in a
circuit that for long perfods after passape of a wave 1is
unable to support another wave. Too long a period of
depression decreases the chance that new inpuls can eanter
the lamella, as will be described in scction four, so means
of shortening the depressioun time were soupht. ‘Two ways to
shorten the depression time are to decrease the level of
inhibition neceded to produce waves and to decrecase the in~
hibition time constant. In order to dectecase inhibitfon
levels, an amplitude-dependent nonlinearity {s usced to
allow low levels of inhibition to have a grcater cffect on
the circuit. The amplitude-dependent gain appears in the
computation of the output rate as follows:

o_wl, . . )
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vhere Gg, Gj, and Bj are as before,
P i3 a bias term set close to unity, -
W 18 a weight set greater than one, and

F is the logistic function given by

F(x) =

1
14+ ce-d(x-xO)

| o e e e e e e e

F(x)
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Fig. 5. logistic function.
and {llustrated in Fig. S.

For small values of inhibition, G's output rate is
approximately the difference between excitation and inhibi-
tion as before. As the level of inhibition rises, however,
its weighting in the output rate calculation increases from
unity to 1 + W. 1In this way low levels of fnhibition cav
have a great effect on the system. The lower values of
inhibition decay to zero soonecr, leaving the system

depressed for a shorter veriod of time.

A smaller inhibition time constant may be used {f
different weight and threshold profiles are emploved,
corresponding to a different way of produciny waves.

With the modified weight profiles, sclf-inhibicion

begins to build when the G-cell reaches lower levels of
firing, duc to the smaller sclf-inhibitory coancction thres-

hold, but butlds more slowly than before due to the decreased
wveight involved. In the previous srheme, waves were prodnced
by allowing cells to build to large firing rates and then
depressing them with strong inhibition. Tu eorder to produce
waves, this {nhibicion had to last long enoush for the
excitatory levels to decay below the threshiolds accessary for
coupling to other cells, Sharter~lasting or weaker fnhibi-
tion allowed the cells to vemain for lony perlods of vtime

at a level just above the self-inhibition thieshold. In



order to produce the wave profiles of Fig. 4, in which each
cell fires for a short time and then is silenced, the inhi-
bition time constant had to be great enough to keep the cell
depressed until the wave passcd out of its neighborhood and
its excitatory level decayed considerably. In the new
scheme, however, inhibicion is applicd more slowly, and
instead of depressing the ccll immediately, pulls the out-
put rate down gradually., Hence inhibitory levels need not
remain large for too long, and the inhibition time constant
way be shortened. Figure 6 shows waves generated by this

G~cell love!

el posifion
Fig. 6 . Waves produced with modified profiles.

scheme. These waves leave the circuit depressed for
shorter periods of time, and so are better sufted for use in
the overall model. Again, these waves may travel to the
ends of the lamellae, or may die due to inhibitory buildup
before reaching the ends.

f The equations employed here are similar to those used
by Ratliff (23) to investigate the dynamics of lateral
inhibition, and by Grossberg (13) to explore learning and
temory in a number of circuit anatomies. In neither case
Vere these equations employed to produce traveling waves of
activity. The wave generating mechanism in this one-dimen-
sional system is similar to the ones studied by Beurle (24)
and by Wilson and Cowan (22). In each case, the wave peak
arises and propagates due to positive feedback between
excitatory elements. In Beurle's studies this feedback is
controlled by the refractory properties of the model cells,
vhile in Wilson and Cowan's model, as in the one presented
bere, inhibitory buildup stops runaway positive feedback.
As stated above, the activity level of a given cell in our
model may represent the average firing rate of a nerve

cell or the number of cells in a coupled population that are
firing at a given moment. The nonlinear inhibition used
bere may represent a nonlinearity in the way single cells
react to inhibition, or the action of a population of
inhibitory cells with a distribution of thresholds.

,MEMORY STORAGE AND RECALL IN THE MODEL.

The model is designed to learn and recall both the sets
of cells stimulated by system inputs and the time intervals
between inputs. It performs this recall by a process of
association chaining, in which each ioput or evoked memory
of an input stimulates (after the proper time interval) the
get of G's normally stimulated by the next input of the

sequence. This set of G's then stimulates the set associated

with the next input, continuing the process of recall.

This process is indicated in Fig. 7 for the case in
which the second input immediately follows the first. The
model must form associations such that future presentation
of the first input will cause immediate stimulation of the
second input's G's. This association is handled via the
longitudinal lines arising from the E's. The strength of
each longitudinal connection is modeled as a first-order
differential equation as

km
dz km 0 + 0 +
Tt - ]+l - o Tl 0 - o]

where zt? connects the jth E-cell in the 1‘“ lamella
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Fig. 7. Simple association of inputs. Open circles repre-
sent G neuromimes excited by present input; hatched
circles represent E ncuromimes excited by last input's Gs.

th
wvith the nth G-cell in the k . lamella,
' Tz is tiie connection time constant,

G;L is the firing rate of the G-cell,
B;; i1s the firing rate of the E-cell, and
ri]+ 18 equal to x 4f x > 0, and is zero otherwise.

