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ABSTRACT

Three basic problems of system theory are (a) specification of
external behavior from internal dynamics, (b) realization of internal
dynamics from external behavior, and (c) description of system character-
istics in terms of characteristics of its dual. All of these problems
are investigated for linear, continuous-time systems within a categorical
framework.

The crucial observation for (a) is that, for many categories
K of locally-convex spaces, the forgetful functor from the.category
of differentiable semigroups over K to K has both a left and a right
adjoint. This gives a categorical construction of the input-output
behavior of any linear-differential system whose state-transition map
is the infinitesimal generator of a differentiable semigroup.

Realization is done within the context of an image-factorization
system for the category K. Canonical realizations may be obtained for
a wide variety of such image-factorization systems.

The categories of differentiable semigroups over the categories
of Mackey spaces and weak spaces provide examples for which the general
duality theory applies. The usual results of duality between reach-

ability and observability are obtained within this context.



A CATEGORICAL APPROACH TO CONTINUOUS-TIME LINEAR SYSTEMS
INTRODUCTION |

In Kalman's algebraic theory of discrete-time linear systems over
a field K [28], a system with input space I, output space Y, and state

space Q all finite-dimensional vector spaces, described by equations of

the form

q(t+l) = £(q(t)) + g(i(t))
(1)
y(t) = h(q(t))

with £f: Q + Q the state-transition map, g: I » Q the input map, and h:

Q -~ Y the output map is given. t (an integer) represents the current time,
q(t), i(t), and y(t) represent, respectively, the state, input, and

output at time t. The input-output behavior of such a system can be
described by a K[z]-module homomorphism between a free module Q (the

space of input sequences) and a cofree module I' (the space of output
sequences). Conversely, a K[z]-module homomorphism between a free

module Q over I and a cofree module I' over Y defines uniquely (up to
isomorphism) a reachable and observable discrete-time linear system
specified by equations as those above (although fhe state spacc need

not be finite-dimensional).



A main purpose of this report is to show that it possible to develop
analogous techniques for continuous-time linear systems. The internal
behavior for such an approach would logically be described by equations

of the form

9%5&: £(q(t)) + g(i(t))
y(t) = h(x(t)) ,

where I, Y, and Q are now finite-dimensional vector spaces over the

real field or the'complex field. However, just as later work (see

Arbib and Manes [3]) showed that the assumptions of finite-dimensionality
were not necessary to the Kalman approach, SO too it is possible to
consider differential equations over vector spaces which are not finite-
dimensional. The appropriate starting point to such an extension is to
view £ (in the finite-dimensional case) as the infinitesimal generator of
the one-parameter semigroup T(t) = eft; If an input signal drives the
system to state q, at time t = 0, the state of the system at each t 2 0
(for zero input after t = 0) is just eft(qo). There are basically two
ways to extend this to infinite-dimensional spaces, and these are in

turn grounded in the two great'theories of locally-convex spaces, the
theory of normed spaces and the theory of nuclear spaces. These extensions
will be entirely disjoint, since the only nuclear spaces which are normable
are the finite-dimensional ones. The theory of one-parameter analytic

semigroups on Banach spaces is well-developed (see [197, [26], [41], and

[51]), and it certainly seems possible to develop an algebraic theory of
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continuous-time systems along these lines. However, this approach
requires dealing with densely-defined linear maps which are not continuous,
-and all spaces involved in theory must be normable, as most of the useful
properties of normable spaces are lost when they interact with other
locally-convex spaces. On the other hand, there is an elegant theory of
tensor products of nuclear spaces with arbitrary locally-convex spaces
(including normable spaces) (see Grothendieck's monograph [22] for details).
Also, spaces of infinitely-differentiable functions and spaces of distri-
butions are generally nuclear (and generally not normable), so that
derivation may be interpreted as a continuous operator, rather than a
densely-defined discontinuous operator. Unfortunately, the theory of
one-parameter analytic semigroups on spaces of infinitely-differentiable
functions, spaces of distributions, and related spaces is not as well
developed as its Banach-space counterpart. Waelbroeck's abstract [49]
appearé to be the only work in print. However, the development of a
complete theory is reasonably straightforward, and this task is under-
taken in §1 of this report. Such semigroups are termed differentiable
semigroups.

Attention in this paper will be restricted to systems based in the
theory of differentiable semigroups. The structure of a differential
system over a subcategory K of the_category of locally-convex spaces is
that of a 6-tuple (Q, f, I, g, Y, h), where Q, I, and Y are K objects,
and £:Q > Q, g:1 > Q, and h:Q > Y are K morphisms, with f the infinitesimal
generator of a unique differentiable semigroup T on Q. The system may be
thought of as being governed by the equations (2) (in a sense to be made

precise in §2); the state trajeétory for time t 2 0 with state q, at



t = 0 and zero input after t = 0 will be just T(t)(qo), in harmony with
the finite-dimensional case (all diffecrentiable scemigroups on finite-
dimensional spaces are of the form tw eft).

Returning now to the problem of producing an external behavior from
an internal description such as (2), it is useful te recall the approach
used in the discrete-time theory of Arbib and Manes ([1]-[6]). A
category K and an endofunctor X (called the process functor) are
fixed. The category Dyn(X) of X-dynamics is then formed, with objects
pairs (Q, &) with Q € Okj(K) and 5} X(Q) + Q a K morphism, and morphisms
f: (Q,8) >~ (Q',8') just K morphisms £: Q » Q' such that §'of = fog. The
basic results of the theory rest upon the hypothesis that the forgetful
functor U: Dyn(X) ~ K : @Q,8) » Q ﬁas a left adjoint and a right adjoint;
a process having both such adjoints is called a state-behavior process.
A large number of processes are state-behavior; in particular, 1R-mod’
the identity functor on the category of left R modules (R a ring) ;;—
state-behavior, and its use as a process recaptures the theory of discrete-
time linear systems.

In the approach of this paper, the category Dyn(X) is repalced by
the category [SG(K) of differentiable semigroups over K (K is a
subcategory of the category of all locally-convex spaces). The crucial
hypothesis here is that the forgetful functor F: DSG(K) + K taking each
semigroup to its underlying locally-convex space has both a left adjoint
and a right adjoint. This is shown to be the case for several important
categories of locally-convex spaces. The space of input signals (corres-
ponding to Q above) turns out to essentially a space of I-valued

distributions. The space of output signals (corresponding to I' above)



turns out to be exactly E(R+,Y), the space of all infintely-differentiable
functions from the non-negative reals into Y. The details are all
developed in §2.

Conversely, given a differentiable-semigroup morphism k which repre-
sents the external behavior of a continuous-time system, it is shown in
§3 that a unique (up to isomorphism) canonical realization of k can be
obtained (with respect to a particular image-factorization system, of
course). Thus, a complete theory for going from internal to external
behavior, and from external to internal behavior is given in tnis
paper.

Another mainstay of modern system theory is the duality between
reachability and observability. 1In §4, a duality theory for continuous-

time linear systems is presented which recaptures the classical results.

$0 TERMINOLOGY AND NOTATION

The pufpose of this section is to explain the notation and
terminology used in this paper. In general, only notation which is
less-than-standard or particular to this paper is included. References
to works where the reader may find discussions of standard results and
terminology are provided.

Within each section, formal facts are numbered consecutively, starting
with 1. Within a section, referencc to a fact is made by giving its
number. Reference to a fact in another section is made by giving its

section followed by its number.



Category Theory

For category theory, the references [25], [37], and [43] are used.

Let K be a category. 0bj(K) denotes the class of K objects, and
Mor (K) denotes the class of K morphisms. Moxy(X,Y) denotes the set
-of K morphisms from the K object X to the K object Y.

Let F: K -~ H and G: K +'H be functors, and let n: F -~ G be a natural
transformation. If H: J - K 1is a functor, n*H is the natural transformation
given by n*H(j) = n(H(j)). If K: H +J 1is a functor, K*p is the natural
transformation given by K*n(h) = K(n(h)).

A functor F: K+~ H 1is called an embedding if it is injective on
morphisms (caution: MacLane [37] called a faithful functor an embedding).

F is called representative if each h ¢ .0bj(H) is isomorphic to F(k) for

some k € 0bj(K). For any two K objects X and Y, FX Y MonK(X,Y) >
Mory (F(X),F(Y)) denotes the restricted morphism function.
The following useful terminology is introduced for this report.

"Let F be a functor. A two-sided adjoint situation for F is a 5-tuple

(F,L,R,n,%), where L and R are functors and n and ¢ are natural trans-
formations, such that L is a left-adjoint to F with unit n and R is
right-adjoint to F with counit z.

KOP denotes the opposite of the category K. The convention that
K9P has the same objects and morphisms as K is followed.

Because of its importance, the definition of image-factorization

system is repeated here. Let K be a category. An image-factorization

system for K is an ordered pair M), where F is a class of K epimor-

phisms and |} is class of K monomorphiéms such that both E and M are

o



closed under composition and contain all isomorphisms, and such that
every K morphism f has a factorization mee with e € F and m € |, which
is unique up to isomorphism of the middle element in the sense that if

m,°e; is another such factorization, then there is an isomorphism i
:i///(\\\sz
&/‘I

commutes. (e,m) is called an (E,M) factorization of £. It should be

such that

noted that in [25], a slightly different definitidn is used, but the
two definitions can be shown to be equivalent ([24], App. 2).

The symbol = is used as an abbreviation for '"is isomorphic to''.

Topology 7
The reference for topology is [13].

R+ denotes the non-negative reals, with the usual topology.

@, denotes the non-negative rationals.

N= 0,1,2,... is the set of natural numbers.

Let X and Y be sets, and let H be a set of maps from X into Y. If
U is a subset of X, H(U) = h h(U), and if V is a subset of Y,

- 1
HL(V) = 4o, W (V).



Locally-Convex Spaces

The references for the theory of locally-convex spaces include
(121, [231, [27], [33], [36], [39], [40], [42], and [48].

K denotes either the field R of real numbers or the field C of
complex numbers, each with their usual topology-. K is to be fixed in
any particular context.

l.c.s, is an abbreviation for locally-convex, separated, topological
vector space over K. |(S denotes the category whose objects are the
l.c.s.'s over K, and whose morphisms are the continuous linear maps.

U(E) denotes the set of all convex neighborhoods of 0 of the
l.c.s. E.

A subset U of a 1.c.s. E is called a barrel if it is closced,
absolutely convex, and absorbing; and U is called bornivorous if it
is convex and it absorbs every bounded subset of E. E is called barreled

(resp. quasi-barreled, resp. bornological) if every barrel (resp.

bornivorous barrel, resp. bornivorous set) is in U(E).

E' denotes the dual of E.

<E,F> denotes that E and F form a dual pair which separates points.
Polars in dual pairs are denoted by the symbol °.

A continuous linear map f: E » F of l.c.s.'s is called a dense

map if £(E) = F, a homomorphism if it transforms neighborhoods of 0 in

E into neighborhoods of 0 in f(E), a quotient map if it is a surjective

homomorphism, an embedding if it is an injective homomorphism, and
closed if f(E) is closed in F.
MS (resp. WS) denotes the full subcategory of |(S consisting of the

Mackey (resp. weak) l.c.s.'s, with ¥ WS > MS the natural isomorphism.



9

(S denotes the full subcategory of | (S consisting of the complete
spaces. The inclusion functor (S<* |(S has a left adjoint, the completion
functor, which is denoted by oM is only unique up to isomofphism,
but a standard choice of completion will be assumed to be used, unless
otherwise noted. (Note: A completion of E is denoted by ﬁ or (E)A,
not "(E).)

An 1.c.s. is quasi-complete if each of its closed, bounded subsets

is complete. QC denotes the full subcategory of L(S consisting of the
quasi-complete spaces. The inclusion functor QC < L(S has a left adjoint,
the quasi-completion functor, which is denoted . The same remarks

apply to this case as to completion.

Special Locally-Convex Spaces

Consult, in particular, [23] and [36] for discussions of the concepts
below.
An (F) space is a l.c.s. which is metrizable and complete (also

called a Fréchet space).

A (DF) space is a l.c.s. which admits a fundamental sequence of
bounded sets, and for which every bounded set of its strong dual which
is the union of a sequence of equicontinuous sets is equicontinuous.

The strong dual of an (F) (resp. (DF)) space is a (DF) (resp. (F))
space.

A (B) space is a complete 1l.c.s. whose topology is defined by a
single norm. A4n l.c.s. is a (B) space if and only if it is simultaneously

an (F) space and a (DF) space.
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An (S) space (also called a Schwartz space) is an l.c.s. for which

every continuous linear mapping into a (B) ‘space is compact.

Spaces of Linear Mappings

Consult [12], [23], and [42] for detailed discussions of these
concepts.

Let E and F be l.c.s's. L(E,F) denotes the linear space of all
continuous linear maps from E into F. Let © be a set of bounded

subsets of E which is covering in E (i.e., u® = E). On L(E,F), the

topology of & convergence is defined to have as fundamental neighborhoods
of 0 sets of the form {f|f(A) c U} where A ¢e® and U € U(F). The
topology is denoted Lg(E,F). The neighborhood {f|£(A) < U} is denoted
N(A,U).

The saturated hull of ® is the smallest class of subsets of E

containing & along with arbitrary subsets, scalar multiples, and closed
absolutely-convex hulls of finite families of its elements. The
saturated hull is denoted ®; L (E,F) = L&(E,F) always.

Three particularly important cases of the above are when ®= all
finite sets, ® = all weakly-compact convex sets, and &= all compact
sets. They are denoted, respectively Ls (E,F), Lk (E,F), and Lé (E,F),

and are called the topology of simple (or weak or pointwise) convergence,

the topology of Mackey convergence, and the topology of compact

ConVergence B
When F = K, Lg(E,F) is denoted E'. E_ (resp. E,) denotes L_(E!,K)

(resp. L,(EL.KD)-
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When E = F, L(E,F) (resp. LgE,F)) is denoted L(E) (resp. Lg(E)).

