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INTRODUCTION

People seem able to face novel situations and within a short
time understand them fairly well. For example, a child enter-
ing a new school often can quickly learn what the social
structure is in his new classroom, e.g., if there is a bully
or teacher's pet, who that individual is, etc. If that new
student would observe a fellow classmate shoving a student

out of the front of a line, and teasing another about his
freckles, etc., he might reason that this fellow may be the -
class bully. What the child has done is use prior knowledge
in order to structure his model of this new situation. By an
inference process, which we would call common-sense reasoning,
the child was able to piece together an understanding of
seemingly isolated actions in terms of the common goals of the
actor executing those actions. From this interpretation, the
new student can predict future scenarios and develop a strate-
gy to circumvent the power structure of the class bully.
Similarly, in our daily lives, we are often faced with the
behavior of humans in novel mini-situations. To explain such
behavior we draw on our general understanding of people's
goals in various situations in order to fit together a model
of this new situation.

In this paper we will present some results of an applica-
tion of this common-sense reasoning process to knowledge
acquisition by the computer; it represents further development
of some of the ideas previously outlined (Soloway and Riseman



1975). Our system operates in a domain of actors and actions
varying over space and time. Specifically, we are developing
a program that is initially given a high level description of
action-oriented games (e.g., cricket, baseball, tennis, etc.).
This description is expressed in terms of the goals and inten-
tions involved in this situation, e.g., winning, scoring, etc.
The description must also include the conditions that must be
satisfied for actions to be counted as mediators of those
goals. Driven by the observation of the activity in the game,
which in our case is baseball, the system will use its general
knowledge of action-oriented gaming in order to acquire an
understanding of the particular goals of the people involved
in this game. .

As a second part of this reasoning process, the system must
abstract regularities that it perceives in its world. These
regularities serve as rules or conventions that govern the
game and constrain the ways in which players can achieve their
goals.

Not surprisingly, there is a high degree of similarity in
the issues that our system must deal with and the issues that
story understanding systems must face. Understanding human
actions, whetheér read from a narrative or perceived directly,
requires in addition to the understanding of the underlying
goals and intentions of the actors, an understanding of the
underlying causal relationships that link the actions of those
- actors together. Schank (1974) stresses the need for dis-
covering via inferences the causal relationships between
actions. Scripts (Schank and Abelson 1975) permit the system
to 'fill-in' those causal links in stories that deal with
stereotypic behavior scenarios. Since it is the task of our
system to generate something like a script for baseball, our
.8ystem is more akin to a constructive approach to behavior
understanding (Schmidt 1976; Schmidt and Sridharan 1976;
Schmidt and Goodson 1976). Schmidt argues that in order to
deal with the complexity and infinite variations in human
behavior, a system--be it human or machine--must ultimately be
able to construct a plan(s) that serves to explain the ob-
served behavior. This plan is expressed in such higher level
terms as goals, motives, reasons, etc. Finally, in a later
section we will discuss the relationship of our model of
learning to those of Winston (1970), Sussman (1973), and
Hayes-Roth (1976). Thus, our system uses its general know-
ledge about the kinds of goals and causal relationships impor-
tant in action-oriented games to compose plans that explain
the activity in baseball, and that capture regularities in
that activity. _

The following presentation will mirror the flow of infor-
mation in our system, which is depicted graphically in
figure 1. We will first discuss the representation of our



mini-world and the systems' knowledge of the lowest level des-
criptors in this representation. This will be followed by a
description of the various roles of Attention Mechanism:

(1) focusing subsequent processing on 'interesting' action
sequences; (2) abstracting recurrent action sequences;

(3) watching for specific action sequences that have been fed
back from the higher centers of processing. Next, examples
will be given which illustrate the reasoning process of the
Hypothesis Generator. It is in this phase that conjectures
are made as to the caisal relationships between the players'
activities, goals, and corresponding successes and failures.
Of most importance is the formation of a coherent interpreta-
tion of the composite activity. Finally, the Hypothesis
Verification and Generalization section briefly describes

- techniques used to gather evidence for confirmation or rejec-
tion of hypotheses, and the process of abstracting important

recurrent events during the grouping of similar sequences of
activity.
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: Pigure 1: System Overview '
Ovals indicate Data Bases qndSqwu indicacte Procedures.