Connections are modified according to the Hebb modifi-
cation rule (5). A connection is strengthencd if the E ang
G it links are simultaneously active above the thresholds
83 and Op, while an unused connection decays to zero at a
rate determined by Tz. Strengths of the longitudinal lines
are initially zero, with some exceptions discussed below.

The thresholds in the modification rule allow the
system to discriminate inputs that are to be learned from
the waves and from the effects of noise. A system input is
assumed to excite a G-call to a firing level much greater
than the maximum reached during passage of a wav:. The
value of 8 1is set just below this fnput excitation level
to prevent assoclations from forming between G's excited by
waves. Similarly, Op is set just below the level of
excitation reached by an E-cell when a wave passes by it, so
that inputs are associated only with a few E's recently
excited by waves.

Thus if an‘E excited by one of the first input's G's
glves rise to a longitudinal line that makes contact with
one of the G's excited by the second input, that connection
is strengthened according to the lecarning rule above. Later
presentation of the first input will again excite that E, ia
turn tending to activate the second input's G via the
strengthened connection. If the system is properly
constructed, as discussed below, each of the second input's
G's will with high probability be connected in this way to
at least one of the first input's G's. Repeated presentatiosn
of the sequence will result in connections strong ennugh te
excite the G's to the input level of excitation. Presenta-
tion of the first input will then cause immediate activatica
of the second input's G's, effecting recall of the sequence.
This chaining process may then continuec with the associatica
between the second and third inputs, and so on.

If the next input does not occur immediately, a trace of
the first {nput must be held in the system long enough to
form associations as descrihed above, and to code the inter-
val between inputs. Input storage and interval coding are
accomplisiied through the wave action of the G's. Tlach over-
all input excites a few G's throughout the system, giving
rise to waves moving f{n the associated lamellae. ‘These
waves excite E's as they go, so that an input's G's may be
associated with waves pencrated by the previons input,
effecting both storage and interval coding.

This process ia illustrated in Fig. 8. A wave gencrated
by the first fnput at time To in lamella 4 moves along the

- lamella, as indicated by the cross-hatched rectangle. Refore
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Fig. 8. Association of inputs and waves.

dieing, the wave will move a distance determined by the
inhibitory parameters. In order to handle time intervals
longer than those obtainable with a wave moving along a
single lamella, some of the longitudinal connections are
permanently strengthened initially so that a wave activating
such a connection may generate a wave in another lamella.
The second wave may continue after the first has died, and
may generate more waves, A series of such wave generations
‘15 indicated by the dotted lines in Fig. 3 while arrows
show the directions of wave motion along lamellae. At
time Tg + D a wave generated in this way is act the
position shown in lamella 1 when a new input excites a
G-neuromime in lamella 2, as indicated by the cross-
hatched square. If a longitudinal comnection exists be-~
tween an E excited by the wave at that time and the G
.excited by the mew input, that connection is strengthened
according to the system's learning rule. Such a connection
‘18 indicated by the dashed line in Fig. 8.

Now if at some later time the first input is again
presented to the system, a wave will be generated at the
same place in lamella 4. If this wave causes the same

. sequence of waves to be generated as before, after an
interval of length D, the cxpected time between the two
inputs, a wave will activate the learned longitudinal
connection, exciting one of the second input's G's. If
each of the second input's G's is associated in this way
with at least one wave stemming from the first input, pre-
sentation of the first input will cause the activation of
the second input's G's after about D seconds. This process
zay then continue, effecting recall of the sequence.

SYSTEM DESIGN CONSTRAINTS

The association system described above can fail in
five main ways. The first set of problems concerns the
representation of inputs using patterns of moving waves.
If the waves all die, or the pattern falls into a cycle,
‘{nformation is lost and proper association becomes impos-
‘sible. Interference between the wave pattern and the inputs
to the network is the second problem. Cells that lie in
-the troughs of waves are inhibited, so inputs cannot excite
them enough for associations to form. A third difficulty
concerns the probability of association. If the system is
not properly designed, the probability that a wave can
become associated with a given input will be too small for
reliable operation. The fourth class of problems concerns
interference between wave patterns generated by successive
inputs. Finally, the fifth problem arises from the effects
of changes in the system's structure brought about by lcarn-
ing. Each of these problems is treated below. In some
cases, proper setting of system parameters can alleviate
the difficulty. Other problems require that further
mechanisms be added to the model

Pattern Persjstance and Cycling

The first problem ar{ses because all the waves gen-
erated by a given input may die out before the next input
arrives. This will happen Lf there are too few opportunities

for waves to generate others in other lamellae. Simulations
indicate that waves generally persist indefinitely in
systems with more than a few prestrengthencd conucctions
from each lamella to the others. Second, a slven wet of
waves may fall into a cyclic pattern ol movement through
the network, thus losing the abllity to represent the exact
interval between fnputs. Sfmulation again shows that in
gystems wvith more than a few strong connections between
lamellae, wave interactfons are complex cuouph to preclude
this possibility. These difficulties, theun, will seldowm
arise in systems with enough prestrenthencd connections
between lamellae.