Bilinear Maps and Tensor Products

Consult [12], [22], [23], [44], [45], and [48] for detailed treatment.
Let E, F, and G be 1.c.s.'s and let F: ExF » G be a continuous

linear map. For the purposes of this paper f is called hypocontinuous

if it is hypocontinuous with respect to the bounded sets of each space,
i.e., for each V¢ U(G), A < E bounded, there isalUe N(F) such that
f(Ax1)) € V, and for each V ¢ U(G), B < F bounded, there is a W ¢ U(E)

such that £(WxB) < V. A family of equihypocontinuous maps is defined

similarly.

(1) Let E, F, and G be l.c.s.'s with G quasi-complete (resp.
conplete), and let f: E x F > G be bilinear and hypocontinuous. If
every bounded set of E (resp. %) is contained in the closure of a
bounded set of E, and if every bounded set of F (resp. %) 18 contained
in the closure of a bounded set of F, then f has a unique extension

£:ExF-0 (resp. BB x P 5 G) which is hypocontinuous.
Proof: Consult [23], Ch. 3, Prop 10. 8

The notations f and f introduced in (1) will be used in the course
of the text.
On E®F, there are several topologies of importance. The ¢ (or

projective) topology is the strongest making the canonical surjection

p: E x F > E®F continuous, and is denoted Ee F. The B (or hypocontinuous)

topology is the strongest making p: E x F - E®F hypocontinuous, and is

denoted EGBF. The 1 (or inductive) topology is the strongest making

p: E x F » EeF separately-continuous, and is denoted E®1F.



Differentiable Functions and Distributions

The theory used here is essentially that developed by Schwartz [44]-[47].
Em(R+,E) (m e N or m = «) denotes the space of all m-times continuously-
differentiable functions on the l.c.s. E. The symbol D always denotes
the differentiation operator in this space. The topology of Em(R+,E) is

defined by the family of seminorms of the form ¢ + sup u(Dq¢(t)) where
tek

<
is a continuous seminorm on E, K < R, is compact, and p ¢ N with p < m.
Ifm= o, Em(R+,E) is denoted simply E(R,,E).

The mean-value theorem extends easily to El(R+,E).

(_2) Let E be a l.c.s., f € El(R+,E), o a .continuous seminorm on
E, and I = [a,b]c R+ a compact, connected interval with b > a.

(a) oa(f(b)-f(a)) < (b-a) supo(Df(t)).
tel

- Df(a)) < supo(Df(x)-Df(a)).
tel

() obE)

Proof: The proof is essentially the same ‘as the case in which E is a
normed space. See for example [11], Ch. 1, 2, Th. 2 and Cor. 3., or
[17], 8.5.2 and 8.6.2. W&

In case E = K, the space E(R,,E) is denoted E(R,). E(R,) may be
identified as the quotient of E(R) (= infinitely differentiable functions
defined on all of R) modulo the subspace consisting of the functions which
are 0 on ]-»,0]. Indeed, this quotient may be identified (topologically)
with subspace of E(R+) which contains at least the restrictions of all
polynomials. However, these are clearly dense in E(R+) (use Stone-

Weienstrass), whence the result.
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The strong dual of E(R,) may thus be identified with E'(R,), the
space of all distribution on R with their support compact and contained
in R+. E'(R+) is a bornological, complete, reflexive (hence barreled) (F)
space, since E(R+) is an (F) and (S) space (see [23], Ch. 4, Part 3, §4

for details).

81 GeNerAL PROPERTIES OF DIFFERENTIABLE SEMIGROUPS

Basic Concepts

The idea of the differentiable semigroup is originally due to
Waelbroeck [49]. However, his axioms are weakened here somewhat, in

order to allow a larger class of semigroups.

Let E be a 1.c.s. A map T: R+ > LS(E) is called a differentiable
semigroup (abbreviated d.s.g.) on E if it satisfies the following three

properties.

(sy) T(0) = 1.
(sz) T(t1+t2) = T(tl) o T(t,) for each t1, ty € R, -
(55 T e E'QR,.L,(E)).

lim T(t)-1
t->0 t
of T, and is denoted g Note that the condition (53) says precisely

lim T(t+h)-T(t) L
B0 —————H—————-(x) exists for each t ¢ R,, and x ¢ E, and that the

The element € LS(E) is called the infinitesimal generator

that

assignment is linear and continuous.

(1) Let E be a L.c.s., and let T be a d.s.g. on E.
(@) T e ER,» L, (E))
(®) DPT(t) = (g)PeT(t) = T(t)o(gp)®, for each p < N.
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Proof:
1im

DT(t) = h*0 T(t+h%-T(t! lim M () T(h)- = T(t) o1 11m T(h)-1 _ T(t)og, -

h>0

Clearly T(t)eg. = g.°T(t). The proof is completed by induction. §
9t = 971

Let S: R~ L, (E) and T: R, ~ L (e) be d.s.g.'s. A d.s.g. morphism

from S to T is a continuous linear map f: E -~ F such that

g Sk
Tt
F Tt _F

connutes for each t € R When no confusion can result, the d.s.g.

.
morphism which f represents will be identified with f.

Let K be a subcategory of [(S. The category whose objects are
d.s.g.'s on objects of K and whose morphisms are d.s.g. morphisms
represented by morphisms of K is denoted JSG(K). [SG(CS) is denoted
by just DSG. Note that f is an isomorphism in JSG(K) if and only if
it is an isomorphism in K.

A very important characterization of E(R,,E) and hence d.s.g.'s
will now be developed. Denote by A(R+) the subspace of E'(R,) consisting
of the distributions of which have finite support. The elements of
A(R+) are just linear combinations of elements of the form DPGt, where

pel and §, is the Dirac measure at t « R, (see [47], Ch. III, Th. XXXV).

The next results gives some important properties of A(R,).

(2)(a) AR,) s dense in E'R,)
(b) Every bounded subset of E'(QR,) is contained in the closure

of a bounded subset of AR,).

4
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(c) The strong dual of A(R,) <s EQR,).
(@) A(R,) is a (DF) space.
(e) AR,) is quasi-barreled.
(£) E'(R,) s a quasi-completion and a completion of A(R,) -
Proof: (a) is obvious.
(b) Let UO, Ul’ Uz, ... be the fundamental sequence of barreled neighbor-
hoods of 0 in E(R,) given by U = {¢ « ER,) |sup
- xe [0,Kk]

. qsk
E'(R,) is the strong dual of ER,, so (UO)°, (Ul)°, U,)°, ... is a

D% x)| < 1/k}.

fundamental sequence of bounded sets in E'(R,). Denote by B, the
restriction of (Uk)° to AR . B, is surely bounded in A(R+), and it
suffices to show that (Bk)° < U for then (Bk)° = U (all polar taken
in <€'(R,), E(R,)>). However, it is clear that ijGt € By for each

j <k, te[0,k], sothat ¢ ¢ (B)° = IDJ¢(t)| < 1/k for each j <k,

t e [0,k], i.e., ¢ € Uk'

(c) This follows immediately from (b).

(d) This follows immediately from the definition of (DF) space since
the strong dual of A(R,) is an (F) space.

(e) If f ¢ E(R,) is zero at each t « Q, thenrclearly f = 0. Hence

B = {6t|§ e Q,} is dense in E'(R,), since (B°)°® = 0° = E'(R,) for the
pair <E'(R,),E(R,)>. Hence B is a fortiori dense in A(R,). Now every
separable (DF) space is quasi-barreled ([36], §29, 3.(12)), and since
B is clearly countable, it follows from (d) that A(R,) is quasi-barreled.
() D'(R+) is complete. Hence it is a completion of A(R+) since

A(R,) is dense in E'(R,) by (a). E'(R,) is also a quasi-completion

of A(R+) since A(R+) is a (DF) space, by (d), and a quasi-complete
(DF) space is complete ([23], Ch. 4, Part 3, Prop. 4, Cor. 2). |
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Let E be a 1.c.s. -Define the map Qﬁ: AR,) x E(R+,E) + E by
(DPGt,¢)'4-DP¢(f).‘ This map is cleafly bilinear. Much' more is true,
inrfact. First, a notation is given. If ¢ ¢ E(R,,E) and e' ¢ B',
<p, e'> denotes'the function t » <¢(t),e'>, a slight abuse of notatibn.'

t o <¢(t),e'> is clearly an‘elemeht of .E(R,).

(3) Let E be a l.c.s.
(a) For x € A(R+) $ € E(R+,e), and e' ¢ Bf, <¢E(x,¢),e'> = x(<¢,e'>).
(b) QE'is hypocontinuous.
Proof: (a) is immediate.
(b) Let V € U(E) be a barrel. Let A be an absolutely-convex closed
bounded subset of E(R+,E),'and let B be an absolutely-convex closed
bounded subset of A(R+). It suffices to find U ¢ U(A(R+)) and
W e U(E(R,,E)) such that ¢E(UxA) c V and ¢E(BXW) c V. It suffices also
to assume that V is the closed unit Semiball of a continuous seminorm o
on E. |

A is bounded, hence for any compact K c R;, pel,

-sup sup a(Dq¢(x)) =M<
peA xeK
qsp

Hence,

sup sup |<¢(x),e'>] < M,
¢eA xeK
e'eV qs<p

i.e.,{<p,e'>|pe A, e' ¢ V} is bounded in E(R,). Put
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U= {<p,e'>|¢p ¢ A, e' ¢ V}° ..

sup | <o (x,0),e'>| = sup [x(<t,e>)| = sup |x()| =1
XeU - xeU - : xeU
de : - PeA o yeU®
e'€vo . e'evo . .
_ Hence @E(UXA) c V. | | |
Next, B is the polar of a neighborhood of 0 in E(R,) (polar for

the pair <A(R,), E(R,)>). Say B° = {¢ « ER,) sup I0P(x) | <&}
Xe )

. a4=p. ,
for some K « R, compact, p ¢ , £ > 0, without loss of generality.

Put W = {¢ ¢ ER,,E) supa(DFo(x))
. XeK

IA

£}. Now -

qsp

sup ' |<ep(x,9),e'>| = sup |x(<¢,e'>) ] =1,

XeB xeB
deW ' deW
eeV® e'eV®

since ¢e W, e' ¢ V= <¢,e'> ¢ B°. Hence <1>E(B><W) cV. ®

o (x,6) is called the extension of x to Vector-valued functions.

If E is quasi-complete (for‘ example), then <I>E hés a unique (hypocontinuous)
- extension &: E'(R) x E(R,E) ~ E, in view of (2b and e). It is easy
to see that this extension is exactly the extension of disfributions to
vector-valued ﬁnﬁcti.dns, as developed (in an entirely different manner)
by Schwartz [45] . |

With these preliminary results, the chafacterization theorem for

_E(R+,E) may be stated and proved.
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(4):Let Ebeal.c.s. There is.ﬁn igomorphism it E(R+,Ej +>
LB(A(R+),E) given by ¢ » (x H—¢E(x,¢)).  The invérse of this map ig 1
Ee (te f(st)). | | | | | |
'Proof: It is‘easy to see that fo (tw f(ét)) is both a left and a right
inverse to i, so that i is a bijection, The continuity of i is an
immediate consequence of the hypocontinuity of ¢E»‘ Tb show that i'l,
: is'contipuousg let U e'N(E(R+,E)). Without loss,of generality, it
suffices to assume that U = {¢-e E(R+’E)Ii2§ a(Dp¢(t)j < 1} for some

qsp | '
compact K < R, p ¢ N, and o a continuous seminorm on E. Now set V

equal to the unit ball of o, and let A =‘{bq6t € A(R+)|q <pand t e K}.
Clearly i_l({flfﬁAJCV}) < Uy so it suffices to show that A is bounded.
However A° = {{ ¢ E(R,) sup | pH(z)| < 1}, which is in UCER,).-
. Hence A is bounded, and gi il is continuous. i
Besides giving a ;haracteiization of E(R+,E), (4) is very gSeful

in characterizing d.s.g.'s. By (la), each d.s.g. T on the l.c.s. E is
in E(R+,LS(E)); hence by (4), in Lb(A(R+),L8(E)). Howéver, not every

T e Lb(A(R+),Ls(E)) is a d.s.g., for (sl) and (s,) must also be satisfied.
However, if A(R+) is régarded as an algebra under convolution

Pl wpf2s . f1'P2

D8, *D °6 ) ‘ .
ty t, ‘ t,+t,, and LS(E) as an algebra under composition,

then it is easy to see that T e L,(d(RD,L (E)) is a d.s.g. if and only

if it is an algrebra homomorphism.

Differential Equations

The problem of recovering a d.s.g. from its infinitesimal generator

will now be investigated. As will be seen, this can always be accomplished.



19

(5) Let Ebe a l.c.s., and let T be a d.s.g. on E.

(a) For every e € E, the map f: R, + E given by t » T(t)x is in
ER,,E).

(b) The canonical map AT,E: E~>ER,,E) given by X b (t e T(t)x)
18 continuous.

Proof: The proofs are immediate. B

The notation AT E introduced in (4) will be used as a definition
later in the paper.

For purposes of this paper, a linear differential équation

on the 1.c.s. E is an equation of the form Du = Au, with A ¢ L(E).

A solution to this linear differential equation with initial condition

u(0) = x (xeE) is a £ ¢ E'(R,,E) such that £(0) = x, and for cach
teR,, (DE)(t) = A(f(t)). A differential equation for which A is the
infinitesimal generator of a d.s.g. has the unique-solution property,

and will now be shown.

(6) Let E[T] be a L.c.s., f ¢ ER,,E[TDH. If Tl is another
topology on E which has a base of neighborhoods of 0 consisting of
bornivorous barrels of T, then f e E(R+,E[T1]).