REPRESENTATION OF THE ACTIONS

In order to understand sequences of actions over time, the
system must be able to understand the necessary and probabilis-
tic changes and constancies brought about by those actions,
i.e., one aspect of the Frame Problem (McCarthy-Hayes 1969;
Sridharan 1976). This requires a somewhat surprising amount of
detail. (figures 2 and 3). For each action the following

information is grouped into an ACT-SCHEMA: (1) the direct and
indirect preconditions for execution of the action; (2) the



direct and indirect consequences of the action; (3) the degree
of skill and energy required to perform the action; (4) the
(coarse) expected distribution of the probabilities of suc-
cess/failure; (5) the general goals of the action.

CATCH (PLAYER, OBJECT, LOCATION) AT(PLAYER,LOCATION)

THROW (PLAYER, OBJECT , LOCATION) ON(PLAYER, LOCATION)

W(PI.Aé ER, STARTING-LOCATION) .. TEAMBOX (TEAM-NAME , GUTS , RUNS~-THIS-INNING , TOTAL-RUNS)
' meum.srmmc-munou) BATB(;X (PLAYER-NAME , STRIKES , BALLS)

FAST,SLOW.GROUND,AIR- used as modifiers on actions
: MI(PLAYER.OBJEET.LOCATION) HDVING(OBJECI'.STARIING-LOCATIO!\[.KODIHERS)
éwm'.mss (PLAYER,OBJECT ,LOCATION) INNIRG(INNING-NUMBER)
) - Figure 2: Listing of Primitive Descriptor Units

The system does not understand the 'baseball' meaning of any of the primitives., In

- particular, it understands only that IMNING, BATBOX, and TEAMBOX are scoreboards. It
does not know which events correlate with the counts and does aot uaderstand the

. concept INNING. '

{sWingHIT )
(PRINACT ((PROPEL-INANOBJ 7SNAPKUM) 7PERSGN! 7LOCATIONI)
(GENERAL-GOALS (PROPEL-INANOBJ (XOR (TO SLOCATIONS) (AWAY $LOCATIONI))))
p— PEéanFltULTY (HIGH SKILL) (MEDIUM ENERGY))))

((MUST-EXIST ((MOVING-INANGBY (BEFORE $SNAPKUMI ) NIL TLOCATION2) .
((COUNTS-AS PROPEL-INANOBJ) (BEFORE $SNAPNUMI) 7PERSONZ2 $LOCATION2)))

(DELTA-ENERGY-SKILL (DIFFICULTY=~INCREASES-IF (FASTER MOVING- INANDBJ))))

(INDIRECT-PEC ((MUST-EXIST ({COUNT3-AS LOGCATE-ANOBJ) $SNAPKUMI SPERSONT $LOCATION1))))
{DIRECT-CONSEQ

“((RUST-EXIST ((MOVING-INANOBS (AFTER $SNAPNUMI) NIL "TLOCATIONA)
((COUNTS-AS LOCATE-INANOBJ) (AFTER $SNAPNUMI) 7PERSONS TLOCATIONS)))
(DELTA-ENERGY-SKILL (CAN-EFFECT (FASTER MOVING=INANOBJ) (FARTHER HOVING=1NAN0BJ)))))
{INDIRECT-CONSEQ ((MUST-EXIST ((COUNTS-AS LOCATE-ANOBJ) SSNAPNUMI $PERSONI- $LGCATIONI)))))

Tigure 3: ACT SCNEZMA Representation of‘thc sct SWINGRIT

ROTE: 1n the actusl icplemsencation of the ACT SCREMAS, the atom
names preceded by ? or $ are actually function calls which serve
to bind those atom nades to the actual values in the action
descriptor units of the scensrio .