Trouph Interference and Associatjion

The second set of problems concerns the interference
between a wave pattern and an input, and the probability
that all of an input's G's become associated with waves.
These two problems are linked through their depeondence on
the number of waves in the system. Filrst, the input may
stimulate a cell that lies {n the trough of a wave. Such a
cell 13 {nhibited and cannot rcach a firiup level that
allows it to become associated with other waves or to gen-
erate a wave itself. That part of the inpuc, then, canuot
enter the system and is unavailable for associaticn with
other inputs. Second, a stimulated cell #av not Eecume
associated with any wave in the system. Tais will cecur
if there are too few waves or if there are too fow long-
itudinal connections available for association. VTormulas
dealing with these two sources of failure are derived in the
appendix. There, Table 4 shows the result of applwing the
formulas to a system with paraweters given in Tuble 3, in
vhich vaves and stimulated cclls are distributed at randon.
It may be secen that full input entry and ull association irn
such a system are possible only when the nunbers of waves
and stimulated cells are kept quite low with respect to the
total number of cells.

The number of waves present in the system depends on
the number of cells initially stinulated and on the number
of prestrengthened longitudinal connections between lavellae.
With too many such connecctions, too many waves are spawned
and input entry becomes a problem. With too few connec-
tions, however, the wave pattern may die or fall into a
cycle, as discussed previously. Simulation shows that
gystems with cnough prestrengthened connections to avoid
cycling and pattern extinction grnerare rar too wany waves
to ensure that none of an input's G's is inhibitad. Further,
the number of waves exhibits oscillations, as shown in Fig.

9 , moking the system at times able to accept inpuis and
unable at other times. Accordiugly, means were sought to
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Fig. 9. Plot of number of waves produced in uncontrolled
system as a function of time.

hold the number of waves at a constant low ievel, winile
still avolding pattern extinction and cycling.

The overall pumber of waves fn the network can be
controlled through repulation of wave deatin.  Recall that
waves are assumed to travel a certafn distanee (callsd the
propagation distance), then die due to {nhibitory bl ldup,
A feedback mechunism was added to control the nuiber of

vaves by changing thisS distance. The prupagation distance



may be the same at all points in the system, corresponding maximum activity is detected anvwhere in the system,  This

to an overall setting of fubibitory patameters, or may corresponds to a strong blanket inhibitfon applicd when an
vary locally, corresponding to local parameter setting, input is presented or when a strong associat fon i3 recalles,
In either case, when the number of waves In the system ia It's assumed that the strong peaka of activity are able to
small, the propagation distance is made large. This survive this fuhibition and to generate new waves of

insures that waves will travel far enough to penerate activity. With the wave-killing mechanisn fn operation, "
other waves before dieing, thus keeping the overall wvave . interference cffects are limited to two forms. Flrst

pattern from dieing. As the number of waves grows, the are the effects of fnhibitory troughs Jeft behind by waves
propagation distance is decrcascd to keep waves from killed when the fnput was presented. Sucond is the effect
generating too many others. In the case of global pro- of lingering longitudinal comnection inhibition.

pagation distance variation, the propagation distance at

each point 1s adjusted according to the total number of Wave troughs give rise to the input entry problen, as
waves in the system. With local variation, the distance discussed earlfer. Troughg left after waves are killed

i8 set at each point according to the number of waves also block the propagation of waves gencerated by uew

preseat in an arca about that point. peaks of activity. The effects of these forms of inter—

ference may be minimized by use of the proper nuuwbers of
waves. Longitudinal connection inhibitjon left arter the
wave pattera is killed can afrect the development of che

. . . . . . . . . . new pattern by blocking wave vencration. as above, the
' instability of the wave patterns is such that further pat-
. . . . . . . . . . terns generated without the waves whose generation is blocked
: wvill differ from patterns generated with those waves.
3 . . . . . . N .- . Because of the differences, associations will not readily

form and recall may be impossible. A wiy to obviate this
difficulty is to assume that E's have a maximal ivhibitory
level, and to set all E's ro thils level when the wave
killing mechanism is activated. This corresponds to a
8aturating inhibitory input applied at that time to all E's.
. This input effectively cradicates all traces of the E-

. inhibition due to the previous pattern, allowing the now

o e pattern to levelop with interference due only to the wave
: troughs. fThe two mechanisms of wave killing and E inhibi-
tion input and saturation can be used to minimize the
effects of interference between wave patterns due to
successive inputs.
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Fig. 10. Plot of number of waves produced in controlled Interfercuce Effects of Learning
system as a function of time,

The final diffficulty lies in the effects of changes in

Fig. 10 illustrates the result of applying global the system's structure brought about by learning. Because
propagation distance variation to a system with the same vwaves travel throughout the system between input presenta-
parameters as those used in Fig. 9. The number of waves tions, a longitudinal line thac has been strengthened
is considerably reduced and is more constant than before. through learaing 1s likely to be activated at times when it
Similar results are obtained using local variation. should not be. Activation of a strong enough connection az
Local variation has the added advantage that waves are the wrong tine will cause a wave to arise in the system at 2
able to spread more evenly through the network, leading to point in the developuent of the wave pattern where nonc hac
increased local probabilities of association. This method been before. Such extra waves will alter the developnment of
of propagation distance variation thus allows the number of the pattern, making proper association and recall impossible.
waves to be controlled to satisfy the input entry and
asgociation constraints and to keep the wave pattern A way to ensure that longitudinal lines strenzthened
from dieing entirely or falling into a short cycle. through learaing are activated only at the proper times i{s to