Proof: 1In view of (4), f may be regarded as an element of Lb(A(R+)’
E[T]j. However, since f: A(R,) > E[T] is continuous, the inverse image
by £ of a bornivorous barrel is a bornivorous barrel. However, a(R,)

is quasi-barrcled, by (2e¢), and so f: A(R+)~> E[Tll is continuous. 8
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(7) Let E and F be l.c.s.'s and let B be a covering set of bounded
subsets of E. For every AcE and every barrel UeN(F), N(A,U) is closed
in Lg(E,F).
Proof: It suffices to show that for each x ¢ E and U ¢ U(F) barreled,
N({x},U) is closed in LS(E,F), for if this is true, then for any A < E,
N(A,U) = ngN({X}’A) is closed in LS(E,F), since the intersection of
closed sets is closed. Since LB(E,F) is finer than LS(E,F), N(A,U)
will be closed in LB(E,F) also. Hence, let x ¢ E, and let U ¢ N(F) be a
barrel. Let o be the Minkowski functional of U, i.e., U = {y ¢ F|a(y) = 1}.
Suppose f ¢ N({xJF,U)) (closure in LS(E,F)). For each ne N\{0}, there is
a fn e N({x},U) such that f-fn € N({x}, 1/n U). Hence f = (f-fn) +
fn e ({x}, 1/n.U) + N({x},U) = N({x}, r‘1';:11.'0). Hence f « ngi ({x}, E%l U) =
@ n+l

N({x}, ngl E%E-U).. However 0, —

"n e N\{0} = {y € Fla(x) < 1} = U. Hence f ¢ N({x},U), as was to be

‘U={y e F | E%l--on(x) < 1 for each

shown. @

(8) If Eis a l.c.s., Tad.s.g. on E, and B a total set of comvexz,
eircled, and complete bounded subsets of E, then T ¢ EGR+,LB(E)). In
particular, T e E(R+,LC(E)).

Proof: First assume B is covering. LS(E) and LB(E) have the same bounded
sets ([42], Ch. III, 3.4) and each barreled neighborhood of 0 in LB(E)
is a barrel in LS(E), by (7). Hence LB(E) has a base of neighborhoods

of 0 consisting of bornivorous barrels in LS(E). Hence, by (6),

T ¢ ER,,lg(E)).
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If B is not covering, set B=Bus. By the above, T € ER,,
Ly(E)), and since the B topology is finer than the B topology
T e E(R+,LB(E)) also. 1§ |

The unique solution property may now be stated.

(9) Let E be a L.e.s., Ta d.s.g. on E, and x € E. The differential
equation Du = gTU has a unique sblution with u(0) = x, wﬁich 18 given by
t» T(t)x.

Proof: Clearly f is a solution of Du = g4 with u(0) = x. It remains

to verify the uniqueness of the solution. Let g ¢ El(R+,E) be a solution
with g(0) = x. Let y ¢ R,\{0} and define g’: [0,x] > E by te» T(y-t)g(t).
For t ¢ [0,y], t + h e [0,y],

gyct+h)h— g’ (t) _ T(y- (“h))&(tﬁh) - T(y-t)g(t)

_ (Ty-(t-h)) - T(y-t))g(t) , T(Y-t)(g(ﬁ+h)-g(t))

_ (T(y-(t+h)) - T(Yﬁt))(g(t+h - g(t)

As h > 0, the first term tends to -(gToT(y-t))g(t), while the second

term tends to T(y-t)oDg(t). The third term approaches 0 since

{g(t+h) - g(t)|0 < h < ¢} is compact, and T(y—(;+h)% - T(y-t) converges
uniformly on each compact set, by (8). Hence Dgy(t) =-(DoT(y-t))g(t) +
T(y-t)°Dg(t) = -T(x-t)°9;g(t) + T(x-t)°Dbg(t). Thus Dg” (0) = 0, since

ng(t) = Dg(t). Now by the mean-value theorem, for any seminorm o
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continuous on E, a(g’ () -gy(O)) < sup a(Dgy(z)), so g/ (y) = gy(O).
0<z<x
Hence S(0)g(y) = S(y)g(0), and since y is arbitrary, g(t) = S(t)g(0) =

S(t)x for all t € R,. Hence the solution is unique. 8

A consequence.of the above is that an infinitesimal generator

uniquely determines a d.s.g.

(10) Let Eand F be a l.c.s.'s with S a d.s.g. on Eand T a d.s.g.
on F. For a continuous linear map f: E > F to be a d.s.g. morphism from

S and T, it 18 necessary and sufficient that the diagram

commutes. In particular, if gg = gp, then S =T.

Proof: The condition is clearly necessary. Conversely, let x ¢ L,
and suppose fogS = gTof. The functions t & f(T(t)x) and t » T(t)(f(x))
are each solutions to the differential equation Du = gqu with u(0) =
f(x), as is readily verified. Hence, by (9), they are equal, so that

foS(t) = T(t)ef for all t <R . N

The d.s.g. determined by the infinitesimal generator g will be

denoted T .
n g
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There does not seem to be any reason to believe that given a 1l.c.s.
E, each f ¢ L(E) is the infinitesimal generator of some d.s.g. on E.
However, it will be shown later that this is the case if E is a (B)

space.

Examples

Some important examples of d.s.g.'s will now be given. Let E be
alc.s. lfteR, and fe ER,,E), the left-shift map f.: R, + E is
defined by r » f(t+r). It is clear that ft € E(R+E), and that the
map GE(t): fe ft is in L(E(R,,E)). Thus, define S R, =~ L(ERR,,E))

by tr (fr ft). The verification of the following is trivial.

(11) Let E be a l.c.s. G is a d.s.g. on E(R,,E) with g5 =D. @

E

%

Dualization provides the next example of a d.s.g. construction.
Let E be a 1.c.s. and let T be a d.s.g. on E. The dual of S is the map
T': R, > L(E') given by te» T(t)'.

Let E be a 1.c.s. and let B be a total set of bounded subsets of

. B is called transposable if for every A ¢ B and every f ¢ L(E),

there is a B¢ B such that £(A) < B.

(12) Let E be a l.ec.s., T a d.s.g. on E, and B a total se: of
bounded subsets of E. If B'is transposable, then S(R+),c L(Eé), and
if further, B has a base of complete sets, then S' is a d.s.g. on Lg,

with (gT)' = G-
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Proof: Clgarly transposability implies S'(R,) < L(Eé . Suppose, further
that B has a base consisting of complete sets. Let x ¢ E' and let

Ve u(Eé . -It is sufficient to show that there is an € > 0 such that
éZLL%lll ¥b(gT)')(x) < V whenever t <e. However, by transposition for
the pair <E',E>, this amounts to (Jl%l;l-- gT)(V°) c {x}° for t < €.

Now V° ¢ B, and {x}° is certainly a neighborhood of 0 in E, since it

is a weak neighborhood, hence (Ii%lll-- gT)(V°) c {x}° by (8). Hence

T' is a d.s.g. on E} with infinitesimal generator Gp)'- !

(13) Let E be a L.c.8., and let T be a d.s.g. on E.

(@) T' 2s a d.s.g. on E; and Eé with infinitesimal generator
@p"-

(b) T <8 a d.s.g. on E for every locally~-convex topology on E
which is weaker than the Mackey topology for which each S(t), t e R+
18 continuous, with the same infinitesimal generator.

Proof: For (a), it suffices to apply (12). In the weak case, B = all
bounded, finite-dimensional sets, and a closed finite-dimensional set

is always complete. In the Mackey case, B has a base all weakly—éompact,
absolutely convex sets, and these sets are complete ([23], Ch. 2,

Prop. 36, Cor. 1).

For (b), it follows from (2) that by double transposition, T is
a d.s.g. on E . Clearly,‘then, it is also a d.s.g. for any coarser

locally-convex topology for which each S(t) is continuous. R

An important application of the above is the following. The space

E(R,) is reflexive (see §0). Hence, its strong dual E'(R+) is the same
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as its Mackey dual. The d.s.g. on E'(R,) which is dual to & is denoted
&' (the subscript k dropped).. &'(t) is just right shift by t, in the
sense of distributions, and gg is just D, the derivative operator,
also in the sense of distributions.

The next result, whose proof is clear, allows the construction of

an important d.s.g. from E'(RR,).

(14) Let E be a l.c.s., F a linear subspace of E, and T a d.s.g. on L.
Suppose also that for each t ¢ R+, T(t) (F) ¢ F, and denote this restriction

by S(t): F~>F. S is ad.s.g. on F if and only if QT(F) < F. 8

From the above, it is obvious that the restriction of ' to AR,
defines a d.s.g. This d.s.g. will be denoted &, and will be of funda-
mental importance in §2.

It is not necessarily true that every d.s.g. T on the l.c.s. E can
be extended to a d.s.g. on E or E. However, there is an imporPant

special case when this can be done.

(15) Let E be a l.c.s., and let T be a d.s.g. on E. If
{Il%l;l»l 0<tc<ce}dis equicontinuous.fbr some € > 0, then T has
a unique extension T (resp. T) to a d.s.g. on E (resp. E). This extension
18 given by ?(t)(x) = (T(t)) (x) (resp. %(t)(x) = (T(t))A(x)), and its
infinitesimal generator is (gTJ" (resp. (gT)A).
Proof: Only the completion case will be given; the quasi-completion case
is entirely analogous. (sl) and (52) are trivial. Extensions of

equicontinuous families are equicontinuous ([l3], Ch. X, §2, Prop. 4),
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1) {T ﬂ)'l | 0 <h < €} is equicontinuous. Let V e U(ﬁ), and let t ¢ R,.

{1£212%;IL91.|‘|h| <-§ » t + he R} is also equicontinuous, and so

there is a U ¢ N(ﬁ) such that

EERAO 4y < v .

Let x € ﬁ. Since E is dense in ﬁ, there is a y € E such that x-y ¢ U.

Thus

o HERTE - 1(r)egy ey) € v
|h|<e/2
t+heR,
R Al + _ A . A . . A _'/\‘
Hence iig (T(t h)-T(t) . T(t)ogf)(%-y)A= 0, afd since iig (EIE:E%—lLEl -
f(t)°g4) () = 0, it follows that 1M (L(Eh)-T(E) . T(t)og5) () = 0.
lence T ¢ El(R+,Ls(E)), SO (53) is satisfied, and T is a d.s.g. ®

Note that the above result holds in particular in the case in which
E is barreled, for then every simply-bounded set is equicontinuous
(1421, ch. 111, 4.2), and (FEL gt <} o {g7} is certainly
bounded since it is compact, being the image of [0,t] under the

continuous mapping t & IIE%;l.’ extended by continuity.

™
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Relationship to (C_)-Semigroups

The theory of equicontinuous semigroups of class (CO) is an alternate
approach to semigroups of operators on locally-convex spaces. The theory
will now be compared to that of differentiable semigroups. Let E be
a sequentially-complete 1.c.s., and let T: R, -+ L(E) be a map which

satisfies axioms (sl) and (sz). T is called an equicontinuous semigroup

of class (Co) (abbreviated e.s.g.) if the following two axioms are also

satisfied ([51], Ch. IX, 2).

1lim _ ,
(e;) et T(t)x = T(t )x for any t) e R,» x ¢ X.
(ez) {S(t) | te R,} is equicontinuous.

lim T(t)-1
>0 t

(x). A is called the infinitesimal generator of T, and

Let A = (x € E |

,, 1im T(t)-1
t>0 t

A is dense in E ([52], Ch. IX, §3, Th. 1).

(x) exists}, and define A: A ~ E by

X

(16) Let E be a L.e.s., and let T: R+ + | (E).

(@) If Tis a d.s.g., then T is an e.s.q. if and only if E is
sequentially~-complete and {S(t) | t e R+} 18 equicontinuous.

(b) If E is sequentially-complete and T is an e.s.g., then T is
a d.s.g. if and only if the domain of the infinitesimal gemerator is E.

Proof: The proof is an immediate consequence of the definitions. 8

(&) | te R+} 1s easily seen to be nct equicontinuous, so not
every d.s.g. is an e.s.g. Conversely, let C(R,) denote the space of

bounded uniformly-continuous K-valued functions on R, with the sup-norm
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topology, and define T(t): R, - L(CR) by (T()H)(x) = £(x+t). T is
an e.s.g. ([51], Ch. IX, §2, Example 2), but not a d.s.g., since not
. every uniformly;continuous function is differentiable. Hence, not
every e.s.g. is a d.s.g.

If E is a (B) space, then property (ez) is not necessary. A map
T: R+ + L(E) (E a (B) space) is called a (Co) semigroup if (sl),,(sz),
and (el) are satisfied. The infinitesimal generator of a (Co] semigroup
is defined as for an e.s.g., and is densely defined. (Co) semigroups

have the following important property.

(17) Let E be a (B) space, and let A € L(E). A is the infinitesimal

generator of a unique (Co) semigroup (which is also a d.s.g.) given by

te eAt.

Proof: Consult ([41], 13.36). B
Further properties of e.g.s.'s and (CO) semigroups will not be

given here. For further discussions, consult [19], [26], [41], and [51].

§2  InpuT-0UTPUT BEHAVIOR

General Theory

In this section, the problem of recovering the external (input-
output) behavior of a linear differential system from its internal

behavior will be investigated.
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Let K be a subcategory of [(S. A differential system in K is a

6-tuple M = (Q,f,I,g,Y,h) where Q, I, and Y are K objects, and
f:Q~+Q, g: I ~+>Q, and h: Q + Y are K morphisms, with f the infinitesimal

generator of a (unique) d.s.g. on K (denoted Tf). Q is called the

state space, I the input space, and Y the output space of M, with £
the state-transition map, g the input map, and h the output map. The system

may be thought of as governed by the equations
Q) - £(q(t)) + gli(v)

y(t) = h(q(t)) ,

although they must be properly interpreted. This will be discussed in
more detail later.