REPRESENTATION OF THE SPATIO-TEMPORAL ENVIRONMENT

The game of baseball is fed to the system in a discrete form.
Frozen snapshots of the real activity are taken at successive
event times during the game. Each action descriptor unit of a
snapshot captures four fundamental features of a spatio-
temporal domain: action, actor, location and time. Figure 4a
gives a sample of 3 snapshots in which player Al throws a
ball. Unfortunately, space does not permit a full discussion
of the descriptors chosen to represent the game. Suffice it
to say that, though we do not represent the color of the play-
ers eyes, or the clouds moving, the combinatorics of the many
descriptors that we did chose still make the problem far from
trivial, Moreover, in discussing the rest of the system, it



will be clear that many irrelevant features of this environ-
ment can be habituated out. Note that the machine does not
initially understand in any operational sense what the meaning
of the symbol INNING is. Semantic labels on locations, like
home-plate, pitchers mound, etc., are equally mysterious; to
the system they are (x,y) coordinates which happen to be loca-
tions of recurring activity.

ATTENTION MECHANISM: FOCUS

As in any animal's brain, our computer program must filter out
most of the incoming sense impressions and pass on to the
higher centers only the most interesting ones. In particular,
there are 22 action descriptor units per snapshot and about
6500 snapshots per game. Therefore, the job of the Attention
Mechanism is to focus attention on interesting sequence of
actions and pass those on for further analysis. The system's
definition of 'interesting' is biologically motivated and
embodied in two ways in this front-end preprocessor: (1) it
attends to sequences of snapshots where there is activity and
change, and (2) it notes in particular those subsequences of
actions that recur.

The first characteristic translates into an algorithm which
filters out non-activity (AT, ON in our case) while highlight-
ing activity chains. The amount of data reduction using this
algorithm is quite significant. Figure 4b illustrates the
application of this filtering algorithm to the snapshots of
figure 4a.

COMPLETE SNAPSHOTS:

e 1) i3 &
HOLDOBJ (A1, BALL, PM) THROW (AL , BALL , PH) AT(AL,PM)
AT(A2,HP) AT(A2,HP) AT(A2,HP)
AT(A3,FB) AT(A3, FB) AT(A3,PB)
AT(A9, RP) AT(A9.RP) AT(A9,RF)
AT(B1,HP) AT(B1,HP) AT(B1,HP)

AT (B2, DUGOUTB) AT(B2, DUCOUTB) AT(B2,DUGOUTB)

AT (B3,DUGOUTB) AT (B3,DUGOUTB) AT (B3,DUCOUTB)

AT(A9, DUGOCTB) AT(A9, DUGOUTS) AT(A9,DUGOUTB)

INNING(1) INNINC(1) INRING(1)
/ Figure 4a: Partial raw, prefiltered snapshots

REDUCE" SNAPSHOTS:

™e: u 15 6
HOLDOBJ (A1, BALL,PM) THROW(A1,SALL,PN) AT(Al,PN)

Tigure 4b: Remaining primitive descriptor units after snapshots
are filtecred by attention mechanism.



This filtered data must now be further structured. The
continuous action stream must be parsed into relatively small
chunks, much like words in a paragraph are chunked into
phrases or sentences. The heuristic to perform this task is
suggested by the following observations of an action-oriented
environment (game): (1) a flurry of activity often indicates
that some cohesive process is taking place (competition),
while (2) relative calm often indicates the completion of
that process (resolution of competition) and the lull prior to
the next spate of possibly relevant activity (another round of
competition). This crude heuristic does partition snapshots
into meaningful chunks. A semantic routine during a later
phase will sharpen the boundary points of the activity.