. . allow E activation only when a particular pattern of waves
Inter-sequence Interference y exists in the network. In this schene, an E that gives rise
to no strengthened connections, that is, one that has never

Another cause of difficulty is the interference taken part in association or that has forgotten any
between wave patterns generated by different inputs or by agsociations ever made, may be activated by a single wave
-successive presentations of the same input. As an example, ' that goes by its position, as before. When an E takes part
‘consider the sequence formed by regular repetition of a sin- in association, however, that E learns the pattern of waves
gle input, and suppose that there are already waves in the in an area around its position in the network. Thereafceer,
system when this input is first presented. These waves will the E can be activated ouly when the wave pattern in the
interact with those generated by the new input, so that the network matches its stored pattern. If the stored pattern is
pattern that exists when the 4dnput is presented the second composed of enough waves, it is unlikely to occur at any but
time may not be the same as the init{al wave pattern. the correct time.

Because of this difference, the third presentation of the

input 1s likely to become associated with still another ] This mechanism requires a change in the way the E's arc

pattern, and so on. This difficulty stems from the activated. Each E must have strong connections frem G's in

instability of the wave patterns, which is such that two its lamella, and weak conncctions from G's in other lamnellae.

patterns that differ only slizhtly pive rise over time to All of these connections must be trainable, such that when a

patterns that are more and more different. Because of this longitudinal line stemning from the E is strengthened, any

instability, it is possible that a repeated input will not connection to the E from a G active at or above the wave

generate the same wave pattern twice over very many propagation level {s also made strong. At the same time, che

repetitions, and hence that no strong connections will form E's threshold of activation mwast Increase, so that the entire

in a short time. The network would thus have stored a set of strengthened connections must be excited to activate

large number of memories of this input and would take a the E. 1In this way, a particular wave paccern is stored in

prohibitively long time to train. Even 1f a short sequence the conuections to the E from G's In its own and neipghboring

of patterns were formed, 1f the input was presented with a lamellae.

different inftial pattern during recall, the learned

sequence of patterns might not arise again, leading to a These mechanisms added to the basic medel, then,

recall failure, oinimize the effects of the problems arising from fluctua-
tions in the number of waves in the netwvork amd froe the

The firat mechanism added to combat this interference instability of the wave patterns.  The nunber of waves must

problem 18 onc that inhibits all waves when a peak of be kept small cuough to allow inputs to enter the system



frecly, but large enough to allow proper assocfiation and

to keep the wave pattern (rom diclap or cycling, ‘Ihe
number of waves {s controlled through [cedback that de—
creases the wave propagation distance as the number of
waves incrcases. Pattern instability glves rise to
problems of interferemce between patterny generated by
successive inputs and to disturbances due to learning it-
self. Interference problems are minimized using a wave
inhibition mechanism and a strong longltudinal line
{ohibition, both of which operate when an input is presented
to the network. Pattern disruption due to improper activa-
tion of longitudinal lines strengthened through learning

is prevented by allowing longitudinal lines to be activated
only when specific patterns of waves are present in the
system. These mechanisms are related to changes in the
operation of the basic model, and may be interpreted in
terms of the action of particular excitatory and inhibitory
‘mechanisms in the hippocampal system. The means of
simulating this system, and results of simulation, are
discussed below.

SYSTEM SIMULATION

The differential equation formulation of the model,
described in section two, has the disadvantages of being
difficult to control and expensive to simulate. It is
difficult to know in advance what detailed characteristics
the wave generating mechanism must have so that the overall
system can function properly. Much work would be needed to
find ways to realize a given set of desired characteristics
in turns of the dynamic equations. Furthermore, a large
system of such equations can be simulated only at consider-
able expense. In order to simplify the simulation and to
make the system easier to control, simulation of the full
model was carried out using cells modeled as pairs of finite-
state automata, rather than as differential equations.

Each simulated cell consists of a wave-generation
portion, representing the action of the G and B cells, and
a longitudinal line activation portion that represents the
B and U cells. The operation of each cell's wave-genera-
tion automaton reflects the generation of wave activity
in the differential equation form of the model. These
automata are much more easily controlled than the dif-
ferential equations, however, and may easily be designed to
have desired wave propagation characteristics. In this
formulation, the entire wave peak is represented by a
single cell in a specified state. Each cell therefore
represents a number of cells in the differential equation
formulation,. making this simulation more economical.
Similarly, all of the E's activated by a wave peak at a
given position in the system are now-msdeled in the single
longitudinal-activation automaton associated with the cell
at that position. The structures of these automata are
described below.

The Wave-Generating Automaton

The wave-generating automaton of each cell is shown
in Fig. 11. Each state is numbered, and larger numbers
represent higher levels of firing in the differential
equation formulation. State Q is the resting state, in
which a cell remains if undisturbed and to which it returns
following perturbation. The highest state, I, represents
the level of activation reached when a system input excites
a quiescent cell. States W and T are the wave propagation
and maximal trough states, respectively, representing the
level reached as a wave peak passes the cell and the level
of maximal inhibitfon following the peak. States between
the trough state and the quiescent state are trough
recovery states, through which a cell goes to quiescent
following passage of a wave. The states between the
quiescent state and the wave state are states of subacti-
vation to which a cell is sent by small inputs. Finally,
the states between the wave state and the state of maximal
activation are superactivation statcs representing levels
great enough to gencrate waves but smaller than the state
to which a cell {s sent by a system fnput,

Bach cell has three sources of input. These inputs
are wave-activation inputs from ncighboring cells in the

same lamella, syastem inputs, and longitudinal-activation

Fig. 11. Structure of wave-generating automaton.

