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ABSTRACT

This report is an interim progress report on the evolving structure
of VISIONS, a computer system for general visual perception. The goal
of the system is the segmentation and interpretation of a digitized color
image of natural outdoor scenes. We outline the multi-level data structures
used for representing both a visual model of the scene and the semantic
data base of stored knowledge abput the world. A flexible modular
strategy controls the operation of processes which embody diverse forms
of knowledge, and allows both data-directed and knowledge-directed model
building. A model search space is used to store a sketch of the pro-
cessing history during model formation, so that limited, directed back-
tracking will be facilitated.

A symbolic data structure (RSE for Regions, line Segments and End-
points) interfaces the results of low-level segmentation processes with
the interpretation processes which form hypotheses about surfaces,
objects, and frames of visually familiar situations. The RSE structure
répresents syntactic two-dimensional image information while the three
higher levels of representation organize semantic concepts in three-
dimensional space. Utilization of the RSE structure decomposes the
development of the low-level and high-level systeﬁs; it provides a clear
statement of the requirements imposed on the low-level segmentation pro-
cesses, and delineates the form of the data which will be the input to
the high-level processes. The summary contains a discussion of the major
design goals of VISIONS.

Two forthcoming reports will supplement this paper. The low-level
system is only briefly discussed‘here but will be treated in more detail in

[1], while further details of the model builder will be provided in [2].
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I. OVERVIEW

This paper represents a brief overview of a general computer-based
visual perception system, called VISIONS [1-7], currently under develqpment
by our group. The system is being designed to function in the real world
environment of full-color natural outdoor scenes. The structure of VISIONS
is quite complex and the ideas discussed here will only be an outline of
the many representations and subsystems fhat are being developed in detail;
the paper is meant go provide an introduction to and progress report on the
evolving structure of VISIONS. A

Figure 1 represents the global organization of VISIONS. The system
divides roughly into two major subsyétems:

a) low-level processeé whose goal is the segmentation of the image

into regions representing (major parts of) conceptual objects,
and extraction of a set of visual features associated with each
region;

and b) high-level processes whose goal is the construction of a conceptual

model of the three-dimensional world represented in the scene;

this involves the use of a semantic data base, expectétions

about the scene provided by context, deductive mechanisms, analyses
of perspective, occlusion, shadows, a representation of shape

and a spatial processor for manipulating volumes and surfaces in
space, a flexible modular strategy which cont}ois the utilization
of the available processes, and a model search space where a
sketch of the processing history during model formation is

maintained for limited and directed backtracking.
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The goal of the high-level system is the construction of a model

which describes the major conceptual entities and three-dimensional space

of the scene under consideration. Both the image model and world knowledge

contain information represented at different levels of symbolic abstraction

(refer to Figure 2), similar to that described in the HEARSAY speech

understanding system [g8]. Again, this portion of the system may be divided

into several structures:

a)

b)

c)

Image Model (short term memory--STM): The image-specific model is
formed as a multi-level network (directed graph). This consists
of the information contained in the six planes on the left hand
side of Figure 2. The bottom three planes (RSE) represent two-
dimensional syntactic information derived from the segmentation
process and stored symbolically. The upper three planes represent
the semantic interpretation and definition of three-dimensional
space.

World Knowledge (long term memory--LTM): This contains the
general world knowledge in the same multi-level representation

as the image model and is depicted on the right hand side of
Figure 2. Pointers from the left side to the right side provide
the linkage between the image-specific entities and the general
classes to which they belong; pointers into the range of allowable
values for attributes can be used to specify a particular attribute
value of an image-specific entity.

Control Processes and Knowledge Sburces: These are the functions

which are responsible for the formation of hypotheses on the upper
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three planes of the model. They utilize the symbolic information
in the RSE planes, contextual expectations concerning the image,
and other hypotheses stored in the partially formed model. All
entities in the model are linked to the relevant concepts in
world knowledge as the model is formed.
The ideas presented in this paper address many of the issues in
scene analysis and AI--the use of multiple knowledge sources, multiple
levels of representation of knowledge, local and global processing,
serial and parallel processing, model-directed analysis, backtracking,
etc. (refer to Summary). One of the most important issues is effective
control of the processes responsible for formation of hypotheses concerning
the scene. In VISIONS, flexibility of control is afforded by both bottom-
up and top-down analyses. For example, local data~-directed analysis
(bottom-up) might call for a hypothesis for the identity of a region
on the basis of its visual features (color, texture, size, shape, etc.),
while the instantiation of a frame (a representation of a familiar scenario)
would allow knowledge-directed analysis (top-down) to provide global
direction in setting up expectations about the context of the scene.
The high-level system is currently being developed utilizing a LISP
base, the context trees of CONNIVER[22], and modifications of GRASPE [28]
a graph processing language. These tools contain the necessary mechanism

to support the model building process that we describe.



IT. THE LOW-LEVEL SYSTEM

The low-level system further subdivides into two components: the

processing cone [1,4] and the low-level executive, The processing cone

depicted in Figure 3 is a simulation of a parallel array computer that is
hierarchically organized into a layered system; It is meant to provide a
general computational structure for the analysis of visual data in both
numeric and symbolic form. Its major function is the transformation and
reduction of the large amounts of data normally found in digitized images.
Information flows up, down, and laterally within the cone by defining
a function to be applied at time t to a local windéw at- a given level
" of tﬁe cone. This function is applied simultaneously in parallel to local
windows across the entire arfay.
There are three major types of processing operations in the cone.

