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ABSTRACT

Previous duality theories for discrete-time linear systems over
a field K have been restricted to those cases in which the input, state,
and output spaces are finite-dimensional. Direct attempts to extend such
a theory to infinite-dimensional systems fail, because the category K-S
of linear spaces over the field K is not self-dual and hence does not, by
itself, provide an adequate framework for a general duality theory of
discrete linear systems. Instead, it is necessary to consider categories
of linearly-topologized spaces over K, and to use topological rather than
algebraic duals. Using this approach, the dimensionality of the system
is of no consequence, and so finite- and infinite-dimensional systems are
handled with equal ease.

A general categorical duality of discrete-time linear systems is
first developed within the framework of the self-dual category K-JP of dual
pairs over K, so that the essential character of the theory is algebraic
rather than topological. K-DP is equivalent to sK-LTS, the category of
weak linearly-topoligized spaces, and also to kK-LTS, the category of
Mackey linearly-topologized spaces. This provides a linearly-topologized-
space framework for discrete-time linear systems, with topological
dualization the underlying duality functor.

Using the duality of maximal and minimal dual pairs, the category
cK-LTS of linearly-compact linearly-topologized spaces is the proper
framework for studying the duals of machines in K-|S. Again, topological

dualization is the underlying duality functor.



BUALITY THEORY FOR DISCRETE-TIVE LINEAR SYSTEMS
INTRODUCTION

Duality theory for finite-dimensional discrete linear systems has
been around since at least 1960[7]. Since then, the theory of discrete-
time linear systems has evolved to an elegant categorical approach over
an arbitrary ring R, where the concept of dimensionality is not even
meaningful[1]. Along with a categorical theory of systems comes a cate-
gorical theory of duality; (R-MOD)0p provides the mathematically-ideal
framework in which to base the dual M°P of a discrete-time linear system
M modelled in R-mod, the category of left R modules. However, from a
structural point of view, little can be said about (R-MOD)OP, in general,
other than that it is the opposite of R-Mop. What is desired in a system-
theoretic duality theory is an approach in which a linear system in a
category K has a dual M' which is also a linear system in K, and which is
equivalent (in a categorical sense) to MP Unfortunately, R-MoD is not
in general a self-dual category; if R is a field, R-Mop is never self dual.
For a field K, let K-LS be the category of K-linear spaces; K-LS = K-MoD-
The full subcategory of K-LS consisting of the finite-dimensional linear
spaces is self-dual, and this explains, at least in part, why concrete
duality theories for linear systems have been, until now, restricted to
those cases in which the input, state, and output spaces are finite-

dimensional.



It is the purpose of this paper to extend the theory of duality
of linear systems over a field K to those cases in which the input, state,
and output spaces are not necessarily finite-dimensional. To do this,
linearly-topologized spaces over K are used, rather than untopologized
lineér spaces. However, all of the topologies used are essentially
algebraic in character, in that they are completely described by dual
pairs. To emphasize this fact, the entire duality theory is first con-
structed within the category K-JP of dual pairs over K, and then converted,
via equivalences df categories, to sK-LTS, the category of weak linearly-
topologized spaces, and kK-| TS, the Category of Mackey linearly-topologized
spaces. K-DP is self-dual, and so the dual system will lie in the same
category as tﬁe original system. However, K-DP is not balanced, and has
many image-factorization systems. Consequently, there are several concepts
of reachability and observability in systems so modelled. Three are dis-
cussed in this paper.

An alternative theory of duality in which the system is modelled
directly in K-LS is also presented. The dual system in this case is modelled
not in K-LS, but in cK-[TS, the category of linearly-compact linearly-
topologized spaces. This approach has the advantage that there is only one
concept of reachability and observability. .

The paper is divided into three parts. The first, §1-s§3, deals with
the general theory of duality of decomposable Systems. The second, §4-§7,
deals with particular models of duality. The third, §8, contains examples
illustrating the theory. Some remarks on systems modelled in the category

of Hilbert spaces, some remarks on the literature, and two appendices are

also included.



While it is assumed that the reader is familiar with elementary
linear algebra, category theory and topology, the treatment of linearly-
topologized spaces is self-contained, with the reader referred to other

sources only for motivation and proofs.

s0 NoTATION

The notation in this paper is drawn from several sources. The
notation of [1] is adhered to whenever concepts from that paper are used.
For categorical concepts not covered in [1], standard categorical notation,
as can be found in [5], [13], and [15], is used. For concepts concerning
topology, linear algebra, and linearly-topologized spaces, the text [11] is
the reference. The following is a guide to the otherwise unexplained
notation of this paper.

The symbol 1 usually means an identity (morphism, functor, etc.).

When more specific notation is needed, a subscfipt is used. For example

lA means the identity (morphism) on A; lK‘means the identity functor on

the category K.

The symbol = is shorthand for "is isomorphic to''. The frame of
reference is usually clear. In particular, when the symbol is used
-between functors it means that there is a natural isomorphism from one
functor to the other.

The exponent op means opposite (dual) in categorical terms, and is
- generally used only when confusion would otherwise result. Thus, for

example, K°P is the opposite category of K, and if F: K + H is a functor,



FOP: KCP 5 PP is the opposite functor (which is identical to F as a function).
The convention that K°P has the same objects and morphisms as K, as in [5]
and [15], will be used.

If K is a category 0bj(K) denotes the class of all K objects, and
Mon(K) denotes the class of all K morphisms.

The symbolrlo denotes the first infinite cardinal and w the first
infinite ordinal.

. Throughout this paper, K will denote an arbitrary (but fixed) field
with 0 # 1, unless specifically otherwise noted.

If £f: A > B is a linear map of linear spaces, kerf = {aeA|f(a) = 0}
(denoted N[A] in [11]). dim(A) denotes the dimension of the linear space
A (denoted d(A) in [11]). |

Within each section, formal facts are numbered consecutively, starting
with 1. Within its section, reference to a fact is made by giving its
number, e.g., (3) means fact 3 of the currect section. When a fact of
another section is referepced, both the section number and the fact number

are given, e.g., 2.(3) means the third fact of section 2.

§1 Review oF DEcoMPoSABLE SYSTEMS

The system-theoretic framework of this paper is based upon the theory
of decomposable systems of Arbib and Manes, as presented in [1]. Tt is
presumed that the reader is familiar with the terminology and results
presented there. However, in the interest of providing a unified presen-
tation, a terse review of the concepts in [1] which are necessary to the

theory presented here is given.



Throughout this section, fix a category K.

A system dynamics in K is an ordered pair (Q,F) where Q is a K

object and F: Q ~ Q is a K-morphism. A K-morphism g: Q + R is called a
dynamorphism for the system dynamics (Q,F), (R,G) provided that the

diagram

09
~ —0

comutes. g: (Q,F) » (R,G) is sometimes written.

A decomposable system in K is a 6-tuple M= (Q,F,I,G,Y,H) such that

(Q,F) is a system dynamics in K, I and Y are K objects such that I has
a countable copower and Y has a countable power, and G: I -+ Q and H: Q + Y

are K morphisms. Q is called the state space, F the state-transition map,

I the input space, Y the output space, G the input map, and H the output

map of M.
Let Y be a K object with a countable power (Yg{nklkew}). The power-

shift morphism z: Y§ - Y§ is the unique morphism making the diagrams

Y, —%F—

§ Y§
;;:I\\\\\\\\ﬁ i T (kew)
Y

commute. For a K object I with a countable copower (Ig,{ink|ksw}), the

copower-shift morphism is defined dually, and is also denoted z.




(1) For every decomposable system M = (Q,F,I1,G,Y,H) in K with
(Ig,{ink|kew}) a countable copower for 1 «nd (Yg,{wklkew}) a countable
pover for Y, there are unique K morphisms Ty 15 5 Q and ayt QY

such that the diagram

in

19,185 2 18
(\lrm lrM
q £
I lan\e
y, —Z y. —o Ny
§ > g >

commutes,

. < . - pk+l, .
Proof. Define Iy by nein, = G, heiny,, = F G. Define Oy dually. 8

Ty is called the reachability map of M and Oy is called the observ-

ability map of M. The total response of M is O° T and is denoted by fl\‘i’ Ty

Oppo and f]ti are unique only up to a choice of countable copower for T and

countable power for Y.
To deal with the problems of reachability and observability, the
concept of image-factorization system is used.

An image-factorization system for K is an ordered pair (E,M) such that

E is a class of epimorphisms and M is a class of monomorphisms, each
closed under composition and each containing all isomorphisms, such that
each K morphism f has a factorization f = mee with e ¢ £ and m ¢ M which
is unique up to isomorphism in the sense that if f = my oeq is another such

factorization, then there is an isomorphism i such that the diagram



commutes. (e,m) is called an (E,M)-factorization of f.

Let M be a decomposable system in K, and let (E,M) be an image-
factorization system for K. M is F-reachable if Ty € E, and M is
M-observable if Oy € M-

Given K objects I and Y such that I has a countable copower and Y
has a countable power, and' a dynamorphism g: (Ig,z) - (Y§,z), a realization
of g is a decomposable system M in K such that the total response flcl = g.
Given an image-factorization (E,M), a realization of g which is both
reachable and observable is called a (E,M)-canonical realization of g.
Reachability, observability, and canonicity only depend upon the choice of
(E,M, and not on the choice of countable powers and countable copowers.