A morphism of differential systems Ml = (Ql,fl,Il,gl,Yl,hl) to

M, = (QZ’fZ’IZ’gZ’YZ’hz) is a 3-tuple of K morphisms (a,b,c) such that

g £ hy

If ?Qr ;QI ;Yl

a b b [ C ]
g, £ | h

L > Q > Q >,

commutes. With this notation, the differential systems over K may be

made into a category Di4(K). The objects and morphisms are as just
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described. Note that a Di4 (k) morphism (a,b,c) is an isomorphism if
and only if a, b, and c are each isomorphisms.

Maintaining K as above, define ‘Ek: DSG(K) » K to be the functor
which sends the d.s.g. T: R, + L(E) to the underlying l.c.s. E, and
which sends each d.s.g. morphism to its underlying continuous linear

map. K is called a differential-behavior category if 3k has both a left

and a right adjoint. K is full if it is a full subcategory of L(S.

(1) Let K be a differential-behavior category, and let A =
(%, L,R,N,L) be a two-sided adjoint situation for ?K. Let M = (Q,f,I,g,Y,h)
‘be a differential system in K. There are unique K morphisms Py and

oM such that

n(l) D o) LA g o

g oM M
Te(t) Y
Q >Q
OM OM h

?KOR(Y) R(Y) (t) ? °R(Y) C(Y) =Y

commutes for each t € R The commutativity of these diagrams is

+°

equivalent to the commutativity of the single diagram
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g pM pM
£ v
Q > Q
M O.M h
\
F oR(Y) IR ,ﬁ?KoRr(Y) () ¥y

Proof: The first part is a standard characterization of adjunctions

([37], Ch. 1v, 81, Th. 2). The second part follows form 1.(10). 8.

In the situation above, P is called the reachability map of M,

Oy the observability map of M, and OM° Py is called the total response

or input-output map of M. It should be noted that Py and Oy are only

unique within the framework of a specific adjoint situation A for ?%.
Of’course, all such adjoint situations are unique up to isomorphism,
and so Pm and Gy are unique up to composition with a isomorphism,
regardless of choice of A.

Some important examples of differential-behavior categories will

now be developed.
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Examples of Left Adjoints to %,

A left ajoint to ‘JK for K equal to | (S (all locally-convex spaces),
QC (quasi-complete 1.c.s.'s), (S (complete 1l.c.s.'s), MS (Mackey 1.c.s.'s),
and WS (weakly-topologized 1.c.s.'s) will be constructed. The constructions
for each of these five cases are quite similar, so it is advantageous
to develop them somewhat in parallel. If I is the input space, then
the free input d.s.g. will be the induced shift on A(R+)®1I’ or a suitable
completion or retopologization of this space. '

Recall that GA is the d.s.g. on AR,) given by the right-shift
_ operator, i.e., GA(t) (Dpds) = Dp6t+s. The infinitesimal generator
of this d.s.g. is just the distributional derivation operator D
restricted to AR,). Let I bea l.c.s. - An R,-induced semigroup of

A

operators &“el may be induced on A(R,)®I by defining (@,A@I) (t) =

e‘,A(t)elI. When A(R,)eI is given the 1 topology, this semigroup

becomes a d.s.g., as is now shown.

(2) Let 1 be a L.c.s. &'l is a d.s.g. on R,)e 1, with infinitesinal
generator Del . _ ‘
Proof: First of all note that (GAG!I) (t) € L(A(R+)@1I), by definition.
Hence, all that need be shown is that el is differentiable. Let
x e AR,) and e ¢ I, and let U e u(dR,)e I). Since the canonical
projection p: A(R+) xI > A(R+)®I is separately-continuous,
{y « MR, | yee € U} ¢ u(a@R,)). Fix t e R,. Pick € > 0 such that

+

A
© (t+h%-é(t) - Do (1)) (X) € {y e AR,) | y®e € u(R,))} whenever
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|h] <e and t +h € R,. This is possible since & is differentiable.

+°

A A
However, This implies & (t+h%-e (t) 1I Do & (t)el ) (x®e) € U whenever
1i t+h t
|h| <€ and t + h e R . Hence hir(l)l (G( )- (1) 1 DoeA(t)Ql )
(x®e) = 0. Since every element of A(R+)® I is of the form z X, 8¢,
k_
it follows that GA ®] is differentiable. 8

To avoid confusion, 6A®I will be denoted @',A®II when it operates on
A(R,)el.

To show that é®11 is a universal d.s.g. over I, it is necessary
to find a d.s.g. morphism from écsll to each d.s.g. T, which satisfies
the universal property given at the beginning of this section. To do
this, let T be a d.s.g. on the 1l.c.s. Q, and let g: I ~ Q be .a continuous
linear map. Recall that <I>Q: AR, x ER,,Q ~ Q is defined by (Dpat,cp) N
Dpd)(t), and is bilinear and hypocontinuous (see 1.(3)). Define AT,Q:
Q> ER,,Q by e (t»T(t)e). By 1.(5), AF,Q is continuous. Define
the map §T: AR,) x I »Qby

)
Br = AR x I IO LR - R0 O

(3) Let 1 and Q be l.c.s.'s, let g: 1 -~ Q be a continuous linear
map, and let T be a d.s.g. on Q. The map f;T: AR,) x I > Q is bilinear

and hypocontinuous.
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Proof: Clearly gT is bilinear. Since 1 and AT Q are continuous, they
each map bounded sets into bounded sets, whence the hypocontinuity of

~

Er is immediate from the hypocoﬁtinuity of ¢Q (see 1.(3)). ®

With the situation as above, the hypocontinuous bilinear map éT

induces a linear map gg: AGQ+)@BI + Q via the diagram

AR)~T AR, 8,1
N lgT
) Q

with p the canonical projection. Now, since the 1 topology is finer

than the B topology, g.: A(R,)e I + Q is also continuous. g, is the
T +771

T
desired reachability map, as will now be shown.

For I a 1l.c.s., define ﬂLcS(I): I A(R+)®11 by e §pe. 11LCS(I)
may be regarded as the restriction of the canonical projection
p: A(R+)xI+-A(R+)®11 to {GO}XI, and also is continuous, since p is

separately-continuous.

(4) Let I be a 1.c.s. (@$®II,TﬁLCS(I)) 18 a universal map for 1
with respect to %1CS' Specifically, if Q is a l.c.s., T a d.s.g. on
F, and g: 1 + Q a con:inuous linear map, g 18 the unique eontinuous

linear map from A(R+)®11 + Q which makes the diagram
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| ro(D) (e 1) (1)
I ___|:§__>A(R+)®11 L >A(R,)e I
g 7 )
Q 1) >Q

commute for each t € R_,_.
Proof: The triangle commutes by definition of (I) and gt The square
commutes because gTo(gﬁ(t)@llI) (Dpasee) = gT(Dp6t+S@e) = (gT)poT(t+s)g(e) =
T(t)o(gT)poT(t+s)g(e) = T(t)ogt(Dp(St@e) (recall 1.(10)). Hence this
entire diagrams commutes. It remains to shown that gr is unique. If
the above diagram were to commute with k replacing g1» then ko ( Dpat@e) =

A
ke (1P (@ (8)91 ) (8 2e) = (9)°eT(t)oke (8 pe) = (g PT(t)Y (D (e) =

(gT)pT(t)g(e) = gT(DpcStae), so k = &1» and so &t is unique. #

Define the functor QLCS LCS ~ DSG by Iw AQII on objects and

f v 1®f on morphisms. (4) may be restated as follows.

(Sj QLCS 18 left-adjoint to 3LCS, and 'nLCS: lLCS > ﬁ_CSOCLCS is a

natural transformaticn which is the unit of this adjunction.
Proof: Follows from (4), as this is a standard characterization of

adjunctions in terms of universal maps (see [25], 27.3). 8
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The system theoretic interpretation of the above is the following.
_ N P
Each input signal in A(R)e I is of the form 3 (D k
t k=1
ty € R,, and ik e I for each k = 1, ..., n. That is, an input signal

is just an I-valued distribution with finite support. In terms of the

equation

GO - graEw) + gGE)

the input i(t) (t € R, where R_ denotes the nonpositive reals), to the
-system is 0 except at -t for k =1, ..., n (note the minus sign), when
the nput is Dpdtkaik. The equations above thus make sense for all

t € R_. The minus sign is necessary because inputs are interpreted

to start at negative time and continue until 0. Thus, in the L(S case,
the system is driven only by impulses. To get a righer input structure,
it is necessary to deal with categories of 1l.c.s.'s which have some

comp leteness properties.

The cases K = QC (quasi-complete 1.c.s.'s) and (S (complete 1.c.s.'s)
will now be investigatedz Since the underlying theory for them is
virtually identical, thef will be discussed entirely in parallel.

It will be necessary to extend the d.s.g. @£®1I to the quasi-
completion and completion of A(R,)eI. As indicated in §1, this is not
automatic, but depends upon certain properties, which are fortunately

valid in the case being considered.
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Before proceeding further, it is useful to recall that E'(R,)
may be identified as both a quasi-completion and a completion of
A(R+). (1.(2f)). However, one may not immediately assert that
E'(R)8 1 EEA(R+)®11 and E'(R+)®II = A(R+)®11f since the extension of
a separately-continuous map need not be separately-continuous. lowever,

in this particular case, the necessary results can be shown.

(6) For every l.c.s. I, A(R+)®1I = A(R+)®BI, i.e., every separately-
continuous bilinear map on A(R,)xI is hypocontinuous.
Proof: By (3), for any l.c.s. Q, d.s.g. T on Q, and continuous linear
map g: I > Q, ET is hypocontinuous, and so g1 A(R+)®BI + Q 1is continuous.
Since the B topology of A(R,)®I is coarser than the 1 topology, it
follows that @531 is also a d.s.g. on A(R+)®SI (denoted Gﬁ@BI). Hence,
as in (4), (G?@BI,‘nLCS(I)) is a universal map for I with respect to
3LCS. Since universal objects are unique up to isomorphism, it follows

that AQR,)egl = AR,)e, 1. §

(7) Let 1 be a quasi-complete (resp. complete) l.c.s.

(a) Every hypocontinuous bilinear map on AR, )x1 into a quasi-
complete (resp. complete) l.c.s. extends uniquely to a hypocontinuous
bilinear map on E' R, )*I.

(b) E'R,)®1 is a dense subspace of‘A(R+)3BI (resp. A (R+)§BI).

(c) E'(R+)®II = E'ﬂQ+)®BI, i.e., every separately-continuous bilinear

map on E'R,) =l is hypocontinuous.
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Proof: (a) follows immediately from 0.(1) and 1.(2b).

(b) By fixing any i € I, A(R+) may be regarded as a closed subspace
subspace of A(R+)®BI. Since a closed subspace of a quasi-complete

(resp. complete) space is quasi-complete (resp. cohplete), the result
follows from (a) and 1.(2f).

(c) Let f be a separately-continuous bilinear map from E'(R+)xI into a
l.c.s. G, which is assumed to be quasi-complete (resp. complete), without
loss of generality. By (6), f is hypocontinuous when restricted to
AR,)*I, and so, by (a), extends uniquely to a hypocontinuous bilinear
map on.E'(R+)XI, which must be f. Hence every separately-continuous

bilinear map on E'(R,)xI is hypocontinuous. ®

From now on, if I is a quasi-complete (resp. complete) l.c.s.,
E'R,)8 T and AR,)® I (resp. E'(R,)® T and A(R,)&,I) shall be identified
with each other. An analogous statement holds with g replacing 1.

Let T be a 1.c.s. On E'(R+)®1I, the semigroup @?@11 is defined
by (6'01 D) = c-:;(t)cal lI.. The next statements shows that @J@lI is a
d.s.g.

(@?@11)(t)—1
t

(8) For any l.c.s. 1 and any € > 0, {
{ (So I)(t)-1

t
'(4) -
Proof: {Sél%l_l.l 0< ts €} v {D} is bounded for any € > 0, since it

| 0< ts< €} and

| 0< t=< €} are equicontinuous.

is compact, being the image of [0,t] under the continuous map te §il%l;l .

Now E'(R,) is barreled (see §0), and so every simply-bounded subset of

! -
L(ER,)) is equicontinuous, hence {§i£%l_l.| 0 < t < €} is equicontinuous
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([42], Ch. III, 4.2). Since restrictions of equicontinuous sets are
A
equicontinuous ([13], Ch. X, 82, Prop. 4), {gég%l:l | 0<t<elis

also equicontinuous.
(e, I)(t)-1
Now E'(R+)®11 = E'(R+)®BI by (7), and so to show that {——————7;——~—

0 < t < e} is hypocontinuous, it suffices to show that the family of
maps {p°(§i£%l;l x1) | 0 < t s €} is equihypocontinuous from

E'(R) x I » E'(R+)®BI, where p: E'(R,)) x I ~ E'(R+)®BI is the canonical
projection. Let VeIJ(E'(R+)®BI), A be a bounded subset of E'(R,)

and B a bounded subset of E. If suffices to find U e U(E'(R,)) and

& (t)-1 & (t)-1
W ¢ U(E) such that pe(B—g— x D)(AW) < Vand ; u_ po(——gf—_— x 1)

0<%SE
(UxB) < V.

) ~ -
Since {Eil%l_llo < t < e} is equicontinuous, C = 0<¥<e gil%l_l.(A)

is bounded. Put W= {e e I | (x,e) € p'l(V) and x ¢ C}. W e U(E),
i . . & (t)-1 =
since p is hypocontinuous. Hence o<i<e p°C—~'E—"- x 1) (BxU) =

pew) = pi tw) < V.

Next, put Y = {x ¢ E'(R,)| (x,e) ¢ p *(V) and e ¢ B}. Y e UE'R,)),
Y (t)-1
since p is hypocontinuous. Let U ¢ U(E'(R+)) such that 0<¥<€ §2£El__
(u) € Y; U exists since {§il%l:l_| 0 < t < e} is hypocontinuous. Now
(&2 I)(t)-1
- -1
ot P (B EL < 1) UeB) = p(¥<B) = p(p7 (V) < V. Hence(—
0 < t < €} is hypocontinuous.