4

During a reduction process upward through the layers in the cone, the data

is reduced because portions of each window are nonoverlapping. An iteration

pfocess allows the data to be analyzed and/or transformed at a fixed level
of the cone; the size of the array remains constant due to overlapping

of windows. A projection process allows information in upper layers fo
iﬁfluence computation in lower layers.

Algorithms for forming edges and grouping them into lines, region
growing, texture analysis, and color mappings, among others, have been
defined as sequences of parallel operations applied up and down the
levels in the conical structure. In the cone, the results of these
parallel operations are stored in pseudo-image arrays which are also
available for further processing gy local operators. Many of these

algorithms produce segmented or transformed images at various levels of

o
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resolution--they operate on the 2562 grid of image data and can reduce
it, layer by layer, up to a single cell which contains information'
extracted from the enti;e scene. For related work on hierarchical
structures, see Kelly [ 9], R&senfeld and Thurston [101, Uhr [11],
Klinger and Dyer [12], and Tanimoto and Pavlidis [13].
The idea of a general-purpose low-level system, which understands
the environment at different levels of description, has recently been
discussed by Zucker, Rosenfeld and Davis [14]. It has become apparent to us that no
single low-level process is robust enough to provide the information
required for reliable segmentation; This implies that a system of
'well-coordinated algorithms is needed which is effective in extracting
different types of information. The nucleus of the low-level system,
the executive, will be responsible for control of the algorithms, including
the dynamic selection of features upon which boundary and region analyses
are based, the order in-which they are invoked, cooperation between them,
an understanding of the strengths and weaknesses of each for resolution
of conflicts, etc. Since the processes are somewhat redundant and produce
alternative forms of the same data, they provide the executive with the
ability to determine consistency of analysis. This stage of the system
is still in the midst of develoément and will be reported at a later time.
In the following discussion, we assume that the organization described
has allowed textured regions to be processed reliably, i.e., that a
textured area may be represented as a single reéion with global texture

descriptors.

at



ITI. INTERFACING THE HIGH- AND LOW-LEVEL SYSTEMS

ITI.1 Symbolic Representation of Segmentation Results

What should be the output of a low-level system? How should the
low-level system communicate with the high-level system? If one
considers the process of image understanding as a transformation (or series
of transformations) from the numeric data representing the sensory stimu-
lation to a symbolic structure representing a model of the world as found
in the image, then at some point numeric entities must be mapped to symbolic
entities and structures. The question to be decided, then, is where in
the transformation this conversibn takes place and how it is accomplished.

Marr [1975] has recently suggested that low-level vision in humans
moves onto the symbolic level at a very early stage, prior to the initiation
of semantic processes. He believes that high-level analysis only has
access to a "primal sketch"--symbolic descriptions of lines, edges,
shadows, blobs, and abstract groupings of these elements (including the
"élaces"'defined by these primitive features).

The advantage of symbolic communication for computer vision is that
the vast amounts of data in the intensity arrays do not have to be
continually referenced. They can be compacted and easily examined by
semantic processing structures. Of course thg symbolic storage of every
faint edge, gradient, and shadow can itself be overwhelming so there is
still a need for suppression of detail, whose loss can be compensated
for by'allowing feedback to attention mechanisms to extract further foveal
detail when desired.

Grouping operations and other transformations should be

applied to symbolic entities spatially close to each other in the
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2D image. Thus, it seems clear that although one may operate on symbols,
maintenance of this information in a data structure which preserves
spatial relationships (such as the processing cones) is highly
desirable.

From the point of view of building effective vision systems, there is
some question as to whether it is desirable to move immediately to the
symbolic level. A value for a parameterized feature on some scale might
serve better than some symbol. One might operate on numeric values and
move to a symbolic level after some degree of processing, so that the
amount of symbolic data is of manageable proportions. A textured region
would have one label and a set of descriptors, rather than the symbolic
representation of each texture element of the textured region. If the
texture element is of high interest, it can be focussed upon as a subimage
itself.

We have chosen a symbolic representation for macro-segmentation
results for two main reasons. The first is that it formally separates
the segmentation process from the interpretive processes. A flexible
symbolic data structure will provide a formalism in which the results of
segmentation algorithhs can be collected. At the same time it defines
the input to the semantic processes. Thus, as a methodology for system
development , onegains a decomposition of two major systems which allows
independent implementation of each, yet insures that they can be compatibly
interfaced.

The second reason for the symbolic'representation is that very different
representations and techniques are called for in the low- and high-level

systems. Semantic processes generally operate on symbols--not numbers--and
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the symbolic naming of the primitive visual entities facilitates communica-
tion between them. This means that the processed visual information can
be stored in a form similar to the semantic data base. This does not
preclude feedback from internal models to the feature extraction stage--it

just structures this communication.

I11.2 The RSE Structure

It appears that the minimal information that must be contained in a
symbolic representation of a segmented image is the labelling of distinct
regions and boundaries that we have been taking great pains to extract.

If it allows regions and lines to be consistently représented, then

we have a single data structure which accepts the results of many different
algorithms and provides effective communication between them. An algorithm
that finds boundaries can check whether they fit with regions that may

have been extracted by utilizing a (possibly) different set of features.
This redundancy may detect errors and direct the invocation of more powerful,
but computationally costly, processes in a selective manner.

