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ABSTRACT

Aftereffects, Adaptation and Plasticity:
A Neural Model for Tunable Feature Space

(September 1976)

Fanya S. Montalvo, B.S., Loyola University
Ph.D., University of Massachusetts

Directed by: Dr. Michael A. Arbib

Aftereffects, adaptation, and developmental plasticity are seen
as 'several aspects of synaptic modification, which is a.transforma—
fion of an internal feature space represented by populations of feature
detectors. Techniques in computer image processing such as feature
extraction and histogram uniformization are compared to the biological
phenomenon of developmental plasticity and aftereffects. Computation-
ally they are very similar and form part of a wide spectrum of feature
transformation operations, defined as mappings from a physical feature
space to an internal (system) feature space representation. The types
of transformations enabled by synaptic modification in neural networks
are investigated with computer simulation.

A self-organizing, feature~extracting network (von der Malsbu;g,
1973) is extended to two feature dimensions to encompass line orien-
tation and color. It is applied to McCollough effects, particularly
long-lasting, contingent—-aftereffects. McCollough effects are thought
to involve low-level associative memory in the form of synaptic modi-
fication. The McCollough-Malsburg Model (MMM) embodies bositive éynap—
tic modification with correlated firing of units in an input layer and
an excitatory cortical layer. Computer éimulation of MMM reproduces

orientation-contingent color aftereffects. The model embodies many of
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the mechaﬁisﬁsvthought to be operating in developmental plasticity,
suggesting that equivalent mechanisms may be involved in adult long-

term adaptation as well.
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CHAPTER 1

INTRODUCTION
1.1. Measuring Visual Features

The visual system is an expert at measuring differemnces. Move-
ment, edges, borders between regions, and flicker arelall changes
of features in the visual input. Lateral inhibition and temporal
inhibition seem designed to amplify small differences and measure
derivatives of luminance across space and time as well as other
more complex features such as color, line orientation, size, and
texture, Measurement of a perceptual feature of any kind must be
based on a comparison.

What kind of comparisons are possible in nervous tissue? Whe-
ther a cell is on or off is certainly one type, but a finer discri-
mination measures the relative rates of firing of units in a net-
work. The units making the discriminations are units of the same
kind that can distinguish incoming signals only by the set of lines
on which those signals arrive or by fluctuations in time. The dis-
criminating units have no way of knowing the characteristics of the
receptors that first received the signals from the outside. All
they know is that line 1 or line 2 is active and by how much. How
do they make the comparison?

The model of contingent-aftereffects proposed in Chapter III
assumes that visual feature dimensions are measured by arrays of
interconnected elements in terms of the relative firing rates of
épatially distinct elements labeled by the feature giving their maxi-

mum response. Single cell response curves to a given feature are
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asgumed to be unimodal. For example, if a cell fires maximally to
a line tilted 15° left of vertical then that is its label along the
orientation dimension. The network's output measufe of a given
input feature is based on the average{label weighted by unit ac-
tivity. This measure disregards total activity and variations in
the spread (variance) of activity among units ordered by their labels
but focuses simply on the mean feature signaled by the population.
Ih%s measure defines a mapping from the physical feature space to
an internal feature space. In general, the mapping is dynamicaily
dapendent on the distribution of inputs in the physical space to
which the network has been exposed. How this feature mapping is
initialized and transformed is the subject of this study.

In Chapter 1II a featural response measure is defined for an-
abstract feature dimension. Examples of modifying mechanisms and
their effects on the featural response are given. A review of some
of the biological evidence for an internal, adaptive, feature space
initialized during development and refined throughout life appears.
Applications of an adaptive feature space in image processing are
briefly summarized.

The McCollough (1965) effect (ME) is particularly interesting
from the standpoint of feature definition and tunability because it
exhibits modifiability along two dimensions: color differences con-
tingeﬁt on orientation and orientation differences contingent on
color (Held and Shattuck, 1971). The explanation developedAin this
thesis is that these differences represent local changes in the
visual system's scaling of the physical feature space. A geome;ri—

cal representation of the internal feature space illustrates these
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changes for one dimension in Chapter II and for the two-dimensional

ME in Chapter III.
1.2. Contingent Aftereffects

A contingent aftereffect, of which the ME is one example, is a
change in the perceived value of a visual feature dimension, such as
color, contingent on the value of another feature dimension, such as
ling orientation. Stated more concretely, the ME is produced by
viewing vertical red and black stripes and horizontal green and black
stripes alternating every S or 10 seconds for about 5 minutes or more.
After these adaptation presentations a vertical black and white test
grating will appear slightly green while a horizontal black and white
test grating will appear pink. The effect can also be induced by
red and green vertical gratings of two different spatial frequencies
(Stroymeyer, 1972a), and by gratings of complementary colors moving
in opposite directions (Hepler, 1968; Stromeyer and Mansfield, 1970;
Mayhew and Anstis, 1972). The effect depends on retinal spatial
frequency (Teft and Clark, 1968) rather than on viewing distance
" (Harris, 1971). The effect does not depend on retinal fixation
necessary for afterimages (Harris and Gibson, 1968a), but only on
 general retinal location (Stromeyer, 1972b). It is also unlike after-
images in its long duration, sometimes on the order of hours, days or
even weeks depending on the length of adaptation (Stromeyer and Mans-
field, 1970; Mayhew and Anstis, 1972; Riggs, White and Eimas, 1974;
MacKay and MacKay, 1975).

In addition to its decay rate being very long with respect to

afterimages, the decay also appears to depend on stimulation after



adaptation. Black and white gratings (Skowbo, et. al., 1974) and
diffuse lightt (MacKay and MacKay, 1975) were found to reduce the
effect at a faster rate than mere darkness. In fact, MacKay and
MacKay found no decay of the effect after periods of darkness and
Mayhew and Anstis (1972) reported a slight increase in the effect
after 20 minutes of rest. No reported single-unit fatigue or in-
hibitory.rebound behaves in this manner. It is unlikely that fa-
t?gue of single units can last for weeks.

Although orientation, spatial frequency, and movement after-
effects transfer interocularly (Blakemore and Campbell, 1969; Gilin-
sky and Doherty, 1969; Lovegrove, Over and Broefse, 1972), color
“aftereffects contingent on these features do not under usual trans-
fer paradigms (Stromeyer and Mansfield, 1970; Maudarbocus and Rud-
dock, 1972; Murch, 1972; Lovegrove and Over, 1973). MacKay and
MacKay (1973) produced some binocular interaction with form and
color presented separately to both eyes, but Over, Long and Love-
grove (1973) with a similar paradigm did not find such interaction.
However, Over, et. al., used verbal reports not a quantitative null-
method for measuring the aftereffect, and measured the éffect with
both eyes. If opposite effects are built up in the two eyes, as
the MacKays had found, the effects would cancel. In the same study,
Over and his colleagues were unable to induce a color.aftereffect
contingent on binocular disparity. A récent study by Keith White
(1976a) indicates tha; ME's can transfer under conditions of minimal
rivalry between the two eyes. Binocular interaction favors a cen-

tral rather than peripheral mechanism.
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Because of its very long decay rate, its dependency on post-
adaptation stimulation, and its contingency on spatial frequency,
orientation and direction of moevement, which indicate a more cen-
tral rather than peripheral effect, many investigators (Skowbo, et.
al., 1975) have gravitated toward some form of an associative learn-
ing model to explain the effect. However, an associative learning

model has trouble accounting for a color aftereffect complementary

to that paired with specific spatial information during adaptation.
The usual way of explaining a negative aftereffect is that an oppo-

nent-color neutralizing response is associated with the spatial

stimulation during adaptation (Kohler, 1962; Leppman, 1973). Creutz-
feldt (1973) has suggested a model involving correlated incrementa-
tion of inhibitory synapses between reverberating color and line
orientation cells in cortex, but elevated thresholds for orientation-~
and color-specific stimuli have not been demonstrated during ME (Tim-
ney, et. al., 1974). The neural network simulation presented in
Chapter III demonstrates that the ME can be obtained by using incre-
mentation of excitatory synapses between two layers. The model em-
bodies many of the mechanisms thought to be involved in the develop-
ment of line orientation detectors in young animals (von der Malsburg,
1973) suggesting that these mechanisms may be operating in adult long-
term adaptation. The network is meant to model qualitative aspects
of the transformation of an internal feature space representation,

rather than quantitative aspects of the decay rate of the aftereffect.



CHAPTER II

TUNABLE FEATURE DETECTORS

2.1. Biological Evidence

2.1.1. Plasticity in Development

A number of studies have shown that there exists a critical
period in the development of binbculaf animals during which the
input distribution of visual features influences the distribution
of feature detectors in visual cortex. The pioneering study was
done by Wiesel and Hubel (1963) by suturing an eyelid of a kitten "‘
before visual experience. The suturing totally disrupted the kit-
ten's distribution of ocular dominance. All cells in visual cortex
were driven by the normal eye only. Since then early selective
experience has been found to affect the distribution, responsiveness,
and tuning characteristics of cells sensitive to many oiher visual
features, such as line orientation (Blakemore and Cooper, 1970;
Hirsch and Spinelli, 1970; Freeman and Pettigrew, 1973), size and
shape (Pettigrew and Freeman, 1973), motion (Cyander, Berman, and
Hein, 1973), direction of motion (Pettigrew, 1974a), and retinal dis-
parity (Pettigrew, 1974b). In all of these studies the long-term
effect of such exposure is an increase in the ﬁumber, specificity,
and responsiveness of cells sensitive to the feature predominant in
the early experience and a decrease in the number, specificity, and
responsiveness of cells not tuned to the conditioning feature. Young
and inexperienced visual systems possess many weakly responsive or

non-responsive cells, easily habituated, with broad tuning curves

Ay
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(Barlow and Pettigrew, 1971; Blakemore and Mitchell, 1973; Petti-
grew, 1974b). Visual exposure sharpens specificity and increases

responsiveness to the feature -experienced.

2.1.2, Plasticity in Adulthood

After the critical period when detectors are most changeable,
even by very short periods of exposure (Blakemore and Mitchell, 1973),
there remains some degree of plasticity. In kittens reared under
monocular exposure no binocular cells were found after the rearing
period. Well after the critical period these cats were exposed to a
normal binocular visuval environment and developed a large proportion
of binocular cells (Spinelli, et. al., 1972). Adult cats exposed to
vertical gratings exhibit a distribution of orientation detectors
with reduced numbers of units sensitive to vertical (Creutzfeldt and
Heggelqnd, 1975). Spinelli and Metzler (1976) found an increase in
the number of cells sensitive to the visual features to which normal
adult cats had been exposed. These cats also exhibited better be-
havioral discrimination of the features present during exposure (Metz-
ler and Spinelli, 1976). The study by Spinelli and Metzler differed
from that of Creutzfeldt and Heggelund by having a longer consolida-
tion period before examination.