In order to notice repetition of relatively similar sequen-
ces of events, generalization over various parameters of the
action descriptor must be performed. For example, implicit in
finding repetitive events is a generalization over absolute
time. By using the generalization operators (figure 5), the
system can abstract repetitive subsequences of actions within
scenarios. This permits the system to build up, in a hier-
archical structure, complex sequences of events into more
complete scenarios. Then, instead of seeing isolated actioms,
the system can eventually perceive these complex sequences as
if they were single action units, e.g., perceiving a batter's
hitting and running as simply a 'hit' or a fielder's catching
the ball and throwing it as a 'fielding play.' '

Original descriptor unit: THROW(AL, FROM-PM, BALL)
Generalizaction of

descriptor unit

Person Operator: THROW(ANY-PERSON, FROM-PM, BALL)

Place Operator: TRROW(Al, FROM-. » BALL)

Person and Place

Operators: THROW(ANY-PERSON, FROM-ANYPLACE, BALL)
4 Figure S: Syntactic generaliszation operations

NOTE: There is implicit generalization over time.

HYPOTHESIS GENERATOR: PLANS

The major goals of the competitors in an action-oriented game
can be expressed (roughly) as follows:

GOAL: Both teams are trying to win. A team can win only
by 'scoring' more than the opposing team. This
implies both offense and defense.. '

GOAL: The players on each team try to.help members of their
own team and try to hinder members of the opposing
team from achieving their goals.

We characterize competition in the following way: (1) acts
that are considered competitve often require a medium to high



degree of skill and/or energy; (2) causal relationships that
link the actions of opposing teams will highlight subgoals.
They are also the basis for determining the successes and
failures of the teams with respect to those subgoals. Exam-
ples of such causal relationships, called CAUSAL-LINK SCHEMAS
(sometimes. denoted CLS) are given in figure 6.

CAUSAL-LINK SCHEMA & TRICGERING CONDUTIONS HYPOTHESES MADE
PHYSICAL-CONFLICT (P-CONFLICT)
8. Action ACT1 executed by Pl wvas the direct physical a. P1 did not intead that P2
ensbling condition for action ACT2 exccuted by P2 execute ACT2
b. Pl and P2 are on opposing teams b. Pl failed to prevent P2 execute
¢« DIPFERENTIAL-ANALYSIS returns T by findiag some way ACT2
that P1 could have performed ACT1 so as to (decrease) ¢. P2 intended to execute ACT2
the likelihood of P2 executing ACT2 d. P2 succeeded
PHYSICAL-COOPERATION (PHYS-COOP) . *
8. ssae as a. above a. Pl intended to help P2
b. P1 and P2 are on the same team . b. P1 succeeded 1f P2 succeeded,
€. same as c. above, except subatitute (increage) but not necessarily conversely
LOGICAL~-COOPERATION (LOG-COOP)
8. HOT a. above, yes ACT1 must_ precede ACT2 a. execution of ACT2 required the
b. P1 and P2 are on the same team, and may in fact execution of ACT1
be the same person . b. Pl intended to execute ACTL

€. Pl succeeded
RELATIVE-TIME (REL-TIME)

8. P2 executed ACT2 after Pl executed ACT1, and ACT1 a. Pl was allowed to execute AC1l
and ACT2 are not linked Ly physical enabling because Pl executed ACT1 before
conditions . P2 executed ACT2

b Pl gnd P2 are on opposing teams b. P2 intended to execute ACT2

¢. there exists actions ACT1* and ACT2* thac before Pl executed ACT1
‘DIPFERENTIAL-ARALYSIS says could have permitted P1 c. Pl succeeded
and P2 to execute acts ACTL and ACT2 sooner d. P2 failed

LOGICAL~-CONFLICT (L-CONFLICT) .

