A REMINDER FOR LANGUAGE DESIGNERS

By

Frederic Richard *
Henry F. Ledgard *

COINS Technical Report 76-3
(Revised August 1976)

Keywords: language design, programming languages, readibility,
program validation, program maintenance.
CR Categories: 4.2, 4.22.

* Computer and Information Science Department,
University Of Massachusetts,
Amherst, Massachusetts 01002, USA.

This work was supported by the U.S. Army Reseach Office.

—3 —3 — 31 1 "1

A REMINDER FOR LANGUAGE DESIGNERS

By

Frederic Richard *
Henry F. Ledgard *

COINS Technical Report 76-3
(Revised August 1976)

Keywords: language design, programming languages, readibility,

program validation, program maintenance.
CR Categories: 4.2, 4.22.

* Computer and Information Science Department,
University Of Massachusetts,
Amherst, Massachusetts 01002, USA.

This work was supported by the U.S. Army Reseach Office.

Abstract:

Current programming languages offer limited support in the deve-
lopment and maintenance of programs. These languages do not always
account for the human limitations of their users. Notably, few
languages really promote ease of readability. This paper suggests
nine design principles for the development of readable high
level languages. Each principle is backed up by a discussion and
several examples. Among the issues discussed are the limitation
of the overall complexity, the design of function and procedure
facilities, the design of data type facilities, and the corre-

spondence between syntax and semantics.

—3 — 3 T3 T3 —3 T3 T3 T3 73 T3 T3 TF T T3 —T1A T3

—3 T 3% 71

Introduction.

This paper stems from the difficulties we have had while
experimenting with current programming languages. To implement
real problems, no current programming language offers clean
solutions. Too often, the structure of the problem must be
twisted to the structure of the language.

We believe there is a need for a new general purposé, procedure
oriented programming language. This UTOPIA 84 (Knuth 74) should
not only be designed to enable the programmer to devise clear data
structures and algorithms. It should also provide assistance to the
user in the development of large programs, their verification and
their maintenance. For this purpose, the readability of a language
(i.e. human appreciation) is far more important that its writability
(i.e. translation from precise implementation specifications).

In this paper we suggest nine language design principles for
UTOPIA 84. These principles (see Table 1) are based in part on the

works of Dijkstra (68), Gannon and Horning (75), Hoare (72), Knuth

(67), Ledgard and Marcotty (75), Weinberg (75), Wirth (74), and

Wulf and Shaw (73). No attempt is made to address the whole language
design area. Little consideration is given to writability and
efficiency of implementation. We believe that these goals have
received too much attention in the past.

There is no formal justification for any of our principles. Each
principle is supported by a short discussion and several examples
borrowed from languages in widespread use: Algol 60 (Naur 63),

COBOL (Murach 71), FORTRAN (X3J3 66), PL/1 (ECMA/ANSI 74), PASCAL

(Jensen and Wirth 74), and SIMULA 67 (CDC 71).

1.

A language should be limited in complexity and size.
A single concept should have a single form.

Simple features make simple languages.

Functions should emulate their mathematical analogue.

A clear distinction should be made between functions and
procedures.

Multiple data types should be supported.
Similar features should have similar forms.
Distinct features should have distinct forms.

Remember the reader.

3 __3

to.d

3

l./&’Languagegshould be limited in complexity and size.

Over the past few years, there has been an almost unabated
tendency for languages to get larger and larger. In an effort to
provide more powerful and more varied features to satisfy more.
users, the complexity of many languages has markedly increased.

We believe this has been a mistake. Our own limitations as users,
implementors, and designers call for limitations on the complexity
and size of our tools.

It is easy to point out the problems of undue complexity during
design and implementation. For the language designer, the evalu-
ation of design alternatives are difficult because of the frequent
interplay with other constructs within the hosting language.

Formal definitions become increasingly intricate, documentation

is harder to prepare and read, and inconsistencies may easily be
overlooked. For compiler writers, the production of a clean,
reliable, and well human-engineered implementation requires more and
more work. There is no perfect language design and the more complex
the language, the more difficult it is to offer the user a clean and
consistent programming system.

Users pay an even higher price for undue complexity. Learning is
slow, and programming often cannot proceed without constant refer-
ences to the manual. Any inconsistencies take more time to learn
and more energy to live with. Most of all, the user may encounter
great difficulties in understanding the underlying structure of the
language. Mastery and proficiency come only when the user develops

a comprehensive internal model of the language. The selection of

useful constructs, cleanliness of use, and understanding of error
diagnostics proceed far more quickly when the user understands the
language in its entirety.

Subsetting, i.e. partitioning a language into semi-independent
modules, has often been presented as a practical remedy to large
size. There are, however, numerous drawbacks. The user facing a new
problem may wonder whether the subset he has mastered is adequate,
or whether he should learn a larger subset. Programs may
inadvertently activate unknown features and cause confusion.
Furthermore, subsetting is of little help in reading programs
written by other users, where knowledge of the whole language may
be needed. Lastly, there does not seem to exist any good method for
partitioning a language in a way acceptable:E; all users.

é%\\ Admittedly, the complexity and the size of a language depend
2; \\mainly on its intended application. When the size is too small, the
language primitives are overloaded and the complexity in usage
becomes unnecessarily high. When the size is too large, the lan-
guage often offers more than is necessary, and the user is easily
\Y confused. There are few major programming languages that do not in
sgj?‘fact suffer from undue size and complexity. The many duplicate
forms and the report writer feature of COBOL are guestionnable.
As a teaching language, PASCAL is too complex. The case against
PL/I is obvious.