A BY (D), A(R,)e I is a dense subspace of E'(R,)® I. Hence
(6811)"1 1 1
{ t

continuous families are cquicontinuous. @

| 0 <t <€} is equicontinuous, since restrictions of equi-
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Now, in view of 1.(15), if I is a quasi-complete (resp. complete)
l.c.s., &'@ I extends uniquely to a d.s.g. on E'(R+)311 (resp. E'(R+)§11).

This extension will be denoted 6'611 (resp. &'s y I).

(9) Let I be a quasi-complete (resp. complete) l.c.s. (G‘éTII,
(nLCS(I))A) (resp. (G‘-}@II,(ﬁLCS(I))A) 18 a universal map for I with
respect to 3‘QC (MSP':}CS)' Specifically, if Q is a quasi-complete
(resp. complete) l.c.s., T a d.s.g. on Q, and g: 1 + Q .a continuous
linear map, ?T (resp. ;E\T) is the unique continuous linear map from

E'(R+)511 + Q (resp. E' (R+)§11 + Q) which makes the diagram

n I) cge I)(t
57 e eg — =00 pger
g lg'r ng
Q e >Q
. My (D) . 18 1) ()
(resp. I LCS — E'(R,)®, I (®, - E'(RJe I )
g léT ‘3>T
Q T(t)

Y
o
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commute for each t ¢ R,.

Proof: Follows from (4) and (6)-(8). ®

Define the functor (’QC: QC ~ DSG@C) (resp. QCS: CS - DSG(CS) by
I+ @el (resp. I+ Gﬂ@ll) on objects and f » 18f (resp. f & lef) on
morphisms. If I is a quasi-complete (resp. complete) l.c.s., define

na(D (esp. Meg (1) by Mpe(1) = by g ()7 (resp-mpg(D) = ) (1) 7).
(9) may be restated as follows.

(10) QQC (resp. QCS) is left-adjoint to 3bc (resp. 3%3)’ and
'nuc: IQC > :FQCOQQC (resp.?ﬁcs ICS -> {ﬂcsoﬂcs) 18 a natural transformation
which is the unit of this adjunction.

Proof: Similar to (5).8

The system-theoretic interpretation of the above results is essentially
the unique extension of the discussion foilowing (5). The space of
input signals (E'(R+)5II in the QC case and E'(R+)311 in the (S case)
is, of course, much richer than the space AQR,)®,I in the LCS case. In
each case, the space of input signals contains at least E'(R+)®11, which
may be interpreted (algebraically) as the set of all functions in
L(E(R+),I) whose iméges are contained in a finite-dimensional subspace
of I (Ifoe ER,), ( igl (xieei))(¢) = igl (xi(¢) ei)). If T is finite
dimensional, say I = (K)n, this is the entire input space, and

L(E(R+),I) may be identified with (E'(R+))n (algebraically).
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A distribution A € E'(R+) has compact support, and may be inter-
preted as a generalized-function input signal which starts at (is zero
before) t = -sup(supp(A)) (supp means "support of'') and ends at time
t = 0. Recall that the sapce of all I-valued distributions on R,
with scalarly-compact support is defined to be Lb(E(R+),I) (see |45],
Ch. 1, p. 52). Each element of E'(R+)»1I may be identified with an
element of Lb(E(R+),I), as shown above. Unfortunately, the topology
which Lb(E(R+),I) induces on E'(R+)®I is (by definition) the € topology
and not the 1 topology. Of course, the € topology corresponds to the
T topology, since E'(R,) is nuclear ([22], Ch. II, Ref. 4), and by
(7c), the 1 and B topologies coincide on E'(R+)®I. Hence the problem
reduces to determining when the 8 and 7 topologies coincide. The next

result answers this question for (DF) spaces.

(11) Let I be a quasi-complete (DF) space.

(@) I is complete.

(b) E'R0,T = E'R,)e, L.

(©) E'(R+]§11 E'(R+)$11 = Fb(E(R+)’I)’ the last isomorphism being

the completion of the canonical injection.

(d) Every element of Qb(E(R+),I) has compact support.
Proof: (a) Consult [23], Ch. 4, Part 3, Prop. 4, Cor. 2.
(b) By (7c), it suffices to show that every hypocontinuous bilinear
map on E'R,)=xI is continuous, which is true, since E'R,) and I are

(VF) spaces ([23], Ch. 4, Part 3, Th. 1).
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(c) The projective (m) tensor product of two (DF) spaces is a (DF)
space, as is its completion ([22], Ch. I, Prop. 5). Hence the first
equality follows from (a). Ly(E(R,),I) is complete ([23], Ch. 3,
Prop. 3), and so the isomorphism follows from the nuclearity of E'(R+)
(which makes the m and € topologies equal).

(d) This is a theorem of Schwartz ([46], Ch. I, pp. 62-63). U

The above shows that in case the iput space I is a (DF) space,
then in both the QC and (S constructions, the space of input signals
may be identified with Lb(E(R+),I), and each element has compact support.
While this is admittedly a special case it does cover many important
applications. For example, every normable space (and in particular every
(B) space) is a (DF) space.

The question of whether, in the case of I a general quasi—;omplete
(resp. complete) l.c.s., E'(R+)611 (resp. E'(R+)%11) can be regarded
(algebraically) as a subspace of L(EQR,),I) is an injectivity problem,
typical to topological-tensor-product theory. The author does not know
the answer to this problem. See [22], Ch. I, §3, n°2, for a discussion
of related problems.

The left adjunctions of % for K = |15 and K = S will now quickly

be investigated.

(12) Let 1 be a l.c.s. If 1 is a Mackey space, then AQQ+)311

18 also a Mackey space.



Ly

Proof: By 1.(2d), A(R+) is quasi-barreled. Ilence it is a Mackey space
([27], Ch. 3, §6, Prop. 8). Thus A(R+)®11 is a locally-convex hull of
Mackey spaces, which is a Mackey space ([36],822,7.(8)). &

Thus, the construction of (4) also applies in the category S of
Mackey spaces. Define the functor QMS: ['S = DSGGS) as the restriction
f , and N, (1) =N I) £ ch Mackey space I. The next result
o} QLCS an MS( ) LCS( ) for ea ey sp n

is thus immediate.

(13) Let I be a Mackey space. (G_'»AQII,?\VB(I)) 18 a universal map
for | with respect to G’[,S QI..,,S is left-adjoint to FWB’ and ™'
1 L
1MS -> 3‘MS°QMS 18 a natural transformation which is the unit of this

adjunction. B

Unfortunately, if I is a weak l.c.s., it is not necessarily true
that (A(R+))s® lI is a weak l.c.s. However, by 1.(13a), (G%II)S is

a d.s.g. on (A(R+)®11)s, which leads to the following result.

(14) Let I be a weak L.c.s. (era II)S’nLCS(i)) 18 a untversal
map for 1 with respect to st Specifically, if Q is a weak l.c.s.,
Tad.s.g. onQ, and g: 1+ Q a continuous linear map, fT 18 the unique

continuous linear map from (A(R+)® 11)3 + Q which makes the diagram
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M (D) (e, 1) (1)
1B R D; L o (ARe, D),
o ?T Er
Q— s >Q

commute for each t € R,.
Proof: Using (4), the following commutative diagram may be constructed

for each t € R+

M eelD) (S, 1) (t)
LGS >aR,)e 1 L > A(R,)e. 1

W I

LcsD . : .
Y (S, D, (1) N

" (A(Re 1), > (8(R,)e, 1),
&1 &7
Y Y
Q 1) ~Q

The uniqueness of gr now follows immediately, since 1 is surjective.

The rest of the proof is exactly like (4). 8

. A .
Define the functor QNS: WS > DSGMWS) by I~ (&e 1), on objects
and as QLCS on morphisms. Define ‘nws(l): I+ (AQR,)e, 1), for each weak

l.c.s. I by e §_®e. As with (5), the following is valid.
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(15) QWS is left-adjoint to ?WS, and -nwsz 1“5 > f,}wsoﬁws 18 a

natural isomorphims which is the unit of this adjunction. 3

This completes the constructions of left-adjoint examples for this
paper. Of course, there are several other examples of categories K of

l.c.s.'s for which {FK has a left adjoint.

Examples of Right Adjoints to %
For the same categories as above, a right adjoint to 3K will now
be constructed. If Y is the output space, the cofree output d.s.g.
will be the left-shift semigroup on E(R,,Y), or a suitable retopologization
of this space. | The following preliminary result will sefve to combine

thrce cases.

(16) Let Y bé a l.c.s. IfY is quasi-complete (resp. complete),
then E(R+,Y) 18 also quasi-complete (resp. complete).
Proof: By 1.(3), ER,,Y) may be identified with Lb(A(R+) YY), IfY
is quasi—co_mplete, this space may be identified with | b(e'(R Y,
since by 1.(2), every bounded subset of E'(R +) 1s contained in the
closure of a bounded subset of AR +), and E'R,) is a quasi-completion
of AR,). Now E'(R,) is barreled, (§0), and so Lb(E'(R+) ,Y) is quasi-
complete ([42], Ch. III, 4.4 Cor.). Since E'(R+) is also bornological
(§0), Lb(E'(R+) ,Y) is complete whenever Y is complete ([48], Th. 32.2,
Cor.). §
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Given a 1l.c.s. Y, denote by QLCS(Y): E(R+,Y) > Y the rﬁap given by
¢ » $(0). eLCS is linear and cohtinuous because it is ¢ H<I>Y(60',¢).
The main cofree construction is as follows. Recall that QY is the
left-shift d.s.g. on E(R,,Y). |

Given l.c.s.'s Qand Y, a d.s.g. T on Q, and a continuous linear

map h: Q -~ Y, define hT: Q-+ E(R+,Y) by q > (t » heT(t)q).

(17) Let Y be a l.c.s. (resp. quasi-complete l.c.s., resp.
complete l.c.s.). (GY’eLCS (Y)) is a couniversal map for Y with
_respect to 3Lcs(resp.$QC, resp. S'CS) Specifically, if Q is a L.c.s.
(resp. quasi-complete l.c.s., resp. complete l.c.s.), T a d.s.g. on
Q, and h: Q» Y a continuous linear map, then hT 18 the unique continuous

Linear map from Q > ER,,Y) which makes the diagram

T(t)

>Q
hT hT h
() ¢ ro(Y
ER,Y) ! —ER,V) — S Sy

commute for each tER+.

Proof: By (16), the proof is identical in each of thrée cases. In the
diagram, the triangle commutes by definition of hl and eLCS(I) . The

square commutes for each t ¢ R+, because 6Y(t)o hT(x) = GY(t) (s » hoT(s)x) =
s & hoT(t+s) (x) = s » hoT(s) (T(t)x) = h'eT(t)(x). It remains to show

that hT is unique. Tf the diagram were to commute for each t « R, with
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k replacing hT, then k(x) (t) = @Y(t) (k(x))(0) = heT(t)x = hT(x) (t). Hence

k = fT, so b is unique. §

Define the functor DQLCS: LCS -~ DSG by Y » €, on objects and
f » (¢ » fod) on morphisms. Define thQC: QC »~ DSG QD) (resp. ‘ﬁCS:
(S > DSG(CS)) to be the appropriate restriction of mLCS' Define eQC(Y)
(resp. eCS(Y)) to be just eLCS(Y) for each quasi-complete (resp. completc)
l.c.s. Y. The following is dual to (5).

(18) ’J{L(:S(resp. fﬁQC, resp. %CS) is right-adjoint to {FLCS(resp. 3’00

resp. 'G'CS) and e (s’ ?LCS O{RLCS +1LCS (resp. eQC: ;}’Qcofﬁgc - lQC’
resp. €(g: (}-’CS°3?CS > lCS) 18 a natural transformation which is the

counit of this adjunction. §

The system-theoretic interpretation of the above is extremely

simple, and is expressed entirely by the equation

y(t) = h(q(t)) .

The signal ¢ € E(R+,Y), ¢ = hT(q), gives for each t ¢ R, , the value of

+
the output of the system at time t caused by state qe Q at t = 0,
with the zero input applied after t = 0.

The cases of [1S and WS are approached similarly to the left-adjoint
case. E(R+,Y) need not be a Mackey (resp. weak) 1l.c.s. when Y is, so

retopologization is necessary. In a manner similar to (14), the following

result may be proved.
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(19) Let Y be a Mackey (resp. weak l.c.s.). ((SY)k,eLCS(Y)) (resp.
((GY)S,ZLCS(Y)) i8 a couniversal map for Y with respect tc. ,?I;S(resp.?ws),

with the details of the construction as in (17). B

Define mMS: MS » DSG(MS) (resp. mwsz WS + DSGWS)) by Y & (esY)k
(resp. Y & (SY)S) on objects and as S%LCS on morphisms. Define
el"S: E(R+,Y)k + Y (resp. ewsz E(R+,Y)S +Y) by ¢ » ¢$(0). The following
is similar to (13) and (15).

(20) f)%,vs (resp. ‘ﬁws) is right-adjoint to “J”S (resp. ‘,}'NS), and
er,B: 3’MS°‘)§VS - IMS (resp. ewsz ?wsofkws -> le) is a natural transformation

which is the counit of this adjucntion. B

It is difficult, in general, to determine when E(R,,Y) is a Mackey
(resp. weak) l.c.s. However, the following result covers many cases
which may arise for the MS case.