Let M = (Q,F,I,G,Y,H) be a decomposable system in K. MCP
= (Q,F,Y,H,I,G) is called the dual system of M. The following are simple

consequences of categorical duality.

(2) Let M be a decomposable system in K.
(a) MP is 4 decomposable system in kP,
(b) The reachability map of M is the observability map of MOP,
and vice-versa. The total response of M is the total response of M°P,
(c) 1f (E,M) is an image-factorization system for K, then (E,M) is
an image-factorization system for K°P and M is E-reachable if and only if
MP is E-observable, and M is M-observable if and only if MP is M-reachable. &



In (b), the convention that the canonical copower of I in K and
its power in K°P are the same (not just isomorphic) is followed; a

similar convention is followed for Y.

§2 THEORY OF EQUIVALENT SYSTEMS

Recall that a functor F: K + H is an equivalence of categories
provided that there is a functor G: H + K such that GoF = lK and
FoG = lH' Note that the definition is symmetric, so that G is also an
equivalence. Equivalences preserve all essential categorical properties.
In fact, a property is called categorical provided that it is preserved

by equivalences.

(1) The following properties are categorical: epimorphism, mono-
morphism, countable power, countable copower, commutative diagram.

Proof: Consult [5], 12.2, 12.8, 12.10, and 24.11. §

There is a useful interpretation of preservation of image-factorization
systems under equivalence. Let K be a»category, and let F be a class of K
morphisms. The smallest class of morphisms containing F as well as all
isomorphisms and which is closed under composition is called the closure

of F and is denoted F.

(2) Let E: K > H be an equivalence of ecategories.

(a) IfE is the class of all K epimorphisms, then E—(-E-) is the class
of all H epimorphisms. ‘

(b) If M is the class of all K monomofphisms, then E(—IVI) i8 the

elass of all H monomorphisms.

Proof: Consult Appendix 2. @



(3) Let F: K+ Hand G: H + K be equivalences of categories with
GoF = 1K and Fo(G = lH.
(a) (F(B),F(M) is an image-factorization system for H.

®) ©GFD),CEM) = EMN.
Proof: Consult Appendix 2.8

It is now possible to discuss the concept of equivalence of
decomposable systems. In doing so, it is important to point out the
need for specifying a particular choice for countable copower and count-
able power. For example, in the category of linear spaces over the field
K, for any object I, 2 {(io,il,iz,...)likeK and only finitely many iy
nonzero} if I is finite-dimensional (nonzero), and I§ = 1if I is infinite
dimensional. The specific input space which is desired is {(io,il,iz,...)likel
and only finitely many nonzero}, and neither of the two mentioned above

(unless, by chance, they happen to coincide).

Let Sys(K) denote the category of decomposable systems in K. A

morphism from M1 = (Ql,Fl,Il,Gl,Yl,Hl) to M2 = (QZFFZ’IZ’GZ’YZ’HZ) is an

ordered triple of K morphisms (a: I1 > IZ’ b: Q1 > QZ’ c: Y1 - Yz) such that

1 1 1
I > Q > Q > Y
al bl bl cl

G F H

2 2 2
I > Q@ > Q > Y,

commtes. Note that the two systems are isomorphic if and only if a, b, and
¢ are each K isomorphisms.

Let H be another category and let P: K + H be a functor which pre—'
serves countable powers and countable copowers. The commutativity of the

above diagram implies the commutativity of
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P(G;) P(F,) P(H,)
P(I) —> PQ) —i>  P(Q) —=> P(Y;)
P(a) P(b) P(b) P(c)
P(G,) P(F,) P(H,)
P(I,) —=Z> P(Q) > PQ,) —Z> P(Y,)

P(Il) and P(Iz) have countable copowers, and P(Yl) and P(Yz) have count-
able powers, so that P induces a functor, denoted 5: SyA(K) > Sys (H),
given by (Q,F,I1,G,Y,H) » (P(Q),P(F),P(I),P(G),P(Y),P(H)) on objects and
(a,b,c) » (P(a),P(b),P(c)) on morphisms.

Let R: K ~ H be another functor which preserves countable powers
and countable copowers and let t: P + R be a natural transformation.
Define T: Obj(Sys(K)) + Mon(Sys(H)) by (Q,F,I,G,Y,H) » (t(I),t(Q),t(Y)).

The verification of the following is routine.

4 Let P and R be functors which preserve countable powers and
countable copowers and let t: P + R be a natural transformation.
(a) T is a natural trans formation from P to R.

(b) If T is a natural isomorphism, so is T. B
The above result is significant because it leads to the following.

Vv
(5) Let P be a functor. IfP is an equivalence P exists and is

also an equivalence.

Proof: It suffices to note that by (1), equivalences preserve countable

powers and countable copowers, and then to apply (4). &
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If M = (Q,F,I,G,Y,H) is a decomposable system in K and E: K + H
is an equivalence, then in particular E(M) is a decomposable system in

H and the diagram

E(i E
E(I) o), (1Y RARIN (1)
E (1) lE(rM)
MV E(F)
EWQ > E(Q
E
E(qyp) E(q) ®
vV  E@ E(m)
E(Y) > E(Yg) > E(Y)

commutes. Thus, if (E(Ig), {E(ink)|kem}) is regarded as the eanonical
countable copower of E(I) in H and (E(Yg), {E(ﬂk)]kew}) is regarded as the
eanonical countable power of E(Y) in H, then the reachability map of E(M)
is E(rM) and the observability map of E(M) <s E(%) . Note that in general
the reéchability (resp. observability) map of E(M) is unique only up to
isomorphism, and truly unique only after choice of a canonical countable
copower for E(I) (resp. countable power for E(Y)). In any case, the

following is always true.

(6) Let E: K+ H be >an equivalence, and let M be a decomposable
system in K.

(a) ﬁ(M) is E(F)-reachable if and only if M is E-reachable.

(b) LI:I(M) is (D -abservable if and only if M is Meobserv ible.

(c) ﬁ(M) ie (E(E),EQD)-canonical if and only if M is (E,M)-canonical.

Proof: This follows immediately from (1), (3), and (5). a
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This shows that all essential properties of decomposable systems are
invariant under transfomation by equivalence. Equivalence provides the
essential machinery for transformation of a system to one which is cate-
gorically the same. A most important case of this is the following.

Let K and H be categories. A dual equivalence of K and H is a pair

(F,G) where F: K°P > H and G: H°P » k are equivalences such that
GoF°P = 1, and FoGP = 1,. If FoGP = 1 and GoFP = 1,, (F,G) is called

a dual isomorphism of K and H.

The dual equivalence is used to remove from abstraction the idea of
the dual machine. Let M be a decomposable system in K, and let (F,G) be
a dual equivalence of K and H. The abstract dual M°P of M is converted
to the eduivalent system %(M) in H.

The concept of dual equivalence is completely symmetric, since a
functor F: KP » Hvis also a functor F: K » HOP, etc. If N is a decom-

posable system in H, then its abstract dual N°P is equivalent to G(N).

§3 DuaLITY IN LINEAR SYSTEMS‘

As noted above, the concept of dual equivalence permits the replace-
ment of the abstract dual machine M°P in the category KOP by an equivalent
machine in another category H. The particular case of linear spaces is
the subject of this section. K-LS denotes the category of all K-linear
spaces (hereafter called just linear spaces) over the field K, with K-
linear maps (hereafter just linear maps) as morphisms. It will now be
shown that K-|S is not self-dual, i.e., there is no dual equivalence of

K-1S with itself.
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Familiarity with the structure of powers and copowers in K-S
is presumed. Briefly, the dth power of A, Ad (d a cardinal), is just the
cartesian product of d copies of A with componentwise addition and
scalar multiplication. The dth copower of A, dA, is the subspace of Ad
consistihg of precisely those vectors for which all but finitely many of

the projections are 0.

(1) Let d be an arbitrary cardinal.

(a) The dimension of dK zs d.

(b) If d is infinite, the dimension of Kd is kd, where k is the
cardinality of K.

Proof: (a) is obvious.- For (b), consult [11], §9.5(3). @

(2) (a) Every K-linear space is isomorphic to a direct sum (copower)
of copies of K.

(b) There exist K-linear spaces which are not isomorphic to a
product (power) of copies of K.
Proof: (aj is immediate from (la), since linear spaces with the same
dimension are isomorphic.

(b) follows from (1b), since the cardinality k of K is always at
least 2, and so kc'l > 'Nb for infinite d. Since the dimension of Kd for
finite d is clearly d, it follows that no power of K can have dimension

Ny and so spaces of such dimension are not isomorphic to any power of K. 8

(3) K-LS is not self dual.
Proof: Power and copower are clearly dual concepts; they are also cate-

gorical ([5],24.11). By (2a), every K-linear space is isomorphic to a
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power of copies of K. However, there is no linear space A such that

every linear space is isomorphic to a product of A. This is because, by
2.(6b), K will not work, yet K (or an isomorphic copy) is the only possi-
bility, for K is clearly not isomorphic to any power of any space of
dimension greater than 1. Hence power and copower do not have dual proper-

ties, and so K-S is not self dual.®

Hence, some other framework must be used for the modelling of the

duals of linear systems. Recall that a concrete category is a pair (H,U)

where fl is a category and U: H +~ Sgr is a faithful functor (SgT is the
category of sets, with functions as morphisms). The interpretation of a
concrete category (H,U) is that H is a category of sets with additional
structure; the functor U forgets this structure. This idea may clearly

be generalized. Let K be a category. A K-concrete category is an ordered

pair (H,U) where H is a Eategory and U: H »~ K is a faithful functor.