4. Change of Action A. Change of Action

8. P2 changed from executing ACT2 to ACT2' I. 2. P1 succeeded by executing ACT1

b. P1 exacuted ACT1 currently with ACT2 for some goal vhich forced P2

to execute ACT2'
b. P2 did not intend to execute
ACT2'
- . ' < €. P1 succeeded
: - d. P2 failed
or, II. a. P2 succeeded by execucing ACT2
for some goal, and therefore
) fatended to execute ACT2'

b. P1 failed to do something which
could have prevented P2 from
succeeding

- €. P2 succeeded
- ' d. P1 failed
or, III. a. P2 succeeded by executing ACT2
- for some goal, and therefore

S. Pl acd P2 ara on opposing teaas

. iatended to execute ACT2'
- b. P1°s ACT1 13 NOT causally linked
' to the actions of P2, i.e., ACT1

and ACT2 are independent

" Tigure 6: List of CAUSAL-LINK SCHEMAS

All the hypotheses for ‘a CAUSAL-LINK SCHEMA are assertod whan all the triggering conditions
sve satiefied. '

'In the analysis of the scenario passed to it by the Atten-
tion Mechanism, Hypothesis Generation proceeds by first apply-
ing the appropriate ACT-SCHEMA to each action descriptor unit
in the scenario. This process establishes the precondition



" ‘links for the action. It is followed by the application of
the CAUSAL-LINK-SCHEMAS (e.g., PHYSICAL-CONFLICT, RELATIVE-
TIME, PHYSICAL~-COOPERATION, LOGICAL-COOPERATION, etc.). These

" demon-like routines (Charniak 1972) search for sequences of
actions that satisfy conditions specified in each CLS. Meet-
ing of the conditions implies that the causal relationship
specified by the particular CLS may exist between those
actions. Once triggered, they make hypotheses about the goals
of the players and about the success or failure of the players
with respect to those goals.

During a third phase, isolated actions and their hypothe-
sized goals are grouped by player and team into PLANS. A plan
is a very important aspect of human behavior. ‘It permits a
coherent interpretation of a sequence of actions. Intermed-
iate actions serve as means for attaining subgoals, while sub-
goals are executed in order to achieve the final goal (often
indicated by the last action).

Let us illustrate the application of the CAUSAL-LINK
SCHEMAS. Consider the scenario in Figure 7, which depicts an
infield single. In the analysis of action descriptor #6 (the
SWINGHIT by player Bl), the PHYSICAL-CONFLICT SCHEMA finds
itself applicable. As a result of the ACT-SCHEMA, the system
knows that the THROW by opponent Al 'direct-physically'
enabled Bl to hit the ball, and that both actions require a
high degree of skill. Before labeling success or failure,
PHYSICAL-CONFLICT must be sure that the performance of the
player who threw the ball definitely had some effect upon the
performance of the action of the hitter. DIFFERENTIAL-
ANALYSIS confirms this possibility by accessing data in the
ACT-SCHEMA, and accessing genera. facts about actions in the
data base. In this case DIFFERENTIAL-ANALYSIS infers that Al
could have thrown the ball faster by applying an increase of
energy and skill. (Note that skill or energy is usually
expended by a person whose motive is to achieve an action-
oriented goal.) This would have had the effect of requiring a
corresponding increment of skill for Bl's action. The point
is that Al could have done something to decrease the likeli-
hood of Bl's hitting the ball. In this case PHYSICAL-
CONFLICT makes the following hypotheses: (1) Al did not intend
that the effects of his actions should allow Bl to hit the
ball, therefore Al failed with respect to his goal; (2) Bl
intended to execute the act SWINGHIT, therefore Bl succeeded
with respect to this goal.

Consider act descriptor #20 (ON firstbase by Bl). The
CAUSAL-LINK SCHEMA of RELATIVE-TIME asserts the possibility
that the reason Bl was allowed to execute that action was
because he did it before action descriptor #22 (CATCH ball at
firstbase by A3). Again DIFFERENTIAL-ANALYSIS is called to



confirm that the time of execution of both acts could have

. been influenced by a change in the skill or energy expended.
Yes, A6 could have made the ball arrive at firstbase sooner if
he could have thrown the ball faster; and Bl could have ar-
rived at firstbase sooner if he had run faster. The hypothe-
ges of this CLS are: (1) Bl did intend to execute act ON
firstbase, therefore Bl succeeded with respect to his goal;
(2) Al did not intend for Bl to execute that act, therefore
fgiled with respect to his goal.

he
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Note that the two CLS's abuve 'perceive' competition on two
different levels. PHYSICAL-CONFLICT actually observes the
physical interaction between the actions of the playera, while
RELATIVE-TIME must posit the existence of a relationship
between the actions of the players. Of course, both require
that their respective relationships exist betwecen members of
opposing tcams. PHYSICAL-CONFLICT deals with a specific
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feature of the physical environment, e.g., skill and energy,
while RELATIVE-TIME deals with a specific feature of the
logical environment, e.g., time precedence as a relevant rela-
tionship.