Although the direction of long-term effects is not clear, plas-
ticity within bounds can be found in adult visual systems. Short-
term adaptation effectg are largely negative in nature, i.e., expo-
sure reduces sensitivity to the conditioning stimulus, but long-term
effects are not clearly negative or positive but may be either de-

pending on the aspect of cthe aftereffect measured, the length of time



after exposure the test occurs, and the age and experience of the
animal. Seconds after exposure, for instance, adaptation to a spe-
cific spatial frequency and orientation raises the contrast threshold
to the same stimulus (Blakemore and Campbell, 1969; Maffei, Fioren-
tini and Bisti, 1973). In adult catsuexposed only to vertical bars
2 hours/day for 14 days Creutzfeldt and Heggelund (1975) recorded
10 to 20 hours after exposure. They found decreased numbers of units
sensitive to vertical. Spinelli and Metzler (1976), however, recorded
ovér a 2 wéek period from cats exposed to vertical bars in one eye and
horizontal bars in the other eye for 6 hours/day over a 6 week period.
These cats exhibited increased numbers of units sensitive to the condi-
tions of exposure. Pettigrew's (1974a) study of an inexperienced kit-
ten at its maximum time of plasticity clarifies the differing time
course of negative versus positive aftereffects. A 4 week o0ld kitten
was prepared for recording and then one eye was exposed to a vertical
grating moving leftward for 20 hours. For the first four hours follow-
ing exposure cells were difficult to drive, had ‘high spontaneous rates
of activity, and were inhibited by the conditioning stimulus. However,
8-10 hours after exposure a number of briskly responding cells appeared.
Their preferred orientation was vertical and preferred eye was the
exposed one. One would expect positive and negative effects to be
qualitatively similar in adult animals but perhaps develop over dif-
ferent lengths of time.

Not only is the Quration of exposure versus the time of testing
crucial to the direction of the effect, but also the method of testing

determines what aspect of the effect, positive or negative, will come

to light. Most experiments with kittens report increased numbers of

2
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units sensitive to the conditioning stimulus. Presumably, units have
become tuned to the input, but this says nothing about the total ac-
tivity of these units in response to their preferred input. Maffei
and Fiorentini (1974) found a reduced amplitude in cortical evoked
potentials specific to the spatial frequency to which kittens had
been exposed. Specific tuning to a stimulus can lower the overall
output activity of a network while increasing the number of units
gensitive to that input. The simulation in section 2.1.4. illustrates

these apparently contradictory results.

2.1.3. Aftereffects and Adaptation

Exposure to a feature reduces sensitivity to that stimulus for
several seconds but also affects the appearance of neérby features
along the same dimension for longer periods of time. Nearby features
appear less like the adaptation stimulus than they did before expo-
sure. Movement aftereffects, inducing apparent moticn in the direc-
tion opposite to that of the adaptation stimulus, generated by 15
minutes of exposure can last 20 hours or more (Masland, 1969). BRlake-
more and Sutton (1969) found that spatial frequencies above and below
the adaptation frequency appeared respectively higher and lower than
they‘actually were, for many hours after exposure. As indicated in
Chapter I, the ME can last for days or even weeks in some cases and
is not necessarily accompanied by reduced sensitivity specific to both
the color and orientation of the adaptation stimuli.

Coltheart (1971) and Over (1971) make excellent cases for the
assumption that visual fcatures are measured by a weighted avcrage

of outputs of a population of feature detectors. Implicit in this
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assumption is that visual features belong to one of several continu-
ous feature dimensions, that feature detectors have unimodal tuning
curves of some specified width over some dimension, and that a unit's
activity represents that feature which produces its maximum response.
Feature detectors with such tuning characteristics have been observed
neurophysiologically for orientation, color, disparity, spatial fre-
quency, and direction of movement (Over, 1971).

Coltheart and Over's explanation of negative aftereffects is that
the popula;ion that fires to the adaptation stimulus becomes less sen-
sitive. Viewing a nearby feature following exposure produces an asym-
metrical response biased in the divection of the unexposed cells.

They distinguish adaptation from negative aftereffects in order to
claim that only negative aftereffects are explained by this model.
Adaptation is defined as the process by which a stimulus approaches

a standard, i.e., a tilted line appears more vertical, while the stim-
ulus is still on. A negative aftereffect is produced after the adap-
tation stimulus is turned off. I have been using.the term "adaptation
stimulus" rather loosely as meaning any stimulus that produces aftex-
effects. Note that aftereffects may occur without adaptation in the
above formulation because not all feature dimensions have a standard.
Adaptation cannot be explained by reduced sensitivity unless there

are units that signal deviation from a standard.

Several other problems with the reduced sensitivity hypothesis
arise. No unit recovery curves that persist for hours have been ob-
served physiologically (MacKay, 1973). Threshold elevation specific
to spatial frequency and orientation is relatively short (Blakemore,

Nachmias and Sutton, 1970; Timney, et. al., 1974). Adaptation is not

a4
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acqompanied by a steady reduction in unit response after an initial
transient, and cells can exhibit aftereffects without being activated
by the adaptation stimulus (Maffei, Fiorentini, and Bisti, 1973).
Finally, prolonged exposure greatly increaées the duration of after-
effects without affecting their magnitude (Gibson, 1933; McCollough,
1965; Blakemore and Sutton, 1969). A word of caution should be in-
serted, however, about the failure to find prolonged periods of re-
duged sensitivity along with feature distortion. Studies testing
for reduced sensitivity have generally not prolonged the exposure
time beyond a few minutes (Blakemore, Nachmias and Sutton, 1970).

The following analysis and simulation along one abstract feature
dimension shows that synaptic modification of the sort thought to be
present during development can exhibit many of the charactericstics
present in both adaptation and negative aftereffects. Threshold
elevation may be present in their early stages but is not a necessary

concomitant of featural aftereffects.

2.1.4. The Model in One Dimension

Visual experience sharpens the tuning characteristics of detectors

distributed continuously throughout a feature dimension. Development
can be said to define a set of detectors {Di} along a feature dimen-
sion, ve[0,1], with unimodal response curves, each with a specified
width, Zwi, centered at some v = X5 with maximum activity, hi’ and

a threshold, Oi‘ The exact shape of the tuning curve is not crucial
to the analysis as long as it is unimodai. Contrast enhancement 6f

activity in a netwerk with streng inhibition produces a sharp cutoff
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at the threshold. The shape of a quadratic represents this general
beﬁavior:

a,(v) = [y (1 - [l’_a)_iﬁ]?-) -0, 0%
The function [x]+ = x whenever x > 0 and [x]+ = 0 otherwise. Figure
2.1 illustrates'a distribution of unit response curves having equal
widths, heights, and thresholds and having xi's distributed evenly
throughout v. Suppose that Di is labeled by the feature, fi = Xy
ssmétime during development, such that the activity of Di now repre-
sents fi' This could happen as soon as the tuning curve a; for Di
gets sharp enough, whenever some threshold value for hi versus w; is
reached. Then the label, fi’ fixed by the peak reéponse, ai(fi) >
ai(v) for all ve[O,l],>is assigned to Di' Although this tuning curve
can be modified by exposure to v, one would not expect the feature that
Di represents to change very easily. The system has no way of deter-
mining which v produces the maximum response‘from Di' Once the labels

are fixed the response to a feature, v, can be determined by the

average label weighted by unit activity:

R(v) = ——F——, (2.2)

which defines a mapping from the physical feature space to an internal
feature space representation.

In general, visual experience throughout development and adult
life can modify the characteristics of the distribution {ai}. Posi-~-
tive synaptic modification of afferent fibers to Di can induce three
types of modification, provided that synaptic growth is limited either

by conservation of total strength (von der Malsburg, 1973) or by
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Figure 2.1 A uniform distributicn of response curves, spaced evenly
throughout a feature dimension, with equal tuning widths,
w=.5.
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shunting inhibition of pre- and post-synaptic cell layers (Gfossberg,
1973). (See von der Malsburg, 1973, Figures 7, 8, and 9 for a demon-
stration of these changes.) The position, X{» of the tuning curve

shifts toward the input, v:
Ty xi(t) = -xi(t) + fi + Ax[v - fi] ai(v); (2.3)
The tuning width, Wy, DArTows:
T wi(t) = -wi(t) + w, = Am ai(v), (2.4)
The peak output activity, hi’ grows:
T hi(t) = -hi(t) + hO + Ah ai(v). (2.5)

Aside from positive synaptic modification a fourth way tuning

curves can be modified by experience is by threshold eievation:
To ei(t) = —ei(t) + Ae ai(v) (2.6)

but it is assumed on the basis of discussions in sectioms 2.1.1.-
2.1.3. that the time scale of (2.6) is much shorter than that for
(2.3) - (2.5). All changes in the parameters of the tuning curve.
of a cell are driven by cell activity, a.

To study the effects of modification of {ai} by an input, v,
on the featural response, R, a computer simulation was undertaken.
An initial distribution could be defined as in Figure 2.1 by specify-
ing w. h and € were initially set to 1 and O respectively. Any of
the four types of modification could be applied in any combination
by specifying Ax, Aw’ Ah’ AB’ and a modifying stimulus, vm; Modifi-

cation was applied once and any of four output graphs could be dis-
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played. All graphs are plotted over the same abscissa ve[0,1] but
displaced and scaled vertically. The total activity of the distribu-

tion is defined as:
A(V) = Zi ai(v)‘ (2'7)

The featural response measure, R(v) defined in (2.2), is plotted as
the deviation from v for easy comparison. A subset of {ai} is plotted
;o‘show how v affects individual response curves. The thresholds are
represented by a dotted line plotted on the same ordinate as the indi-
vidual response curves.

Figures 2.2 through 2.5 show the effects that each of the four
types of plasticity alone have on the output. (2.3) and (2.5) alone
have positive aftereffects near Vo (2.4) and (2.6) have negative
aftereffects. The vight balance of (2.3), (2.4), and (2.5), which
are the types of changes demonstrated by the Malsburg model, produce
negative aftereffects (Figure 2.6). Note that positive aftereffects
in Figure 2.2 can have negative aftereffects further away from Vo
This is the key point of the ME model in Chapter III. Negative after-
effects at white have little to do with the effects at the adaptation
input. Threshold elevation alone (Figure 2.5) can produce the same
shaped response curve as positive synaptic modification (Figure 2.6)
but the activity at v differs. With all four types of plasticity
operating together (Figure 2.7) it is even possible to get a greater
number of units clustgred about v and reduced activity at Vo at the
same time. Contradictory results in developmental plasticity may be
partly explained by these results. If in addition to several types

of plasticit& ecffects operating in different regions of the feature
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Figure 2.2 The changes in the total activity and featural response
produced by shifting of individual response curves,
toward the modifying stimulus. Note the slight positive,
then negative featural aftereffect near Ve W= .5,

v, = .5, Ax = ,5, Aw = Ah = Ae = 0.
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FEATURE DIMENSION

The changes in the total activity and featural response
produced by decrease of individual tuning curve widths
near the modifying stimulus. Note the negative after-
effect near Vo w= .5, v, = .5, Aw = .15, Ax = Ah =

Ae = 0.
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Figure 2.4 The changes in the total activity and featural response
produced by increase of individual response curve heights
near the modifying stimulus. Note the only slight positive
aftereffect near v_ although Ah is quite large. w = .5,

vm=.5,Ah=.s,E{X=Aw=Ae=o.
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FEATURE DIMENSION

The changes in the total activity and featural response
produced by increase of individual response curve thres-
holds near the modifying stimulus. The dotted line
plotted with the response curve distribution gives the
height of thresholds. Note the negative aftereffect

near v . W= .5, Vo T .5, Ae = ,5, Ax = Aw = Ah = 0.
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Figure 2.6 The changes in total activity and featural response
produced by shifting, narrowing, and heightening of
individual response curves near the modifying stimulus.
Note the zero change in activity at v_ and the negative
aftereffect near v W= .5, v, = .5? Ax = .3, Aw = ,15,

Ah = .3, Ae = 0.
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Figure 2.7 The changes in the total activity and featural response
produced by shifting, narrowing, and heightening of
individual response curves and increasing of thresholds
near the modifying stimulus. Note the negative featural
aftereffect near v.. w = .5, Vo = .5, Ax = .3, Aw = .15,

Ah = 03, Ae = '30
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scale in different directions, there exiét different time conétants
for synaptic plasticity versus threshold elevation, interpretation
of the experimental results is even more confounded. But recognition
of the various types of plasticity in both developmental studies and
adaptation studies can lead to a unification of both fields. The
tilt aftereffect, spatial frequency aftereffects, motion aftereffects,
and the McCollough effect can all be explained by synaptic modifica-
;ion as illustrated in Figure 2.6. Note the similarity between this
figure and Blakemore and Sutton's (1969) Figure 2. Note the simi-
larity between Figure 2.8 and the tilt aftereffect curve in Figure
5 of Morant and Harris (1965).