Our syntactic representation of 2D information is stored in three
planes—-region, line segments, and endpoints. It is very important to make
the relationships between these image elements easily accessible. There is
no reason to expect that regions and objects are in a one-to-one relationship;
objects are usually composed of several regions. Thus, it is necessary
to know which segments bound a region and which regions are adjacent to

each other.
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A convenient representation is a directed graph broken into layers
of nodes; the nodes represent names of the entities on each plane, and the
unlabelled bidirectional arcs between planes represent key two-dimensional,
" spatial relationships between them. This representation is interesting in
that relationships between nodes at one level appear as a node at the next
level of representation with its own descriptors and relationships. The
fundamental relationship of adjacency of regions is implicitly available
as a line segment node; it is represented by an arc from each region node
to their common line segment node. Thus, a region is defined by the set
of line segments which form its boundary, while a line segment is defined
by a pair of adjacent regions, unless it is a non—bounQing line segment
contained in a single region. Line segments are anchored in two space
by the position of their endpoints. Thus, the concatenation of line
segments can be represented by arcs to their common endpoint node. If
regions must later be split or joined, this reéresentation affords the
flexibility for redirecting a few pointers to update the low-level visual
data.

Figure 4 is an illustrative example. The R plane projects down upon
the S plane which in turn projects down upon the E plane. In particular,.
regions are enclosed by segments (and can, in turn, enclose non-bounding
line segments, such as Sg). Note that R* is a special region which includes
everything putside the picture and therefore points to the line segments on
the boundary of the image.

If a segment is not enclosed by a region, then it separates two (and
only two) regions; this follows by definition because if a boundary separates

more than two regions, it will be'partitioned into segments such that each
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segment separates exactly two regions. In this example we have further
subdivided a line segment into segments which are straight whén this
property is applicable (except in the case of the picture boundary where
they are artificial). Obviously other properties could be used to subdivide

9

entirely contained in a region will be called isolated segments and are

line segments also. Also note that segments such as S5 and S, which are

immediately apparent because only a single region node points to them.

Segments are specified by their two endpoints. Segments which meet
will have a common endpoint, allowing any connected sequence of segments
to be extracted. Closed line segments have no endpoints; therefore, it is
useful to add an arbitrary starting point so that the line can be fixed
in two space.

It is crucially important to realize that only a limited subset of
the possible two-dimensional spatial relationships between regions and lines
are being used to form the logical structure of this layered network, namely
the adjacency of regions mapping onto segments and the connectedness of
segments mapping onto endpoints. There are many other relationships that
can be represented and extracted as explicitly labelled directed arcs
between the primitive visual entities. For example, containment of region
R2 by region R1 can be represented by a "C" arc from R1 to R,. In this
fashion the syntactic graph representation can be enriched with any further
relationships that the user might define, such as arcs between parallel
line segments or endpoints near each other.

A set of properties and values can be hung off each region or line
segment node and made accessible to the semantic system which is examining

the information. In particular the cone algorithms are to extract visual
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features of regions and boundaries and dump them into the symbolic structure.
These descriptive properties might include:

regions -~ hue, saturation, intensity, texture, location,
size, shape, orientation, etc.; ’

line segments1 —- location, quality (straight, curvilinear, or
various characteristics of irregularity), width
of gradient, orientation, etc.; and

endpoints -- location, type of vertex such as the polyhedral
fork, arrow, T, etc.

The model builder begins the model inference process with the RSE
structure, but the RSE structure need not be static. The complex of nodes
and arcs can change over time as the low-level system extracts further
information from the image data. Given the manner in yhich the segmentation
algorithms will operate in the processing cones, there could be an RSE
structuré of each level of resolution in the cone. This would allow the
dynamic development of RSE under hierarchical direction. Segmentation
and RSE results at higher levelsbof the cone would direct and refine
segmentation and RSE at lower levels.

‘For the reader who believes that this symbolic representation must
surely produce an unwieldy mass of data, Figure 5 gives an example of a
fairly complex road scene. It was produced by hand from an actual 35 mm

slide of the image by blurring the slide and tracing the boundaries of the

1 The chain encoding [15] of a line segment on a rectangular grid might be

stored so that further extraction of properties can be carried out later.
This can be done at different resolution levels so that a jagged line which
globally is straight would have the local and global properties consistent
and accessible. Of course the chain encoding at a coarser resolution can
be obtained directly from the chain encoding at a fine resolution.
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major regions. Each region has been labelled (R1 - ng) as has each line
segment (S1 - 844), including the picture boundaries. A collapsed repre-
sentation of R-S and S-E planes is shown in Figure 6(a) and (b); respectively.
Note that the road scene has had much of the finer textural characteris-

tics processed and grouped in the tree regions of R, and R,, and the

1 4
grassy region of R6. Otherwise this representation might produce a

bewildering mass of information.

IIT.3 Advantages of RSE for Segmentation and Description

It is worth pointing out the advantage of our regi&n—segment definition,
both for the low-level segmentation processes which must extract the line
segment, and for the facilitation of determining adequate descriptors of the
line segments. If loca% edges which are part of a common boundary are to
be grouped into distinct line segments, then some criterion of similarity
is needed. In addition to spatial proximity and orientation, the similarity
of edge strength is a strong cue for edge grouping. However, the regions
surrounding any given region are bound to have different properties.
Therefore, no matter upon what feature the strength of the gradient is based,
one must expect widely varying values as the boundary of a single region is
tracked. Hence, the argument for forming line segments each of which lies
between no more than one pair of regions. Local edges can be expected to

exhibit characteristics which have less variance. In fact comparison of
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N

features of the regions to either side of a pair of adjacent edges can be
very useful in directing the edge bindingvprocess [16].

The extraction of line segment descriptors is also facilitated.
Occlusion of one object by another (see Figure 7 ) causes the boundary of
an object to vary depending on which of the regions represents the occluding
surface. One cannot easily provide a single descriptor for the entire
boundary of region R1 (irregular for one portion and two straight line
portions at different orientations) unless it is subdivided. By defining
line segments as we have, it is more likely that simple features will be

adequate descriptors for each segment.