~+—-+ indicates action with no input, .. — _—action of
wave input from neipghbors, ---—--action of input applied
to non-quiescent cell. Multiple arrows Indicate that state
entered depends on size of input,

inputs from cells in other lamellae.
that 4s, if the cell’s wave-generating aucomaton
state Q, a system Znput to the cell moves it to state I.

From I, the cell goes in one time-step to cell W, the wave

is in

state. From state W the cell goes te the maximal trough
state, T, at the next time-step, regardless of tfurther
inputs. This corrvesponds to a strong inhibition trigpered
by the cell's recent activity. If the cell receives no
further inputs it moves one state at a time from 7 to the
quiescent state. Any input to the cell while it is in one
of the trough states causes it to go back to T again,
representing the effect of further inhibition.

In order to propagate waves, each cell receives inputs
from the two nearest neighbors in its lamalla. A auiescer:
cell enters the wave state at a glven time when one of its
neighbors was in the wave state or greater at the time
before. The ccll next enters the lowest trough state, as
above. In this way, a wave moves through a quiescent
region represented by a cell in the wave state tecllowed by
cells in the trough states. The single celi in the wave
state represcnts the entire wave peak in the dltferuntia%
equation form of the model. A cell in any trough state 13
sent to the lowest trouph state at the next time-step if
one of its neighbors is in the wave state or greater.

Thus when two waves collide they annihilate oae another,
leaving behind.cnly an inhibited region that recovers to
quiescence., This action reflects the behavior of collidin:
waves in the dynamic formulation of the model.

The third source of inputs to a cell is activity
communicated over the longitudinal lines from cells in
other lamellae. The activity level of a given longitudinil
line 1s an integer calculated in a manner described below.
The activity levels of all longltudinal lines to a given
cell are summed at each time-step, topether with the
external input to the cell, to arrive at the total
extrinsic input to the cell at that time. If a cell is ir
any state other than the quiescent state or a preactivatic=s
state when it receives a nonzero extrinsic inpur, tt is
sent to the lowest trough state at the next time step.

" This corresponds to a strong inhibition activated by the
cell's recent activity and reinforced by further inputs to
the cell. A small fnput to a quiescent cell will set the
cell to a subactivation state, from which it goes to
quiescence if it receives no further inputs. larger inputs
set the cell to the wave state or to a superactivation
state. The superactivation states decav to the wave
state in one step with no further inputs. An input to a
cell in a superactivated state sends It to the lesest
trough state at the next time. A strong cnouph tetal lapus
can send a quiescent cell to the maximil actlvation state,
In this way, the activation of longitudiual Fines con oer
in the gencration of new waves and strony peaks ol activizs
in the system.

If a cell s quiescert

.



The Longitudinal-Activation Automaton

A longitudinal line is activated as a result of the
action of both portions of the cell that gives rise to the
- 1ina., The structure of the longtitudinal-activation
automaton , denoted LA, ia shown in Fig. 12. The LA

deb T M 0 fen A
- I

Fig. 12. Structure of the longitudinal-activation auto-
maton. J4——4- indicates action with no input, - - - — in-
dicates activating input, action of inhibitory input
from neighbors, ————action of self-inhibition. Multiple
arrows indicate state entered depends on size of input.

automaton has a quiescent state, Q, an activated state, A,
and a set of trough states, Ty. Each LA automaton re-
ceives an activating input from the wave~generating automa-
ton in its own cell, and inhibiting inputs from the LA
automata associated with neighboring cells in its own
lamella. Like the E's in the dynamic form of the model, an
LA automaton with no preferred wave pattern can be acti-
vated by a wave that passes by its position in the lamella.
The LA automaton is inhibited following its own firing or
the firing of neighboring LA automata.

. To illustrate LA activation, first consider a cell
that has no preferred activation pattern, that is, one that
bas not recently taken part in an association. If the
wave-generating portion of that cell is at or above the
vave state, and the cell's LA automaton is not in an
ivhibited state, then the LA automaton 1is sent to the act-
ivated state and the longitudinal lines stemning from the
cell are activated. At the same time, the LA automata of
neighboring cells receive inhibitory inputs depending on
their distances from the cell whose lines became active.
Inhibitory inputs are additive, and the greater the total
inhibitory input at a given time, the lower the inhibition
state to which the LA automaton 1s sent at the next time.
If left unperturbed, the LA automaton recovers one state
at a time to quiescence. Note that an inhibited LA
automaton . can't activate 1ts longitudinal lines or produce
inhibition in other LA automata. 1In this way, a wave of
activity alternately activates and inhibits LA automata as
it travels along its lamella. . This sequence of events 1is
the same for cells with preferred wave patterns, except
that activation can occur only 1f the automaton is
quiescent and if the proper wave pattern exists in the
network.