Two aspects of the tilt aftereffect are not explained by a uni-
form distribution of simple unconnected elements: adaptation and
the indirect effect.

Adaptatién can be explained by an inhomogeneity in the distri-
bution of orientation detectors. If there are more units clustered
at vertical and horizontal than at oblique angles, adaptation near
the vertical will draw more vertical units toward v than oblique
units. The response at Vo during inspection will become progressively
biased toward vertical because the rise in the density of detectors
on the vertical side will be unmatched by the sparser density on the
oblique side. There is some evidence for a greater dénsity of orien-
tation'detegtors at vertical and horizontal in the foveal part of the‘
visual field in rhesug monkeys (Mansfield, 1974).

The indirect effect is an apparent tilt induced in lines greater
than 45° away from an adaptation stimulus. Inspection of a line

tilted less than 45° clo;kwise from vertical induces an apparent
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Figure 2.8 The changes in the total activity and featural response
produced by shifting, narrowing, and heightening of
individual response curves near the modifying stimulus.
w= .75 v =0, A =.3, 4 = .15, A = .3, Ay = 0.
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counterclockwise tilt in an objectively horizontal line (indirect
effect). Although simulation is necessary to substantiate the claim,
it is possible that inhibitory coupling of units having orthogonal
responses to orientation could produce a change in the right direc-
tion 90° away from the inspection figure. A change in the response
curve at an angle, 6, would induce a change in the response at 0 * 90°
through iﬁhibitory connections. It is not intuitively clear in which
direction the indirect effect would occur given this hypothesis.
Further simulation is necessary. Inhibitory coupling of orthogonal
line detectors is indicated by the image processing work of Zucker,

Hummel, and Rosenfeld (1975).

2.2, Applications in Image Processing

Whgt is plasticity in the visual system good foré Does it have
anything to do with computations necessary fo:r "seeing?" A brief
look at some of the techniques in computer vision reveals a striking
similarity between biological visual plasticity and computer feature
extraction techniques. The comparisons are highly speculative. They
are meant merely as pointers to the hazy area where brain theory and
computer vision may one day meet. The mathematical development is
still missing, but it is my belief that rubbing together concepts in
both fields is necessary to an understanding of vision abstracted
from details of the implementation in either computers or brains.

The von der Malsburg (1973) network appears to be doing feature
extraction in one primitive feature dimension: line orientation.

The same technique extended to more than one dimension is reminiscent

of clustering in primitive feature space. At the other extreme, long-
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lasting aftereffects and adaptation are reminiscent of histogram
transformation. Methods of feature extraction and scaling are cfu-
cial to segmentation of a complex, noisy scene into meaningful re-

gions.

2.2.1. Segmentation

Segmentation is the process of separating a scene into regions
to ‘be interpreted by a higher level process, pieced togéther and
labeled as objects. A region's subparts coalesce by virtue of uni--
formities of a property measured everywhere in the scene. The best
way to pick properties and fo scale measures of properties is related
to feature tuning and clustering. The idea is to choose a measure
that is relatively constant within objects and changes abruptly across
object bqundaries. The choice is, in general, scene dependent. Tun-
ing and clustering will be discussed in the mext two sections.

In pattern recognition the property typically chosen for segmen-
tation is luminance, but more complex, natural or noisy scenes require
more complex properties such as classes of texture measures, color
measures, color-texture measures, texture-orientation and line-orien-
tation measures. A particularly powerful technique for segmentation
is the use of iterative networks that rerresent the input with multi-
ple feature measures at each location in the scene (however coarsely
it is partitioned). Through iteration the network reaches an equi-
librium in which regiéns are represented as patches of high activity
at different layers in the network. Congiguous units signaling the
szme valucs of a propert) enhance each other while units signaling

different values suppress each other (Montalvo, 1975; Amari and
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Arbib, 1976). Mutual enhancement or suppression is carried out
through nonlinear excitatory and inhibitory feedback. Two examples
of this type of network are a line/region detection network by
Zucker, Hummel, and Rosenfeld (1975) and a stereopsis network by Dev
(1975). Contiguity in space biases a unit's estimate of a property
toward its neighbor's estimate. 1In this way patches of contiguous
units become associated if their estimates are similar. Similarity
is_defined by the function through which connected units influence
each other.

Segmentation in iterative interconnected networks is a way of
dynamically defining or scaling property measures through local inter-
actions. Grossberg (1975) shows how short-term activity, if it per-
sists long enough through prolonged stimulation, can become coded into
synapses. Whatever distortions may have been present in the activity
may be reflected in the long-term storage also. Segmentation networks
are designed to enhance contrast across the feature dimension. If a
prolonged stimulus at one feature value produces contrast enhancemgnt
for a long ﬁeriod of time, the distortion may be coded into long-term
memory by the synapses. Long lasting negative aftereffécts may just
be the result of short-term contrast enhancement being coded into syn-
apses by the presense of prolonged stimulation by thé same feature.

Segmentation networks actually make use of this contrast enhance-
ment in order to define regions dynamically based on local properties

of the input scene.
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2.2.2. Tuning

Tunability of a range of feature detectors is related to histo-
gram transformation (Hummel, 1975) in image processing. Histogram
uniformization is a transformation of the set of quantization levels
of a property measure of the picture points so that an equal number
of picture elements will fall into each bin. Uniformization is
typically applied to gray level histograms to increase contrast.

It ‘'has also been applied to measures of texture (Rosenféld and Troy,
1970). When a non-uniform histogram, g(v), plotted along some fea-
ture dimension, v, is transformed into a uniform histogram, k(z),

the information content of the new quantization is maximized (Hummel,
1975). (See Figure 2.9.) The model for tunable feature space dis-
cussed in section 2.1.4. can approximate the process of histogram
uniformization given certain constraints on the tuning curve para-
meters. Suppose that heights are constant, widths are inversely pro-
portional tc the smoothed input distribution,lg(v), and the spacing

between curves is inversely proportional to g(v):

hi = 1,
w, = —-wo
i —
g(xi),
and
£, - £
X3 7 %417 -
g(v)
where V+w0
Bw) =/ [1- =57 gw) du. (2.8)
V= o]
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If,é(xi)—é(xi_l) is small for all i=1,2,...,n and w,n is small, then
the activity of the network, A(v), will be about constant (see Appen-
dix A). The number of inputs coded by each detector will also be |

about constant:

x1+uo:.L
k(£) = a;(u) g(u) du, with £, = =
X, ~W
i1
L xi+wi
= g(xi) S ai(u) du
X, —W,
i’i
-z 4 _ 4
= g(xi) 3 wi = 3 wo°_ (2.9)

The transformation of the input distribution, g(v), to an internal
feature space distribution, k(fi)’ is illustrated by Figure 2.9.

The discriminability of the set of detectors {Di} is inversely
related to the JND (just noticable difference). The JND is the
amount of change in the input, v, needed for a noticable (unit)
change in the respomnse, R:

A ~ _dv
R(v + A) - R(v) dR(v) .

JND = (2.10)

Thus, we can define discriminability as roughly equal to the deriva-
tive of R over v. If we do this we see that negative aftereffects
increase discriminability in the neighborhood of the modifying stimu-
lus, v Whenever negative aftereffects occur (Figures 2.3, 2.5 -

2.8) the derivative of R(v)-v at v is positive. This implies

that Q%é!l > 1. Conversely, whenever positive aftereffects occur
dR(v) < 1.
dv

discriminability approximates the input distribution (see Appendix A):

Given the constraints (2.8) on the set of detectors, the
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dR(v) ~ -
N g(v). (2.11)

Thus, synaptic modification producing negative aftereffects can
equalize discriminability over g(v) provided modification produces
a set of tuning curves with parameter; specified by (2.8). The
transformation is analogous to histogram uniformization that maxi-

mizes the information content of the quantization.

2.5.3. Clustering

Clustering for adaptive feature extraction is another form of
histogram transformation, but in a sense, opposite.to histogram uni-
formization. Usually an n-dimensional space (histogram), rather than
a one-dimensional histogram, is partitioned on'the basis of high den-
sity regions. The simplest example, in cne dimension, is thresholding.
In the restricted domain of white blood cell detection the gray level
histogram is normally bimodal. The nucleus is segregated from the
cyﬁoplasm by dividing the gray level histogram at the lowest point
between the two maxima (Figure 2.10). The nucleus is usually much
darker than the cytoplasm. The old gray level scale which originally
had N values is converted to a new scale containing only two values,
{0,1}. One value is assigned to the cytoplasm cluster and one to the
nucleus cluster. This reduces the information in the picture and
separates the nucleus from . the cytoplasm; The same technique can be
extended to n-dimensions in order to find naturally occurring asso-
ciations between primitive features (Hanson, Riseman, and Nagin, 1975).
Primitive features are lumped into properties. The process is the

opposite of histogram uniformization in that it minimizes information
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rather than maximizing it. In clustering, regions of bhigh density
are lumped into one property rather than partitioned into finer gra-
dations. The process identifiés the types of complex fgatures pre-
sent in the scene.

The same type of clustering may occur in iterative segmentation
' networks through cooperative processes of the type that associate
like feature elements across space. Nonlinear cooperative enhance-
ment can be built up among primitive feature sets that occur con-
currently over wide regions of space. Combinations of features that
have a low rate of occurrence could be suppressed by neighboring con-
figurations that differed. My current efforts are directed toward
building a network model for dynamic complex—~feature construction for
the purpose of segmentation.

For such a model it is assumed that the numbef of primitive
feature dimensions--color, line size, edge size, orientation, direc-
'tién of movement, and disparity--is small. Tﬁese afe the features
that have been f;und in single cells. For natural textures the num-
ber of operators needed to distinguish between them is on the order
of six (Zorbist and Thompson, 1975). Julesz (1975) has shown that
texture discrimination is based on only first and second order sta-
tistics of luminance. Higher ordexr differences cannot be perceived
by humans. Marr's (1975) analysis of texture demonstrates how first
order statistics of the outputs of line (bar) size, edge size, and
orientation operators are equivalent tc the second order statistical
operations needed to distinguish a variety of textures.