In summary, programmers should not be slowed in their problem

solving activities by the complexity, the size, and the unknown \&%
)

subtleties of their tools. Our own human limitations as users, >¢pt

: . 2" o

implementers, and designers call for languages that are limited qﬁ{go

in complexity and size, and designed to be well implemented. "Yéfgg

2. A single concept should have a single form.

Providing more than one form to denote a concept always increases
the size of a language. The additional complexity introduced by
such features should be carefully weighed against their usefulness.
Consider, for instance, the simple PL/I aggregate declaration
in Figure 2.1 and the rather large number of subscripted qualified

names that can be used to denote the same component of the aggre-

gate. A similar declaration and the unigue denotation of the sameq &
element, expressed in PASCAL, are given in Figure 2.2. In compar- 3{0
r,{\e_
ison, the complexity of multiple PL/I denotations is difficult to‘eé;f
) -

justify \\

COBOL provides a further example of questionnable duplicate
forms. Figure 2.3 shows two different sequences of arithmetic
statements. Both perform the same computations. Further,each se-
quence is perfectly homogeneous to the eye. But when both nota-
tions are combined as in the third segquence of Figure 2.3, we see
the problem more clearly. The symmetry of like operations is not

;DEZE;hLF&t as in the above examples. A designer may prefer the con-

cise, mathematical notation of the first sequence, or the English
like notation of the second sequence. In any case, it would be
simpler to retain a single notation in the language.

There are some situations where a duplication of forms yields
great convenience without adding much to the overall complexity.
For instance, fully qualified names for aggregates are often

cumbersome to read and to write, especially when the same element

is referenced often over a span of text. PL/I provides numerous

Declaration

DECLARE 1 A (10,12),

2B (35),
3C (7).
3 Dj;
Fully qualified names

A(9,11) .B(4) +C7)
A(9) .B(11,4) .C(7)
A(9) +B(11) .C(4,7)
A .B(9,11,4).C(7)
A .B(9,11) .C(4,7)
A .B(9) .C(11,4,7)
A .B LC(951E,4,7)
A(9,11) .B .C(4,7)
A(9) .B .C(11,4,7)
A(9,11,4,7).B +C

Partially gqgualified names
(in some contexts only)

B(9,11,4) .C(7)
C(9,11,4,7)

B(9,11) .C(4,7)

B(9) .C(11,4,7)

B(9,11,4,7).C

e e i ———— 7 o — — ——————— T {—————— - —

Figure 2.1 : Multiple Denotations of a
PL/I Structure Element.

—3 T

Declaratio

n

A: array [(1..10,1..12]} of

Complete d

record
B: array [1..5] of
record _-
C: array [1l..7] of integer;
D: 1integer
end
end -

———

enotation

A9,

11]1.B[4].C(7]

Legal abbreviations
with A[9,11)
do ... B[4].C[7] ...
with A[9,11].B[4]

do ... C[1] ...

—— . — ——— O ——— — A G —— - — — ————— — ————— — ———— ————

Figure 2.2 : Legal Denotations for a
PASCAL Record Element.

Use of the COMPUTE verb

COMPUTE TOTAL-HOURS
COMPUTE NUM-ON-PAYROLL

OVERTIME-HOURS + REGULAR-HOURS.

NUM-EMPLOYEES - NUM-ON-VACATION
- NUM-ON-LEAVE.

TOTAL-HOURS * WAGE.

TOTAL-HOURS / NUM-ON-PAYROLL.

COMPUTE GROSS-PAY
COMPUTE AVG-HOURS

Use of arithmetic verbs

ADD OVERTIME-HOURS TO REGULAR-HOURS
GIVING TOTAL-HOURS.
SUBTRACT NUM-ON-VACATION, NUM-ON-LEAVE FROM NUM-EMPLOYEES
GIVING NUM-ON-PAYROLL.
MULTIPLY TOTAL-HOURS BY WAGE
GIVING GROSS-PAY.
DIVIDE NUM-ON-PAYROLL INTO TOTAL-HOURS
GIVING AVG-HOURS.

Mixing the two forms

COMPUTE TOTAL-HOURS = OVERTIME-HOURS + REGULAR-HOURS.
SUBTRACT NUM-ON-VACATION, NUM-ON-LEAVE FROM NUM-EMPLOYEES
GIVING NUM-ON-PAYROLL.
COMPUTE GROSS-PAY = TOTAL-HOURS * WAGE.
DIVIDE NUM-ON-PAYROLL INTC TOTAL-HOURS
GIVING AVG-HOURS.

Figure 2.3 : Duplicate Features in COBOL.

e T - —— - —— - ————— o — S P W RS - - ——— . — —— -

g 3t i3 > i_3 (_3

4~ﬂ3

'I"_ﬂ' 4-—_3 '_’__3 i_,j “,.__g

5 _3 _3

3

abbreviations (see Figure 2.1), but their legal use depends on the
denotatiohs for the other variables of the program. On the other
hand, the PASCAL with statement (see Figure 2.2) clearly identifies
abbreviated denotations over a precise span of text.

Consider also Figure 2.4, which illustrates a typical use of
the PASCAL case statement, along with an equivalent compound ig—
statement (in fact, the case statement is undefined when the value
of the selection expression does not fall among the alternatives
specified; an otherwise clause would be welcome). The case
statement avoids a clumsy nesting of if's and is easier to read.
Unfortunately, the PASCAl case statement is much too limited. A
recent proposal for a more powerful case statement (Weinberg,
Geller and Plum 75) seems promising. However, the additional
complexity of this proposal remains to be investigated.

Providing multiple forms for a single concept generally makes a
language more difficult to learn, use, and read. Alternate forms
should be introduced only to promote readability, and only when

they do so, without creating an undue increase of the complexity.