(21) Let Y be a l.e.s. If Y is metrizable, then E(&,Y) i8 also
metrizable, and each is a Mackey space.
Proof: A metrizable l.c.s. is always a Mackey space ([23], Ch. III,
Th. 3, Cor). Assume Y is metrizable, and identify E(R,,Y) with
Lb(A(R+) ,Y) (1.€4)). A(R,) is a (DF) space (1.(2)), and so has a fundamental
increasing sequence BO’Bl’BZ"" of bounded sets. Since Y is metrizable,
it has a fundamental sequence of decreasing neighborhoods of 0, UO’Ul’

U Clearly VO’Vl’VZ’ ..., where Vk = N(Bk,Uk) forms a fundamental

greee
sequence of neighborhoods of 0 for Ly, ER,),Y), so E(R+,Y) is metrizable.®
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The above result holds in particular when Y is a (B) spacc.

Summary

(22) For K = LCS’ QC) _CS: .' , and WS’ (3‘1(,9'(’(‘)3(’”’(’2’() i8 a

two-gided adjoint situation. ¥

85 ReaLizaTioN, CONTROLLABILITY, AND OBSERVABILITY

General Principles

Let K be a differential-behavior category, and let A = (%,,L,R,N,()
be a two-sided adjoint situation for %k' Let M = (Q,f,I,g,Y,h) be a
differential system in K. As given in §2, M has a reachability map Py

and an observability map M defined by the diagram

I g
I n(1) = oL(1) L(I) > FoL(D)

o Pm Py

Y £ Y

Q >Q

\ X

M M

Y g
?Ko (Y) R(Y) >$K°R(Y) C&Y

Now let (E,/ be an image-factorization system for K. M is

E-reachable if p, < E and Mrobservable if ay € M. M is (E,[]D-canonical

if it is both [F-reachable and M-observable. Note that since adjunctions

v
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are unique up to isomorphism, the concepts of [E-reachability, [}
observability, and (E,[}))-canonicity are independent of the choice
A of two sided adjoint situation fbr‘%k.

This motivates a problem, the realization problem, which is in
some sense a converse of the problem studied in §2. Again, let K be a
differential-behavior category and let A = (ﬁk,L,R,N,;) be a two-sided
adjoint situation for %%. Let I and Y be K objects and let k: SkoL(I) >
3koR(Y) be the underlying map of a d.s.g. morphism from L(I) to R(Y).

k is called a total-response map. A realization of k is a differential

system M in K such that O°Py = k. Given an image-factorization system

(E,}D for K, the realization problem for k is to find an (f,]) -canonical

realization of k. (E,}) called a compatible image-factorization system
for the differential-behavior category K if every total response in K
has an (E,M)-canonical realization. A canonical realization is unique
up to isomorphism in Di§(K), if it exists.

As a starting point, epimorphisms and monomorphisms in K are

characterized.

(1) Let K be a subcategory of | (S, and let f be a'K’MOrphism.

(@) If f is dense (resp. injective) then f is an epimorphism
(resp. monomorphims).

(b) If K Zs full and contains K (or an isomorphic copy), then £
is an epimorphism (resp. monomorphism) implies f is dense (resp.

injective).
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Proof: (a) Suppose f: E + F is dense, and g and h are K morphisms
such that gof = hof. By a usual characterization of surjectivity,
g(x) = h(x) for all x ¢ f£(E). However {x ¢ £ | g(x) = h(x)} is closed
in F ([13], Ch. I, §8.1, Prop. 2, Cor. 1). Hence g(x) = h(x).
 Every injection is clearly a monomorphism.

(b) Assume K is full and f: E > F is a K morphism which is not dense.
Pick x ¢ F\f(E), and let g ¢ F' with g(x) = 1 and g(F(E)) = 0
(the existance of such a function is guaranteed by the Hahn-Banach
theorem). Now let h:K - E be any nonzero linear map (necessarily
continuous). heg is a K morphism, and (hog)ef = 0of, yet heg # 0.
Hence f is not an epimorphism.

Let f: E + F be a monomorphism which is not injective. Pick
x € ken(f), and define g:k > E by a+» a-x. g is necessarily continuous.
Now let h € F'\0 . Clearly fe(gech) = fo0, yet goh # 0. Hence f is not

a monomorphism. #

A continuous linear map f: E + F is called a near quotient if

f(U) is a neighborhood of 0 in F whenever U is a neighborhood of 0 in
E. {f(U) | Ue u(E)} is thus a fundamental system of neighborhoods of
0 for F, with T(E) < F, so f is dense.

The fundamental realization theorem is the following.

(2) Let K be a differential-behavior cateory, A = (¥,,L,R,N,2)
a two-sided adjoint situation for %K" and (E,]] an image-factorization

system for K. Let I and Y be K objects, k: ?koL(I) > %koR(Y) a total
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There is a unique T: R, + L(Q) satisfying (sl) and (sz) such that the

diagram
F oL (D) L F oL (D)
€ e
Y »
Q T(t) > (\2(
m m
v R(Y) (£) Y
FeR(Y) >FgeR(D

commutes for each teR+. Furthermore, there is a unique fel(Q) such

that
SL(1

FeeL(D) Do FeoLm
e (]
0 ‘ .
m m
4 _9RQ)

¥ eR(Y) > %KoR(Y)

commutes. If either e is surjective or m is an embedding, then T
-i8 a d.s.g. on Q, and gr = f. Hence, if either [ ¢ surjections or
M < embeddings, then (E,i|) is compatible. Furthermore, if {LLL%LE-I

0<t<e} is equicontinuous for some €>0, then it suffices that e be a

near quotient for T to be a d.s.g. with gy = f, and so fbr (Es[
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to be compatible under these conditions, it suffices that E < near
quotients.

Proof: T and f are uniquely provided by the fill-in property of image-
factorizaton systems ([25], 33.5). Clearly T satisfies (51) and (52).
If e is surjective, the continuity of e immediately transfers the
d.s.g. properties of L(I) down to T. If m is an embedding, it suffices
to apply 1.(14). Now suppose e is a near quotient and {L£1%1110<tse}
is equicontinuous. This clearly implies that {I£E%;llo<t38} is equi-
continuous, where T(t) is T(t) restricted to e(ﬁioL(I)). However, by
the preceding, T is a d.s.g. on e(%%OL(I)), and so by 1.(15), extends
uniquely to a d.s.g. on a, which must then restrict back to a d.s.g. on
Q, by 1.(14). Uniqueness of the fill-in proves that f must be the

infinitesimal generator of this d.s.g. §

Examples

The | (S case will be treated first.

(3) Each of the following is a compatible image-factorizaton system
for [(S.
(a) (quotient maps, injections) = (extermal epimorphisms, monomorphisms)
(b) (surjections, injections)
(c) (dense maps, closed embeddings) = (eptmorphisms, extremal

monomorphisms).
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Proof: Each of the factorizations is standard ([36], §15,4(3 and 4)).
f

1

Let f: E » F be a continuous linear map. E -+ E/ken(f) 2 F with £, the

1
canonical quotient map and fZ: [x] » f(x) is a factorization for (a).
f f
E 7 f(e) 4 F with f3: x+ f£(x) and f, the inclusion map is a factor-
f
ization for (b). Finally, E i f(®)

N

F with fS: x+v f(x) and f6:
X x is a factorization for (c). The compatibility in each case follows
from (2). By (1), ihjections = monomorphisms and dense maps = epimorphisms.
By [25], 33.7, in an image-factorizaton system (E,M), F = epimorphisms

implies M = extremal monomorphisms and M = monomorphisms implies

E = extremal epimorphisms, whence the characterization of (a) and (c). &

Hence, canonical realizations exist in | (S for éach of the image-
factorization systems of (3) above.

An obvious technique for extending the image-factorization systems
of (4) to QC (quasi-complete 1l.c.s.'s)(resp. (S (complete 1.c.s.'s)) is
to construct the quasi-completion (resp. completion) of an image-
factorization system for |(S. That is, if f: E + F is a continuous
linear map of quasi-complete (resp. complete) l.c.s.'s, and E$ ¢ ¥ F
is an (E,M factorization of f (where (E,M) is an image-factorization
system for |[(S), regard the factorization E ¢ q F (resp. E § G f M) as
the induced factorization in QC (resp. (S). This technique works with
each of the image-factorization systems given in (3), although the proof

for the (3a) case is not trivial.
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Since a closed .subspace of a quasi-complete (resp. complete)
L.c.s. is itself quasi-complete (resp. complete), QC (resp. (S) inherits

the image-factorization system of (3c) from [(S.

(4) (dense maps, closed embeddings) is an image-factorization system

for QC (resp. CS). 8 )

Since the éompletion of a linear subspace of a complete 1.c.s.
is closed, it is immediate that the extension of the LCS image-factorization
system (surjections, embeddings) to (S is just (dense maps, closed
embeddings). The case for C requires a new definition. Call a QC morphism

f: E~ F a quasi-surjection if F is isomorphic to a quasi-completion of

f(E) (when f(E) has the relative topology induced by F), and call f a

quasi-closed embedding if it is an embedding and if f(E) is quasi-closed

in F.

(5) (quasi-surjections, quasi-closed embeddings) is an image-
factorization system for (.
Proof: The factorization is just the quasi-completion of the (surjections,
embeddings) factorization in |[(S. That is, if f: E + F is a continuous
linear map of quasi-complete l.c.s.'s and ES GP F is a (surjections,
embeddings) factorization of f in | (S, then E-§ G @ F is a (quasi-
surjections, quasi-closed embeddings) factorization in QC. The rest of
the image-factorization system properties follow from the functoriality

of ™. The compatibility follows from (2) and 2.(8). &
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The extension of (quotient maps, injections) is substantially
more difficult to handle than the other two. The less-than-obvious
part of the Construction is showing that the quasi-completion (resp.
completion) of the monomorphic part of the factorization is mono-
morphic. That is, if f: E ~ F is a continuous linear map of quasi-
complete (resp. complete) 1.c.s.'s, show that m (resp. ﬁ) is injettive.
An approach using a factorization theorem from category theory provides
the proof.

A QC morphism is called a quasi-quotient if it is a homomorphism

and F is a quasi-completion of f(E) (regarded as a subspace of F).

(6) Let E and F be a quasi-complete (resp. complete) l.c.s.'s,
let £: E >~ F be a continuous linear map, and let G = {(x,y) eExL|x-yeken(£) }.

(@) G is a quasi-complete (resp. complete) l.e.s., regarded as
a linear subspace of FxE.

(b) G g@ E s a kernel pair of BxE, wherc Py: (x,y) ¥ x and
Pyt (x,y) P y.

(c) £ is a coequalizer in QL (resp. (S) if and only if it is a
quasi-quotient (resp. near quotient), and in this case it is a coequalizer
;3

Proof: (a) Since the product of the quasi-complete (resp. complete)
l.c.s.'s is quasi-complete (resp. complete), it suffices to show that
.G 1s closed in EXE. However, G is the kernel of the continuous linear

map ExB B3 pep (;) F, whence it is closed.
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(b) Clearly fop1 = fopz. Let H be a complete (resp. quasi-complete)
l.c.s. and let gq° H -+ E and gyt H + I be continuous linear maps such that
fogl = fogz. Define h: It - G by x » (gl(x),gz(x)). h is clearly linear

and continuous, and it follows that the diagram

H— 81
~—— \
g, 1
P, f
“E £ oF

commutes. The uniqueness of h is clear. Hence G Ei E is a kernel pair
of f in.QC (resp. (S). : ”
(c) It is easy to verify that the quotient maps are precisely the
coequalizers in [ (S, and that the quotient map q: E ~ E/TﬁijﬁgifﬁT is a
coequalizer of G gi E in |(S. Now the functor ~ (resp ) has a right
adjoint, namely the inclusion map : QC= LCS (xesp : (S= LCS)

(see 80), and so it preserves all colimits, particularly coequalizers

([37], Ch. V, §8, Th. 2). Hence f is a coequalizer if and only if it is

the image under ~ (resp. ") of a quotient map. f

The next statement summarizes the necessary categorical results

for the image-factorization system sought.



(7) Let K be a category which has kernel pairs and coequalizers
of kermel pairs, and suppose that the class of all coequalizers is closed
under composition. (coequalizers, monomorphisms) is an image-factorization
system for K, and if f is a K morphism, a (coequalizers, monomorphisms)
factorization of f is given by f = mee, where e is a coequalizer of a‘

kernel pair (a,b) of f, and m is the unique morphism making the

diagram
a b
- - ) e 9 .
b ~—
\;>\\“ JZ//jg/
commute.

Proof: Consult [43], 18.4.7. &

(8) (a) (quasi-quotients, injections) is a compatible image-
factorization system for ().

(b) (near quotients, injections) is a compatible image-factorization
system for (S. |
Proof: That each is an image-factorization system follows from (6) and

(7). The compatibility follows from (2) and 2.(8). @

The image-factorization systems of [ (S restrict perfectly to WS (weakly-

topologized 1.c.s.'s).
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(9) Each of the following is a compatible image-factorization system
for WS

(a) (quotient maps, injections)

(b) (surjections, injections)

(c) (dense maps, cZosed embeddings).
Proof: It suffices to note that a quotient of a weak 1.c.s. is weak
([36], §22,2.(3)), and a subspace of a weak l.c.s. is weak ([36], §22,
2.(2)), and then to apply (3). The compatibility follows again from
2). 8

The case of MS (Mackey 1.c.s.'s) is not quite as easy, since while
quotients of Mackey spaces are Mackey spaces ([36], §22,2.(4)), a subspace

of a Mackey space need not be a Mackey space. Call an injection f: [ » F

of Mackey spaces a Mackey injection if f is a weak embedding.

(10) Each of the following is a compatible image-factorization
system for |S.