A dynamic complex-feature constructing network would u§e features

coded by single cells as primitives, and associations through synapses
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as properties for segmentation. Many primitive features, however,
aré often found together in single cells, such as color, orientation
and size, or orientation, size.and directionality of movement, or
orientation, size and disparity. The problem faced by é clustering
network is whether enough random variation in feature-coding cells
and enough numbers of cells exist to represent the entire primitive-
feature n-space at all times, or whether regions in the n—space are
coded up dynamically through associating synapses whenevgr large
regions of complex-features occur in the input. The latter seems
more efficient in terms of computer vision but the physiology may
be doing the former.

Perhaps'contingent aftereffects (CAE) will provide a clue when
the effect is isolated neurophysiologically. CAE's may be the result
of short-term feature associations that have become coded into syn-
apses by prolonged exposure, oOr the result of differential tuning of
two different feature dimensions that coexist in the same cells.
(Single-cell models and multiple-cell models will be discussed in
Section 4.1.) So far CAE's have been demonstrated only for features
that can coexist in single cells. Attempts to associate features
that have not been found together in single cells have, up to now,
failed (Favreau, 1976). 1In either case, however, the computational
result is the association of primitive features across dimensions,

analogous to clustering in image processing.
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CHAPTER I.II .

SIMULATION OF THE McCOLLOUGH-MALSBURG MODEL (MMM)

A éémpute; simuiatioﬁ of the Mchilough effecﬁvwaé'coﬁéﬁctedi
using a modelnsiﬁilar éo Qéh'dervﬁéiéﬁarg'é‘(1973) bﬁtvwitﬁ fed and
.green cells at the 1nput layer not JUSt white-sensitlve cells.' Tﬁis
model shares many of the characterlstlcs of Grossberg [ (1976) for-
mallzation of neural networks: learnlng at cross-correlated synapses
ahdon;centér, off-surround interactions that étﬁenuéte'csftiCélrfeed—

back and contrast enhance patterns of cortical activity.

3.1. von der MalsBﬁfg's‘Mbdei

von der Malsburg's model comsists of 19 input cells each con-
nected to 169 excitatory cprtical‘cellsf . Each exgitato;y cortical
cell connects to its 6 nearest;neighbors‘ip.a_hgxagonal‘g;ray, to,
the correépqnding 6 celis :in a 169-cell inhibitory layer (I),<§nd
to tﬁe I-cell corresponding to itself.. Each I-cell in turn connects
to a 12-cell surround in the excitatory lgyerﬁ(E}. . (See Figqre 3.1.)
Cells compute a weighted sum of their inputs from all layers,;subpract
a threshold, and output the result if it is positive and zero other-
- wise.” The postsynaptic potential of each cell at each itgration is

calculated by:

' 19 * 6 % 12 %
Ek = aEk + iil sikRi + 151 CEEEi - 121 CIEIi (3.1)
for excitors and
7 % ,
= bIk + I CEIEi + CI (2.2)



J input Layer
Sik
IV OEE
=i Excitatory Layer
Cie
v/NCer
k inhibitory Laver

Figure 3.1 Side view of hexagonal input and cortical arrays showing the connectivity between
and within the layers. The C's represent constant connection strengths within E
and I layers and the sik's represent modifiable synapses between R and E layers.

Se
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for inhibitors, where a and b are decay constants for each iteration,

sik is the synaptic weight from input cell Ri to cell Ek’ CI is a

constant input to I and CAB is ‘the synaptic weight constant from a

cell in layer A to one in layer B. A synapse s is modified when

k
Ri and Ek fire simultaneously according to the rule:

' -s. +MRTE" (3.3)
S ik T Sik i Ex .

where s'ik is the new value, Sik is the old, A is the learning con-
*

stant, and is the thresholding function:

x-06if x > 6

X = (3.4)
0 if x £ 6.

0 is the threshold. The sum of each cortical cell's input synapses
is held constant at Cs by renormalization after the modification
step:

C
s,, =s' S E—
ik ik 19
I s', .
=1

(3.5)

The input stimulus set consists of 9 lines at different orien-
tations, each line stimulating 7 input layer (R) units. (See von der

Malsburg, 1973 for further details.)

3.2. A Color Version of Malsburg

The McCollough-Malsburg-Model (MMM) is a color version of von
der Malsburg's self-organizing model of cortex. The major change is
that MM's input layer "sees" red and green in addition to black and

white. Instead of having achromatic on-cells in the input layer MMM
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hag a red on—-cell and a green on-cell for every achromatic R-cell
in the von der Malsburg model. Thus, there are a total of 38 R-cells
connected to 169 excitatory cortical cells. The spatial arrangement
of R is identical to von der Malsburg's except that each input po-
sition contains a red and green cell in the same location.1

The stimulus set for MMM varies not just in orientation but in
the amount of red/green saturation. The variable v represents a
ppipt on a saturation continuum from pure green through white to pufe
red of equal luminance. Some care was necessary in choosing a func-
tion of v to represent color that would allow E-cells to be tuned
to a continuous range of v rather than just two values: red (v = 1)
and gfeen (v = 0). The need for this will become clear in the dis-

cussion section.

3.2.1. Some Initial Attempts at Color Coding

Let w, and v, be the synaptic weights associated with the green

1
and red cells at one input location, respectively. The first func-

tion tried is the most obvious:

fo(v) = wl(l -v) + wz(v). (3.6)

1 The input layer in MMM corresponds to von der Malsburg's retinal

layer. The red and green cells in MMM do not necessarily repre-

sent red or green cone cells. They can represent any color-spe-

cific ganglion, lateral geniculate or cortical cells located be-
" fore the cortical layers E and I modelled here.
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Since fo is a linear function of v there can be only two possible
‘maxima over ve[0,1] for fixed synaptic pairs (wl, w2). These maxi-
ma arevat v =0o0r at v=1, ‘Using f0 as input an E—cgll can fire
'maximally only to pure red or pure green;

A second function tried,
£, = wyfl - kol + wyil - k(v - n4?t (3.7)

Vhere + is the threshold function with 6 = 0, is based on the general
shape of red and green opponent-color cells in LGN over wavelength
(Figure 3.2), disregarding the inhibitory component (DeValois, Abra-
mov, and Jacobs, 1966). The trouble with this formulation for color
is that it does not allow tuning to a specific combination of red

and green either. To illustrate this point let us suppose that E-

" cells have only two inputs with weights Wy and Wy Also suppose that
vy + W, = C for all cells and that v is fixed at some'voe(O,.S). We
wish to train the best responders to Vv, Such that they will fire
maximally to Voe The best responders to v, are those with wy = C

and v, = 0. But these cells fire even more strongly to v = 0. So

differential training to v, cannot occur, only tov=0o0r v=1.

3.2.2. £, Version

The third color coding function tried,

- _E2__2+ 0 8
fZ(v) = (wl + VZ) [1 - k(v - w T W2.) 1 ve[0,1] (3.8)

has the same general shape as opponent-color cells' response in LGN

but also has, the additional property that for a given v, the maximum



V] -
< ~, ' M
N 1 d
0 ko 1
pure green A . pure red‘

Figure 3.2 Weighted input from red and green opponent-color cells corresponding to color coding
function fl. :
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regbonders for a constant (wl, wz) are those with w2/(wl + w2) =V
a specific synaptic pair ratio reflecting Vo This is the necessary
property for specific tuning to Vo kiis a tuning-wid;h parameter.
(See Figure 3.3.)

In all of the following versions.of MMM the amount of inhibition
was 5 times that in von der Malsburg's network so that fewer cells
would go on to each stimulus. This was necessary.in order for cor-
giqal cells to differentiate stimuli over two dimensions not just
line orientation. In addition to this, the excitatory and inhibi-
tory thresholds in the f2 version vary according to the average syn-
aptically weighted input to E-cells. '(See Table 3.1.) In the origi-
nal model the average input to cortical cells was approximately con-
stant over all stimuli, with only slight variations due to randomly
assigned synaptic weights. In this vérsion red and green synaptic
weights were assigned independently from a uniform distribution over
the interval [0,.1]. This induced an initial distribution of corti-
cal cells with peak responses clustered at v = .5 (Figure 3.4a).

Thus the level of firing of the naive network was greatest for v = .5
and’very low for v = 0 or 1.

In order to insure uniform training to all stimuli the total
firing of the network must be about constant over stimuli, otherwise
the resulting distribution of units after training will not appfoxi-
mate the inéut distribution. So in order to keep the level of firing
and the number of cel;s on approximately constant, a variable thres-
hold was used for E and I layers in addition to a variable input to

I. The variable threshold approximates a normalized input.
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Table 3.1 42

PARAMETERS CONSTANT OVER ALL RUNS.

a .6 E-cell decay

b .3 I-cell decay

CEE .16 E to E-cell weight

CEI 1.0 E to I-cell weight

CIE .6_ I to E-cell weight .
c 38s sum or magnitude of synaptic weights to E-cell

PARAMETERS AND EQUATIONS USED IN EACH RUN. EACH RUN IS REPRESENTED BY A COLUMN AND IS LISTED IN ORDER AS DISCUSSION IN THE TEXT.
NUMBERS IN PARENTHESES REFER TO EQUATION NUMBERS. A DASHED ENTRY MEANS THAT THE PARAMETER OR EQUATION IS NOT APPLICABLE.

f2 f3 f4 f4 f2 fo fo fo fo fo fo fo fo . color coding function

C E 4 .4 4 v 4 4 4 4 .4 4 N/ input to I-cell .

s .05 .05 . 0125 .0125 .05 .025 .025 .025 .025 . 025 .025 . 025 . 025 average synaptic weight

A .05 .05 .05 .01 .01 .05 .05 .05 .05 .05 .05 .05 .05 synaptic increment

GE E].4+.25 1.125 1.875 1.875 1.125 1.125 1.125 1.125 1.125 1.875 1.875 1.875 1.875 E threshold+

01 E/.7+.01 .58 .58 .58 .58 .58 .58 .58 .58 .58 .58 .58 .58 I threshold

k 4. 7.1 - - 3. - - - - - - - - color curve width parameter

o - - - - .28 .82 .82 .90 .95 95 .95 .95 .95 synaptic decay

u, - - - - - - 1 1. 1. .5 5 .5 .5 parameter in (3.16)

%, - - - - - - .25 .25 .25 1 .1 .1 .1 parameter in (3.16)

4 - - - - - - - - - - 7 8. 10. threshold gain

2 8 2 10 0 2 2 2 2 2 6 4 4 # of uniform training blocks
20 .20 20 - 20 - - - - - - - - # of alternate ME presentations
S S C C C C C C C C C C C weights chosen uniformly over

(3.3) (3.3) (3.3) (3.3) (3.13) (3.14) (3.15) (3.15) (3.15) (3.15) (3.15) (3.15) (3.15) synaptic modification equation
(3.5) (3.5) (3.11) (3.11) - - - - - - - - - synaptic conservation equation

n 38 19 38 38 38 38 38 38 38 38 38 38 38 # of retinal units

- 169 n *

£ 165 o1 o Sk

= synapses
= E-cells

1f synaptic comservation is not used, this represents the initial value.