Lok eleow fo me
IS O- CME “-"4’“"'{_ & %o;,@_

Sample PASCAL IF Statement

Sample PASCAL

if command = insert then insertlines(currentposition)
If command = delete then deletelines(currentposition,
— linecount)

if command = print then printlines (currentposition,
- linecount)

if command = search then

egin
searchstring(currentposition,
"string,stringfound,newposition);
if stringfound
then currentposition := newposition
end:

CASE Statement

case

end

command

insert:
delete:
print:

search:

of
insertlines(currentposition);
deletelines(currentposition,linecount);
printlines (currentposition,linecount);
begin
searchstring(currentposition,string,
stringfound,newposition);
if stringfound
then currentposition := newposition
end

3 _ 3

L3 3 i3

{

.3

‘3

i3 3 13 L3

/3

t_ 3

(.3

i3

v 3

3

3. Simple features make simple languages.

It would be too simplistic to characterize the complexity of a
language only by its size. Each construct has an inherent com-
plexity as well as an interplay with other features.

Aw%esigner:should be especially careful of features with a
highly dynamic behavior. Consider the Algol 60 call-by-name
feature: it is a powerful feature, not too difficult to learn (in
the following discussion, we will ignore a possible clash of
identifiers with call-by-name parameters. A call-by-name para-
meter can have a complex run-time behavior not reflected by its
written representation. For example, "Jensen's device" (Figure
3) has been used to promote call-by-name parameters (Knuth 67).
When considered alone, the declaration of the procedure SIGMA
looks innocent indeed. The invocation of SIGMA seems natural
because of its analogy with a classical mathematical notation. \[
However, when the procedure declaration and its invocation are \~
examined together, it takes some effort to realize that SIGMA is
activated N+1 times to compute the double sum of the elements of
an N*L array. Note that neither the declaration or the invocation
of SIGMA 'explains' Jensen's device. Furthermore, if more
descriptive names had replaced L, N, and A, the similarity with
mathematics would no longer appear. This is a sufficient reason
to question the usefulness of call-by-name parameters. A language
designer should be very cautious of clever examples. They usually

promote features of greater complexity than the eye can meet.

begin
integer array A [l:N, 1:L];
integer I, J;
1nteger GRANDTOTAL;

integer procedure SIGMA (K, LOW, HIGH, TERM);
value LOW, HIGH;

integer K, LOW, HIGH, TERM;
Segln

integer SUM;
SUM := 0 ;

for K := LOW step 1 until HIGH
do SUM := SUM + TERM ;
SIGMA := SUM
end

Figure 3 : Jensen's Device is used to sum
the elements of an N x L array.

3 _ 3% {_3 ‘3 i3 _3 ' _3

3

(.3 3

3 13

t_3

.3

3

A further illustration is provided by our friend the goto state-
ment. Its basic mechinism is simple to explain, but its interplay
with other feature;:Ieadi to significant problems. Arbitrary bran-
ching usually requires that some variables be given definite values
on entry or exit. These associations, however, are not explicit in
the program text. A cleaner solution is offered by the basic one-in
one-out control structures (see Ledgard and Marcotty 75). The
advantage of one-in, one-out control structures is not only the
explicit mention of the conditions upon which the control flow is
modified, but also a clean behavior when combined together or with
other features of the language.

A similar issue concerns the introduction of pointers in a high

level language. Recursive data structures (Hoare 75) are an adequate

substitute in most cases. They simplify program reading and specifi-

cation by replacing pointer manipulations with logical operations
on structures (note that PL/I provides a similar hiding mechanism).
In summary, the simplicity of a language relies as much in the
number and the simplicity of basic features as in the simplicity
of their interaction. The art of language design is to achieve

a tolerable balance.

&::\% do nok provide for dynomic mtpui%m

Dfr rQo)m— S\‘YU CJ\'\J(CS.#}\T)O\'C M Wﬁ:gQ
| .‘ \fwa ?0*5(613 . :

4. Functions should emulate their mathematical analogue.

Function and procedure facilities are the basic tools for
program decomposition. They provide the operational abstractions
necessary to manage complex problems. The usefulness of these
abstraction tools is so important that they demand a careful design.

In most procedural languages, an analogy is made with conven-
tional mathematics. Expressions in programming languages are meant
to be read as expressions in mathematics. The invocation of
functions within expressions hides irrelevant computational details
and, most importantly, facilitates thgf%f new operational abstrac-
tions. Accordingly, our understanding of function facilities in
programming languages is based on our mathematical background.

In mathematics, a function is a mapping from a set of values to a
set of values. In programming languages, a function is understood
as an algorithmic transformation from input values to a single
output value.

In most programming languages, there appear a number of discre-
pancies from the simple mathematical analogque. In particular,
assignments in function declarations may cause side-effects. For
example, consider the well-known Algol 60 program (Knuth 67) of
Figure 4.1. Since the variable GLOBAL is modified within the body
of the function SUCCESSOR, this program will print false rather
than true (the 2lgol 60 Report leaves the order of evaluation of
expressions undefined; however, the Report does not forbid modi-
fications of globals in functions; consequently, the output of

Figure 4.1 will be false or true depending on the implementation).

3 3 T3 ~F ™% —F%) —3 —3 —3p ~3 —3 3

~3 3

—3 T3

1

3

begin

integer GLOBAL;

integer procedure SUCCESSOR (FORMALPARM);

value FORMALPARM;

integer FORMALPARM;

begin .
SUCCESSOR := FORMALPARM + 1;
GLOBAL := SUCCESSOR

end;

GLOBAL := 0;
print((GLOBAL + SUCCESSOR(GLOBAL))
= (SUCCESSOR(GLOBAL) + GLOBAL))

Figure 4.1: Modification of a global variable
in an Algol €0 function.