The following special case will prove to be central to the rest of
this paper. Let K = K-|S and let H be a category whose objects are K-
linear spaces which also have a topology, and whose morphisms are con-
tinuous linear maps. The functor U: H + K-|S forgets the topology,
assigning to each linear space-topology pair (E,T) the underlying space E.
The morphisms are mapped identically, so as to preserve the underlying func-
tion.

A categorical duality for linear systems consists of the following.

1. Two K-LS concrete categories (H,U) and (J,V).

2. A dual equivalence of H and J (F:H°P - 7,6:3°P = 1.
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3. A construction for countable powers and copowers in each of
the categories H and J.

4. An exhibition of (possibly several) image-factorization systems
for H and J, together with rules for computing their'transformations
under the functors F and G, in a sense which will become apparent as the

theory is developed.

84 DuALITY WITH DUAL PAIRS

The theory of dual pairs has seen wide application in the theory of
locally-convex spaces, and also in the theory of linearly-topologized
spaces (consult [11]). The purpose of the present treatment is to develop
the essential categorical properties of dual pairs using entirely algebraic
machinery, without any reference to topologized vector spaces. The category
of dual pairs will not be used as a framework for discrete linear systems;
equivalent categories of linearly-topologized spaces will be used. The
purpose of using dual pairs in the initial treatment is (a) to simplify
the overall presentation, and (b) to show that topology is auxillary
(although convenient) to the theory.

Let E and F be linear spaces. A dual pair of E and F is a bilinear

map < , >: ExF » K which satisfies the following two laws.

(D1) (x€E and (YyeF) (<x,y>=0)) ==> x = 0.

]
o

(D2) (yeF and (¥xeE) (<x,y>=0)) ==> y

The dual pair is denoted <E,PF>,
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In a dual pair <E,F>, each element feF can be identified with an
element T of the algebraic dual E* of E via the rule f(e) = <e,f>.
Denote by F the subspace of E* consisting of these elements. F is a
total subspace of E*, in the precise sense that for each e « E, there
is an x « F with x(e) # 0. Conversely, there is a canonical pairing
between E and any total subspace F of E*. Thus, the concept of the dual
pair is a generalization of the concept of a linear space and its algebraic
dual. |

Let <E1,F1> and <E2,F2> be dual pairs, and let g: E1 - Ez be a linear
map. g is compatible (for <E1,F1> and <E2,F2>) provided that there is a
linear map g': F, > F; such that (anEl)(Vyer)(<g(x),y>=<x,g’(y)>). If

g is compatible, the notation g: <E1,F1> - <E2,F2> will be used. It is

easily seen that g' is unique (if it exists) and g': <F2,E2> > <F1,E1>.
g' is called the adjoint of g (for the pairs <E,,Fp> and <E2,F2>). Clearly

g" = g.

The category of dual pairs, denoted K-DP, has as objects the dual
pairs over K and as morphisms the compatible linear maps. A K-DP morphism
g is an isomorphism if and only if both g and g' are bijections.

The funttor11DP: K-DP + K-LS defined by <E,F> » E on objects and
(g: <E1,Ff~9<E2,F2>) » (g: E1+E2) on morphisms is clearly faithful.

@8] (K}DP;UbP) is a K-LS concrete category. @

The association which sends the dual pair <E,F> to the pair <F,E>
and the compatible linear map g to its adjoint g' is easily seen to be a

functor from (K-DP)°P to K-P. Denote this functor by R.
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(2) K-DP is isomorphic to its dual. R <s a dual equivalence of
K-DP with itself.

Proof: I is its own inverse, hence bijective and an isomorphism. B

The category K-DP has countable powers and copowers, the construction
of which is based upon those of linear spaces. Let E be a linear space.
In K-S, -a countable power of E is given by an w-indexed cartesian product

of copies of E, with componentwise operations, and is denoted E The

5"
projections e (kew) are just the canonical maps (eo,el,ez,...,en,...) b ey .

A countable copower of E is given by the subspace of E_ consisting of those

§
elements which have only finitely many nonzero projections, and is denoted

E}. The injections ink (kew) are just the injections e » (0,...,0,e,0,...)

(e in kth place).

(3) K-DP has countable powers and countable copowers. Let <E,F>

be a dual pair.

§

(a) A countable power of <E,F> is given by <E.,F > with the rule

§’
<(e 3€15€5,...),(f ,f ,f .)> B 3 <e.,f.>. The projections are just
1°72 0’1 j=0 1

the linear-space projections, t.e. LA (e e J) be..

1°€92- -
(b) A countable copower of <E,F> is given by <E§,F§> with the same

rule. The injections are just the linear-space injections, <.e.

in; = em (0,...,0,e,0,...), with the e in the i place.
5

Proof: (a) To prove this part, it is necessary to prove that <E.,F°> is

§,
§

a dual pair, and that ™ is compatible from <E_,F°> to <E,F>, for each

§’
i € w. The map on E§ X F§ given by ((e e o) (f R 1, ..))
b Z <ey, f1> is well-defined, since f # 0 for only f1n1te1y—many i. It

i=0
is clearly bilinear into K. Conditions (D1) and (D2) are clearly satisfied,
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§_ . .
so that <E§,F > is a dual pair. For (eo,el,ez,...)e Eg, fj € Fj’
<ni(e0,e1,e2,...),fj> = <ej’fj> = i50<ei,ti> where fi =0if i # j.
However, 'f <ei’fi> = <(eo,e1,e2,...),inj(fj)> in this case, so that ﬂj

1=0

is compatible with adjoint inj. The universality of this pair is verified
as follows. Suppose {gi: éG,H> + <E,F>|icw} is a set of compatible maps.

. §
Define g: G + E° by g(x) = (8,(),8 (X),g,(x),...). gt <GH> » <Eg,F>,
for g' is given by g ((f_,f,,f,,...)) = E g.(f.), i.e., g' is the co-

0’71’72 j=0 1 1

product map induced by 85781:825-++ - The known universality of g in K-|S
completes the proof.

(b) Use (2) to dualize (a). W

From a system-theoretic point of view, the countable copower (resp.
countable power) construction in (3) is the correct one, in the sense of
a proper representation of input (resp. output) signals (see [1]).

The concept of orthogonality is central to the theory of dual pairs.
Let <E,F> be a dual pair, and let S < E. The orthogonal of S, denoted Sl,
is given by S' = {feF| (¥seS) (<s,f> = 0)}. The following properties are
routinely verified.

(4) Let <E,F> be a dual pair with S c E.

(a) S* is a linear subspace of F.

(b) S < st

(c) st =gt n

If S = Sll, S is said to be orthogonally-closed. A compatible linear

map g: <E;,F,> > <E,,F,> is dense if g(El)l = 0.

(5) Suppose g: <E1,F1> > <E2,F2>. g(El)l = keng'. In partiecular, g

i8 injective if and only if g' is dense.
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Proof: Let_f2 € FZ' g'(fz) = 0 <==> (VeleEl)(<e1,g'(f2)> = () <==>
(Ye Ep) (<gle;) ,£)> = 0) <==> £, ¢ g(El)i. ]

(6) A K-DP morphism g: <E,,F> » <E2,F2> 18 a monomorphism if and
only if it is injective, and an epimorphism if and only if it is dense.
Proof: Clearly every injective morphism is monomorphic. Conversely,
suppose g is not injective. Pick x e kerg\{0}, and let p: K = E; be
defined by k » kx. Let <K,K> denote the canonical pairing (x,y) » xy.
p: <K <E{,Fp>, i.e., p is compatible, since it is easily verified
that p': f1!+ <p(1),f1>. The identically zero map 0: K-+ El is clearly
compatible for these same pairs. Since go0 = gop, it follows that g is
not monomorphic. Combine (2) and (5) with the preceding for the epi-

morphism characterization. @

(7) Let <E,F> be a dual pair, and G a linear subspace of E.

(a) <G,F/G"> is a dual pair with <g,[f]> = <g,f>.

(b) Thre canoni¢al injection i: G + E is compatible, and
i':t F > F/G' is the canonical surjection.

Proof: Obvious. ®

A compatible linear map g: <E1,F1> > <E2,F2> is an émbedding
provided that there is an isomorphism i: <g(El),F2/g(E1)l> - <E1,F1>

such that goi is the canonical injection; gei: <g(El),F2/g(E1)l> -+ <E2,F2>;

(8) Suppose g: <E1,Fl> -+ <E2,F2>. Ag is an embedding if and only if
g' is a surjection.
Proof: Suppose g is an embedding. Combining (7b) with the definition of

embedding shows that g' is surjective. Conversely, suppose g' is surjective.



20

Select an isomorphism j: F, - Fz/keng' such that j g' is the canonical
surjection. By (5), kerg' = g(El)l. Hence, by (7a), jog': <F2,E2>
> <F2/g(El)l,g(El)>, so that gej' is the canonical injection. Hence g is

an embedding. B

An embedding g: <E},F> > <E,,F,> is closed if g(E;) is orthogonally-

closed in EZ' A surjection g is open if g' is a closed embedding.