+If threshold elevation is used, this represents the initial value. . 1
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Initially all synaptic weights from layers R to E--38 X 169 of
them~—were randomly assigned from a uniform distribution over [0,.1].
Synaptic modification cccurred after each presentation of a randomized
set of 9 line orientations (Figure 3.5) by 11 color saturation values
“at equal intervals within. [0,1]. All 99 stimuli were presented
twice. After each stimulus presentation the network was allowed to
run to approximate equilibrium, 20 iterations, and the synapses of
each E-cell that was on at this point was modified by applying (3.3)
and (3.5).

After training to a uniform distribution over orientation and
saturation the McCollough stimulus pair was presented alternately:
line #1 with v = 0 followed by line #5 with v = 1. The synapses were
modified in the same fashion after each stimulus presentation. The
‘pair of stimuli were presented alternately 20 times.

The same ME experiment was tried on the uniformly trained net-
work with each poesible orthogonal line pair: (1,5), (2,6), (3,7),
(4,8), (5,9) paired with saturation combinations (0,1) and (1,0):
ten experimente in all.

The featural response of the network was calculated as follows:
for every cell on after 20 iterations the cell's maximum orientation-
saturation stimulus was calculated. Then the average orientation and
saturation was calculated over all responding cells weighted by their

degree of firing.2 The response was always close to but not exactly

The average featural response measure (2.2) as discussed in Section
2.1.4. was calculated over cclor and orientation, except that x.
(the new preferred stimulus) was used in place of f, (the old l%bel)
in formula (2.2). The change does not effect the response at v = .5
because the cells that are activated here have rot been shifted by
the stimuli at the extremes. The cells that have been shifted fire
little if at all to v = .5,
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equal to the stimulus value.

Table 3.2 shows the results of ten ME experiments on the uni-
formly traincd nctwork. The response of the network to v = .5, a
white line of orientation indicated, is shown before and after Mc-
Collough presentations. The difference column shows the start minus
the final rcspomse. A negative increment indicates a change toward
red while a positive increment indicates a change toward green. The
results show that the response to a white line of a givén orientation
that was paired with green during adaptation changes toward pure red,
while the.response to an orthogonal white line paired with red changcs
toward pure green. The means of the differences, E; and El’ the stan-
dard deviations of the differences, Go.and 61, the standard error of
the mean, %A’ degrees of freedom, df, t value, and level of signifi-
cance are also shown. The change in response for the two groups of
cells differentially adapted is significantly different (t = 7.007,
df = 16, p < .0005).

Figure 3.4 shows the distribution of cells plotted at the color-
orientation value that produces a cell's maximum response. It illus-
tfates the effects of 20 alternate presentations of line/color stimuli
(3,1.) and (7,0.) (Figure 3.4c) on the uniformly trained network
(Figure 3.4b). Units surrounding the adaptation sitimuli have been
shifted toward these stimuli leaving areas near v = .5 depleted of
slightly saturated units. An input at the white test stimulus is
thus biased toward the opposite color.

Thé preferred feacture histogram does not vreflect the precisién
of the network response, it onlyv displays peak responses. The inter-

actions of tuning curves give the network its [uvlly graded output.
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TABLE 3.2

The response of MM with color coding f2 to white test stimuli
(v = .5) before and after alternate hue-orientation presentations.
Each row represents one McCollough experiment. The adaptation and
test coiors (v) are specified above each block and the orthogonal

line pairs are listed across rows under LINE within each block.

ADAPTATION v=0 v=1
TEST v = .5 v =.5
LINE BEFORE AFTER dO LINE BEFORE AFTER dl
1 .485  .635 ~-.150 5 .535  .498  .037
2 .457  .582 -.125 6  .526  .430 .096
3 .569  .608 -.039 7 .445  .395 050
4 .505  .540 -.035 8  .467  .334  .133
5  .535  .626 -.091 9 .s52  .291 .26l
[5  .535  .626 =-.0911" 1 .485  .405  .0E0
6  .526  .694 -.168 2 .457  .418  .039
7 .445  .623  -.178 3 .569  .413 156
8  .467  .603 -.136 4 .505  .472  .033
9 .552  .662 -.110 [5  .535  .498 .037]
Eb = -.115 El = .098
§, = 052 8, = 075
S, = .0304 ¢ = 7.007 df = 16 p <<.0005 one tailed

A

S

duplicate results are left out of the computation.
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The histogram appears noisy because 40 x 9 bins are displayed, many
more than the number of cells in the network. In addition, the num-
ber of training inputs {(99) is comparable to the number of cells in
the network (169). About 6-9 cells go on to each input--one or twe
for each clump of activity in the E-layer. Thus, the degree of spe-
cificity to each of the 99 inputs is not very great. Each cell has
a range of about 10-15 inputs to which it will respond. Therefore,
a certain degree of variability in a cell's peak response, as well
as in the population response, is to be expected. 7The population
response, however, is a much better indicator of network output than
the histogram. Note that Table 3.2 more clearly demonstrates ME's
than Figure 3.4c, for example.

There is a problem with the f2 version of color coding. There
is no physiological basis for a synaptic red/green pair with a re-
sponse curve (3.8), and no way of arranging the interneuronal cir-
cuitry to respond according to (3.8) and change synaptic strength
according to (3.3) at the came time. The synaptic behavior of f

2

is strictly a mathematically convenient color coding scheme.

3.2.3. f., Version
~

A variation of f2 was tried in which the position of peak re-
sponses for individual red/green synaptic pairs remained stationary
throughout the modification procedure. Of course, the position of
a cortical cell's peak response along v could still change with
variations in the synaptic strengths froﬁ different red/grcen pairs.

Unlike f2’ a-way of realizing {., through interncuronal circultry
-
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begween layers R and E is possible.

In this version there are 19 rgtinal positions making 169 con-
nections to the E layer—-169 x 19 in all. Each connection is random-
ly assigned a peak saturation-sensitivity, o €[0,1], and weight,
Sitk e[0,.1]. m is never modified as w2/(wl + WZ) was modified in
f2. It is assumed that interneurons between Ri and Ek determine my
for each connection in the following fashion: v is the red saturation
response and 1 - v is the green saturation response of units at Ri in
the retina. These are converted to sigmoidal (Wilson and Cowan, 1973)
responses dependent on m,, and the tuning width parameter, k, by inter-
neurons (Figures 3.6a and 3.6b). The outputs of this pair are multi-

plied before reaching Ek (Figure 3.6c). A quadratic function is used

to simulate the multiplied pair of sigmoids:

£,0) = s, [1 - k(v - mik)2]+. (3.9)

The thresholds in the E and I layers and the input.to I is held con-
stant. (See Table 3.1.) The tuning width of (3.9) is narrower,
k = 7.1.

Initially the network was trained to a uniform distribution over
orientation and saturation by presenting eight random sequences of
the same 99 input stimuli used in the fZ version. All other proce-
dures and parameters ﬁeré the same as in the previous version.

The results of ten ME experiments on the uniformly trained net-
work, f3 version, are summarized in Table 3.3; Again the line orieun-
tations paired with red adaptation stimuli exhibit a green bias to
white test stimuli--a positive increment--while orientations paired

with green exhibit a red bias to white. The effect is weaker than
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TABLE 3.3

The response of MMM with color coding f3 to white test stimuli

(v = .5) before and after alternate hue-orientation presentations.
ADAPTATION v =0 v=1
TEST v =.5 v =.5
LINE BEFORE AFTFR dg 'LINE BEFORE ~ AFTER  d,
1 .507  .507 0 5  .435  .436 -.00l
2 474 474 0 6 443  .427  .016
3 .476  .484 -.008 7 .490  .487  .003
4 443 444 -.001 8  .460  .450  .010
5  .435 442 -,007 9  .520  .466  .054
[5  .435  .442 -.007]" 1 .507  .472  .035
6 443 443 0 2 474 473 .001
7 .49  .522 -.032 3 .476 469  .007
8  .460  .455  .005 4 443 448  -.008
9  .520 .520 0 [5  .435  .436 -.001]"
dg = =005 Ei = .013
8y = -0LL 8, = .020
s, = -0075 t =2.368 df =16 p < .025 one tailed

* .
duplicate results are left out of the computation.
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in the f2 version, however, The difference between the two groups
is significant at the .025 level (t = 2.368, df = 16).

The f. version of MMM reproduces the McCollough effect without

3
having to assume that synaptic inputs shift their spectral semsitivity
with training. Of course, cortical cells still shift their sensiti-

vity by selective training of synapses from cells with different spec-—

tral sensitivities. However, more training is required, 8 training

blocks and a narrower spectral specificity of input cells, k = 7.1.

35.2.4. £, Version
&

A final version of the color input allowed specific tuning fo a
red/green ratio and seemed physiologically plausible, if not sub-
stantiated. It is a variation of equation (3.6) but normalized by
the magnitude of the synaptic weights and the input:

w.(l-v) +w,v
£,(v) = L 2 (3.10)

Jé_z +w 2 J{l - v)2 + vz.

1 2

This formula also has the necessary property of specific tuning to
a given v, in (0,1) as in fz, that is, the maximally responding cells
for a fixed v, are those with w2/(w1 + w2) = v, and the maximum re-
sponse of a cell with a fixed (wl, w2) is at v = wz/(wl + w2). The
formula is symmetric in w aﬁd v. This allows cells to be tumed to
the full range of values between v = Q0 and v = 1.

In this versionnthe synaptic magnitude is held constant with
normalization by a constant sum of squa?es instead of a constant

sum. The normalization step after modification becomes:

[
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ik (3.11)

The thresholds in layers E and I also remain constant. (See Table
3.1 for parameter values.) To insure uniform response to color af-
ter training, the weights were chosen such that the distribution of
the set of w2/(w1 + w2), the maximum color responses, over cortical
cells was initially uniform over [0,1]. vy is the total synaptic

strength from green R~cells and-w2 is the total synaptic strength

from red R-cells. There is some evidence that the peak response of

'opponent-éolpr cells is uniformly distributed over wavelength (De-

Valois, Abramov and Jacobs, 1966), and that cortical cells receive
varying proportions of inputs from all three cone processes (Gouras,
1970a, 1970b, 1974). The 19 synaptic weights, Sik? corresponding
to the overall red and green input to an E-ceil were then chosen ran-
domly from a uniform distribution such that:
19+19(i-1) 2.1
w, = [ sjk 1, i=1, 2 (3.12)
j=1+19(i-1)
So initially the spatial specificity of E-cells was completely ran-
dom and the spectral specificity was uniform, but broadly tuned.
The training procedure was the same as in the f2 version. The
network was initially exposed to a uniform distribution over orien-
tation and saturation by presentation of two random sequences of 99
stimuli, the same set as in previous versions.