R
7
Wi

Figure 7 Characteristics of the boundary of the tree region change
due to the occlusion by the house; a single descriptor of
the boundary of R1 is not meaningful.

II1.4 Operations on the Symbolic RSE Structure

The purpose of such a symbolic representation of the visual syntax
is to allow other procedures flexible access and manipulation of this
processed information. Referring to our simple example in Figure 5,
let us describe a few operations which illustrate the manner in which the RSE

data structure will be utilized for model building.
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It is assumed that the segments bounding a region, the regions about
a segment, and the corresponding relationships for the S-E plane are primi-
tive relationships, i.e. the results are easily accessible by following
the prOpér arcs in the graph. Some operations are:

(1) determination of the common boundary of two regions -

for regions R1 and R,, intersect the two sets of segments which

2’
they point to on the S plane; thus,
{8115545455,,55,5¢,57,85} A {8(,8,84,54}

yields the common boundary {S¢+5,,8g};

(2) determination of the set of regions adjacent to a given region -

for region R2’ obtain its non-isolated segments on the S plane
{56,87,88}; trace back to the R plane all regions other than
R2 which point to these segments and form the set {Rl} as the
adjacent region set; note that each non-isolated line segment
is recognized because it has exactly one other region node

pointing to 1it; and

(3) determination of the connected boundary around a region -

for region RZ’ select one of its non-isolated line segments on
the S plane, say S6’ and then select one of its endpoints, say

E6; trace back from E, to another of its line segments which is

6
not isolated, in this case S7 (note that selection of S0 will
require backtracking when it is found to be an isolated’segment);

follow its pointer down to its next endpoint E., and repeat

1
the process until the boundary closes on itself back at S¢-
There are many other simﬁle operations that are straightforward. The
comparison of properties of adjacent regions is available from the descriptors
of the region nodes obtained in (2) above. Line dominance cues are available

by comparing the properties of the line segments entering an endpoint node (refer to Fig. 7).
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Sometimes a line has a break in it allowing two regions to be incorrectly
merged. Since endpoints have a location descriptor, arcs on the E plane
can be formed between pairs of endpoints on the basis of a distance threshold.
Then hfpotheses for extending or inserting line segments can be examined for
implications at a semantic level. Certainly feedback to segmentation algor-
ithms can provide them with a focus of attention and increased sensitivity for
examining the visual evidence, possibly quite weak, to confirm these hypotheses.
The operation of determining region containment is quite messy in the

RSE structure, because it is locally unclear whether R, contains R, which contains

2 1

3 contains R1 which contains R2. One must recursively trace out to

the picture boundary and R* to determine the correct case. Consequently we

R3, or R

assume that containment relationships are computed once and C arcs placed in
the R plane. Once C arcs are available, it is easy to extend operation (3)
above to determine inner and outer boundaries for regions which contain
other regions.

One must also face the problem that segmentation errors undoubtedly
will occur. This will require that regions be merged to form larger regionms,
and the messier problem of later splitting one region into several regions.
However, this should only require locally redirecting the pointer structure

to reflect those changes.
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IV. SEMANTIC REPRESENTATION OF THE MODEL AND WORLD KNOWLEDGE

The upper three planes of the image-specific data structure represent
the meaning of the visual data. They define space in terms of surfaces
(such as the planar surface of the ground), objects (tree), and frames
as an embodiment of familiar‘scenarios or submodels (road scene, house
scene). Here, all the entities serve to define the relationship of semantic
components and map down upon the regions which demarcate the visible
portions of these entities. These."conéeptual grouping'" mappings go
from frames to objects to su;faces to regions, etc.; however, the
inverse mappings are also available since the arcs are bidirectional.

IV.1l Frames

Our concept of a frame is similar to that of Minsky [23], although
it is simplified and tailored particularly to vision. A frame defines
a conceptual grouping of objects and their relative positions in
three space. The frame of a road scene will describe the relationships2
between the road, cars, guard rails, telephone poles, etc. The frame
will specify objects or surfaces, their importance to the instantiation
of the frames, and any other information useful to guide the model building
process. The frame must also point to related frames, just as objects
in a semantic net have access to related objects. Objects appearing

in a frame may also have their own frame specification. A tree may be

2 The relationships of interest for our immediate purposes are primarily
spatial, but generally we expect spatial, functional, and temporal
relationships to be stored in a frame.

LY

»
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part of a road scene frame and be treated as an object with attributes.
On the other hand, a more detailed description of the parts of a tree
require spatial definition and relationships. Thus, "tree'" can be treated
as an object or a frame during model building. Long-term memory may then
be treated as a network of frames and objects in which many of the
entities may be dealt with in either way by the remainder of the system.
The relative importance of particular objects and relationships to
the frame can be captured as weights. Weights from objects to frames
(upward weights) rate the likelihood that the presence of objects implies the
presence of ;he frame, while weights from frames to objects (downward
weights) store the likelihood that the presence of the frame implies
the presence of the object. Guard rails strongly imply the road scene
frame, while the road scene frame must have guard rails as optional
since their absence is to be expected in some cases. Of course this is
a crude approximation to the dependencies between objects in a frame.
However, it is clear that accurate estimation of the joint distribution
of all the subsets pf the objects in a road scene is not feasible. Thus, we approach
this problem heuristically with intuitively selected weights, and we
will deal with the problem of tuning, dependencies, and adaptation later.
In the model an instantiated frame of a road scene provides access.
to other frames which might also be instantiated as part of the model.
It.must also project down upon the object plane, specifying the objects
of this frame which are actually in the scene. Thus, the model builder
uses the frame to guide the analysis of the picture in terms of sets of
related objects with dependent relationships, rather than process each

individual object relatively independently.
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IV.2 Shape, Surfaces, Spatial Processing, and Perspective

Representation of three—dimensional space is required for both frames
and objects. As we stated earlier, the spatial relationships of the frame
entities are crucial to the application of the frame information.
Similarly, we must provide a description of the shape of an object.