. The level of activity transmitted from one wave-
generating automaton to another through an activated
longitudinal line depends on the state of the activating
wave-generating automaton and on a weight value associated
with the connection between the two automata. In the
dynamic form of the model, these weights conform to

differential equations. Here, they arc modeled as difference

equations with values that are increased according to the
learning rule presented in section two, and that fall to
zero othervise. lNote, however, that the prestrengthened
connections that allow a wave in one lamella to poenerate
waves in others have non-zero values that are fixed for the
life of the nctwork. The input to a cell {n another lamella
due to an activated longitudinal connection 1is simply the

connection weight nmultiplied by the level ahove quiescence

of the activating wave-pencrating automaton. Becall thm
all such {nputs are summed ac thee recelving cell ra deter-

mine fts state ar the next time step.  So a wave fn one
lamella that activates a strong-conough Jonpitudlual con-
nection can send a cell in another lamella to Lta highest
state, while somewhat weaker connections allow wiaves to
generate other waves iun different pares ot cthe aynlec,

This formulatlon of the model in terms of automata 1s
an abstraction from the dynanic form that is desipned to
be easier to countrol and less costly to simulate. Encugh
of the operation of the differentfal cvquations has bheen
embodied in the functioning of the automata, however, that
results obtained with this form of the model can also be
achieved using the dvnamic svstem fori. Kesults of
simulating the automaton form of the full model are
described below.

STMULATION RESULTS

A simulation of the system in the automaton form
described above was carricd out to investigate the effects
of interference and to deterzine the network's menory
capacity. Two networks were created that differed in the
details of their structure and in their wave control
parameters. In order to ensure that associations were made
properly and that recall errors were minimized, tve
further constraints were imposed on the operation of these
networks. First, when an input entered the system, the
network was searched to find at least two cells active at
or above the wave propagntion level at Lhe time before
that did not already give rise to strengthencd conncetions.
These cells were then connected to the eccll excited by the
input, and the connections were given non-zero values.

At the same time, the wave pattern about each of the cells
chosen for connection was searched until more than a fix-d
oinimum number of waves were found. The positions of these
waves were then recorded to act as the activating config-
urations for the cells chosen for association.

The first condition ensured that if there were any free
cells activated by waves when an input entered the system,
then the input would be assocfated with at least one wave in
the network. This correspouis to a network in which ecach &
gives rise to a large numher of longitudiral lines ready for
association. The second condition ensured that the activat-
ing wave configurations were large enough to be unique in
the course of development of a wave pattern. The first
condition may be relaxed to allow associations to form only
with some probability. Likewise, the sccond condition may
be changed by allowing a fixed-area scarch for waves to use
in forming the activating configurations. Under the relaxed
conditions, however, association failure is possible, and
activating configurations too smail te be unique may be
formed. These sources of crror were eliminated here in
order to investigate memory capacity and the effects of
errors due to interference.

Table 1 lists the parameters of the two simulated
networks. 1In each case prestrengthened lonpitudinal con-
nections were chosen according to an exponential
probability distribution., In these simulations, the
values of these and all other strengthenced longitudinal
connections did not decay, so that memory capacity could be
evaluated. Conhection strengthening parameters were
chosen such that four occurrences of strengthening were
required to make a connection strong cnough to be at.le to
generate a peak of maximal activity. Each system injut
consisted of two cells chosen from all cells of the network
according to a unifora distribution. Input sequences woere
composed of two Inputs repeated at fixed intervals civsen
with uniform probability fro= a range of between thirty and
fifty time steps,

Wave propagation distance was set according to the
cquation below:
D= mnx[Dmtn, D

- al * r&/ﬂ;“

max

where D {s wave propagation distance at a given point in the
network,



Table 1. Network Parameters

P__ is the probability that a longitudinal connection is
selected for prestrengthening, Other parameters as named
in appendix and below.

Network N R .

Number L 'C L Dmax Dmin 8 8 Pz Pzw
A 9 59 20 4 25 2 12 4 .4 0045
B 9 59 30 6 25 4 6 2 <4 0045

Dnin and Dmax are the minimum and maximum allowable

propagation distances,

N is the number of waves in a rectangular region
centered about ‘the point in question, R cells wide
and L lamellae deep, as indicated in Table 1,

31’32 are constants, and
ﬁﬂ denotes the largest integer less than or equal to

With this rule, the wave propagation distance decreased in
steps of size a; for each increase in N of size az. In
network A, wave control was established on the basis of
the number of waves in a region about each cell that is
smaller than the region used in network B. In B, the
distance was decreased gradually as the number of waves
increased, while in A the decrease was more abrupt due to
the larger values of a, and a;. Wave control was better
in A than in B, leading to a more nearly constant number
of waves in A, This difference in the wave control effects
i reflected in the networks storage and recall success
rates, as described below.

Both networks were trained as follows. At the start
of each training session, four inputs were chosen to pre-
gsent to the network. Two of the inpurs were to form the
sequence to be learned and two were to act as "temporal
context” during learning and recall. The first context
input was presented to the network, and the wave pattern
due to that input was allowed to develop. After a time,
the first input of the sequence to be learned was pre-
sented, followed at the appropriate time by the second
input, and then again by the first. This sequence was
repeated several times to allow strong associations to
form. To test the network's ability to recall the
sequence, all waves were then erased from the system and
the second context input was presented. As before, the
pattern due to this input was allowed to develop for a
time and then the newly-learned sequence was presented
twice. If the network had learned the new sequence
properly, and if interference problems did not occur, the
network would continue to regenerate the sequence following
cueing. After a complete training session, successful or
not, the network was saved to be used in further training.
In this way, the effects of storing many sequences in a
single network could be evaluated.