Table 3.4 shows the results of 10 ME experiments with the f4

version. Again, the change in saturation at .5 is away from the
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TABLE 3.4

The response of MMM with color coding f4 to white test stimuli

(v =.5) before_and after alternate hue-orientation presentations.
ADAPTATION v=0 v=1
TEST v=.5 v=.5
LINE BEFORE AFTER d, LINE BEFORE ° AFTER d;
1 .462 .384 .078 5 .395 .378  .017
2 .387 .599 -.212 6 .399 .379  .020
3  .528  .567 -.039 7 457 .275  .182
4 .384 .575 -.191 8 426 .415  .011
5 .395  .687 -.292 9 .435 .285  .150
[5 .395  .687 -.292]" 1 .462  .325  .137
6  .399 512 -,113 2 .387 .375  .012
7 .457 . .605 -.148 3 .528 476 .052
8 426 .506 -.080 4 .384 341,043
9 .435  .440 ~.005 [5 .395 .378 .o17]"
Eb = -,111 | d, = .069
8y = 114 8, = .068
S, = .0442 t =4.0902 df =16 p < .0005 one tailed

*
duplicate results are left out of the computation.

1o
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value presented during adaptation. The change in response for the
two groups, one exposed to red and the other to green, is signifi-
cantly different at the .0005 level (t = 4.090, df = 16). Figure
3.7 shows the distribution of cells' preferred color-orientation
values before training (Figure 3.7a), after uniform training (Figure
3.7b) and after alternate presentations of 1ine/color combinations
(3.1) and (7,0.) (Figure 3.7c).

This version for color coding seems more physiologically plausi-
ble than either f2 or f3. It requires no specific assignment of a
color maximum for each synaptic red/green pair. 1t exhibits a much
clearer ME than the f3 version. The synaptic normalization scheme
keeps the magnitude rather than the sum of the input and synapse
vectors constant for each E-cell. This procedure more closely approxi-
mates the action of a shunting inhibition network in which the magni-
tude and direction of the synapse vector apprcaches the magnitude and
direction of the input vector by synaptic modification (Grossberg,
1976).

It is interesting to note here that all attempts to reproduce the
ME failed»using f4 with a uniform distribution of individual synaptic
weights (UDS). With cortical cells' preferred saturation values clus-
tered at v = .5, not enough cells could le drawn away from the cluster
to produce a change in response at .5. The initial choice of synaptic
weights had to be such that the distribution of wz/(wl + w2) was uni-
form over cortical cells (UDC). ME presentations with this configura-
tion produced enough of a change at v = .5 to exhibit the effect.

The f. version with UDS was able to exhibit ME's because the positions

2

of color tuning curves were much more plastic in this version. In
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this respect, Keith White (1976b) has found that alternate presenta-
tion of white-vertical and white-horizontal gratings before ME stimu-
lat;on reduces the effect. If achromgtic stimulation produces a
cluster at v = .5 before chromatic stimulation, ME's would be reducad.

The f4 version is substantiated by these results.

3.3. Eliminating the Synaptic Conservation Rule

Grossberg (1976) argues that synaptic conservation can be gene-
rated by global properties of a network, such as shunting inhibition
in pre- and post-synaptic layers, rather than by an explicit synaptic=
conservation rule, (3.5) or (3.11). His point is that no physiolo-
gical basis for normalization exists and that it seems incompatible
with classical conditioning.

In addition to these reasons for eliminating synaptic normali—
zation, a stronger form of inhibition specific to modification was
needed in order to maintain the saturation response range through-
out 0 to 1. Whilg conducting the f4 version it was found that con-
tinued training to the uniform input set of 99 stimuli drove the
response to inputs, v = 0, 1, toward v = .5 (Figure 3.8). The pre-
ferred feature histogram (Figure 3.9) after 10 training blocks, indi-
cates that units near .5 where growing stronger than units near the
extremes of the range. For example, the units that go on (represented
by 0) to line 4, v =1 are closer to v = .5 than a number of other
units closer to v = 1. The response curves for the activated units
must. be higher at v = 1 than the units with peaks closer to v = 1.

This means that a number of unliui: are becoming unresponsive to all
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inputs. Some form of inhibition specific to synaptic modification
waé needed to increase specificity without raising the peak response
so high that the cell would overpower neighboring cells in feature
spacé. It was thought that exponential decay applied to‘all synapseé
(incremented and non-incremented) when a cell became active would
help éhe situation and allow the elimination of sypaptic normaliza-

tion.

3.3.1. ME's in the Untrained Network

The need for strong inhibition in MMM specific to the training
of cells first became evident in a study directed at producing ME's
in the untrained network. The question was whether random connecti-
vity from layers R to E produces enbugh form-specificity to segregatev
two large enough, now-overlapping sets of cells responsive to ortho- f
gonal orientatioas.

The controversy of whether the ME takes place in line detectors"'
or other, less specific form detectors (dipoles) will be discussed in
Section 4.2. The following simulation was undertaken in order td.Show.
that little spatial specificity is necessary for the ME as longaéé
there is sufficient separation between units that respond to veftical
bars versus those that respond to horizontal bars. Since enough form
specificity exists initially for some units to become tunedvto hori-
zontal and other units tc become tuned to vertical, it wasthypdthe—
sized that enough specificity exists to support a red bias. in one form
population and a green bias in the orthogonal population §ear the neu-

tral test point.
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With f2 color coding and synaptic hormalization the results of
5 ME experiments on the untrained network were equivocal, i.e., no
cléar'effects in either direction. But the problem was not in a
lack of form specificity. The problem was that the maximum response
of units sensitive to the conditioning stimulus pair grew to greater
than 15 times the maximum response of untrained units. So at the
conditioning line orientatioh, units trained to v = 0 or v = 1 could
also be activated by a test input at v = .5 and thereby swamp the
activity of units near .5. The test response was thus strongly biased
toward the conditioning saturation rather than away from it.

Some form of training rule was required that induced specificity
without increasing the overall activity with respect to untrained
units. A more stringent form of synaptic decay was adopted and nor-
malization was discarded.

For this simulation all synapses decreased in proportion to E-
cell activation and increased in proportion to correlation between
R- and E-cell firing:

*
i

. ok

Kk (3.13)

* +
[s;, —0d E ] +AR

This kept unit response curves low enough after training so that a
cell tuned to v = 0 would not be activated by an input at v = .5,
The results of 10 ME experiments are summarized in Table 3.5.
Specific parameters for each run are listed in Table 3.1. The re-
sults are noisier than in the uniformly trained network, but enough

of an effect is present to be significant at the .05 level (t = 1.977,

df = 18).



62

TABLE 3.5

The response of MMM with color coding function f2 to white test
stimuli (v = .5) before and after alternate hue-orientation presenta-

tions, starting from a spatially untrained network.

ADAPTATION v=0 ve=1l
TEST v=.5 v=.5
LINE BEFORE AFTER d, LINE BEFORE AFTER di"
1 .542  .561 ~-.019 5 447 .462 ~-.0L5
2 442 442 0 6  .437  .425 .012
3 .526  .525 .00l 7 .509  .509 0
4  .451  .523 ~-.072 8  .500  .450 .050
5 447  .543 -.096 9 .530  .525 .005
5 447  .543 -.096 1 .542  .566 -.024
6  .437  .427 .010 2 442 438  .004
7 .509  .508 .00l 3 .526  .521  .005
8 .500  .520 -.020 4  .451  .443  .008
9 .530  .533 .003 5  .447  .485 -.038
4, = .029 d, = .0007
| §, = 042 §, = 024
SA = ,0152 t =1.977 df = 18 p < .05 one tailed
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3,3,2. Attenuation of Feedback from E-Cells

Discarding the synaptic conservation rule in the f4 version
produced unstable synaptic growth. Synaptic modification was mo-

delled by a differential equation. The discrete form:

' egs. +ARE
8 ik = %84 i Ex

ik (3.14)

*
was applied whenever E-cells were activated. Ri was always within
bounds because inputs greater than 1 were never applied, however,
*
Ek became unbounded due to the growth of Sk A way of limiting

the positive feedback between E-cells and synapses was introduced:

v * *
s ik CEF + ARi u(Ek ) (3.15)

where the function, u, is of the form:

u X
=)

x + x
o

u(x) = {(3.16)

with fixed parameters: 0 < X, < u < 1. u has the following proper-
ties: u(x) < u, for all x 2 0 and u(x) = x for x = u, = X. Thus ,
input to Sik cannot grow greater than Aum no matter how large Ek*'
gets.,

A number of simulation runs were tried with various choices of
Ugs Xy and o (Table 3.1) but all exhib.ted the characteristics
illustrated in Figure 3.8: decay of the response range toward v = .5
with increasing variance at v = .5. The growth of units tuned to .5
was étill faster than that of units tuned to more extreme values.

This meant that response curves at .5 still dominated others. It

was necessary to limit cvarall cell respense in proportion to the
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number of times a cell was activated.

3.3.3. Specific Threshold Elevation

Specific threshold elevation dependent on a cell's rate of syn-
aptic-growth was tried next. The threshold, Bk, for a cell, k, was
modelled by a differential equation similar to the synaptic equation.

The discrete version:

*

Kk (3.17).

e'k =a6k+ gAE

was applied to a threshold whenever the corresponding cell was écti—
vated by input.

Some preliminary simulations indicate that threshold elevaticn
does help to maintain the response range and the separation between
responses to v = 0, .25, .5, .75, 1 (Figure 3.10). Further investi-
gation is needec¢ to find a balance between the threshold time con-
stants and synaptic time constants that produce proper separation
of the response range and stability. Preliminary findings show that
when the threshold gain, g, is set too high, the activity in response
to v = .5 goes to zero with repeated training blocks, while the ac-
tivity in response to v = 0, 1 stabilizes.

It appears that the problem of maintaining the response range
and the separation between features is at least in part related to
boundary effects. Cells near .5 respond to a greater range of inputs
than cells at the extremes. Synaptic modification to stimuli that
are very different reverses the effect of onme input when the second

is presented. The cell's specificity does not grow because the two
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Figure 3.10 The saturation response for color coding, f , with
threshold elevation, gain g = 7., and 4 blocks of
uniform training. The response is to input saturations
indicated at the right of each curve. Each point is
the average over 9 orientations, with one standard
deviation indicated by the vertical bars.
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inputs are working at cross purposes. (See Grossberg, 1975, pp. 26-
30 for a discussion of this problem.) Even though the range is kept
smail by threshold elevation, the maximum response cannot grow. Cells
near the boundary with a smaller range of inputs receive synaptic in-
crements in the same direction, and thus become strong to a smaller
set of inputs.

A way of getting around the discontinuous boundary problem is
to make the color dimension a continuous ring similar to line orien-
tation. Then the input range over all values of v is the same size.
Implications of a wrap-around color dimension are discussed in Sec-

tion 4.3.

3.4. Model Modelling

At a certain point in a large computer simulation sub-problems
come up that are more easily solved by sub—simulatiﬁns. A large
complex simulation helps to point out new directions for research
and to demonstrate unexpected effects. But when too many new effects
swamp the perception of desired effects it is time to build a more
tractable model of a subpart of the larger problem.