If the system is expected to understand viewable space, it must have
access to the volume that the object is expected to fill. Since surfaces
bound volumes, the object level will be mapped down upon the surface
level.

The complexity of shape at the semantic level rivals or exceeds
the &ifficulties caused by texture at the segmentation'level. Our
initial approach to this problem is an attempt to define a coarse
déscription of space in terms of primitive surfaces and volumes.

In the simplest case, say a parallelepiped, each face may be defined
in terms of a surface as a primitive area (on a plane in two space) and
then the relative orientation of these surfaces are used to "hook" them
together to bound a volume in three space [17]. Representations of simple
surface areas and volumes can be stored for use as primitive descrip-

tions. However, we can extend primitive volumes to include a collection

of related surfaces which has a macro-definition with a label name. This

representation should be sufficient to build a simple stereotype‘of an
object or arframe; desériptive structural examples of a house, car, and
road scene are shown -in Figure 8-10.

In the house description (Figure 8) threg primitive volumes are

" hooked together at relative orientations and positions in order to roughly



(b)

Figure 8 Representation of Shape of House
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define the volume occupied by the prototype house. Windows and doors
are shown as primitive areas lying on the surface planes of the volumes.
It is, of course, necessary to specify a set of constraints on the way
in which volumes and surfaces are attached. The location of windows

and doors are §ariab1e within certaiﬁ placement limits and structural
considerations. While the chimney may be placed anywhere along the roof
line, it must be attached to the volume representing the roof.

‘Depending upon the representation, the chimney itself may or may
not be a pfimitive volume. It Qould be considered as primitive if its
volume is defined in terms of surfaces; on the other hand, the chimney
can be made up of three primitive volumes: two prisms ;nd a rectangular
parallelepiped. This collection could then be labelled 'chimney" and
trea;ed as a non-primitive volume because it is built out of other
volumes. In the case of the chimney, the object, shown is the prototype
for chimneys which straddle the roof line; for chimneys wholly within
one plane of the roof, either a different primitive representation is
required or possible modifications to a single representation must be
provided.

Similar considerations hold for the prototype car, as depicted in
Figure 9. For the car body volume one can build it as a primitive in
terms of surfaces or as a non-primitive in terms of other volumes (some
of which may be primitive). In the latter case, the car body could be
described either by adding volumes together or subtracting volumes from
another. In general, there are many representations 6f an object or

part of an object.

o
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(b)

Figure 9 Representation of Shape of Car
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There may be constraints upon the ways that surfaces and volumes
attach to each other and these constraints could be critical to the
description. The attachment points between the roof and body of the
car are clearly variable, but only‘along the z-axis; the volumes must
be connected (Figure 9b) so that the pianaf surfaces representing the
sides line up. However, the points at which the upper volume attaches
to the body voluﬁe can slide baékward and forward within a specified
range. If it is moved outside this range, the perception of the hood
of the car will begin to disappear so that it will no longer look like
a standard car.

Figure 10 is a description of space in the road scene frame. Here,
some of the conceptual entities are surfaces such as the road and roadside.
The same descriptive language, though, can be used to attach the surfaces
and volumes; the orientation and placement of the hooks (including constrained
variation) describe the relationships of the parts in building the whole.
In Figure 10a, the volume in which the guard rails can be located is
répresented; then the déscription of a prototype guard rail (Figure 10b)
and their relative placements completes this representation.

Depending upon the shape of the entities involved, different types
of primitives seem to be moré natural. Most of the house aqd car seem
to be naturally represented’by planes and polyhedral volumes. However,
the wheels of the car or the telephone pole are better represented as
cylinders. The generalized cone [18,29] takes a cylindrical
representation and specifiés the modifications down its axis to fit
specific shapes (e.g., a screwdriver). It allows parts to be hinged

and this seems to be a reasonable way to approximate the shape of a

"
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(a)

Figure 10 Representation of Spatial Relationships in Road Scene Frame
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(b)

Figure 10 Representation of Spatial Relationships in Road Scene Frame
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person as well as the degrees of freedom in their movement. If the

language of primitive elements is rich, there should be sufficient

flexibility in the description of a wide range of objects and situations.
One should note that these descriptions can be symbolically repre-

sented independent of any particular point of view. This would allow

a single representation to be picked up by a perspective process which

could rotate the symbolic description (not manipulation of the equations

representing the vertices) so that the appearance from a particular direction
can be deduced. Now the problgm of fitting the shape description of an
object or frame to the shape and size of regions is well defined, although
the actual process by which a collection of regions is made to match
a prototype shape descriptor is still very difficult. A spatial processor
must rotate these descriptions and scale them in order to take into
account the effect of distance upon the size of the regions appearing
in the image. The scaling might bé facilitated by normalizing each
description into a unit cube whose orientation and size can be manipulated
to fit the particular image example. This process can be driven bottom-up
from the shape of the regions produced by the segmentation processes,
or top-down from the shape representation by predicting the appearance
of regions representing objects or surfaces.