G v e WS P Y G —— W . S = — - R W G = S D ———— o= =

Even the access to a global variable within a function decla-
ration may cause a loss of transparency in an expression. In the
example of Figure 4.2, the global variable INCREMENT is modified
between two invocations of INCREASE. The meaning of INCREASE is
thus dynamically modified and, although the two invocations are
identical, different results will be produced.

Another discrepancy occurs when parameters of a function are
modified within the function declaration. In the well-known example
(Weil 65) of Figure 4.3, the function INCREMENT BY NAME is evalu-
ated twice during the invocation of ADD BY NAME. Since INCREMENT
BY NAME modifies its parameter, successive evaluations do not
yield the same result.

Many other languages also allow side-effects in function invoca-
tions. For easier validation and better readability, we recommend
that functions be implemented according to the simple model discus-
sed earlier. In particular, all parameters should be considered as

input values that are "evaluated" upon invocation. No assignment

should be performed on parameters within functions. If references

to global are allowed, the function declaration should at least

gea

Designing functions from a simple mathematical model implies

contain mention of this fact in its header.

strong restrictions on their use. However, the very nature of
these restrictions forces the programmer to devise clear solutions

and enables the program reader to rely on a transparent notation

for expression

T3 T3 T3 T3 T3 % T

o B B Miier Mikew Mo Mk e Bians Ml iy

3

begin

integer INCREMENT;

1nteger procedure INCREASE (BASE);
1nteger BASE; value BASE;
INCREASE := BASE + INCREMENT;

INCREMENT := 1;
print(INCREASE(1l));

INCREMENT := 100;
print(INCREASE(l))

Figure 4.2: Modification of a function through
a Global Variable in Algol 60.

begin

end

integer innocent;

integer procedure INCREMENT BY NAME (corrupt);

integer corrupt;
begin

corrupt := corrupt + 1;
INCREMENT BY NAME := corrupt

end;

integer procedure ADD BY NAME (evil);
integer evil;
ADD BY NAME := evil + evil;

innocent := 1;
print(ADD BY NAME(INCREMENT BY NAME(innocent))):
print(innocent)

‘3 3 3 _3

‘.3 3 _3

3

'3

3

-3

{
b

'3

3

3

.

.,

5. A clear distinction should be made between functions and

procedures.

Many abstractions encountered in programming cannot be program-
med with functions. An operation may contain inherent side effects,

invoke input-output, create or update a structure, or modify the

- run-time environment. It would be misleading to extend the simple

model of functions to these abstractions for, unlike the analogue /
of function invocations with mathematical expressions, the proce;//%hgﬂpg
dure invocation is the analoque of a statement. T =t
The main conceptual difference between procedures and functions
is that modifications of the execution environment are allowed in
procedures. In most languages, global variables may be referenced
and modified in procedures. Before further discussing the issue of
global variables, it must be pointed out that, in some cases, the
use of globals results from poor language design. Consider a state
transition table, a keyword mapping table, or any kind of unvarying
&4 17
information whose lookup is limited to one module. To represent
such a constant object in some languages (e.g. PASCAL), a variable
must be declared and initialized outside of the module where it is
used, i.e. it must be global. A more natural solution would be to
8uﬂ—1~h¢9 1 1l s wele ayhd 27
have local, stuctured constants. /) :
Since modification of the execution environment is the
essence of a procedure, problems of poor readability and
difficult validation that were eliminated for functions must be re-
examined. The design of a procedure facility should minimize these

problems (see Gannon and Horning 75). In the first place, a complete

—
specification of interfaces should be required (Wulf and Shaw 73,
Deremer and Kron 76). The procedure header should indicate which -
parameters are input values, output results, and updated variables,
as shown in Figure 5.1. The language processor should make sure -
that each parameter is used properly according to the header spec-
ification. Thus, efficient parameter passing modes can be 3
generated by the compiler. The procedure invocation (CALL statement -
, or procedure statement) should conta@n similar informatioi/iza 'L
. :) oY N, Me
illustrated in Figure 5.2. gV / sl I &J5° -

As to global variables accessed in procedures, they should be nhj J

be us A
regarded as "implicit" parameters. Their use may increase the '!ﬁwJL.

conciseness of procedure invocations and thus improve readability.

Laii]

The procedure header, however, should explicitly mention all s

global variables that are referenced or updated (see Figure 5.1). o
The basic design of function and procedure facilities we have

presented may appear very restricted. Indeed, there are attractive

extensions like polymorphic procedures or procedures with func- o
tioﬁﬁfrgg;g;;;;;;‘;f;se arguments are variable in number and type _
(e.g. see Gries and Gehani 76). However, the effect of such exten- ~

sions on readability and ease of validation should be carefully

assessed before their introduction in a language.

men be mecsss
3734“5 = ;E/Myr preatenesy _

. PSAL

procedure SWAP (input I, J: integer);

updated var

A: array [1..MAX_ELEMENTS] of integer;

var
TEMP: integer;
begin
TEMP := A[I]);
A(I] := A[J];
A[J] := TEMP;
end

Figure 5.1: Complete specification of Interfaces
in Procedure Declaration.

parse_if statement(1nput current_pos,
output parse_error, subtree, new_pos);

if parse_error = serious
then recover_statement(ugdate current_pos,
output fatal_error);

Figure 5.2: Specification of Actual Parameters in
Procedure Invocations.

—-———————_—-—————————-p————-———--——--——————_-———-—

dons

o urou-gg_,

all 22

Ov— w@vl 44
the decicled), L

~ndeger
&w».[;

5/

6. Multiple data types should be supported.

A data type is usually defined as a distingquished set of values
and associated operators. Since all programming languages are
designed to manipulate some kind of data, they all provide one or
more data types.