A standard result in category theory states that if every morphism
f in a category K has a factorization f = mee with e an epimorphism and
m an equalizer, then (epimorphisms, equalizers) is an image-factorization
system for K. See [15], 18.4.7 dual, for example. This result will be
used in developing image-factorization systems for K-DP. The following

lemma is the crucial step.

(9) Let g be a K-DP morphism. If g is a closed embedding, then it
is an equalizer.
Proof: Suppose g: <E1,Fl> > <E2,F2> is a closed embedding. There is an
isomorphism i: <g(E1),F2/g(El)l> > <E1,F1> such that gei is the canonical

~ injection, and g(El) = g(El)ll, by definition. Let q: <E,,F,>

2°2
> <E2/g(E1),g(E1)l> be the canonical surjection. Clearly qogei = Qogoi,
where 0: <E2,F2> -+ <E2/g(E1),g(El)> is the identically-zero map. Let

h: <G,H> * <E,,F,> be any K-DP morphism such that qeh = 0sh. Define

k: G ~» g(El) by x » h(x). k is clearly into g(El), because 0 = qoh(x),
which implies h(x) ¢ ker(q) = g(El). Furthermore, k: <G,H> - <g(E1),
Fz/g(El)l>, because k': FZ/g(El)l + H: [yl » h'(y) is well-defined, since

[yl = [y,] ==> Y17Y € 8(E}). Hence the diagram
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<E,Fp> & > <E,,F,> ::g::: <B,/g(E;),g(E))">
FK\\i
<g(B)),Fy/g(E)">
N
<G,H>

commutes. ieck is clearly unique, since g is a monomorphism, by (6).

Hence g is the equalizer of 0 and q. ®

It is now possible to exhibit some of the important image-factorization

systems which K-DP possesses.

(10) The pair (E,M) where E is the class of all dense maps and M is
the class of all closed embeddings is an image-factorization éystem for
K-DP.

Proof: In view of (9) and the remarks preceding (9), it suffices to show
that each K-DP morphism g: <E,,F;> + <E,,F,> has a factorization g = mee

with e a dense map and m a closed embedding. However,

€ L m
<E,Fp> ><g(B)",F,/g(E)) > > <E,,Fp>

with e defined by x + g(x) and m the canonical injection is clearly such
a factorization. Hence, (dense maps, closed embeddings) is an image-

factorization system for K-[JP. #

By duality, the following image-factorization system follows at once.
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(11) The pair (E,M, where E is the class of all open surjections
and M is the class of all injections is an image-factorization system for
K-DP. The image (M RE)) of this image-factorization systeﬁz is the
system (dense maps, closed embeddings).

Proof: Dualize (10), using (5).8
One more image-factorization system is evident.

(12) The pair (E,M) where E is the class of all surjections and M
is the class of all embeddings is an image-factorization system for K-JP.
The image (R(M JME)) of this image-factorization system is the system
itself.

Proof: Let g: <E;,F> > <E,,F,> be a K-DP morphism. Write g as

<Ep,Fp> s <g(B)) F/a(E)Y Ko B F s

h is defined by e » g(e) while k is the-canonical injection. Embeddings
are closed under composition by (8), since surjections are closed under
composition. The rest of the image-factorization properties are clear.

The duality is an immediate consequence of (8). A

85 LiNearR Weak DuaLiTy

Let E be a linear space over the field . A separated topology
on E is called linear provided that it is translation-invariant and has
a neighborhood filter at 0 with a basis of linear subspaces. It is easy
to verify that addition and scalar multiplication are continuous, when

K is discretely topologized. A pair (E,T), where E is a linear space
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and T is a linear topology is called a linearly-topologized space,

abbreviated 1.t.s. (E,T) is usually denoted E[T], or just E if the
topology is otherwise known or unimportant.

Given a dual pair <E,F>, there is a natural linear topology on E.
Let F be the set of all finite-dimensional linear subspaces of F, and
let U = {GeE| (3heF) (G = h')}. U forms the basis at 0 for a linear

topology on E, called the linear weak topology.

This topology is denoted I (F).

A converse relationship may also be established. Let E[T] be a
l.t.s. The set of all f ¢ E* which are continuous for T (K discrete) is
called the dual of E[T] and denoted E[T]' or just E'. E' is clearly a

linear subspace of E*,

(1) Let <E,F> be a dual pair. E[%e(F)_]' =F. Im particular,
<E[Z'ZS(F)],E[$LS(F)] '> 48 a dual pair and %S(F) = %S(E'). Furthermore,
if <G,H> is another dual pair, a linear map g: E + G is compatible if
and only if it is continuous for the topologies IZS(F) on Eand g Je (H)
on G.

Proof: Consult [11], §10,12.(1). ®

Thus, the dual pair <E,F> may be recovered, up to isomorphism, from
just E and the topology T, (F). This is now developed formally.

ALts.E[T] is weak provided that there is a dual pair <E,F> such that |
T = .ZLS(F). The category sK-|TS has as objects the weak 1.t.s.'s and as
morphisms the continuous linear maps. The functor SE K-DP + sK-LTS is
défined by <E,F> » Ii[zzs(F)] on objects and the corresponding identity on
morphisms. The functor &,: sK-LTS + K-DP is defined by E » <E,E'> on
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objects and the corresponding identity on morphisms. In view of (1),

the following result is immediate.

(2) 61 and 62 are equivalences of categories, and Gl°52 = 1SK-LTS’
G,o® =1 .
271 “K-DP

Using the above along with 4.(2), the next result is a routine

verification. Denote by D the functor Glo?QoGZOP: (sK-LT°P -+ sK-LTS.
(3) (Ds,;ps) 18 a dual equivalence of sK-LTS with itself. ®
Furthermore, setting 1 s = ‘uDPoéz ,

(4) (sK—LTS,uS) is a K-LS concrete category.8

The equivalence of (2) allows the immediate transfer of categorical

properties of K-JP to sK-LTS,

(5) sK-LIS #as countable powers and copowers. Let E be a weak LTS.
(a) 4 countable power of E is given by E§ [%S((E')g)] .
(b) A countable copower of E is given by E§ [ZZS(CE')§] N ]

In order to transfer the image-factorization systems of K-JP to
sK-LTS , it is necessary to list some of the properties of weak 1.t.s.'s.

These properties will not be proved here, as proofs can be found in [11].

(6) Let E[T] be a weak 1.t.s. and let F be a linear subspace of E.
(a) Under the induced topology, F is a weak 1.t.s. The induced

topology the same as the topology zZS(E' /FY, computed for the pair
<F, E'/F%>,
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(b) F is T-closed if and only if F is orthogonally-closed for the
pair <E,E'>. Assuming F is closed, E/F is a 1.t.s. under the quotient
topology. This quotient topology is the same as the topology Z’Zs(Fl)
computed for the pair <E/F,F's (F'cE').®

Using these facts, the following associations may be given.

(7) The functors G] and (':52 each preserve and reflect the following
properties: (a) dense map, (b) open surjection, (c) embedding, (d) closed
embedding. Furthemmore a K-LTS morphism is an isomorphism if and only

if it s a homeomorphism. ®

The three image-factorization systems of K-JP transfer easily to

sK-LTS.

(8) Each of the following (Ei’Mi) i an image-factorization system
for sK-[TS.
(@ E
® E,
(©) E3 = dense maps, l"’l3 = closed embeddings.

open surjections, Ml = injections;

surjections, MZ = embeddings;

Their behavior under the duality functor P_ is
@ M), DED) = (EsuMa)s
(e) ®;M), ByED) = (€M)
(£) ®,M), d,E)) = & M.

Proof: ((a)-(c)). The proof of these parts is based upon the following

1]

two observations:
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(i) The functor C-51 is surjective (on objects and morphisms).

(ii) Each of the classes Ei and Mi for 1 < i< 3 is closed under
composition and contains all isomorphisms.

Thus, applying &, to each of the :image-fac':torization systems of K-]IP
listed in 4.(10), 4.(11), and 4.(12), the result follows.

((d)-(£f)). On one hand, it is clear from the definition of ;Ds,
along with 4.(7) and 4.(8), that D () <M, ; and D) < E,_; for
1< i< 3. On the other hand, since f and M determine each other in an
image-factorization system (E,M) (Consult [5], 33.6), it follows from

(a)-(c) that each of these inclusions is an equality. ®

56 LINEAR MackeY DUALITY

This section presents a theory of linearly-topologized spaces which

is entirely parallel to that of §5. A 1.t.s. E is linearly-compact if

every filter on E which has a base éonsiting of linear submanifolds of
E has an adherent point in E.

Given a dual pair <E,F>, a natural linear topology can be defined on
E as follows. Let C be the set of all I, (E) -linearly-compact subspaces
of F, and set U = {G<E|JceC) (G=cl) . It can be shown (consult [11]),

that U is the base at 0 for alinear topology on E, called the linear

Mackey topology. This topology is denoted by .‘J:Zk(F). A 1.t.s. E[T] is
called Mackey provided that there is a dual pair <E,F> such that
T = %k(F). The following result corresponds to 5.(1).
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(1) Let <E,P> be a dual pair. B[:I’Zk(F)]' = F. In particular,
<E[2_"Zk(F)],E[.3'Zk(F)] '> 48 a dual pair and.‘I'Zk(F) = ILk(E'). If <G,H>
i8 another dual pair, a linear map g: E + G is compatible if and only if
it is continuous for the topologies ZZk(F) on E and ‘zlk (H) on G.
Proof: Consult [11], §10,12.(1). B

The category kK-LJS has as objects the Mackey 1.t.s.'s and as
morphisms the continuous linear maps. The crucial observation is the
following. Define a fimctor U sK-LTS =+ kK-LTS by Elg (E")] -~

E[“'Zik(E')] on objects and the corresponding identity on morphisms.