There may be additional features in either (or both) levels
that the system cannot directly perceive, but which are none-
theless important to the specific game under observation. For
example, since the system does not perceive the specific
placement of the ball as it passes over the homeplate, it will
not be able to perceptually distinguish between a 'called
strike' and a 'ball'. (To be a 'called strike', the ball must
pass over homeplate at a height somewhere between the batter's
shoulders and his knees.) The general CAUSAL-LINK SCHEMA,
LOGICAL-CONFLICT, deals with this type of situation. This
general CLS looks at the changes (and non-changes) in players'
actions, and tries to explain those changes (or non-changes)
in terms of the existence of some causal relationship, even
though it cannot directly perceive ome. This decision is
based on an understanding of the kinds of causal links that
might be necessary to explain a player's actions. With this
ability, the system has a flexible and powerful technique for
dealing with novel situations.

Generation of plans will ultimately require the binding of
many of the local hypotheses distributed across the action
scenarios. The system must find interlocked and globally
consistent subsets of inferences which might explain the
observed situation. For example, during the PLAN building
phase, another hypothesis generator, EOC, attempts to find the
end of a competitive epoch so it can highlight the final goals
of the two teams. In figure 7, EOC hypothesizes that RUN-ON
and CATCH-HOLDOBJ are the last competitive acts of the two
teams. A process called PLAN-BUILD then backs up the final
goals and attempts to relate them—-the SWINGHIT of Bl was
executed in order to enable Bl to execute the act ON first-
base. Similarly, the A team's goal now has become: prevent
Bl from executing ON firstbase. We are presently investigat-
ing other more dynamic techniques to assist in this analysis
and transformation of local hypotheses into globally consis-
tent plans.

This is only the first stage of hypothesis generation. We
have not used all the concepts from action-oriented gaming.
For example, we have not as yet made hypotheses about what
counts as scoring, or what counts as failed opportunities to
score. Nor have we started to keep track and tally up these
kinds of actions, usually an important facet of scoring. Nor
have we introduced the high information cue of spectator
cheering. This latter stage of hypothesis generation will
build on the hypotheses made so far, but will have to wait
until after the next phase, hypothesis verification and
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generalization, where evidence will be gathered to support or
reject those earlier hypotheses. Note, however, that our model
of knowledge acquisition, using a general description of
action-oriented gaming, has already moved from the perception
of actions to the possible goals intended by those actions.

HYPOTHESIS VERIFICATION AND GENERALIZATION: PLAN-SCHEMAS

Exemplar learning models (e.g., Winston 1970, Sussman 1973,
Hayes-Roth 1976), usually have the following characteristics.
First, they may require a partially ordered training sequence
‘with presentations of positive and negative instances of the
class in order for the desired concepts to be properly learned.
Next, such models require that the system be told to which
class an instance belongs. This is usually done either
explicitly by associating the class name with the presentation,
or implicitly by requiring that the trainer present examples
of only one class at a time. Third, the set of relationships
used in generalization is basically the same as used in the
examples. Finally, a local similarity measure (e.g., fre-
quency of occurrence) relating examples of a class is used to
define a generalized class description.

However, abstracting regularities of human behavior by
simply observing that activity in a natural setting requires a
more sophisticated model of unsupervised learning. The com-
plexity of our problem domain requires an extrapolation of the
above issues in the following ways. First, natural experience
is often a fickle teacher. A model that learns from exper-
ience must be flexible enough to accept an unordered training
sequence and impose its own order. Second, in a new exper-
iential domain, the system cannot expect to know or be told to
which class an example belongs; it must be able to infer the
classes, using both a priori knowledge of what could count as
a class type and the observations of specific examples.