MMM was instrumental in exploring feature.extraction in two di-
mensions. It demonstrated that with a uniform input set the response
curves to specific orientations and saturations became more narrowly
tuned. An unanticipated result, derived from the organization of the
input layer and the random connectivity to E, was that color and form
specificity are inversely related. That is because the probability

that receptive field (I} cells 'ine up in a given line crientation
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and all have the same spectral specificity is extremely low. Either
oné specificity or the other dominates. Another unanticipated find-
ing was that inhibition must be increased specifically for trained
cells so that newly modified cells do not dominate the-unspecified
cells. Fatigue immediately after conditioning may have a computa-
tionai purpose. But beyond a certain point the network effects be-
came excess baggage to the investigation of feature space transfor-
matibns. A smaller version that would embody just the -salient as-
pects of response curve tuning and modification was required without
the added problems of the statistics and dynamics of 376 intercon-
nected cells and 6422 modifiable synapses.

The simulation outlined in section 2.1.4. (program TUNE) simu-
lates the three response curve modifications present in MMM resulting
from synaptic changes: shifting toward the input, narrowing of the
tuning curve, and heightening of the peak response. The fourth type
of change included one that was never properly implemented in MMM but
was more easily incorporated into TUNE: threshold elevation. These
four types of modification capture the feature space tuning aspects
of MMM. In the smaller program, positive and negative aftereffects
were isolated with respect to two output measures: total activity
(2.2) and featural response (2.7). 1t was seen that these two out-
puts of the network are very different. They are related but they
can go in opposite directions depending on the relative amounts of
the four types of modificatiom, i.e., negative featural aftereffects
do not necessarily imply reduced activity (Figure 3.11). Many in-
vestigators seeking models of featural aftereffects have assumed that

the two are one and the same. Total activity may be a useless indi-
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FEATURE DIMENSION

The changes in the total activity and featural response
produced by shifting, narrowing, and heightening of
individual response curves near the modifying stimulus.
Note the increase in total activity at v_ with negative
aftereffects near v.. w = .5, v = .5, = .5, Aw = .15,

= = m X
by = .5, AG = 0,
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cator of long-term featural aftereffects, especially in a network
having inhibitory interactions designed to keep total activity con-
st#nt. TUNE clearly illustrates the different effects that changing
tuning curve parameters can have on activity and featural response.
Besides being more tractable, TUNE is faster, less noisy and more
efficient. For investigating feature space tuning along one dimen-
sion it is better than MMM, but it looses unit interconnection pro-
perties, dynamic properties, and statistical properties of the larger
simulation.

The two questions that must be answered before undertaking a
large simulation are 1) at what level of representation does one wish
to address the problem, and 2) what is the minimal model that embodies

just the characteristics of the problem under investigation?
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CHAPTER IV

CONTINGENT-AFTEREFFECT MODELS
4.1. Are Color and Form Coded Separately or Together?

An excellent review of current models of the ME can be found in
Skowbo, et. al., (1975). The review classifies existing models into
several non-mutually-exclusive categories. Two categories which are
mutually exclusive are the single-unit models versus the multiple~
unit models. Single unit models assume that the effect occurs in
form-specific cells either broadly tuned (achromatic) or narrowly
tuned (chromatic) to wavelength.

The achromatic form-detector model assumes a decrease in sensi-
tivity to the color.to which units have been exposed, that is, part
of the color range of form-specific cells is depressed. This model
is really a two-stage or multiple-unit model in disguise. Form-spe-
cific detectors are achromatic by virtue of receiving input from seve-
ral cone processes: red, green, and blue (Gouras, 1972). Loss of
sensitivity to a specific wavelength contingent on specific form
cannot occur without linking form-specificity and color-specificity
through feedback or through coding of both features in the same cell.
The former explanation puts this model into the multiple-unit cate-~
gory, and the latter explanation puts it into the double-duty, single-
unit category. Achromatic, form-specific, single—~unit models cannot
support contingent aftereffects.

Loss of sensitivity of double-duty units, on the other hand,
has not been substantiated by experiments using controls for after-

images. Adaptation to complementary chromatic gratings produces
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fo;m—specific but not color- and form-specific threshold elevation
(Timney, et. al., 1974). It was once thought that only very few
ceils in cortex were specific for both color and form (Hubel and
Wiesel, 1968) bLut Peter Gouras (1972, 1974) has found that color-
and form—specificity vary inversely in single cortical cells with
about 287 in the middle category, having some degree of specificity
for both features. These units which could correspond to E-cells
in the present model could support CAE's, but whether loss of sensi-
tivity is the primary mechanism underlying these effects is another
question.

Most pfoponents of a two-stage model of the ME do not mention
feedback between units. Without feedback depression of color-specific
cells or pathways before form-specific cells affects all form cells
uniformly. Similarly, for a two-stage model where form is coded be-
fore color, depression of a specific color response affects the form
response uniformly. Two-stage models cannot work without synaptic
modification of feedback connections between the two populations.
Creutzfeldt (1973) has proposed a two-process model with feedback
through inhibitory connections that increase with activation. Tais
is probably as good a model as MMM except that loss of sensitivity
to colored gratings does not always accompany ME's (Timney, et. al.,

1974).

4.2. TForm-Specificity

Two kinds of questions arise in regard to the type of form-spe-
cificity necessary for oricprat ou-contingent ME's: 1) is form-spo-

cificity dependent on spatial frequency detectors or size detectors;
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and 2) is it dependent on line detectors or a more amorphous type
of‘luminance change detector?

First, it is very difficult to distinguish spatial frequency
detectors from bar detectors behaviorally. Bar detectors, i.e.,
with exicatory central regions and inhibitory filanks, are broadly
tuned to spatial frequency. They exhibit all of ;he characteristics
attributed to spatial frequency detectors (Macleod and Rosenfeld,
1974; Legéndy, 1975). Narrowly tuned spatial frequency detectors of
the type necessary for a Fourier transform model of visual percep-
tion have not been found. However, Harris (1971) has shown that ME's
depend on periodicity, not on the sizes of black or white bars in
1/3 and 2/3 duty cycle (ratio of white bar width to period) square
wave gratings. If bar detectors are most responsive to bar width
one would expect ME's to depend on the width of black or white bars
not on the period. fhis argument is not necessarily correct given
a population of bar detectors without sharp transitions between on
and off areas and with enhancing connectivity among units of equal-
size bar widths. Suppose that equal-size black bar detectors (of£-
center and on-flanks) and white bar detectors (on-center and off-
flanks) are positively coupled to fire as a population such that the
activity of the population is averaged over the activity of black and
white bar detectors (irrespective of the phase relations between them).
Then<the size population maximally sensitive to a 2/3 duty cycle square-
wave grating is the population whose receptive fields fit the period
of the grating rather than the width of either white or black bars (see
Appendix B).

In another set of experiments (May and Matteson, 1976; Green,

Corwin and Zemon, 1976) the authors conclude that spatial frequency-
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spgcificity rather than edge-specificity underlies ME's. In these
experiments subjects were presented alternating red and green checker-
boards'respectively aligned to vertical and to 45° off vertical. The
ME was tested with square-wave gratings of various spatial frequencies
and o;ientations. Maximal ME's were produced with gratings tilted 45°
with respect to the inducing pattern and having a period /2 times the
sizelof the squares in the pattern. This apparently favors a Fourier
transform hypothesis because the strongest Fourier comﬁonent of a
checkerboard is precisely one with a period V2 the square size aligned
diagonally to the pattern. However, bar detectors again can explain
these results.

Assume the'existence of bar detectors with equal sized on- and
off-regions with weights +1 for the excitatory region and -.5 for each
of the inhibitory regions. Also assume a linear response for partial
stimulation within these regions. In crder for contingent aftereffects
to occur with test gratings 45° of angle apart there must be a differ-
ence in the amount that a bar detector is adapted by a checkerboard
orthogonally aligned to its receptive field versus a checkerboard di-
agonally aligned. The population of bar detectors with the greatest
absolute difference in response to a checkerboard oriented orthogonally
and diagonally will produce the greatest contingent aftereffect. The
sign of this difference will determine the direction of the color after-
effect.

Let us consider the strength of the effect produced by a bar de-
tector having the same width as the squares in the checkerboard, aligned
orthogonally versus that of a bar detector 1//2 the square size, aligned

diagonally. We can plot the effect of these two populations as a func-
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tion of the ratio of bar length to width, r, and observe which of
the effects is greater for which values of r.

The response of a bar detector having an excitatory region the
sameAwidth as the square size, aligned orthogonally to the pattern,
01, minus the response of one aligned diagonally, Dl’ is plotted in
Figuré 4.1 (dashed line) as a function of r. As r increases the dif-
ference goes negative, i.e., the diagonally aligned detector produces
a gréater response than the orthogonally aligned detector beyond r =
5. However, the response of a bar detector of width 1/V2 the square
size, aligned diagonally, D2, minus that of one aligned orthogonaliy,:
02, (solid line) is above Ol - Dl for v+ > 1.8. Since most bar detec-
tors have a length to width ratio at least greater than 1.8 (see
footnote 1), the greatest contingent aftereffect is supported by di-
agonally aligned bar detectors having widths 1/V2 the size of the
check pattern. In fact, for 2 £ r < 4, the range in which most bar
detectors lie, O1 - D1 is positive in less than half the range. Fur-
thermore, at r > 6 diagonally aligned receptive fields for both bar
widths produce the greater response. (See Appendix C for calculations.)

The experimental findings do eliminate the possibility that edge
detectors, units having one excitatory and only one inhibitory region,
play a significant role in this aftereffect, however bar detectors
with two inhibitory flanks on either side can explain this spatial
frequency related effect, quite adequately.

The second question concerning form-specificity deals with the

degree of form-specificity necessary for ME's. Harris and Gibson

Bar detectors with r < 1.8 approximate square-shaped or coacentric
receptive fields which could not very well support orientation-spe-
cific adaptation.
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Figure 4.1 The response of bar detectors the same width as the

squares in a checkerboard pattern when aligned orthogo-
nally minus their response when aligned diagonally to

the pattern (dashed line). The response of bar detectors
1/V/2 the width of the squares when aligned diagonally
minus their response when aligned orthogonally to the
pattern (solid line). These are plotted as a function
of r, the bar length to width ratio.
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(1968a, 1968b) proposed a minimal form detector for ME's called the
"dipole." The dipole is a unit having only two retinal poiunts in
its.receptive field: one on-unit and one off-unit separated by a
vector. The direction and size of the vector specify the unit's
orientation and size specificity, but one much more broadly tuned
than for bar or edge detectors with sharp, straight line boundaries
betwgen on- and off-regions. The f4 versiqn of the MMM simulation
of ME's in the untrained network indicates that, at leaét theoretic-
ally, broadly tuned form specificity will suffice. But, experimen—.
tally, color-contingent tilt-aftereffects (Held and Shattuck, 1971)
show that maximal effects occur when adaptation stimuli are tilted
15° in either direction from vertical. This indicates a relatively
narrowly tuned orientation detector with a tuning width on the order
of 30°. Dipoles, on the other hand, have orientation tuning widths
of 180°.

The logical construct of the dipole serves as a minimal edge
detector (one transition from light to dark) but experiments showing
the supremacy of periodicity over size (Harris, 1971) and bars (two
transitions) over edges (May and Matteson, 1976; Green, Corwin and
Zemon, 1976) require a minimal bar detector. Bar detectors with
sloping transitions between on~ and off—regions.and with equal area
on- and off-regions are specific enough to orientation and spatial
frequency to explain all spatial frequency effects associated with

ME's.
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4.3. 1Is Color a Dimension?