(@) (quotient maps, injections)

(b) (surjections, Mackey injections)

(c) (dense maps, closed Mackey injections).
Proof: That each is an image-factorization system follows immediately
from (9) and the isomorphism J: WS ~ MS (see §0). The compatibility of
(a) and (b) follow follow from (2). For (c), it suffices to note that
the fill-in semigroup of the induced factorization in DSGGES) is a d.s.g.

when its underlying space carries its weak topology, in view of (9)
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and 2.(19). Hence, by 1.(13), it is also a d.s.g. when it carries its

Mackey topology. &

Finite-Dimensional Systems

Let K be a full differential-behavior category, and let M =
Q,f,1,g,Y,h) be a differential system in K. M is called finite-
dimensional if Q has finite dimension as a linear space (i.e., Q esKn
for some finite n). If (E,]) is a compatible image-factorization system
for K and k is a total response in K, then an (E,})-canonical realization
for k depends, in general, upon (E,/) as well as k. However, if k
has a finite-dimensional canonical realization for some image-factorization
system, then this realization is canonical for every image-factorization
system for K. The existence of some finite-dimensional realization for
k (not necessarily canonical) is enough to guarantee the existence of

such a universal canonical realization.

(11) Let K be a full differential-behavior category which contains
the subcategory of | (S consisting of the finite-dimensional spaces, let
A = (,>L,R,N,0) be an adjoint situation for Fk» let 1 and Y be K
objects, and let k: ﬁkoL(I) > EkOR(Y) be a total response map. Suppose
there is a factorization %koL(I) 4p 2 %koR(Y) of k with P finite-
dimensional.

(@) There is a factorization %koL(I) & Q o 3%0R(Y) of k with

e surjective, W injective, and Q finite-dimensional.



(b) There is a unique differential machine M in K with input space
I, output space Y, and state space Q, such that k is the total response
of M.

(c) M is an (E,M)-canonical realization of k in K for every image-
factorization system (E,M) in K, compatible or not.
Proof: (a) LetiﬁKoL(I) ?l E T; P be a (quotient maps, injections)
factorization of k; in LCS. E is figite-gimensional since m; is injective
and P is finite-dimensional. Let E # Q £ FyeR(Y) be a (dense maps,
closed embeddings) factorization of kzom1 in [(S. It follows that e,
1s surjective, since every finite-dimensional 1.c.s. is complete, hence
relatively closed, and so Q is finite-dimensional. Hence %koL(I) g Q n
&koR(Y) is a factorization of k, with e = ee; and m = m,. e is surjcctive
and m is injective by construction.
(b) e is a quotient map, since Q carries its finest locally-convex
topology, being finite-dimensional. Hence mee is a (quotient maps,

injections) factorization of k in LCS. By (2), there is a unique

f € L(Q) such that

g
¥ (oR(Y) ROD F oR(Y)
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commutes. Since (quotient maps, injections) is compatible, by (3a),

there is a unique d.s.g. T on Q such that f = g Put M = (Q,f,I,

T"
e°N(I),Y,z(Y)em). k is the total response of M, so that M is a realization
of k. The uniqueness of M is a consequence of the fact that (quotient

maps, injections) is compatible for |(S.

(c) As shown above, e is a quotient map and m is a closed embedding.

Hence, by (3), e is an extremal epimorphism in [(S and m is an extremal
monomorphism in | (S. Hence e is also an extremal epimorphism in K and

m is also an extremal monomorphism in K. Thus mee is an (E,]) factorization
of k for any image-factorization system of K, since extremal epimorphisms

c E and extremal monomorphisms < M always ([25], 33.6 and 33.7). Hence

M is an (E,M)-canonical realization. B

This shows that while the number of distinct concepts of canonical
realization in the full differential-behavior category K is at least
as large as the number of distinct compatible image-factorization systems
for K, there is only one concept of canonicity for finite-dimensional
linear systems, in harmony with the classical theory of finite dimensional
linear systems. The problem of characterizing those differential systems
in K, all of whose canonical realizations coincide, (for each image-
factorization system for K), is certainly a valid question, but is not

investigated in this paper.
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LCS Categories

In this section, a general duality theory for differential systems
is.déveloped. The examples of the duality will be devleoped within the
category of Mackey l.c.s.'s and within the category of weak l.c.s.'s.

In treating duality theory, it is convenient to deal with categoriés
relative to (S rather than ordinary categories. For a complete treatment
of relative categories, consult [20]. For now, the following special
case suffices. A category K is called an |(S category if for each pair
of K objects (E,F), ManK(E,F) has the structure of a l.c.s., and for
any 3-tuple of K objects (E,F,G), the conposition map o: MonK(E,F)x
MonK(F,G) -+ MonK(E,G) is a separately-continuous bilinear map.

Each subcategory of | (S may be made into an (S category in several
ways. Let K be a subcategory of |(S. Assign to MonK(E,F)cL(E,F)cL(Es,Fs)
~ the topology inherited from LS(ES,FS). It is trivially verified that
the composition map o: Ls(Es,Fs)XLS(Fs,Gs) > Ls(ES,GS): (f,g)»gef is separately-
continuous, so that K is indeed an [ (S category under this structure.
Under this same structure, K°P is also an LCS category, i.e., Mox op(E,F)
carries the topology induced by L8 (FS,ES). Throughout this sectiSn,
whenever a subcategory K of |(S or its dual KP is regarded as an LCS
category, the above structure will always be implied.

A functor P: K + H between | (S categories is called an LCS functor
if each induced function PE,F: MonK(E,F) > MonH(P(E),P(F)) is a continuous

linear map. To emphasize the special case being considered, call an
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LCS category usual if it is either a subcategory of (S, or else the
opposite of a subcategory of [(S. An [ (S functor P: K - j§ between usual

LCS categories is called a differential functor if for each pair of K

objects (E,F), PE,F is continuous when the morphism classes carry the
topologies indicated in the preceding paragraph.

It 1s now convenient to generalize the definitions of [JSG(K) and
Di§(K) to include those cases for which K is the opposite of a subcategory
of [(S. The definitions are the obvious ones. If K is the opposite of
a subcategory of | (S, DSG(K) is defined to be (DSG(K°P))®P, so that
DSG(K) has the same objects as DSG(KOP), but a )SG(K) morphism from S to
T is a DSG(KOP) morphism form T to S. Similarly, M = (Q,f,I,g,Y,h) is
an object of pif(k) if and only if M°P = (Q,f,Y,h,I,g) (M°P is called

the opposite system of M) is an object ofiﬁﬁ(KOP). (a,b,c) is a morphism

from M1 to M2 if and only if (c,b,a) is a morphism from Mgp to Mgp in
DLﬂ(Kpp). These conventions will be used throughout the rest of this
paper without further mention.

The reason for the terminology differential functor is justified

by the following fact.

(1) Let K and H be usual | (S ecategories, and let P: K+H be a
differential functor. Let E be a K object. If T is a d.s.g. on E,
then PE,EJT i8 a d.s.g. on P(E) with infinitesimal generator P(gT).
Proof: Since P is a functor, PE,Edr clearly satisfies conditions
(sl) and (sz) of 8. Now by 1.(13b), T is a d.s.g. on E . Hence
PE’EJT is a d.s.g. on P(E)S with infinitesimal generator P(gT), since
PE,E is linear and continuous. Since (PE,E°T)(t) is continuous on E,

it follows from 1.(13b) that Pp poT is a d.s.g. on E. |
b
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By abuse of nbtation, the d.s.g. PF FoT will be denoted by just
LE .
PoT.
Let K and H be usual | (S categories, and let P: K -~ H be a differ-

ential functor. If S is a d.s.g. on the K object E and T is a d.s.g. on

the K object F,.and f: E » F is a K morphism, the commutativity of

S(t) E
i T(t) F

‘implies the commutativity of

Y

¥

P(E) (PS)(t) _per)

P(£) P(f)

P(F) (P o p(p)

Hence P induces a functor from )SG(K) to DSG(H), given by T & P-T on
objects and f » P(f) on underlying morphisms. This functor is denoted D
or (P)”. Similarly, if M; = (Q;»f;,1;,85,Y;,h) for i = 1,2 are
differential systems in K, and (a,b,c): NH > M2 is a D{4(K) morphism,

the diagram
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P(I,) e P(Q;) P >P(Q,) e LRI
) 1 - 1 - 1 - 1
P(a) P(b) P(b) P(c)
P(g,) R(£,) P(hy)
P(Iz) > P(Qz) >P(Qz) > P(Yz)

commutes, so P induces a functor from Dif(K) to Dif(H) given by
Q,f,I,g,Y,h) » (P(Q,P(f),P(1),P(g),P(Y),P(h)) on objects and
(a,b,c) » (P(a),P(b),P(c)) on morphisms. Thus functor is denoted P
or (P)”.

The ideas above extend to natural transformations of differential
functors. Specifically, let K and H be usual [(S catégories, P.: K -~ H for
i = 1,2 be functors, and T: Py > PZ be a natural transformation. If T

is a d.s.g. on the K object E, the diagram

(P1°S) (t)
T(E) l J,T (E)
(Py5) (1)
P2 (E) e P2 (E)

commutes for each teR . This defines a map from Obj (DSG(K)) to

Morn(DSG(H)) given by (T: R, » Mox(E)) v» t(E). Denote this map by T or

() . Similarly, if M = (Q,f,I,g,Y,h) is a Dif(K) object, the diagram
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P, (g) P, (£) P, (h)
Pl (1) > Pl Q > Pl Q Ead Pl (Y)
(D) (Q (Q T(Y)
P, (g) P, (£) P, (h)
Py(I) ———>P,(Q >P) (Q————>P,(V)

commutes. This defines a map from 0bj(Dif(K)) to Mor(Dif(H)) given by
(Q,£,I,g,Y,h) » (t(I),71(Q),t(Y)). Denote this map by ¥ or (1)".

(2) Let K and H be usual | (S categories, let P:: K> H for i=1,2
be functors, and let T: P1 > P2 be a natural transformation.
(a) T: ﬁl > 52 and T: 51 > ,52 are natural transformations.

(b)

natural isomorphism.

<

(resp. ©) ie a natural isomorphism if and only if T is a

Proof: (a) The case of T will be given; the case of ¥ is similar.
It sufflces to show that given DSG(K) objects S: R > Mox, (E) and

T: R, » MOIL g(F), with f ¢ Mon, (E,F) a DSG(K) morphism form S to T, the

diagram

(P,°5) (t)
>P, (E)

P, (B)
P (f)l/ P (f)l
T(E)

>~P, (F)
T(E) t(F)
(P,°5) ()
1(F) . P, (E)

\,-P2 (B)
P, (£)

lpz (£)
(P5oT) (t)
P, (F) P, (F)
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commutes for each te R+. The front (resp. back) commutes because P1
(resp. Pz) is a functor. The other four faces commute because T is

a natural transformation. Hence the entire diagram commutes.

(b) This follows immediately from the characterization of isomorphisms

in the categories concerned. #

Some of the more useful properties of these induced functors are
now given. The proofs are easy and are omitted.

(3) Let K and H be usual |(S categories, and 1let P: K ~ H be a
differential functor.

@) P (resp. B) is faithful if and only if P is.

(b)

(c)
on objects and for each pair of K objects (E,F), PE p s an LCS <somorphism.

<

%3
P (resp. P) is an embedding if only if P is.
5 (resp. 5) tg an isomorphism if and only if P is bijective
(d) P (resp. P) i8 an equivalence if P is representative and for

each pair of K objects (E,F), PE F is an (S isomorphism. B

Y . . . .
With the above notation, if P is an isomorphism (resp. equivalence),

then P is called a differential isomorphism (resp. differential

equivalence).

(4) Let K, H, and J be usual | (S categories, and let Pl: K > H and
P,: K + J be differential functors. P oP1 is differential, and |

2 2
vV VY
(a) (onpl)" PyoP,.
Vv

o u u o
() (PyP))” = Pyeb). W



70

Duality Theory for Differential Systems

Using the concept of differential equivalence, it is possible to
develop a generél duality theory for differential systems.

Recall that if K is a subcategory of | (S, the fUnctor’@K: DSG(K) -+ K
sends each d.s.g. to its underlying l.c.s. and sends each d.s.g. morphism
to its underlying K morphism. To extend this to the case for which K is
the opposite of a subcategory of | (S it is only necessary to define 3% to
be (gzop)OP. This convention will be assumed from now on.

The following result is very useful; its proof is clear.

(5) Let K and H be usual |(S categories.
(@) If P: K > H is a diffevential functor, then oP = Doy .

(b) If Pi: K~>H for i=1,24{s a differential functor and t: P, > P

1 2

is a natural transformation, then 8%*% = T*%k. |

The next result characterizes the invertibility properties of

differential functors.

(6) Let K and H be usual | (S categories, and let P: K + H be a
differential equivalence which is also an embedding. There is a
differential equivalence N: H + K and a natural isomorphism T: lH -+ PoN
such that

(a) NP = 1,
(b) Xe0bj(P(K)) = t(X) = ;x.
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Proof: Chose a function t: 0bj(H) + Mox(H) such that for each X « 0bj(H),
T(X) is an isomorphism with dom(t(X)) = X and - cod(T(X)) € 0b§(P(K)) with
T(x) = lx if x € 0Obj(P(K)). The existence of such a function is guaranteed
by the axiom of choice for classes. For each XeObj(H), put N(X) =Y,

where Y is the unique element of P 1(cod(t(X))). For each f ¢ Mo, (X,Y) ,
put N(f) = g, where g is the unique element of P—l(T(Y)ofor-l(X)).
P-l(T(Y)OfOT—l(X)) is nonempty since an equivalence is full. From these

definitions, it is immediate that
1(X)

X > PoN(X)
£ PeN(f)
t(X) > PoN(X)

commutes for each f ¢ MonH(X,Y). If £ is an identiy, then N(f) is also
an identity, since embeddings reflect identities. If also g e MonH(Y,Z),
Z € Obj(H), then it is easy to see that N(gef) = N(g)oN(f), from the
commutativity of the above diagram and the fact that t(X) and 1(2)

are iéomorphisms. Hence N is a functor, and t: 1H + PoN is a natural
isomorphism. (a) and (b) are satisfied by construction, and N is an
equivalence inverse to P. Finally, N is a differential functor; this

is also implicit in the construction. K

Let K and H be differential-behavior categories. A duality specifier

from K to H-is a 3-tuple (P,N,t), where P: K°P > H is a differential functor

which is an equivalence and an embedding, N: H - K°P is an equivalence
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with NoP =1 op’ and T:-lHoP + N is a natural isomorphism with T(X) = lX
for each X e 0by (P(KOP)). (6) says that given a differential equivalence
and embedding P: k%P H, N and T always exist such that (P,N,t) is a
duality specifier from K to H. Duality specifiers define a specific

dual adjunction and dual machine, as shown by the next result.