So called "typeless" languages aré indeed a contradiction in
terms. In LISP (Weissman 67) and GEDANKEN (Reynolds 70), values
may be atoms, integers, reals or booleans. However, no declaration
can restrict the range of values taken by identifiers. A true
"unitype" language is BLISS (Wulf, Russel, and Habermann 71).
BLISS provides only one basic type, namely bit patterns, to repre-
sent all quantities.

Although the above languages have been widely accepted, we find
them difficult to read, mainly because the interpretation of
identifiers cannot be derived from their declaration or from the
context in which they are used. We believe that the association
of a name with a specific data type should be made explicit. At
the same time, a language should offer a sufficient number of
basic data types (e.g. boolean, character, integer, real) and
structuring mechanisms (e.g. array, string, record) to avoid
obscure programming.

Another problem with many current programming languages is

implicit type coercion. Implicit type coercion often makes program

-

validation and modification hazardous. We believe that there should
be no automatic type conversion in a lanquage, except, perhaps, from

integer to real or from subrange to scalar. Other conversions should

RN

ﬁ

~3 T3 T3 T3 T3 73 T3 73 O3 73 73 7Y Y O3 /3 071 i 3 3

be specified by the programmer using buiit—in functions.

Providing multiple basic data types and structuring facilities
may appear sufficient. However, we believe that the programmer
should be allowed to define his own data types to adapt the lan-
guage to an application. There are two separate aspects to the
notion of a data type "extension": abstraction and implementation.

From the abstraction point of view, the programmer defines a
new type by naming a set of objects and operators relevant to the
application. For instance, the (limited) type definition facility
of PASCAL offers the possibility to declare and name "new" classes
of objects(Figure 6.1). Such a declaration helps clarifying the
meaning of values that a variable of this type can assume.

The implementation aspect of a new data type consists in pro-
gramming the representation and operators of this new type. The
implementation is usually performed in terms of previously defined
types and operators. For instance, Figure 6.2 shows the definition
of the type "stack of integers" using the class facility of SIMULA
67.

What constitutes a good mechanism for a full data type facility

is still being explored (e.g. see Conference On Data Abstraction 76).

Some combination of the PASCAL and SIMULA facilities, where the
exchange of information between a data type definition and its use
would be tightly controlled, would provide great convenience (see
Koster 76).

There are advantages to multiple data types other than abstrac-
tion and readability. First, a strict notion of type allows an
extensive type checking to be performed at compile time. Being

able to put more confidence in a syntactically correct program is

Type

commandtype (inSert,delete,search,invalidcommand);

(keyword,identifier,constant,
specialsymbol, unrecognizable);

"

tokentype

constanttype = (integerconst,realconst,string);

———— ——— e — " S T W So ————— . S o - — - G P T — S > Gu G S Wt S S G —— ———— A W > W ——— v o—

LSp—

3 3

A

1
t

L3

3

T

L3

L3

class stack (maximumsize);
integer maximumsize;

comment This class defines the type stack of integers;

begin
integer array store [l:maximumsize];

integer topindex, maxstorage; -

boolean procedure empty; e '
empty := (topindextg)l);

boolean procedure full;
full := (topindex = maxstorage);

integer procedure top;
top := store[topindex];

procedure push (token);
integer token;
begin
topindex := topindex + 1;
store[topindex] := token;
end;

Er0cedure pop (token);

name token;
integer token;

begin
token := store[topindex];
topindex := topindex - 1;
end;

comment stack initialization at creation time;

topindex := 0;

maxstorage max imumsize

end class stack;

Figure 6.2: Declaration of the Class "Stack
of Integers" in SIMULA 67.

important when maintaining it. Second, since axiomatic definitions
of types can be produced, validation of programs can be accom-

plished more rigorously (see Guttag 76).

my(&' . akoog& &69\1_‘{'\4\'4& ﬁct[;l‘t\ \Ma_l:e_s o UM”'LX
05‘ I“leujpn- SCom el ()bSSlL.:lt \l.->cc.a.uu. hovre_ lK-&(MJQU-‘J\
abook Ho b elewedy T M\o—lalc a-«Q“ccw-.(arle.. jtus, (L

15 Roe 1w il
/ Pas to t“‘!; EL‘JOK fact ‘; {AK Lbh b o
Ak d) dl Pasem i JDSL QLRCM\L%\ re &\LL.;QE)

7. Similar features should have similar forms.

Syntax has often been compared to the icing that covers a cake.
Of course, if the cake is stale, the icing will little improve it.
But if the cake is fine, the taster will soon associate its flavor
with its appearance. In programming languages, a concept and its
external representation are often taken synonymously. For example,
we often use the terms "if-statement" and "while-statement"
rather than the terms "selection control structure” and "iteration
control structure". The association between concepts ana their
representation is an important human factor in the design of a
programming language. To benefit from such associations and pro-
mote readability, similar syntactic forms should be used for
similar features.

Our first example deals with the concept of declarations and
their syntactic forms. A sample of possible PL/I declarations
appears in Figure 7.la. The syntax of these declarations is
somewhat confusing. The variable declarations and procedure»decla-
rations do not follow a similar scheme. In the variable declara-
tions, the LIKE attribute provides the aggregate PURCHASE with
the same structure as SALE, although this is not so obvious at
first glance. A structure itself is indicated only by an integer
before the major component name. The amount of information
provided by each declaration is not identical, mainly because of
default attributes. In the procedure header, the declaration of

formal parameters takes two steps.