(2) & is bijective and hence an isomorphism of the categories

sK-LTS and XK-LTS.
Proof: Combine the results of (1) and 5.(1).H

This isomorphism cuts greatly the amount of work which must be done

in developing the properties of K-ITS. Let ® =¥.® ¥ 1P
(3) ®B) i a dual equivalence of K-LTS with itself. §
Define the functord: K-LTS > KeLS by ¢, = Uso:fl
(4)  (KK-LTS,%) ¢s a K-LS concrete category. W

(5) XK-LTS has cowntable powers and copowers. Let E be a Mackey
LTS.

(a) A countable power of E is given by E¢ [sz((E')g)].

(b) A countable copower of E is givén by B [R’Zk((E')g)] . B
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In order to transfer image-factorization systems, some non-
categorical results are necessary. The proofs are not given here, as

they can be found in [11].

(6) Let E[T] be a Mackey l.t.s,, and let F be a linear subspace on E.
(a) F ie not neceesarily a Mackey 1.t.s. under the induced topology.
(b) F is T-closed if and only if F is orthogonally-closed for the
pair <E,E'>.
Assuming F ie closed, E/F is a Mackey 1l.t.s. under the quotient topology.
The quotient topology is the same as the topology szk(Fl), computed for
the pair <E/F,F'> (F'<E'). @

Call an injection g: E[TE] -+ F[TF] of Mackey 1.t.s.'s a Mackey
injection if the canonical map i: E[Tg] + g(E) [, (E'/g(E)M)] is an iso-
morphism. The following is an easily-verified chart of transformation

under J.

(7) The following chart gives the transition of selected classes of

morphisms under traneition of the isomorphism J.

Concept in sK-LTS Concept in KK-LTS.
dense map —>  dense map
open surjection —— open surjection
embedding — Mackey injection

closed embedding <> closed Mackey injection. B
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(8) The following pairs (Ej,M;) are image-factorization systems for
KK-LTS.

(@ E

®) E

() Ez = dense maps, M; = closed embeddings.

open surjections, Ml = dense maps;

surjections, MZ = Mackey injections;

The behavior under the duality functor P, is
@ @), D ED) = Ezlly)s
(@ @), B D) = (E,My);
® ®0, D ED) = ELM). a

§/ DiscreTE AND LINEARLY-ComPACT DUALITY

Sections 4-6 presented two duality theories in which the category
in which the systems were modelled was dually-equivalent to itself.
However, in neither case could such a category be equivalent to K-|S
(see 3.(3)). In this section, a dual equivalence involving K-LS is
developed. As in tﬁe previous development, the theory is first developed
in the framework of dual pairs without any mention of topology, and then
equivalences to categories of 1.t.s.'s are exhibited.

A dual pair <E,F> is maximal if I: = E*(or equivalently, <E,F$ = E,E*).
The category KD is the full subcategory of K-DP whose objects are pre-
cisely the maximal dual pairs. Conversely, a dual pair <E,F> is minimal
if E = F* (or equivalently <E,F> = <E* E>). The category K-TM is the full

subcategory of K-DP whose cbjects are precisely the minimal dual pairs.
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Note that the functor Pmaps KD into 4-DM and K-IM°P into
K-MD. Define the functors D' K-MD°P -+ K-IM and P K-DM°P + K-MD
to be the restrictions of the functor$. The following result is immedi-

ate,

(1) The categories K-M) and K-DM are dually-isomorphic. The pair
%,‘}lm) 18 a dual equivalence (in fact a dual isomorphism) of K-M) and
KD »

The following illustrates the importance of this duality.

(2) Let <E1,F1> and <E2,F2> be dual pairs, and g: E1 > E2 a linear
map. If <E1,F1> ig maximal, then g is compatible. In particular, in
K-MD every tinear map is compatible.

Proof: Assume <E;,F;> is maximal. The map h: Fy + El* defined by
fz g <g(-),f2> is clearly linear. Let i: ﬁl > E’l‘ be the canonical iso-
morphism £, # <+,f,>. The map i"%oh is the transpose of g, so g is

compatible. §

Define the functor le K-MD ~ K-LS by <E,F> & E on objects and
the corresponding identity on morphisms. The functor £,: K-LS > K-D
is defined by E b <E,E*> on objects and the corresponding identity on

morphisms.

(3) Ql and 22 are equivalences of categories, and QIOCZ =1
e2° Q]_ = lK_ ¢

Proof: The proof is an immediate consequence of the definitions. R

K-LS’
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The dual of K-|S is characterized by the following. The proof is

not given, as it can be found in [11].

(4) A l.t.s. E is linearly-compact if and only if it is isomorphic
to F*[ZLS (F)] for some linear space F. #

Let cK-TS denote the full subcategory of sK~|TS consisting of pre-
cisely the linearly-compact Z.t.s.’s. Note that by (4), the functor Gl maps
K-DM into cK-LTS and & maps ck-LTS into K-DM. Define &: K-IM + cK-LTS
and G,: cK-LTS + K-DM to be the restrictions of these functors. In view

of (4), the following holds.

(5) €, and &, are equivalences of categories and €6, =

Cp& =1 .8

1
CK-LTS’

The dual equivalence of K-|S and cK-LTS now emerges. Define the
functors D;: K-LSPP + cK-LTS by D; = € R QP and B.: kLTS + K-LS
by . = Qlo%f (52013. The proof of the following is a routine verification.

(6) (P32 is a dual equivalence of K-S and cK-|TS. ®

Familiarity with the construction of countable powers and copowers

in K-|S has already been assumed. To translate these results to cK-LTS,

the path K-LS + K-MD + K-DM + (-LTS will be used.

(7) KD has countable powers and copowers. Let <E,F> be a maximal
dual pair.
(a) A countable power of <E,F> is given by <B§,(E§)*>. The pro-

Jjections are the linear-space projections.
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§

(b) 4 couniable copower of <E,F> is given by <E ,E§>. The injections

are the linear-space injections.

Proof: (a) is obvious. To verify (b), it must be shown that <E§ ,E§>

= <E§,(E§)*>. Since 4.(3) already shows that <E§,E§> is a dual pair, it
remains to show that I’ZZ§ = (Eg)*. Let u ¢ (Eg)*. Define u; « F by

§

<e,u;> = <ini(e),u> . Clearly, for (eo,el,ez,...) e EY, <(e0,el,e2,...),u>

(=] .

= L <e;,u;>. Since only finitely many of the ei's are nonzero, the u;'s .
i=o

may be arbitrary. The map u+» (uo,ul,uz,. ..) is thus the required iso-

morphism from (Eg)* to E§.l
Duality immediately produces the following result.

(8) K-DM has countable powers and copowers. Let <E,F> be a minimal
dual pair.
(a) A countable power of <E,F> is given by <E§,F§>. The projections
are just the linear-space projections.
A countable copower of <E,F> is given by <(F4§)*,F§>. The injections

are the transposes of the linear-space injections.®
In temms of ci-LTS, the translation is as follows.

(9)  cK-LTS has countable powers and countable copowers. Let E be a
linearly-compact 1.t.s.

(a) 4 countable power of E is given by E§ [Zzs (Eg)] . The projections
are the usual linear-space projections.

(b) A countable copower of E is given by ((E')g)*LZiS(B')g]). The

iniections are the trcmspéses of the usual linear-space projections.®
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The analysis of image-factorizatioﬁ systems is similar. It is
assumed known that (surjections, injections) is an image-factorization
system for K-LS, and that 'surj ections = epimorphisms and injections
= monamorphisms (consult [1]). Since f < epimorphisms and M < mono-
morphisms for any image-factorization system (E,M), (surjections, injec-
tions) is clearly the only image-factorization system of K-|S. To
obtain image-factorization systems for cK-_ TS, the same chain of reason-

ing as for products and coproducts is used.

(10) K-MD has (surjections, injections) as its only image-factori-
zation system.
Proof: By 2.(2) and 2.(3), the only image-factorization system of K-M) is
(CZ (surjections), Qz(injections)) , Wwhich is routinely verified to be

(surjections, injections).®

(11) Let g: <E,,F.> ~ <E2,F2> be a compatible injection. If

1’71

<E2,F2> 18 maximal, then <E1,E1> 18 also maximal and g is8 an embedding.

Proof: Each linear functional on g(El) is of the fom x & <x,f2> for some
~ * ‘

f2 e F,, since F, = E, and g(El) < E,. Furthermore, f2 ¢ F, vanishes on

g(El) if and only if f2 € g(El)'L. Hence, since g is injective, the map

| i: g(El) -+ E1 defined by x » g'l(x) is compatible, i: <g(E1),F2/g(E1)l>

-+ <E1,F1> is an isomorphism, and gei is the canonical injection. Hence g

is an embedding and <E,,Fp> is maximal. @

(12) K-DM has (surjections, injections) as its only image-factorization

system.
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Proof: By the duality, (1) and 4.(6) and 4.(8), it suffices to show that
(dense maps, embeddings) is an image-factorization system for K-M).