Network training was stopped when crrors occurred in
three successive sequences. These errors could be fall-
ures of association or interference from previously stored
sequences. After the nefworks were trained to capacity
according to this criterion, each was tested for recall

of its stored sequences in order to test for interference

between stored sequences. In this testing, the context
ifnput wag presented as in learning, and the scquence to be
recalled was presented twice. As before, successful recall
meant that the network would continue to regenerate the
sequence after cuclng was stopped. As fa tralning, recall
could fail due to lack of proper assoclatfions or to Inter-
ference effects.

No. No. No. - No. No.
Hotwork Jump Aseoc. Seq. Interfcrence Ansoc. Succeas
Runber Conn. Conn. Stored Failures Failutes Pate
A 130 262 23 H 2 702
8 130 235 24 5 4 622

Table 2, Results of Simulation.

Results of these simulations are shown in Table 2.
Approximately the same number of sequences were stored in
each of the two networks, and each formed about the same
number of strong assoclations and wave-jump connections. In
most cases, recall was established after onc or two presen—
tations of the inputs, that is, after about onc prescntation
of the entire sequence. In each network, failures
occurred due to context interference (interference fror the
pattern of waves gencrated by the previous input), stemming
in each case from a context failure during learning.
Similarly, associatfon failures during training gave rise to
recall failures.

Interference between stored sequences also occurred in
each network. 1In network A, three scquences compasel of
similar inputs interfered with each other, leading to a
recall composed of parts of all three when any was uscd as a
cue. Two other traces in nctwork A intertered with onc
another. Two pairs of sequences in network B interfeied with
one another. In one case, a sequence disrupted the recall
of another, but was not itself disturbed. In the second
case, a sequence that was not fully stored due to an
association faflure disrupted recall of another sequence.

In no case did the wave pattern cycle between input
presentations. The wave pattern died eatively in only one
case. The cause of death was blockage of the new input's
waves by the troughs left behind by the previous pattern.

Counting all forms of fatilure, nctwork A had a success
rate of 70%, wvhile B's success rate was 62Z. Success rate
is measured as the perceatage, among all sequences presented
to the network before the final three failures, in which
there was proper storage and recall. Network A was more
successful than B because wave control was better in A.
Failures in B often occurred because there were too few or
too many waves in the system. The control in A was such
that there was more often the proper number of waves to
allow association without blocking the fnputs.

If failures due to interference from stored sequences
are not included, the success rates are 855 and 687,
respectively. Mechanisms may be added that diminish the
effects of storcd-trace interference by actively erasing
the older sequence's connections when incerference occurs,
Such mechanisms would then increase the success rate of the
network, at the expense of the loss of older memorics.

Association failures occur when an input enters the
system at a time when all waves are at positions that
already give risc to strengthened longitudinal connections.
This source of error can be minimized by changes ia syutewm
architecture or by allowing the nectwork to store only up to
about half {ts expected capacity. Passive torgetting due to
decay of connection weights and spontancous ioss of utored
activation patterus may be employed to crase old memories,
keeping the network always at about half capacity. Apain,
the chance of error is minimized at the cxpense of the loss
of old memorices.

A temporal sequence memory model based on the structure
of the dentate gyrus region of the mammallan hippocampus



was proposed in section two. This memory uscs nonlinear
propagating waves to gencerate a represeantatfon of ies
inputs to effect memorization of a sequence of inputs to-
gether with the time intervals between them. Mechanisms
were added to this memory model to overcom: sources of
interference and instability, and the full sy:stem was
simulated to test the effects of errors and to determine
the memory's capacity. Although several types of errors
occur in the operation of the network, success rates of
70Z can be achieved using proper control of the number of
waves in the network. Elimination of interference through
active wemory erasure yields an 85X success rate.

These error rates are based on only one network, but
are supported as approximate error rate figures by similar
results from the other network. Extensive simulation of
the wave gencrating mechanism shows that most networks
‘with a given set of parameters are similar in their wave
generation properties. Since the sources of error are
intimately linked with the wave pattern dynamics, most
networks having proper control of the numbers of waves
will show €0X to 90% success rate. Success rates can be
increased through the use of mechanisms that erase old or
conflicting memories to decrease the chances of failures
due to lack of associations and to interference from stored
sequences.

Success rates will also be changed if the forced:
association rule used in simulation is altered. Under
this rule, two or more associations were forced to form
between each input cell and the cells activated by waves at
the time the input entered the system. However, each
activated cell was allowed to associate with only one of
the two input cells. As training continued and memory
capacity was used up, the chance decreased that there
wvere enough waves in the system to associate with the inputs
according to this rule. The forced association rule could
be modified to allow each activated cell to form connections
to both input cells, and to make connections with some
probability. This modified rule corresponds more
closely to the learning rule in the original description
of the model. Under the modified rule, the chance of
association failure is decreased, since any activated
cell that does not already have an association connection
can contact either or both of the cells activated by the
input. At the same time, however, failure may occur
under this rule, since associations are formed with some
probability. The balance between these two effects could
be explored in further simulations. Note that the modified
association rule also extends the memory's effective
capacity, since fewer cells are likely to associate with a
given input.