In comparison, the PASCAL declarations of Fiqure 7.1lb. are

(a) PL/I
DECLARE 1INDEX FIXED;

DCL 1 SALE,

2 DATE,
3 YEAR CHAR(2),
3 MONTH CHARACTER(3),
3 DAY CHAR(2),

2 TRANSACTION,
3 (ITEM,QUANTITY) FIXED (7,0),
3 PRICE,
3 TAX FIXED;

DECLARE 1 PURCHASE LIKE SALE;

UPDATE STOCKS : PROC (ARTICLE,AMOUNT);
DCL (ARTICLE,AMOUNT) FIXED (7,0);

(b) PASCAL

type operation =
record

date: record

year: array [l..2] of char;
month: array [l1..3] of char;
day: array [l..2] of char
end; T o
transaction:
record
1tem,
guantity: integer;
price: integer;
tax: integer
end
end; o
var index: integer;
T sale: operation;

purchase: operation;

procedure updatestock (article, amount: integer);

Figure 7.1: PL/I and PASCAL declarations.

3

longer, but clearer. A similar scheme is used for type declarations,
variable declarations, and procedure declarations. Notably, the
declarations of a structures variable and of an integer variable
follow the same scheme.

As a second example, consider the syntax of PASCAL control
structures (without the goto). Some disparity in the form of con-
trol stuctures can be noticed. The case and end keywords of a
case statement (see Figure 2.5) clearly delimit this construct
in the program text; conversely, the if statement is not bracket-
ted in a similar fashion (Fiqure 7.2). A more important discrep-
ancy also appears. Whereas a list of statements can be used in a

repeat...until construct, the if, case, and while

constructs may only accomodate a single statement. To include a
sequence of instructions in an if or a case statement,a clumsy

begin...end bracketting pair must be added. Since control struc-

tures form a class of features, the same syntactic scheme should
apply for all of them. Accordingly, examples of a modified PASCAL
syntax are shown in Figure 7.3.
A discussion of sﬁatement lists cannot omit the

"missing semicolon"” problem . The use of a separator in statement
lists needlessly singles out the last statement, which does not
have an ending punctuation mark. This rule is difficult to learn
and remember (see Gannon and Horning 75). Conversely, the use of

a statement terminator provides a more natural rule for all state-

ments (see Figure 7.3).
Similar forms for similar features can greatly reduce the con-

ceptual complexity of a programming language. The likeness of forms

if

(linecount = maxlineperpage)
then
begin
pagecount := pagecount + 1;
newpage(printfile); :
printheader(printfile, pagecount, date);
linecount := 1:
end
else ~
linecount := linecount + 1

L __® » 3 3 _3

(a) if (line_count = max_line_per page)

then

Y

/ endif; |
N\

\

\
\

else

page_count := page_count + 1;
new_page(print file);

print header(print file, page count, date);
line_count := 1; -

1ine_count := line count + 1;

(b) while (fpput_char in digits) do

\

\ . .
number := number*10 + 1nt_value(1nput_char);
read(input_char);

endwhile;

(c) repeat

digit

¥ /I‘

ool

-—

Ve
ey

e

:= digit + 1;

one tenth := number div 10;
decimal digit := number - 10*one_tenth;

number

:= one_tenth;

until (number = 0);

(d) case command of

insert: insertlines(current position);

delete: deletelines(current position, line_count);

print: printlines(current position, line_count);

\

search: searchstring(current position, string,

2

/

(\endcase;

——— e ——————

I string found, new_position);
if string_found
then current position := new_position;
endif; -

indicates to the user the likeness of contents. These associations
should be carefully designed, for even a single anomaly can confuse

the user.

3

~3 — 3 T3 T3 T3 73 —31 —% —) —3 3 3. —3 — —~3 —~3 —3

3

8. Distinct features should have distinct forms.

The association between concepts and their representation
supports the use of similar forms for similar features. Recipro-
cally, it is important not to give rise to misleading associations.
Distinct concepts should be emphasized by distinct syntactic forms.

The formal parameters and the local variables of a procedure
form distinct conceptual categories. In FORTRAN and PL/I (see
Figure 8.1), formal parameters appear in the procedure heading, but
their declaration is made along with the declarations of local
variables. On the other hand, this distinction is well made in
ALGOL 60. The declaration of formal parameters are located in the
module header. However, some confusion remains because a formal
parameter may occur up to three times in the header (e.g. LOWBOUND
and UPPERBOUND in Figure 8.1). A better solution is offered in
PASCAL where the declarations of formal parameters are grouped in
the procedure header.

The declarations of variables and the sequence of operations
performed upon these variables represent distinct concepts. In
COBOL, this distinction is made by using DATA and PROCEDURE
DIVISION's. On the other hand, PL/I allows declarations to be
located anywhere in a procedure. A similar objection can be made
against the FORMAT statement in FORTRAN. FORMAT statements are
not executéble and they seriously slow down program reading when
located among executable statements.

In the prgvious section, we proposed a full bracketting for

control structures. Of course, these contrql structures differ in

Hr

,Q,
IS

P % |

some manner, for they are not duplicate features. Unfortunately,
this difference is not generally emphasized enough. In PASCAL, the
end keyword is the closing bracket of too many constructs, e.g.
blocks, compound statements, and case statements. Readers can eas-
ily be confused by the "matching end" problem. Distinct constructs

should have distinct pairs of brackets. Preferably, the two brack-

[
relg- 5
/

nigeb are not acceptable. In this paper (see Figure 7.3), we used

ets should be short and have the same length; but most of all,

they should be readable. For this reason, fi, esac, elihw, or)

endif, endcase, endwhile, and end, but we are not

fully satisfied with them.

Similarly, some languages use the "+" symbol to denote addi-
tion, set union, and boolean OR. This can lead to obscure con-
structs, because the exact interpretation of a single "+" must be
derived from the type of its operands. Using "+", "U", and "OR"
surely adds to readability. The programmer, not the designer
should be responsible for any possible operator overloading.
However, the character sets used in current programming
languages are limited, and it might still be necessary
to associate two different meanings with a single token. This
should only be allowed where the the contexts for each interpre-
tation are so different that no confusion arises.