By (10), this amounts to showing that dense maps = surjections and
embeddings = injections in K-M)). embeddings = injections follows at

once .from (11). It remains to show that every dense map is surjective. -
However, every epimorphism is surjective by (10) and 2.(2), and every
dense map is epimorphic by 4.(6). Hence every dense map is surjective

in K-D. ®

(13)  K-LTS has as ite only image-factorization system (surjections,
injections).

Proof: Similar to (10).8

It should be noted that each of the categories of this section has
only one image-factorization system, so transformtion under equivalence
and dual equivalence is unambiguous, and need not be explicitly noted.

One final formality is .the K-|S-concreteness of cK-|TS. Define
the functor u.: cK-LTS = K-LS by u. = uDP°I°GZ’ where I: K-M)< K-DP

is the inclusion functor.
(14) (cK—LTS,UC) is a K-L.S-concrete category. B

Thus cK-LTS is a concrete model of (K-|.S)P.
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§8 ExaMPLES

In this section, various examples illustrating the duality theory
just developed are given. The following notation will be fixed. I
always denotes the input space, Y the output spate, Q the state space,
G the input map, H the output map, F the state transition map, r the
reachability map, o the observability map, and £* the total response of
the system currently under consideration. Primes will be used to denote
the transposes corresponding to the dual system.

First, it is necessary to develop some facts which are great aids in

simplifying examples involving finite-dimensional linear systems.

(1) Let <E,F> be a dual pair, and suppose E is of finite dimension n.
(a) <E,P> is maximal, and so E is also of dimension n.
(b) The only linear topology on E is the discrete topology.
Proof: (a) Suppose dim F = k < n. Since dimF* = k also, F* is a proper
subset of E, which is impossible. Hence dimF = n.
(b) Follows immediately, since a linear topology is separated and the

intersection of finitely many neighborhoods of 0 is again a neighborhood. &

(2) Let <E,P> be a dual pair. Every finite-dimensional subspace G
of E 18 orthogonally closed. If G is n-dimensional, G has codimension n
in F.
Proof: Let G be a finite-dimensional linear subspace of E. <G,F/Gl>
is a dual pair by 4.(7). By (1), this pair is maximal, so G represents
all linear functionals which vanish on G*. Hence G = G't. The pairing

~S
<G,F/G"'> shows that G has codimension n in F, since F/Gt = G*. 8
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(3) Let g: <E),Fp> > <E,,F)> be a K<DP morphism. Every factoriza-
tion of g

<E,Fp> € > GH P <E,,F,>

with e an epimorphism,A m a monomorphiem, and G finite-dimengional is
wnique up to isomorphism of the middle element. Furthermore, e is always
a sﬁrject’ion. »

Proof: e must be surjective since an epimorphism is dense by 4.(6) and
every subspace of G is orthogonally-closed by (2): Hence G is determined
Up to isamorphism by the usual K-|S (surjection, injection) factorization.

By (1a), H is detemmined up to isomorphism by G, so the proof is complete. W

(4) If <E*E> is maximal, then E is finite-dimensional.
Proof: If E*E is maximal, then }E = E**, However, since E is iso-
morphic to a coproduct of dim(E) copies of K while E* is isomorphic to a
product of dim(E) copies of K (consult [11] for details), 3.(1) shows
that dim(E**) > dim(E) if E is infinite-dimensional. a

The first example to be considered is the standard finite-dimensional

linear system, governed by the equations

q(t+1)
y(t)

F(q(t)) + G(i(t))
H(q(t)).

Here q(t), i(t), y(t) are the values of the state, input, output at
time t. The input space I = Kn, the output space Y = Kp , and the state

space Q = Kn, where m, p, and n are positive integers. Thus F = Kn - Kn

b
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G: K"+ KP, and H: | > KP. Using 1.(1), the system diagram is

in yA

>(K“) —_— cld“)§
\ l T i lr
lc\

cKP)§ — @) ——— P

Since (Km)§ and (Kp )§ are each infinite-dimensional, neither of
these spaces is reflexive, by (4). Thus, even in this special case, the
operation of taking purely algebraic duals will not work, since the
bidual will not be isomorphic to the original machine. It will now be
shown how each of the duality theories previously developed overcomes
this difficulty.
For the cases of sK-L[S and kK-LTS, it is easiest to work directly
in temms of dual pairs, and to transfer over to linear topologies later.
The spaces K" , Kn, and Kp are each finite-dimensional, and so by (1a)
must be paired with spaces isomorphic to themselves. By 4.(13), (Km)§
should be paired with (K", and (KP)¢ with (®)%. Ssince both <M°, 1>
by 7.(7)) and <™, K (by (1a)) are maximal, r and o are compatible by 7.(2).
Thus, the entire diagram below is commutative in K-])P, with each

map compatible.
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YA
K> —2— <UD —— <™, (™

\ I . I
<|(n , Kn> > <|(n s Kn>
k o

Z
<P, ()’ ———  <(PKDS > <P, (P>

Working directly in K-DP, the dual of this system is obtained by
transposition of both dual pairs and maps. The following diagram gives

the dual of this system in K~-JP (Note that z' = z).

AP —2s <P, (DS ——> <P, P,
\ Jlo' i} Lov
K", K> > <LK
J/rv Lr, \
Z

WM K> ——— <™, (M5 —2 g

The next step is to convert these dual pairs (via equivalence) to the
proper l.t.ss. First note that in either case (sK-LTS or kK-LTS), the spaces

K", K", and kP must each carry the discrete topology by (1b).

Case 1 - (sK-LTS). The topologies Q’zs((K" )g) on (K“)'§ and
zzs((Kp)g) on (Kp)§ must be determined. The corresponding topologies for
the dual system are entirely analogous. <(Km)§,(|(m)§> is a maximal dual
pair, so it follows from (2) that the linear weak topology on (Km)§ has
as a basis of neighborhoods of O all subspaces of finite codimension. Since

each Km is discrete, this may be further reduced to a basis consisting of
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all sets of the fom (U,U;,U,,...) c (K™°®, where U; = K™ for all but
finitely many i, for which Uu; = 0. Similarly, since a basis for (Kp)§
is given by elements of the fom (0,0,... ,O,Xi,O,.. .) where X; ranges
over the elements in a fixed basis {xl,... ,xp} of KP, the linear weak
topology on (Kp)§ has as a basis of neighborhoods of 0 sets of the fomm
(U,,U;5U,,...) where U, = KP for all but finitely many i, for which u; = 0.
This is just the product topology.

Diagramatically, the duality of these two systems is given below.

Only the nondiscrete topologies are indicated.

Z

in
K" —2— KM°1Z;, () > K™ 12, (KM )]
r

I l

Orlginal ™\ Kn F S Kn
System lc lo - H
zZ
WPy [, (1)) > (1P) [, (1)) —2= P

in
0

Z
\ () 12, (Y] —— 1)’ I3, ((1P) )]

H' "~ ‘!’0' B j'c'
Ny > @

lr' lr'&

z T
K[, (KD —— (M1, (KD —2> K

K.

Dual
System

Note that while the dual system is not exactly that which is
specified by the duality of §5, it is certainly isomorphic to it. For

this example, this particular isomorphic copy was easier to characterize.
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Finally, the questions of reachability and observability must be
treated. By (3), the system is reachable (respectively, observable) for
some image-factorization system of sk-|TS if and only if it is reachable
(respectively, observable) for every such image-factorization system .
(Finite-dimensionality of the state space is crucial in this argument).

The requirement is the surjectivity of r (respectively, the injectivity

of 0), just as in the K-|S case. Note, however, that if some other
realization of oor which is not finite-dimensional (such as the free
realization) is considered, the properties of reachability and observability

may indeed depend upon the image-factorization system under consideration.

Case 2 - (KK-LTS). The analysis is exactly the same as in case 1,
except that the Ik rather than the Is tdpologies are used. Again, these
need only be determined for the infinite-dimensional spaces. To do this,
certain results which cannot be proved here are used. They are stated

below; proofs can be found in [11].

(5) Let <E,P> be a dual pair.

(a) ﬂ'zk(F) 18 the strongest linear topology on E such that F = E.
[+

(b) The topology ,?,'Zk(Fg) on E§ i8 the product topology 1 ZZk(F). |
i=o

From the above, it follows that the topology j’ik( (Km)g) on (Km)§
is the discrete topology, since <(Km)§,(|<m)§> is maximal, by 7.(7b). The
topology Q‘Zk((l(p )§) on (P )§ is just the product topology (which is the
same as QZ‘?((I(IJ)§ )). The dual topologies are computed similarly. The rest

of the analysis is the same as case 1.
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Case 3 - (K-LS and cK-LTS). The system will be regarded as in
K-LS and its dual in cK-|JS. Thus, referring to §7 and in particular

7.(7), the duality amounts to transposition of the diagram

in
o]

K" > <iM°, Mg
T

e

«7,K™> <K7,K"
lo lo \

Z w ‘
<P, (1P —> <P, (P> —2 4P, KP>

z §
> <KD, KM
T

In tems of linear topologies, the dual system is as follows.

[TT)' z!
P —— (P)1)*17, 1] — (PR *IT, (1P)e)]

\ Y O“
H' \ v
F!

1 Il
K > o
T' r!

| \

' z m
KD [Z, (K] —— (O[T, (K™ 5] —— K.