Finally, it may be useful to provide a hierarchical description of
the shape of an object from coarse to fine. This allows a simple shape
representation as an index into complex shape representations. Also the
hierarchy can be used to roughly provide information about the appearance of
regions at different levels of the cone. Thus,'the coarsest description

of tree links a sphere (or hemisphere) above a cylinder. More detailed
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decriptions should allow distdftions on the hemisphere, but even more
importantly is the surface description capturing the "texture" of protru-
slons and cavities in the shape of the crown. Fine descriptions must move
down to the level of branches and leaves which partially fill the sphere.
Thus, the global crown shape can delimit the volume containing the cylin-
drical representation of branch volumes and the planar representation of
leaf areas (a two-dimensién area carries most of the information for

specifying the_volume of the leaf).

IV.3 Example of a Model

Let us summarize the discussion of model representétion using as an example
the simple hand-drawn tree scene shown in Figure 11. Avpartial sketch
of the model and its relationship to the permanent knowledge base of the
system is depicted in Figure 12. For clarity only some of the links in
the model have been drawn. In addition there are many details that are still

being developed and have been left purposely vague.

A model in this approach is defined by the specifications on the entire
left set of planes shown in Figure 12. Note that tﬁis includes the three
planes of the RSE interface data structure, since they represent the results
of processing two-dimensional sensory data and define the entities upon
which concepts map, i.e., the syntax of visual information. The upper
planes define the organization of the conceptual three~dimensional infor-
mation representing the system's understanding of the world depicted in

the image. Let us consider each of these in a bit more detail.
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Assbciated with entities at all levels (except possibly frames) is
an attribute-value specification of the form that we have already described,
i.e., a list of the features and values for each object, surface, region,
line, and endpoint. 1In Figure 12 the entities in STM have vectors of
values associated with corresponding vectors of attributes in LTM, without
the need for pointers to the actual attributes in LTM. There are both
advantages and disadvantages to this strﬁcture, and other alternatives

exist for representing attribute value pointer structures [19].

One further point to be clarified involves the difference in the
definition of the attributes of objects and regions. By following the
appropriate pointers down into RSE and its long term eq;ivalent, the
"sensory" values of these features may be found. Objects and surfaces
twhich are semantic entities) have the commonly interpreted "colors"
represented as symbolic entities, while regions (which are syntactic
entities) have numeric specifications of hue and saturation, which re-
present a distribution of the wavelengths of light or some type of mapping
closer to the sensory data.

If the pointer structure is carefully examined, one will notice the
rich level of redundancy that is represented. For example as a model is constructed, the

object 0, might point to color-blue and texture-smooth, just as the

4
concept "sky" in LTM does. This is part of the basis for 04 being
hypothesized as sky, and this hypothesis is represented by a pointer to

sky completing the loop.
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V. CONTROL OF PROCESSES IN BUILDING A MODEL

V.l The Model Search Space

In this section, we discuss the process of constructing a model of
 the scene. The model builder begins with the RSE data representing the

segmented image, as well as the world knowledge at all levels of repre-
sentation (the right hand side of Figure 1). At any given point in time,
a partial model consists of the entire set of nodes and arcs of iﬁage—
specific data in short-term memory, including those arcs into the permanent
data structure, Ihe model is constructed incrementally, in a sequential mode,
based on a model building strategy and a collection of modular sources of knowledge.
Thése changes might be the instantiation of an object or frame,‘ the addirtion
of a relation arc on the object plane, a decision about objects occluding
each other, an assumption about the context (suchas the season or the time
of day), etc. Thus a partial model which represents the current set of
hypotheses is continually expanded. At each decision point there are usually
a very large number of alternatives to choose from; thus, one can envision
a collection of partial models, each representing a different interpretation
of the image data.

Our decision to build models sequentially instead of employing paradigms
utilizing distributed computation [8] is worth a brief aside. It seems that once
one understands many of the local interactions in a very complex system such
as VISIONS, the system could be redesigned to run many of the processes
simultaneously, and take advantage of parallel processing at the semantic

level just as we are doing in the cones at the low level. However, there

o\
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may be difficulty in the development and debugging of a system with locally
distributed computation [ 20]. The user may not be able to easily grasp
the complexities of local interaction. We have chosen a conservative
strategy during the development stages. The system is being configured so
that a user can easily step in and assume the role of the control strategy
[21]. Although this is a methodological congideration, we believe that
advantages of parallel and locally distributed computation make it highly
appealing for the effective development of real-time vision systems.

The model search space can be structured efficiently as a tree of models,
where each node in the tree represents a different model. A new model is
generated whenever a change (or collection of changes) is made in the current
model. Each node stores only the incremental change to the current model

and the reasons for this change. This representation is naturally embedded

in the context tree structure of CONNIVER [22]). In this environment, the model, at any
node in the tree, is the union of incremental changes in the (unique) path from the cur-
rently active model (decision point) back to the root node. Also, each node
in the tree is a partial model, and is stored as a context giving the system
the ability to return to any previous environment for further processing.

It is important to ayoid confusion between the whole model search space
and each model itself. Figure 13is a simple example of a search space for
our example scene. The union of the information contained in nodes 1, 2, and
3 constitutes the current partial model. Each node of the model search space
contains an incremental change to the model, usually an addition of nodes and
arcs to the model itself (STM) and between the model and prior knowledge

(STM + LTM).



38

BLANK DE /// ///, z£é;:f§5;:§§§‘

R1) - @ (Blue, irregular,
G 'top, ..)
~

This change is represented as: .