Transparency can be obtained by combining similar forms for
similar features and distinct forms for distinct features. Thus,
the similarities and differences of basic concepts are easily

apparent to the user, who can rapidly learn to recognize the

various forms in programs.

FORTRAN
SUBROUTINE PLOT(LOW, UPPER, CURVE)
REAL LOW
DIMENSION LINE(120)
PL/1
PLOT CURVE PROCEDURE(LOW BOUND, UPPER BOUND, CURVE) ;
DCL (LOW BOUND, UPPER BOUND) FLOAT~
DCL CURVE ENTRY (FLOAT) RETURNS FLOAT;
DCL LINE (120)
Algol 60
procedure PLOTCURVE(LOWBOUND, UPPERBOUND, CURVE);
value LOWBOUND, UPPERBOUND;
real LOWBOUND, UPPERBOUND;
real procedure CURVE;
begln_
integer array LINE [1:120];
PASCAL

procedure PLOTCURVE(LOWBOUND, UPPERBOUND: real;
function CURVE: real);

var LINE: array ([1..120] of integer;

- ———— . . P T S T W W . — —— D D S . T G G D W - G S ——— — — ———

Figure 8.1: Formal Parameters and Local
Variables for a plotting routine.

9. Remember the reader.

Once a program written, it will be read many times by its author
or other programmers. It is thus important that the program
listing clearly convey all information necessary to the reader.

The overall structure of a program and the basic organization
of modules are the outlines on which a program reader establishes
his understanding. Consider the task of reading a PASCAL or Algol 60
program you have never seen before. First, you will probably inspect
the global declarations. Then, you will turn the pages to the end of
the listing to find the body of a program. However, further exam-
ination of the variable declarations is needed to grasp important
details of the program body. Much back and forth page flipping
will occur before the first level of the program is understood.

For each successive level, the same process is repeated, but with
more difficulty, because the boundaries of each module are less
apparent.

In general, the top-down development of a program exhibits the
overall structure of a tree. Reading and understanding such a pro-
gram is simplified if tﬁe program were presented in top-down
fashion. To achieve top-down readability, the program listing should
represent a breadth first traversal of the program tree. Thus, the
program reader is led step by step through the successive levels of
the program with minimum effort. As mentionned above, PASCAL and
Algol 60 do not allow such a presentation. In FORTRAN, the program-
mer can choose the textual order of his modules, but no relative

position is enforced. PL/I allows any combination of the Algol 60

l‘ -_j Q

3

-3 3 _3» '_3» 3 _a 3

-3 3 3 3 3

3

-3 3 _3

and FORTRAN schemes.
The program code alone is usually inadeqguate to explain all of
a program. Additional information must be provided by the program-
mer, e.g. the meaning of important variables, the description of
algorithms, the peculiarities of a run-time environment, and
references to existing documentation, etc. To promote this pratice,
/a/iénguagg should offer easy and secure documentation tools.
Provision for long names, along with a "break" character (e.qg.
the " ™ in "CURRENT POSITION"), represents an incentive to imbed
documentation in the code. Possible break characters are the hyphen
(COBOL) and the underscore (PL/I). The Algol 60 and FORTRAN conven-
tion where blanks may be interspersed arbitrarily in identifiers.
(e.g. ADD BY NAME in Figure 5.1) is not recommended, for various
occurences of an identifier may look quite different.
More comprehensive documentation is usually given in comments.
The following kinds of information are provided in comments:
a)General information: e.g. program purpose, modification record,
references to external documentation, and run-time
requirements.
b)Module summary: e.g. specification of the local computations,
input and output domains, and algorithm used.
c)Statement grouping: e.g. identification or paraphrase of a
group of statements to highlight their logical content as a
unit.
d)Statement support: e.g. emphasis of a crucial step, assertions,
and precise meaning of constant and variables.
Unfortunately, most languages do not provide adequate comment

facilities. In COBROL,general information is given in the

IDENTIFICATION DIVISION and in the ENVIRONMENT DIVISION, but the
remaining types of comments are not distinguished and must be made
on a line by line basis. PL/I and PASCAL offer a single parenthet-
ic scheme which does not distinguish between the various types of
documentation. There is little need to mention the highly complex
rules for Algol 60 comments and their mediocre readability.

In our opinion, a single comment scheme is rarely sufficient
to encompass all possibilities of the above classification and, at
the same time, to emphasize their differences. On one hand, general
information and module summaries appear usually in dense blocks at
the beginning of programs and modules: a simple parenthetic scheme
allowed only in module headers is needed to accomodate the type
of documentation. On the other hand, statement grouping and state-
ment support comments are usually short. A line
oriented comment scheme would be more appropriate for this type
of comment. Oﬁﬁu%PCh scheme might be the use of a distinguished
token, say “;1",.£o begin the comment anywhere on a line; a comment
would be implicitly terminated by the end of the line. Specific

designs could introduce additional schemes, e.g. assertion comment.

In summary, a programming language should offer easy and secure
documentation tools to help the programmer produce readable
listings. Indeed, the top-down listing feature and viable comment
schemes do not appear easy to devise and require further study. But

their usefulness makes it an important topic for careful design.

Parting Comments.

UTOPIA 84 is still a long way off. The selection of the
primitives of a language and the elaboration of data type facili-
ties are important issues that we barely touched upon. Moreover,
the design of a comfortable operating environment, including
input/output primitives, and the quality of an implementation
have a serious effect on the acceptance of a language.

Through the design principles presented in this paper we have
tried to emphasize that all consequences of a design decision
should be evaluated. Each design decision should promote ease of
learning, program validation, and program maintenance. We cannot
underestimate the use of formal definitions in the language
design cycle, for they should provide useful indications on the
simplicity and clarity of the result. Above all, the designer
should strive to keep a language small, consistent, and readable.