The memory network presented here may be used as part
of an habituation system as shown in Fig. 13, following

Input Cells

Memory

U

Match-Mismatch
Circuits

v

Fig. 13, Use of the model with match-mismatch circuits as
part of an habituation systcm.

a scheme of Horn (9). The outputs of the C's form the net-
work's overall output. The output of the memory nctwork,
together with the outputs ‘of the cells that form its input
are fed to a rank of match-wmismatch circults. These

circuits may be set up inftfally, or may develop throuph o
learning process, to respond when the afenal from the *
memory cell corresponding to a particular input doecs not
match the signal from the input cell feself.  Thea it the
ioput sequence is changed after the memory has been tralned,
a mismatch will be signalled and dishabituation c.n aceur

as a result. The system will thus be able to dishabituate
due to changes in the inputs thomselves or in the times
between stimuli, As stated previously, sinpler habituvation
networks have been designed that capture many of the
propertics of habfituation and that may be applicd to the
problem of habituation in the dentate gyrus or hippocampal
complex. The temporal sequence memory described here

allows an habituation system based on the structure and phy~
siology of the hippocampus to Jduplicate known temporal
properties of habituation.
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04 COM. We wish to thank Dr. Michacl Arbib and Dr. Williar
Kilmer of the University of Massachusetts and Dr. Turner
McLardy for helpful discussfons and critical revicws of
earlier versions of this paper.

APPENDTX

Probabilities of Input Entry and Association

We calculate here the probability that an input
stimulates no cell that lies in the trough of a wave, and
the probability that a given cell stimulated by an input
becomes associated with at least one wave in thc'system.
The following parameters are used:

“L = pumber of lamellae,

+ number of cells/lamella,

= number of cells stimulated by an input,
= number of waves in the system,

e number of cells in a wave trough,

NC
Ny
%
¥, = total number of cells/wave,
My
Wy

= number of cells in another lamella that a cell
in a given lamella is able to form comncciion to.

Pz(i,j) = probability that a longitudinal line from
lamella i reaches lamella j,

Pz = probability that a longitudinal line makes con-
tact with a given cell (out of a total of HR)
in a lawmella it reaches,

PE = probability that a wave can activate a g{ven
longitudinal line.

To find the probabfility that an input will sticulate a
cell in the trough of a wave, note that each wave trough
uses “T cells, so that the total number of depressed cells
is N" . MT. So

p(a given stimulated cell lies in a wave trough) =

b N
ST lec

If waves and stimulated cells are distributed at randoz
through the system,

p(k stimulated cells fall in wave troughs) =

N k N, -k
(k“) Psp(l - Pyl
. So the probability that all stimulated cells fall out-
side wave troughs is

N

PFE - (1- PST) H
To find the probability that a given stimulated cell ix

connected with at least one wave fn the svstem, we assume

first that an input 1s equally likely to stimulate a col)

in any of the NL lamellae. Then



p(a stimulated cell is connected to at least onc wave
when there are Nw waves in the system) =

N

1
PN == T PL(1,N),
W = w L PNy
where

Pc(i.N“) = p(a stimulated cell in lamella { is con~
nected to at least ome wave, given N, in the system).

The waves may be distributed through the network in many
wvays. Each such distribution will be called a configura-
tion, and configurations will be denoted C 3 = 1,...,Mc,
where Mo 18 the total number of configuratlons of Ny waves
distributed in N lamellae. Associated with each Cy is a
set of numbers K; = (k 1""’kj"l) giving the nuimber of
wvaves in each lamella fo‘l that configuration.

Hence
Mo
Po(1.N) ._121 et leprcc),
vhere
P(Cj) = probability that configuration CJ occurs,
Now
Pc(i,wlc ) = p(a stimulated cell in lamella i is
connected with at least one wave in the system
given Ny waves in configuration Cy)
= 1 - p(a stimulated cell in lamella is connected
wi;h no wave, given Ny waves in configuration
C4 :
=1 - Py(1,8(cy),
vhere
Pyt lC) = 1 (1 - B, ¢a, )14
m=l
and

PA(m,i) = p(a given wave in lamella m makes contact with
a given stimulated cell in lamella i),
= p(the wave is at a cell in lamella m that
sends a z-line to the stimulated cell in
lamella {) . p(the E-cell associated with the
z-line can be activated),

b
"§, " @) - P
c
The first two terms in the final expression give the
probability of horizontal and vertical comnection from a
cell in lamella m to one in lamella j, assuming that each
G-cell is connected to exactly one E-cell in its lamella.

These expressions are evaluated for a system with
parameters given in Table 3, with the results shown in
Table 4, ’

NL -6

Nc = 60

HR = 30

by =3

P_=.9

z

PE = .66
F (1,3) = 1.0 0<|1-3"<3
0.0; otherwise

Table 3. Parameter values used in preparing Table 4.
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Table 4. Probabilities of full input entry and full
association using parameter values in Table 3.
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