Third, given the multiplicity and non-specificity of features
in any given real-world situation, a priori semantic knowledge
is required in order to hypothesize the existence of higher
level relationships that serve to highlight relationships that
are important to a specific interpretation. For example, in
our domain, the CLS posit the existence of relationships that
are’ important to interpreting that activity in the context of
action-oriented games. Other relationships would need to be
hypothesized if the system were trying to interpret that
activity as a religious ceremony. The above properties char-
acterize the 'experiential model of learning' employed in the
present system., We believe that it examines issues under-
lying human developmental learning that previous systems have
not addressed.

In order to first generate classes and then generalize



within those classes, two types of similarity measures are
required. A more global one that can partition examples into
classes, and another more local one that can abstract the im-
portant characteristics within a class. The global criteria
under which we have chosen to group scenarios stems from a
simple but.powerful observation: events that begin the same
but end differently, events that begin differently and end the
same, and events that begin and end the same but have differ-
ent middles--are cues to the structure of the general scenar-
ios which govern those situationms.

Using these principles the system will be able to group
together a set of scenarios that will eventually be labeled as
infield singles, and a set of scenarios that will eventually
be labeled as infield groundouts. Comparing these two groups
using the 'begin the same, end differently' heuristic, we note
that they do only differ at the end. Looking at the hypothe-
sized interpretations in each group, we saw that the team
which was labeled as having succeeded in one group is the same
team that was labeled as having failed in the other group
(figure 8). This result not only lends support to a correct
partitioning of the scenarios, but also supports the correct-
ness of the hypotheses.

A powerful input during this phase of analysis comes from
the CAUSAL-LINK SCHEMAS themselves. If their hypotheses about
the observed actions are correct, then they should expect to
8ee action sequences in which the team that was previously
hypothesized as being successful should now fail, and vice
versa. In fact, predictions are made of precisely these com-
plementary outcome conditions, and prime the Attention Mechan-
ism via feedback. From our example (figure 7), PHYSICAL-
CONFLICT will predict that Al will throw the ball, and some B
team member will not hit it. RELATIVE-TIME will predict that
A3 will catch the ball before some B team member reaches first-
base, and that some B team member will not be permitted to
execute the act 'ON firstbase'.

The convergence of both techniques to similar conclusions is
strong evidence for the correctness of the hypotheses and the
partitioning. Finally, just as the Attention Mechanism is
building up generalized, repetitive subsequences of actions,
this stage of the system will generalize PLANS into PLAN-
SCHEMAS, based on its grouping of scenarios. These latter
structures will be the final output from the system. They will
represent both an understanding of the goals and intentions
involved in the scenario, and also the rules or regularities
 obaserved in the scenarios.
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Pigure 8: Hierarchical Generalization of
. . Scenarios

SUMMARY

The implementation of the Attention Mechanism was done in
SNOBOL4. The output from this subsystem is used by the
Hypothesis Generation phase which is written in LISP. In the
analysis of a typical scenario, this program uses approximate-
ly 27K of the CDC6600 and requires about 30 seconds of pro-
cessor time. A preliminary version of the Hypothesis General-
ization and Verification system is presently being built and
tested. Results from the Hypothesis Generation part of the
system confirm its inferential power, while early results from
the hypothesis generalization part of the system are also
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encouraging.

What we have explored is a way in which a system can add to
its present knowledge base an understanding of some new situ-
ations. Though initially driven by the perception of know-
ledge about actions, the system develops a consistent struc-
ture of hypotheses about the goals of the actors. This con-
ceptual representation pefmits the system to abstract the
commonalities from a multiplicity of somewhat varying situa~-
“tions. This generalization process provides the general rules
governing behavior in the observed situations of this environ-
ment.
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