A note on implementation must be made. Although we have given
little consideration to efficiency of implementation, we doubt
that any of our recomm;hdations would lead to high inefficiency.
Even so, if one considers the actual cost of software development
and maintenance, a sensible gain in readability justifies some
loss of efficiency.

In parting, we must admit that some notions used in this paper,
like readability, remain purely subjective. Language designers
may be easily misled if they keep to their own notions. They must
listen to the users and interpret their complaints. After all,

users remain the ultimate judges in language design.

Acknowledgments.
‘We are grateful to Michael Marcotty for his helpful comments
on the drafts of this paper. We also would like to thank Andrew
Singer, Louis Chmura, Caxton Foster, and Amos Gileadi for

fruitful discussions.

3 3 3 3 3 ; 3 : 3 3 ’ 3 ' 3

—3

3

3 3

t._,j “ f‘-)

REFERENCES:

CDC 71
Control Data Corporation. Simula Reference Manual.
Publication No 602348000 (1971).

CONFERENCE ON DATA ABSTRACTION 76
Conference on Data: Abstraction, Definition, and Structure.
March 22-24, Salt Lake City, Utah. Sigplan Notices, Vol 11,
Special Issue (April 1976),pp.1-190. '

DEREMER AND KRON 76 :
DeRemer, F., and Kron, H. Programming-in-the-large versus
Programming-in-the-small. IEEE Transactions on Software
Engineering, Vol SE-2, No 2 (June 1976), pp.80-86.

DIJKSTRA 68
Dijkstra, E.W. Goto Statement Considered Harmful. Comm.

of the ACM, Vol 11, No 3 (March 1968) pp.147-148.

ECMA/ANSI 74
European Computer Manufacturers and American National
Standards Institute. PL/I. ECMA/TC10/ANSI.X3J3. BASIS 1-12

(July 1974).

GANNON AND HORNING 75
Gannon, J.D., and Horning, J.J. Language Design for
Programming Reliability. IEEE Transactions on Software
Engineering Vol SE-1, No 2 (June 1975) pp.179-191.

GRIES AND GEHANI 76
Gries,D., and Gehani, N. Some Ideas on Data Types in
High Level Languages. Conference on Data: Abstraction,
pefinition and Structure. Sigplan Notices, Vol 11, Special
Issue (April 1976), p.120.

GUTTAG 76
Guttag, J. Abstract Data Types and the Development of

Data Structures. Conference on Data: Abstraction, Definition
and Structure. Siplan Notices, Vol 11, Special Issue (April

1976), p.72.

HOARE 72
Hoare, C.A.R. Hints on Programming Language Design.

Computer Science Department. Stanford University.
Tech. Rep. STAN-CS-74-403 (December 1973) pp.1-32,

HOARE 75)
Hoare, C.A.R. Recursive Data Structures. International

Journal of Computer and Information Sciences, Vol 4,
No 2 (1975) pp.105-132.

JENSEN AND WIRTH 74
Jensen, K., and Wirth, N. PASCAL User Manual §nd Report.
Lectures Notes in Computer Science NO 18, Springer Verlag
(1974).

KNUTH 67 ’
Knuth, D.E. The Remaining Trouble Spots in Algol 60.
Comm. of the ACM, Vol 10, No 10 (October 1967) pp.611-618.

KNUTH 74
Knuth, D.E. Stuctured Programming with Go To Statements.
Computing Surveys, Vol 6, No 4 (December 1974) pp.261-302.

KOSTER 76
Koster,C.H.A. Visibility and Types. Conference on Data:
Abstraction, Definition, and Structure. Sigplan Notices, Vol 11,
Special Issue (April 1976), pp.179-190.

" LEDGARD AND MARCOTTY 75

Ledgard, H.F., and Marcotty, M. A Genealogy of Control
Structures. Comm. of the ACM, Vol 18, No 11 (November
1975) pp.629-639.

MURACH 71
Murach, ». Standard COBOL. SRA (1971)

NAUR 63
Naur, P. (Editor) Revised Report on the Algorithmic Language
Algol 60. Comm. of the ACM, vol 6, No 1 (January 1963) pp.l-17.

REYNOLDS 70

Reynolds, J.C. GEDANKEN: A Simple Typeless Language Based
on the Principle of Completeness and the Reference Concept.
Comm. of the ACM, Vol 13, No 5 (May 1970) pp.308-319.

WEIL 65
Weil, R.L. Jr. Testing the Understanding of the Difference
between Call by Name and Call by Value in Algol 60. Comm.:
of the ACM, Vol 8, No 6 (June 1965) p378.

WEINBERG, GELLER AND PLUM 75
Weinberg, G.M., Geller, D.P., and Plum, T.W-S. IF-THEN-ELSE
Considered Harmful. Sigplan Notices, Vol 10, No 8 (August 1975)
pp.34-44.

WEISSMAN 67

Weissman, C. Lisp 1.5 Primer. Dickenson Publishing Company
(1967).

WIRTH 74

Wirth, N. On the Design of Programming Languages. Information
Processing 74. North Holland Publishing Company (1974)
pp.386-393.

2

3

.3 _3 _3 _3» _2 3 _3

-3 _3

3

WULF,

WULF

X333

RUSSEL AND HABERMANN 71 :
wulf, W.A., Russel, D.B., and Habermann, A.N. BLISS: a
Language for Systems Programming. Comm. of the ACM, Vol 14,
No 12 (December 1971) pp.780-790.

AND SHAW 73 |

Wulf, W., and Shaw, M. Global Variables Considered Harmful.
Sigplan Notices, Vol 8, No 2 (February 1973) pp.28-34.

76

American National Standards Committee X3J3. Draft proposed
ANS FORTRAN. Sigplan Notices, Vol 11, No 3 (March 1976).