(7) Let K and H be differential-behavior categories and let
A= (ﬁk,L,R,N,E) be a two-sided adjoint situation for %k. Each duality |
specifier from K to H (P,N,T) uniquely determines a two-sided adjoint
situation A' = (%,L',R',n',g') for %’H with

(a) L' = PoROPoN;

(b) R' = PoLOPoN;
(c) n'

@ z' = v Lo (prNOPay) .

(P*cOP#N) o1

If M is a differential system in K with réachability map 0 and
obsewability map Oy with respect to the adjoint situation A, then
P(M) has a reachability map P(OM) and observability map P(pM) with
respect to the adjoint situation A'.

Proof: ((a) and (c)) From the adjoint situation A, giﬁen H objects

I and Q, a continuous linear map g: NOp(Q) > NOP(I), and av d.s.g. T on

NOP(Q), there is a unique d.s.g. morphism o: NOP(Q) - RoNoP(I) ‘such that

NPQ = F(m

FyoRaNOP(1) — ENPD) Nyop
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commutes. Applying P to the opposite of this diagram and using (5)

yields

op
PoN(I) —£*e *N(1) —>F, oPerPeN(T)

P
PoN(g) (©)
T, B(1) = PeN(Q

Next, consider the following diagram.

op
I T o peN(I) — PHTAN(D) > F,boR%PeN(I)

PoN(g) P(0)

¥ ,0T(T)
¥, (T) P ¥ M = PeN(Q)

The triangle commutes by the preceding. The square commutes in
view of (5) and the fact that T is a natural transformation. This

combines to yield the diagram

op
I Pxz " «N(1) >WH°¥)° OPON(I)

1(Q "Lop(0)

FyoP(T) = PeNQ)

using ?}Ho\f(T) = 1(Q). T(Q)—loP(c) is clearly a d.s.g. morphism from
Po 0poN(I) to T; it remains to verify that it is unique. However, this

is an immediate consequence of the fact that the diagram is, up to



Th

isomorphism, the dual of an adjunction diagram (P and N are both
differential equivalences). Thus, (a) and (c) and satisfied; (b) and
(d) are dual to (a) and (c), respectively.

Now suppose M = (Q,f,I,g,Y,h) is a differential machine in K.
The reachability of the dual machine 5(M) = (P(Q,P(£),P(1),P(g),P(Y),
P(h)) for the two-sidzd adjoint situation A' is given by T(P(Q))_loP(gM) = |
P(oM), since T(P(Q))'L = lP(Q)’ since (P,N,T) is a duality specifier.
Hence the reachability map of i’I(M) is P(O'M). The characterization of

the output map is dual. 8

The two-sided adjoint situation A' of (7) is called the two-sided
adjoint situation derived from A by (P,N,t).
The next, rather lengthy, theorem states that the dual of the dual

of a differential machine is isomorphic to the machine itself.

(8) Let K and H be differential-behavior categories, and let
A= (3,’<,L,R,n,l;) be un adjoint situation for ‘;}K. Let (Pl,Nl,Tl) be
a dualitybspecifier Jrom K to H, and let (PZ,NZ,TZ) be a duality
specifier from H to K. Let A' be the adjoint situation for 3‘H derived
from A by (Pl,Nl,‘rl) and let A" be the adjoint situation for ‘?fk derived
from A by (PZ,NZ,TZ) . Let M be a differeﬁtial system in K with reachability
map Py, and observability map Oy With respect to A. Under these conditions ,
520 51 (M) is Zsomorphic to M in Dif(K), and with respect to A", the
reachability of 52051 M) <s 52051 (pM) and its observability map is

v v
PP (-
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Proof: P2°Pl is differential by (4), and a differential equivalence by
(3c). Hence there is a natural isomorphism «: 1K + PyoPy which extends
to a differential-system'preserving isomorphism ¥, by (2). Thus
ﬁ;ogl(hﬂ is isomorphic to M. The structure of the reachability and

observabilitylmaps follows by applying (7) twice. W

The next two results show that the general duality theory presented
here gives the usual duality between controllability and observability,
provided the duality of image-factorization systems is carefully noted.

Let F be a class of morphisms in a category K. The smallest
class of K morphisms which contains all isomorphisms as well as [
and which is closed under composition is called the closure of F énd

is denoted ]—f

9) Let P.: K> H and P,: H + K be equivalences of categories with
1 s 1
PZoP1 = lK’ PloP2 = 1H’ and let (E,M) be an image-factorization system
for K.
(@) (P, (B), P(D) is an image-factorization system for H.
1 1
(b) (Pz(PltEj)s Pz(PlcliD = (E’M)
Proof: Consult [24], App. 2. 8

(10) Let K and H be differential-behavior categories, let (Pl,Nl,le
be a duality specifier from K to H, let (E,M) be an image-factorization
system for K, and let M be a differential system in K.

(a) ‘13'1 (M) zs W—reaehable if and only if M is [fobservable.

U

(b) P, M) is PziEi-observabZe if and only if M is E-reachable.
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(©) Py is (?ITPD} ?ITET)-eanonicaZ if and only if M is
(E,/) ecanonical. '

@ Ir (PZ’NZ’ 2) ts a duality specifier from H to K, then
PyoP; (M) s E-reachable (resp. M-observable, resp. (E,M) -canonical) if
and only if M has the same property.

Proof: Follows from (7), (8), and (9). ®

In the above, recall that reachability, observability, and canonicity
are independent of the particular adjoint situation, depending only upon
the image-factorization system. Also recall that (E,M is an image-
factorization system for K if and only if (J|,E) is an image-factorization

system for K°P,

Examples
Examples of duality theory in the cases of Mackey 1.c.s.'s and Weak

l.c.s.'s are very easy to construct. All that need be shown is that
the duality functors are differential and embeddings. The behavior of
the various image-factorization systems under the duality will also be
shown.

Let PIVB: MS)°P - MS(resp. ;Dwsz WS)°P WS denote the functor defined
by E ~ El'( (resp E » Eé) on objects and (f: E + F)»(f': F' - E') on morphisms
(f: E > F here is interpreted to mean f is a continuous linear map,

so £ e Mo (F,E) (resp. f e Moxr (F,E))).
(M5)°P (WS) P
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(11) DPB (resp. DWS) 18 a .differential equivalence and an embedding.
Proof: It is immediate that D,VB (resp. ,DWS) is a differential equivalencé. '
~ Now E' determines E as a set, since any f ¢ E' has domain E. The 1.c.s.
structure of E may now be determined by the natural idéntification of

E and E". §

(12) The duality of the compatible image-factorization systems for

WS is expressed below.

(a) (WS (Znjections), ,Dws (quotient maps)) = (dense maps, closed
embeddings)

(b) (Dws (embeddings), ;Dws(surjections)) = (surjections, embeddings)

(c) (bws(closed embeddings), Dws (dense maps)) = (quotient maps,
injections). -
-Proof: This follows imeediately from the characterizations of weékly
continuous linear maps in terms of their transposes (see [23], Ch. 2,

§16). @

In the above, recall that that domain of DWS is WS)°P, so that
the order of (E,M) is reversed, for each image-factorization system
of S.

Using the natural isomorphism J: WS -+ MS, (12) inﬁnediat,ely implies

the following.



78

(13) The duality of the compatible image-factorization systems

for [IS is expressed below.

(a) (bMS( injections), »DMS(quotient maps)) = (dense maps, closed

Mackey injections)

(b) (JDMS(Mackey embeddings), Z’MS( surjections)) = (surjections,

Mackey embeddings)

(c) (PMS(cZosed Mackey embeddings), ;DMS(dense maps)) = (quotient

maps, injections)).®

85 RemaRrks

Remarks on the Literature

Other workers in the algebraic theory of continuous-time 1inear
systems have used an E'(R+)-module approach rather than a semigroup
approach. In order to compare their work to the present report, it
is necessary to recast the d.s.g. approach in a module framework.

Let T be a d.s.g. on the 1.c.s. E. T may be regarded as a A(R+) module
by using (iE)T: AR,) x E » E, where 1; is the identity on E (~ is defined
in §2). Also, as shown in §2, if E is quasi-complete, then this may be
extended to a map (iE)T: E'(R+) x E > E. This module action is hypo-
continuous, but not in gemeral continuous (again see §2). |

The approach of Kalman and Hautus [29] may now be reinterpreted
as a special case of the realization results of this report. Their

E'(R,)-module homomorphism £: E'RNH™ » (ER,))P defines a total
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response k: ?QCQCQC (Km) > S'QC%C(KP). Factor this response using the

image-factorization system (quasi-quotients, injections). This corres-
ponds to the Kalman and Hautus (quotient map, injection) factorization,
since a quotient of (E(R+))m is complete (it is metrizable). The
differential equation of Kalman and Hautus corresponds to the d.s.g.
and differential system obtained on the quotient space, using the
techniques of §3. The Kalman and Hautus paper does not deal with

the problem of going from internal to external behavior.

Part of the Bensoussan, Delfour, and Mitter approach [9] also may
be regarded as a special case of the realization problem of this report.
Their input and output spaces, I and Y, are fixed to be reflexive
'separable (B) spaces. Their external system representation is given
to be an E'(R+)-m0dule homomorphism between Ll(E(R+),I) (the space of
nuclear operators from E(R+) into I) and E(R+,Y). Since E(R+) is
nuclear, L, (ERDD = LER,D) =E'(RY&,T = E'R,)8 Y. Once
again, the external representation may be regarded as a total response
k: {FQCoQQC(I) ~>3QC°3?QC(Y). They factor the map with (quotient maps,
injections), although this is not an image-factorization system forVQC.
The semigroup which Bensoussan, Delfour, and Mitter get for the internal
representation corresponds exactly to the d.s.g. obtained using the
theory of this report, with the factorization modification mentioned
above. They do not treat thé converse problem of recovering an external
behavior from a given semigroup of a certain class (corresponding to

§2 of this report).
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Bensoussan, Delfour, and Mitter also present a duality theory,
in which they go to the weak topology for the dual system (the original
system being described as above). As such, their approach differs from
84 of this report. In particular, they faétor both the original system
and the dual system with (quotient maps, injections), with the consequence
that the state space of the dual need.not be the dual of the original
state space (refer to 4.(12) of this report).

The Benosoussan, Delfour, and Mitter paper also contains interesting
approaches to continuous-time systems using Sobolev spaces and Banach
algebras, the latter being closely realted to the paper by Bensoussan
and Kamen [10]. No similar points of view are taken in the present
paper.

Kamen [30], [31], and [32] also has investigated continuous-time
systems within the algebraic framework. While he also uses spaces of
distributions extensively, his emphasis is quite different form that
of the pregent work.

Carlson [15] is the only other worker who has used category theory
in an approach to continuous time systems. His abstract is very different
in emphasis and content from the present report, dealing with an
adjunction between behavior and realization for simple differential

machines.

Extensions to this Report

There are many ways in which the current report could be extended.

Differential systems using other types of analytic semigroups certainly
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should be investigated, as should an approach which takes into account
more general systems, such as delay-differential equations. Relative
category seems to be a solid framework in which to conduct these investi-
gations (see Appendix).

Some of the ideas of distributions and C*-function algebras have
been extended to topological vector spaces which are not locally-
‘convex (see [50]). These ideas could pogsibly be used to extend the

present theory.



82

APPENDIX  ReLATIVE CATEGORY-THEORY APPROACH

As this report was being completed, it was discovered that many
of the ideas presented have elegant fornulations within the context
of categories realtive to |(S. It is not the purpose of this appendix
to give this formulation, but rather only to indicate the general idea.
Full details will appear in a forthcoming report. For this appendix only,
it is assumed that the reader is familiar with the ideas of relative
category theory ([14], [16], [18], [20], [34], and [35]).

LCS is a monoidal category under the bifunctor -@ -. The right
adjoint to -@1E is LS(E,-). Thus it makes sense to talk about categories
relative to |(S. |

Regard any (full) subcategory of [ (S as an [ (S category by putting the
l.c.s. structure LS(E,F) on the set of morphisms from E to F. Regard
A(R,) as a one-object |(S category whose morphism 1.c.s. is AR
composition is convolution. DSG(K) then reinterprets as the |(S-functor
category KA(R+) (see the discussion following 1.(4)). K itself may be
regarded as the | (S-functor category Kl, where 1 is the one-object
LCS category whose morphism 1.c.s. is K; composition is multiplication.
The natural injection 1= AR): k+ k-do induces an [(S fUnctor'%k:KA(R+) -+
Kl, which corresponds to the %k defined in §2. The problem of finding a
left (resp. right) adjoint for %k amounts to finding, for each E ¢ Obj(KA(R+)),
a left (resp. right) relative Kan extension of E along 1 e A(R+). In case
K is tensored (resp. contensored), these extensions have formulations in

terms of ends (resp. coends), and the d.s.g.'s found in §2 are produced
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immediately by these formulations. All of the subcategories of LCS which
are considered in this report are both tensored and cotensored. This
functor category appraoch to external behavior specification is essentially
that which is employed by Bainbridge in this thesis [7] for ordinary
automata theory; he worked relative to the category SET of sets and

. functions (i.e., in ordinary category theory) rather than [(S.

It appears that realization and duality may also be treated within

this framework, although the details have not yet been completed.
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