Line (bar and edge) detectors are uniformly distributed over all
orientations (Hubel and Wiesel, 1962). The response to a particular
orientation is in terms of which set of units is firing the most.
Orientation is represented by the activated units weighted by firing
rate (Section 2.1.4.). But does color work this way or is it more
like luminance? The measure of luminance is simply the level of
firing of a luminance-sensitive unit. Analogously, is color merely
the amount that a red or green cell fires rather than the weighted
average of units with tuning curves distribtued continuously through-
out wavelength?

DeValois, Abramov, and Jacobs (1966) categorize narrowly tuned,
color sensitive cells in LGN into four categories: +R-G, +G-R, +Y-B,
+B-Y, where 4 represents excitatory, - inhibitory, R red, G green,

Y yellow, and B blue. ‘Their basis for classification is the distribu-
tion of zero crossings (point of transition from excitation to inhi-
bition) of spectral funing curves. The histogram of crossover points
plotted against wavelength is roughly bimodal with a minimum at 560
nm. +R-G and +G-R crossover above 560 nm, and +Y-B and +B-Y crossover
below 560 nm. In their analysis they are able‘to reject the hypothe-
sis, with probability .05, that units excited by long wavelengths
(+R-G, +Y-B) come from a uniform distribution, but they were unable

to reject it for units excited by short wavelengths (+G-R, +B-Y).

The short wavelength distribution appears roughly uniform (DcValois,
Abramov and Jacobs, 1966, Figure 4). The authors state that peak

sensitivities are even wmore var “ible than crossovers and appoar to
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be continuvously distributed over wavelength. In spite of their warn-—
ings about the possibly arbitrary nature of the categorization, later
reéearéhers take it for granted that celor-oppenent cells are neatly
divi&ed into four categories. No one after DeValois, Abramov and
Jacobs addresses the question directly. A later study by Gouras
(1974; Figure 11), however, shows a wide variation in peak spectral
sensitivities in monkey striate cortex. So at least for pure color,
wavelength may be thought of as a dimensiou_to the visual system ana-
logous to line orientation (Figure 4.2).

If color units are distributed continuously along a color dimen- .
sion it should be possible to test for the tuning width of these units
in color feature space just as Held and Shattuck (1971) isolated the
tuning width of units along orientatiom. They showed that maximal
color-contingent tilt-aftereffects occur with red and green gratings
tiltéd respectively 15° left and right of vertical. The equivalent
experiment in the color domain woyld be to vary the saturation purity
of adaptation (A) stimuli while testing (T) at white (Figure 4.3a).

A ﬁonotonic increase in the effect with saturation purity would indi-
cate either very broadly tuned color units or a scalar representation
for color. Some pilot studies by White (1976c¢) show a monotonic in-
crease with saturation purity in experiment 1 (Figure 4.3a). But pre-
liminary findings of a second experiment (Figure 4.3b) in which the
adaptation stimuli are white and test stimuli are desaﬁurated colors
seem to indicate that the strength of the aftereffect is not strictly’
a monotonic function of the distance between A and T, but may depend
on the absolute values of A and T also (White, 1976d). If the func-

tion for ME versus saturation difference between A and T rises and
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PURE COLOR WRAP-AROUND
DIMENSION
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The saturation dimension can be thought of as a collapsed,
pure color, wrap-around dimension in which blue and yellow
coincide to produce white (v = .5), and green (v = 0) and
red (v = 1) are located at the extremes.
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Figure 4.3 Two parametric experiments to test for tuning width along the color dimension.

A corresponds to the adaptation stimulus and T to the test in color/orientation
space.
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thgn falls (negative aftereffect), or falls and then rises (positive
aftereffect) the distance at which an effect is no longer present
woﬁidAdetermine the width of saturation-sensitive units.

One difficulty with this set of experiments is that the purity
scale may be too short with respect to unit tuning widths to reveal
a U-shaped aftereffect function. An equivalent set of experiments
should be tried on the wrap-around, pure color dimension discussed
above. In this case, the distance in color space between A and T
can be varied up to half the dimension, as opposed to only 1/4 the
dimension in the collapsed version using white A's or T's (Figure 4.2).
A's and T's would always be pure colors with no variation in satura-
tion purity. A few experimenters have varied the wavelength of A's
to other values beside strict complementary combinations but T's haQe
always been white (Stromeyer, 1969; Murch and Paulson, 1976). Mixing
saturation purity of A's and T's may confound experiments designed to
find the tuning widths of color units, since tuning widths along wave-
length increase with decreasing purity {(DeValois and Marrocco, 1973).
In this regard, U-shaped unit response curves for pure color
appear to be well established physiologically (DeValois, Abramov and
Jacobs, 1966) but no evidence for U-shaped unit responses along satu-

ration  purity exists.
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APPENDIX A
DISCRIMINABILITY IN A DISTRIBUTION OF FEATURE SENSITIVE UNITS
: WITH QUADRATIC TUNING CURVES

Uniform Activity.

Given a uniform distribution of n detectors, equally spaced over
ve[0,1]}, with equal tuning widths, w, heights, h, and tuning curves:
v-f§f

a, (v =hil - —D%, £ =1,

The total activity is given by:

A(v) =z, a;(v) =

m
n[l+ § 2(1 - [v - (v + k/n)]z
k=1 w

= e

2
)], for v R 1

where m = int[wn] (the function "int" returns the greatest integer

less than or equal to the argument). A(v) reduces to:

A(v) = h[l + 2m - 1 5 (

m(m + 1) (2m + l))]
3 .
(wn)

Discriminability.

Given a non-uniform input distribution, g(v), and a non-uniform

set of tuning curves with parameters given by:

h, =1,
i
Wo
m- =
i =
g(xi) b
and _
- x - rl - fi—l
x1 i-1
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whgrelg(v) is a smoothed version of g(v) [equation (2.8)], then

wo W

int [—‘-:-———] = int|
fi fi—l X T X

]
=

For m = 1, A(v) = 1, and the discriminability is given by:

R(x,) - R(x, ;) f, -f¢£

dR(v) i~ i i-1 - i i-1 - g(x )
dv X5 - xi—l xi - xi—l i
Form = 2, A(v) = 33 and
dR(v) ~ Y%g) — RGeyq)
dv Xy =Xy g
2 T X X 7 %441 2
= - (£, (l—[————-——-——])+f + £, .1 - [—22
2(xy =%y )AL Wiy i+l Wi+1
X, - X. X. - X.

-1 -2.2 -1 2
BT i L P S o D L

Wi-2 Wy

~ 2 1

= = (£, (1 ) +E HE (-5
5Gx; - %x;_p) - i-1 i+l 2
1 1
S Ea - T -y, - A7)
m m
- 2 (e, - £ )k (Ey - )+ E, - £)]

5(x - Xy l) 4 i-2 i i-1 4 i+l i

223 50, )+ Bxp) + 5 By,

22 8 = B(x).

~

So for small m and small E(xi) -‘g(xi_]) the discriminability is

approximately equal to E(v).
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APPENDIX B

SPATIAL-FREQUENCY-LIKE BAR DETECTORS

2/3 DUTY-CYCLE GRATING

iy
7 2

AN
N

N

N

PERCENT STIMULATION

DETECTOR ,
SIZE POS. NEG. AVG..
BLACK
BARS 41 100 71
WHITE
BARS 59 59 59
PERIOD 83 38 85

Suppose that bar detectors have cross sections as illustrated in the

figure, and suppose that we simulate them with the second derivative

of a Gaussian function for ease of calculation. Let the positive re-

gion equal +1 and the negative -agions together equal -1, when tetally

stimulated by white.

Also, let the width of the excitatory region
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equal the width of each of the inb " 'tory flanks, i.e., the Gaussian
is trunctated at * 3 o.

Suppose that positive (white bar) and negative (black bar) de-
tecﬁors are c0upled1 such that the average activation of positive and

negative units determines the efficacy of a stimulus, then the popu-

lation fitted to the period is activated more than either the popula-

tion fitted to black bar size or white bar size (see figure and table

above). A similar argument applies also for a 1/3 duty-cycle grating.

The detectors may be coupled through positive feedback loops such
that they fire as a population. Note that this arrangement does
not require any particular phase relation between individual re-
ceptive fields. '
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APPENDIX C

ACTIVATION OF BAR-SHAPED RECEPTIVE FIELDS BY CHECKERBOARDS

\ Do e gli..w =1,

Given a checker-

board pattern with a

square size of 1, an
orthogonally aligned,

bar-shaped, receptive

257 field with excitatory
INHIBITORY:

width, w = 1, weighted

by 1, and inhibitory

flanks of equal widths,
each weighted by -.5, the area integrated by such a receptive field is
equal to x in the interval [0,1] and 2 -~ x in the interval [1,2].

In genexral the weighted area is equal to:

X -n for n even

n+l1l-x for n odd

where n = int(x). If we normalize the integrated area by excitatory
receptive field area, rw, and substitute the bar length to width ratio,

r = X, for x we obtain the response:

r-n
— for n even
r
0l =
ELj;%%:~£ for n odd

as o function of r for a bar aligned orthogonally to a checkerboard

pattern.

v
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For a diagonally aligned receptive
field, w = 1, the area calculation may 257
be simplified by substituting the top

inhibitory region weighted by -1 in

place of two regions each weighted by

-.5, since the two areas are symmetri-

cal. The area integrated within one X X2 %3 %4
cycle of the check pattern, xe[0,7V2],
is given by:
A=B+C+D-E-H-(F-G) - (I-J)
=G-3E+J -3 H.

A(x) is a monotonic increasing, piceewise quadratic function ol x, as

illustrated in the above graph. A(x) can be approximated by a linear
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function with slope 3(/5 -~ 1)2/(235), which is the area integrated
by the receptive field within one cycle of the pattern. If we nor-
malize A by the excitatory area, rw, and substitute r = x we ob-

tain the response:

of a bar detector aligned diagonally to the pattern.

0, W = 1/v2.

The area integrated by a receptive field, w = 1/V2, aligned ortho-
gonally to the check pattern is given by ax in the interval {0,1] and

by a(2 - x) in the interval {1,2], where

3-v2

|

a.':

In general:

a(x - n) for n even

iToR a(n + 1 - x) for n odd
INHIBITORY
. REGIONZ

where n = int(x). Substi-

tuting x = r//2 and norma-

lizing by rw we obtain:

SR ,2 - E
INHIBITORY

REGION 2
iy ' -%(n/§-+ Y2 - r) for a odd

%(r - n/2) for n even
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for the response of an orthogonally aligned receptive field.

Dy, W = 1/V2.

Finally, the area integrated by a diagonally aligned receptive

field is given by:
A=B-C-D.

A(x) is a monotonic increasing, piecewise quadratic function of x,
as illustrated in the graph below. A can be approximated by a linear
function with slope l/(Z/E). Subsfituting x = r/Y2 and normalizing

by rw we obtain:

(LI

D, -
2v2

for a receptive field of w = l//f, aligned diagonally to the pattern.

[\ ]

1
5 T
A
EXCITATORY
REGION
> X
e 0 o= } i ; i
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