~N
o
/ / ‘ 4 )
, R2=5KY
/ (Blue.. ) |g(Blue, irreq) 4 (Blue,top of [
A// image) l ’i
. /
Information about decision: : i

2
I R3=TRUNK
l (Brown..)
R%:=GROUND ! .
(Brown,flat..)*T‘EF’-:EzE

i -

‘ J S~ At this point the model is:
¥ o
h "y , -
Prame= OUTDOORS -/ /62‘/ w2 (os)/ /UAIE *~GROUND
sy &) L ot e [/
'/‘ ’ R ; -

Figure 13 Model Search Space

O



39

One must decide upon the type and extent of information which should
be saved at the model node. The purpose for storing this information is
to recover from errors and conflicts without the necessity of undoing the
entire model. Consider the following situation. During the course of model
building, it may become apparent (perhaps as a result of further processing)
that the identity of R2 is in error. 1In this case, the‘current model must
be suspended and a new one formed, assigning to R2 the best hypothesized
identity (e.g. sky). Now, we do not want to discard all the hypotheses that
have been made since the incorrect decision -- the erroneous assumption
might have been near the root of the search space! In fact any decisions
in the suspended model which were independent of the aséumed identity of
R2 should be retained in the new model without requiring much additional
computation.

Intelligent and directed backtracking can be based on a trace of the
décisions made during the model construction process. It might be possible
to store the knowledge sources which were responsible for the decision,
their confidences, the depth of their analyses (since there may be different
investments of computation based upon the importance of the decision), the
dependencies of the decision upon the partial model at the time, additional
modules which have not been called but may be important, and the best set of
alternatives to the decision being made

In general, one can view the'model construction process as a search
through the space of all possible models. If this whole approach to scene

interpretation is to be successful, only a very small portion of the huge
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search space should be explored. However, it is unlikely that all decisions
in the path of the final model were made correctly on the_first attempt-——

clearly, the efficiency of the search depends upon the sophistication of the
strategy used to guide the process and the quality of the knowledge sources

employed.

V.2 Knowledge Sources and Processes

The complexity of the model building process becomes apparent if one
examines the types of information which must be utilized. The ﬁodel builder
must be a flexible system which accesses and manipulates diverse forms of
information. In VISIONS there will be a system‘of processes which interact
somewhat heterarchically; however, final decisions will be under the’coﬁérol
of an executive which can be modularized into substrategies. The executive
strategy 1s responsible for integrating the responses of the subprocesses;
examining the implications of these responses in the context of the partially
constructed model, resolving conflicts, etc.

Let us list the various semantic processes or knowledge sources which
provide information to the modular control strategy and upon which deciéﬁons
must ultimately be based:

(1) object detectors (formerly referred to as vision routines):

under the control of the low level executive; these routines
respond with a rough confidence for various alternative identities

of a region; they will examine RSE and when necessary examine
data in the cones;

(2) semantic data retrieval: semantic world knowledge that is not scene
specific;
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(3) perspective analyzer: the module contains information used to
relate the 2D and 3D world, and aid in object and frame
recognition by rotating the perspective of 3D symbolic descrip-
tions;

(4) occlusion analyzer: this module utilizes heuristic information
to determine the likelihood that one region represents a surface/
object which occludes another; it examines the relationship of
regions in the neighborhood of a given region, dominance of
boundaries, etc.;

(5) shadow analyzer: checks consistency of the light source and
the shadow produced by objects off the ground plane; examines
intensity gradients on regions (objects) with approximate
uniform intensity, and compensates for the variation in the
strength of boundaries of regions running in and out of shadows;

(6) deductive system: a module which checks the logical consistency
of the model within the data base; this function may be realized
as a deductive system which utilizes the semantic data
base as its axioms, and the model or portions of it as the
theorem to be proved; others have proposed that this process be imple-
mented as a constraint satisfaction [23] or relaxation procedure [24,25].

V.3 Modular Control Strategy

The construction of a consistent model clearly depends upon the strategy
emboddied in the model builder and, subsequently, the invocation order of the
models. Generally each of the processes described will not be allowed to
directly call another process. Instead, the executive will monitor the
interaction and invocation of the set of knowledge sources as requests.

The importance of a correct invocation order is demonstrated by a simple
example; Figure 14 represents a line drawing of a person. The occlusion
module is responsible for determining the liklihood that an object (or region)

partially occludes another object (or region). This is accomplished by

various heuristic cues which take into account the similarity of two regions

separated by a third, considerations of line dominance of adjacent regions,



Figure 14 Example for Invocation of Occlusion Module
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etc. If invoked blindly, the occlusion module will consider the hypothesis
that sipce regions R1 and R2 have similar features they are part of a single
object or surface which is occluded by R3. This implies a conclusion that
the arms (regions R1 and R2) are in fact one object, occluded by and separate
from R3 (the shirt or body). At a certain levei, this might be a reasonable
conclusion to reach; however, it is not the usual interpretation of the
relationships between arms, bodies, and shirts. In this case, a faulty
conclusion has been reached because of the prematurity of the invocation.
However, if the module were invoked under the direction of a 'person' frame,
then it would be examining the scene at the proper level of abstraction:
Is the person occluding the background? The fence behied the person can be
hypothesized (correctly) to be a single object. Thus, it is most important
to have the processes communicating at the correct lewvel of analysis.
Similar examples may be advanced for the other modules and in general this
is an important consideration in the development of good control strategies.
The development of a model involves the instantiation of surfaces,
objects, frames, and the relations between them. Thus, the control strategy
defines how the links between these entities form. For example, an object
can be instantiated bottom-up on the basis of regions (referred to as R-0),
or top-down on the basis of hypothesized frames (referred to as F-0).
Depending on how one wishes to drive model development, more or less weight
can be given to each of these local model building strategies. In general

this viewpoint (similar to HEARSAY knowledge sources) leads to a set of local
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control strategies for linking entities between pairs of levels. One can
define a particular strategy to be utilized in each case. For example,

in hypothesizing an object for a region, the R-0 strategy can call in an
attribute matcher to determine the degree of match between region end_object
attribute values. But more reliable information might be ebtainedvby
examining object shapes and having the perspective analyzer_attempt to fit
the shape to the region by rotating and scaling the description. However,
this approach is conputationally exorbitant and should ﬁe used only in cases
where there is other strong evidence for the particular object. These types
of trade-offs would be represented in the local R-0 strategy. Other modular
control strategies can be defined for F-0, 0-F, S-0, etc. Now the executive

can be flexibly programmed to prefer certain choices and the user of the

system can more easily explore the space of control strategies.