Only the nondiscrete topologies are shown. The topology Ils((Km)_g)
on (K“)§ is just the product topology, as shown in case 1. The topology
3’18((Kp) §) on ((Kp)g)* has no easy exemplification. Note that ((Kp)g)*
is not even algebraically isomorphic to (Kp)g, so that the input space of
this dual machine does not have the algebraic copower sfructure of K—LS.
Thus, this dual may be regarded as somewhat inferior to the other two.
Its main purpose is to show exactly what the dual of a discretely-topolo-

gized linear machine must look like. The result below (which is proved
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in [11]) combined with (5b), shows that cK-| TS is the only category of

1.t.s.'s for which the duality with K-|S works.

(6) Let <E,F> be a dual pair. ."I’Zs (F) is the weakest linear

topology on E making E =E'. If E[ﬂ’zs (F)] 28 linearly compact, then
Ls® =T P B

The second example to be considered is designed to show that there
is a system total response 18, Y such that both I and Y are finite-
dimensional, yet every canonical realization of % has an infinite-dimen-
sional state space. For this example only, it is aseumed that K has

characteristie zero.

Let I =Y = K, and define £4: Ig’-»-Y§ by
Coe S 1. 21, 2o,
1 317,155¢00) B (2 =———1i. I =% 1., I == 1i.,...).
(0’ 122 ) (j=o j+1 j° j=0 J+2- j? j=o 7+3 1J, )

Suppose i = (io,il,iz,...) € K§. The equation f‘(i) = 0 is equivalent

to the matrix equation

1 1 1 1 .

1L 3 3 7 % |1,
11 1 1 1 ||,

7 %3 T 3T 7 ||y

1 1 1 1 1 _.|.

3% %5 % 7 2 — 0
1 1 1 1 1 .|

T 5 § 7 %

) =
o™
~J—=
o =
g
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However, the n x n matrix (aij) with aij = —l%j- is nonsingular, being
a special case of Cauchy's matrix. Consult [10] » P. 36 for details.
Hence i = 0, since only finitely many of the ik's are nonzero. This
means f4 is injective., Thus 4 is a monomorphism in each of the categories
considered, regardless of topologies or pairings. This means that for
any factorization - mee, e is a monomorphism (mee monomorphic ==> e
monomorphic, see [5], 6.5). Hence, for any realization of f‘, the
readlability map r is injective, so the dimension of the state space Q is

at least as great as the dimension of I§

, which is No' Hence every reali-
zation of f4 has state-space dimension of at least Ny-

Since <K§,K§> is maximal, by 7.7(b), f? is compatible by 7.(2), for
the pairs £, <K§,K§> > <K§,K§>. Furthermore, since the above matrix
is symmetric, it is easy to see that 2 = £ for these pairings.

The topologies on 18

and Y§ are exéctly as developed in the first
example, and so need not be repeated. The structure of the canonical
realizations for sK-L]S and kK-LTS, however, are quite interesting and
will be analyzed in detail. The analysis will be done in K-DP first.
The problem is to factor £2: <K§,|(§> + <K§,K§> in each of the three

image-factorization systems (open surjections, injections), (surjections,

embeddings), and (dense maps, closed embeddings). The factorization

A
1
Kok —> Kk S KK

is clearly a (open surjections, injections) factorization. The factoriza-
tion £21 is also a (surjections, embeddings) factorization. However, the

middle pairing must be adjusted so that £ is an embedding. Since A is



44

injective, A" is dense. Since £4 = f‘, <K§,f‘(K§)> is a dual pair
under the operations induced by <K§,K§>. Furthermore, £t <K§;fA(K§)>
> <K§,K§>, and is clearly an embedding by 4.(8), since its transpose is
a surjection by design. Since 1: <K§,K§> -+ <K§,f‘(K§)> is compatible by
7.(2), it follows that

~ ) A
KK —= L edh> S oK

is a (surjections, embeddings) factorization of £, Finally, since
fA' = fA, it follows that £ is dense. Thus

A

§
Kok L Kok L KK

is a (dense maps, closed embeddings) factorization of £,

Thus, there are at least three distinct concepts of canonical
realization for this system. Since f" = % for the pairs <K§,K§>,
’ <K§,K§> it is easy to describe the duals of this system. In view of 4.(10)
-4.(12), a dual of the (open surjections, injections) factorization is the
(dense maps, closed embeddings) factorization and conversely; A dual of
the (surjections, embeddings) factorization is just that factorization
itself. Note that in two of the three factorizations, the definitions of
reachability and observability change, even though the category remains
the same. |

The topology of the state space in each of these cases is easy to
determine. In the (open surjections, injections) case, it is the same as
the input space, and in the (dense maps, closed embeddings) case, it is
the same as the output space. Only in the (surjections, embeddings) case

is additional analysis necessary.
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In the sK-LTS case, the topology Sas(fA(K§)) on K§ is just the
subspace topology of K§[£§S(K§)], by 5.(7c). However, note that this
subspace topology is induced via the map f‘, and not the canonical
injection.

In the kK-LTS case, the t0pologyyﬂak(f‘(K§)) on K§ is not necessarily
the subspace topology of K§[£Qk(K§)], by 6.(6a). The characterization of
this topology is not simple and will not be treated here.

The rest of the details of this example are similar to those of the
first example and will not be repeated here.

The realization in K-|S and its dual in cK-|TS raise no new ideas
over those discussed in the first example, since each category has only
one image-factorization system. Hence this model will not be analyzed
here.

Needless to say, the full power of this theory has not been illustrated
by these examples, since both I and Y may be infinite-dimensional. The
general theory handles such cases as easily as it handles the most basic
case. However, examples of such, while simple in principle, are extremely

complicated in temms of illustrating the topologies.

§9 HILBERT-SPACE DUALITY

This section outlines a technique which gives a duality theory for
discrete-time linear systems in the category of Hilbert spaces. It is
assumed that the reader knows the terminology and classical results of

Hilbert-space theory.

In this section, let K denote either the real field K or the complex

field C, each with its usual nondiscrete valuated topology. K -§) denotes
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the category whose objects are Hilbert spaces over K and whose morphisms
are continuous linear maps f: E + F which map the unit ball of E into
the unit ball of F. In this case, the adjoint f': F + E maps the unit
ball of F into the unit ball of E. Hence, there is an automorphism
Yof K -5 given by the identity on objects and f+ f' on morphisms.
Furthermore, Q] is its own inverse, so that ,%) is a dual isomorphism of
K-%. Hence, as outlined in §3, it suffices to exhibit a construction
for countable power and copower, and some image-factorization systems, in
order that K -fi have a duality theory for linear systems.

To construct a countable copower in K —ji, let lZ(E) denote the

space of all sequences (eo,el,ez,...) on the Hilbert space E for which

I |ei|2 exists. zz(E) is a Hilbert space with the inner product
i=o

<(egs®y38p0ere) s (£, 5, Eppenn)> = I <ey,f;>. Denote by i > 2% E)
(kew) the map e, © (0,0,...0,e,0,...), with the e in the ith place.
CKZ(E),{iniliew}) is a countable copower for E. By duality, (KZ(E),
{(ini)'liew}) is a countable power for E.

K -gi has two interesting image-factorization systems, (quotient
isometries, injections) and (dense maps, closed isometries). The functor
QItransforms each of these to the other. The author does not know of an

image-factorization system for K - & which is self-dual.

510 ReMARKS CONCERNING THE LITERATURE

[1], [8], [9], and [14] each contain arrow-theoretic approaches to
duality theory for discrete-time linear systems, each restricted to the

case in which the input, state, and output spaces are finite-dimensional.
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In [8] and [9], Kalman works directly with the total response

f‘

: I§ +Q > Ye» algebraically transposing it to get (f‘)*:

(Yg)* +> Q* ~» (I§)* for the total response of the dual system. Unfortu-
nately, neither I§ nor Y, are reflexive, unless they are 0, so that this
approach is in error. In [14], Rissanen and Wyman note this fact, and
constructed from scratch a topology T for Y§ which amounts to %k( (Y*)g),
and then take the topological rather than algebraic dual of Ye. Since
(Ig)* = (I"‘)§ (recall that I is finite-dimensional), the transposition
to (f‘)': (Y§ [T >~ Q* » (Ig)* does yield a total response for a finite-
dimensional system. Thus, in a sense, [14] may be interpreted to be a
special case (finite-dimensional) of the Mackey duality (§6) presented in
this paper.

In [1], Arbib and Manes present a categorical approach to duality
within a category for finite-dimensional systems. They, of course, use
the decomposable-system framework, rather than working directly with £,
They postulate that the category K has a subclass F of "finite-dimensional"
objects and a ''transposition rule' *: K(A,B) - K(B,A) for all A,B ¢ F.

The machine M = (Q,F,I,G,Y,H) is dualized to M* = (Q,F*,Y,H*,I,G*) and the
reachability and observability maps (which operate partially on the
"infinite-dimensional' spaces 1° and Y§) are cleverly constructed using

the universal properties of 15 and Y§. Their dual machine M* is algebraic-
ally isomorphic to the dual machine which is constructed using the Weak

or Mackey dualities of this paper. Their approach, however, does not appear |
to be readily extendible to infinite-dimensional systems.

Linearly-topologized spaces have been around since at least 1942
([3] and [12]). However, they appear to be relatively unknown outside of

a few special areas of mathematics. (11] is the only known systematic
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treatment of this topic to the author; [6], however, contains a few
results on infinite-dimensional linear spaces. The present paper certainly
appears to be the first to use l.t.s.'s in system theory.

Finally, it should be noted that the categorical theory of decompos-
able sYstéms has recently been extended to the time-varying case by Arbib
and Manes [2]. It would certainly appear that the duality theory pre-
sented in this paper can be extended to the time-verying case using the

approach in [2], although the details have not been worked out.
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APPENDIX 1 CoMPARISON OF LINEARLY-TOPOLOGIZED AND
ToroLoGIcAL VECTOR SPACES

The purpose of this section is to briefly show the relationship
- between the theory of linearly-topologized spaces and topological vector
spaces over R (real numbers) and ( (complex numbers). For the purposes

of this section, a topological vector space over R or ( will mean a

vector space E, together with a separated topology T such that the
operations of addition and scalar multiplication are continuous when the
field is given its usual nondiscrete valuated topology. Let E[T] be a
topological vector space over R or (, and let U denote the neighborhood
base at 0 for E[T]. By [11], §15, 1.(2), one of the conditions which
must satisfy is:

For each U € U and each x ¢ E there is a positive integer n such
that X € nU.

In words, this condition says that each neighborhood of 0 is absorbent
(radial at 0). However, the only linear subspace of E which has this

property is clearly E itself. Thus,

(1) If E[T] <s both a l.t.s and a topological vector space over R
or (, then E £ 0.0

Hence, for all practical purposes, the two concepts are disjoint.
The reason for choosing linear topologies far the basis of this paper lies
in the fact that they apply to linear spaces over any field. The theory

of topological vector spaces applies only to R and (.
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Also, the theory developed in this paper shows that the essence of the
theory is algebraic and not topoiogical, and so the introduction of
topological vector s;;aces would be a needless tangent. However, the
reader familiar with the duality theory of locally-convex spaces will note
that when the field is R or (, the Iinear topologies used in sections 5-7
may be replaced by their locally-convex counterparfs, thus yielding

isomorphic theories. In the notation of [11], %s is replaced by.'l;
and %k by .‘I’k.
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APPENDIX 2 ImaGE FACTORIZATIONS AND EQUIVALENCES

Recall that in a category K, an image-factorization system is a
pair (E,M) satisfying the following axioms:

Al. [E consists of epimorphisms and M consists of monomorphisms.

A2, Both [ and M contain all isomoxphisms.

A3. Both | and M are closed under composition.

Ad. Each morphism f has a factorization f = mee, with e € F and

A5, If f= myee; = m,yoe, with €18, € E and m,m, € M, there is

an isomorphism i such that

comnutes.
In [5], A2 is replaced by the following axiom:
A2'. Both | and M are closed under composition with iscmorphisms.
To use the results of [5], it must be shown that these axiom

systems are equivalent.

(1) The axioms Al1,A2,A3,Ad,A5 are equivalent to Al,A2',A3,Ad4,AS.
i)rc;of: Clearly A2 and A3 imply A2'. Conversely, suppose Al,A2',A3,A4,A5
hold. Let 1 be an identity, and let 1 =moe with e ¢ F and m ¢ M.

e = eomoe and since e is an epimorphism, eem = 1. Hence both e and m
are isomorphisms. Now if i is an isomorphism, i = ieece L = iomem L.

Hence, by A2', i ¢ £ and i ¢ M. Hence A2 holds. K
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Let F: K + K be a functor, and let P be é property of objects,
morphisms, or diagrams. F preserves P provided that for each object,
morphism, or diagram k in K with property P, F(k) also has property P.

F reflects P promded that for each object, morphlsm or dlagram h in H
with property P, F(k) = h implies that k has property P. o

Recall that a functor F: K + H# is an equivalence provided that there
is a functor G: H + K and natural isomorphisms n: 1’< * GoF and Tt: 1, > FoG.

A functor F: K + H is faithful provided that for each pair of K-
objects (A,B), the restricted morphism function F A B K(A,B) + H(F(A),F(B))
is injective, and full if the same function is surjective. F is

representative (dense in [S]) if every H-object C is isomorphic to F(D)

for some K object D.

(2) A functor is an equivalence if and only if it is faithful, full,
and representative.

Proof: Consult [5], 14.11. ®

(3) Every equivalence preserves and reflects epimorphisms,
monomorphisms, and isomorphisms.

Proof: Consult [4], 12.10.8

Let F be any class of K morphisms. The smallest class of K mor-
phisms which contains M and all isomorphisms and which is closed under

composition is called the closure of F and is denoted F.

(4) Let E: K + H be an equivalence, and let F be a class of K-mor-
phisms. If F =T:; then each f ¢ E(F) is of the fom icE(g)ej, with g ¢ E,

and i and j isoﬁzorphisms.
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Proof: Let f ¢ E(F). f is clearly of the fomm ilc'E(gl)oizoE(gz)a...c»in
oF (gn) °in+1’ where each ik is an isomorphism and each g; € F. However,
each element of the fom E(gk)oik+1°E(gk+1) can be written as E(h)

for some h € F, since E is full. The assertion now follows easily by

induction. @

(5) Let E: K+ H be an equivalence.

(a) IfE is the class of all K epimorphisms, then ]—STE) 18 the class
of all H epimorphisms.

(b) IfM is the class of all K monomorphisgms, then :E_(_M*) 18 the
elass of all H monomorphisms.
Proof: (a) Clearly E = E, and [ contains all isomorphisms. Hence (4)
shows that each f ¢ :E—(f) is an epimorphism, since E preserves epimorphisms,

by (3).

Conversely, suppose f: A + B is an H epimorphism. Since E is repre-
sentative, there are K objects C and D and isomorphisms i: E(C) -~ A and
j: B~ E(D). Since isomorphisms are epimorphisms, jofei is an epimorphism
and since E is full, jofei = E(g) for some K morphism g. g is an epimorphism
since E reflects epimorphisms, and f = j—loE(g)oi_—l. By (4), fe :E(_E)

(b) is dual to (a).®

(6) Let F: K~ H and G: H + K be equivalences of categories,
n: 1y + GoF and T: 1, + FeG natural isomorphisms, and (E.M) an image-
factorization system for K.

(a) (f«‘_(—E),IEaVﬁ) 18 an image- factor'izatioﬁ system for H.

®) (GFE),GEM = EM.
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Proof: (a) By (5), F(E) consists of epimorphisms and 1;(—M—) consists of
monomorphisms. By definition, each is closed under composition and con-
tains all isomorphisms.

Let f: X > Y be a H morphism; Since F is representative, there are
K objects A and B and isomorphiéms i: F(A) +X and j: Y » F(B), and since
F is full, there is a K morphism .g: A > B with F(g) = jofei. Let
g =mee withe e Eandm e M. F(g) = Fm)oF(e), so £ = (5 LoF(m))o (F(e) oi" 1)
with 57 1Fm) € FQD, Fle)oi™! ¢ F(E).

Suppose f = M, o€y = m,oe, with €8, € F—(—E) and m, ,m, € EQW) Using
(4), these can be written as e, = jloF(hl) oil, e, = jZoF(hZ)oiz,
my = j3°F(h3)°13’ m, = j4oA(h4)oi4, where each ik and jk is an isomorphism,
and hy,hy € E, hghy ¢ M. By assumption, j3eF(hg)eizeji oF(hy)oiy =
J4oF(hy) o1y235oF(hg) oy, oF FlhgledgeiieF(hy) = j3lej,oF(hy) oiyei,oF(hy)
oi2 oiil. Since F is full and reflects isomorphisms, there are K isomor-
Phisms x;,%;,%5,%, with F(x;) = g0, FGx,) = 33103, B(xg) = iged,,
and F(x;) = iyei]'. Hence F(hg) oF(x,)oF(h,) = F(x,)oF(hy) oF(x5)oF(hy)o Flx,),
or F(]13oxloh1) = F(x2 oh4ox30hzox4). Since F is faithful, hsoxloh1
= xzoh4ox30h2 °X4. By definition of image-factorization system, there is

an isomorphism y such that
by 7\ \B3%

hz°% /z"h4°x3

commutes, since hl,hzox4 € E, and h:,,o)cl,xzoh4<>x3 e M. Finally, applying

F to the above diagram and reshaping,

I3
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F(h)) 7 1 N
iy ' "2
: F
12\. (Y)v /J'4

R N, Y Awy
A

2 - 74

commutes.. Since F preserves isomorphisms, F(y) is an iscmorphism, so
the above diagram shows that the factorization is unique up to isomorphism.
() By (a), GEFEE), C(m))) is an image-factorization system for K.

In particular, G(F(F)) contains all ismndrphisnls and is closed under

composition. By (4), f € G(F(E)) is of the fom f = 1106(j; °F(g)e],)ed,
for some g e E, jq»3, H isomorphisms and i,,i, K isomorphisms. Thus,

£ = 17 96(j;)°6(F(g))°G(j,)ei,. From the diagram

n
A A > GoF(A)
g ‘ GoF(g)
g
> GoF(B)

with NyoNg isomorphisms, it follows that GeF(g) = nBogénAl. Hence

f = iloG(jl)onB gon;\%oG(jz) °i,. Now G(jl) and G(jz) are K isomorphisms,

since G preserves isomorphisms. Hence f ¢ E, so G(F(E)) < E. The opposite

inclusion is obvious, so that G(F(E)) = E.

The proof that G(FM)) = M is dual. ®
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