L1}
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VI. SUMMARY

This paper represents an outline of work in progress. We have focussed
primarily upon the issues of representation and control. There are many
different stages in the development of visual models and many diverse
sources of knowledge which contribute to this development. Due to the
obvious complexities involved in the design and implementétion of such
a system, we will be following a methodology based on incremental simula-
tion [21]. Here the user can interactively play the role of unimplemented
processes and methodically replace distinct functions by software over
a period of time while the whole system is in operation.

The low-level system is being developed on a PDP-15 computer in
FORTRAN and assembly language with a color monitor and disk. The high-level
system is being implemented on a CDC Cyber-74 in LISP which has been
extended by GRASPE [26] and portions of CONNIVER [22].

The overall operation of VISIONS can be summarized in terms of some
of the major design goals that have guided the development or have evolved
with increased understanding of the problem domain:

1) A flexible interface of visual sensory data (numbers) to semantic
knowledge (symbols) - The image is segmented in the hierarchical
parallel processing cones and mapped into symbolic entities and
descriptors (the RSE structure). This representation of the processed
2D information is the interface to prior stored knowledge about the
world.

2) A flexibility of processing control - The development of the model

can be data-directed, knowledge-directed, or model-directed. The
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system must be able to segment an image even if it is a semantically
unrecégnizible or nonsense scene. Here the sensory data may entirely
drive the analysis in a bottom-up fashion. 1In other cases control of
model building proceeds top-down in a predictive fashion by accessing
world knowledge in the long term data base. Finally, the development
of an image-specific model can and should be directed by the partial
model already formed (which of course is another but more focussed
entry into the semantic data base). As the current model nears comple-
tion, more and more of the processing can be expected to be model-
directed. |

A sketch of the control history for directed but limited backtracking -
The model will be developed incrementally. Each addition to the model
will be stored in a CONNIVER context tree so that previous model
environments may be accessed. The basis for each addition to the model
will be stored, including the knowledge source(s) responsible, their
confidence, any dependencies of this decision upon other hypotheses

in the partial model, and finally the subset of best alternatives

for extending the model. 1If conflicgs in the model arise later,

the system can examine the basis of -a previous decision, tth possibly:
a) call in a more complete analysis by knowledge sources which were
not utilized or only carried out a limited analysis; b) decide to
delete or modify a previous hypothesis, requiring an examination of

the hypotheses that followed for dependency upon this decision;

c) examine other alternatives for the decisions in conflict; etc.

It may be useful to provide a global view of competing models by

collapsing the context tree into a graph structure similar to the HEARSAY
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system. This representation provides pointers between model hypotheses
which would not be directly available between distinct branches in

the tree of contexts. However, this global view makes it difficult to
store directly the history of sequences of incremental model additions.
More experience with these structures is called for.

Both local and global processing - In thg processing cones an operation
on a window at the lower levels provides a local view of the sensory
data, while an operation on a window at a high level in the cone has

a more global view due to the larger receptive field from which it
draws information. The cone provides a simple linkage between local
and global processing. At the semantic level there are local semantic
relationships between, for example, objects via a semantic network.

Oﬁe can trace specific relations independent of a larger context.

On the other hand the scenarios or frames at the highest level of
representation, provide a globai view of the knowledge base. The
set‘of conceptual entities and the definition of three-dimensional
space in a common situation such as a road scene acts as the global
semantié structure. Similar statements are valid for the 6 plane
image specific model.

Both serial and parallel processing - The cone functions as temporally
ordered sequences of parallel operations at the different levels of
transformed image representations. The interpretive processes,
however, have been organized in terms of sequential control. This is
not based upon a committment to sequential semantic processing, but
rather a committment to a methpdology that allows ease of human

understanding of complex interactions between complex modular processes.
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Given the state of the art of distributed computation, we believe 'that
it would be difficult to debug improper interaction of simultaneous
processes. By structuring sequential control, the user can play the
role of a process (including the control procéss) at any point and

only need to deal with a limited amount of information. Once the
communication requirements between knowledge sources and the limitations
and'capabilities of each knowledge source are better understood, it
should be far easier to redevelop the system in a parallel process of
1§ca11y distributed computation.

Many levels of representation - The system has the ability to view the

‘'world in many ways. The lower three levels of representation involve

syntactic two-dimensional information. One might be interested in the
boundary between two regions or a property of a region.:  This will
allow the system to talk about the image itself, as opposed tO'the"world
represented and implied by-the image. The upper three levels-of
representation describe important aspects of a three-dimensional world.
Surfaces bound space ‘and more highly evolved biological systems have

a well-developed sense of them. '"Objects" or conceptual entities
provide the common labels by which we communicate about the world

that we share. Frames encompass highly structured sets of objects -

and surfaces with compact labels and descriptions. These representa-
tions are intimately woven together in a hierarchy since frémestmap
onto objects and surfaces, objects are defined by surfaces and regions,
surfaces are defined by regions and line boundaries, regions- are bounded
by line segments, etc. The deletion of any of fhe six levels leaves
the system blind to certain aspects of visual perception that ome

expects of a general vision system.
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Diverse knowledge sources®- The system will employ modular processes
based on independent areas of knowledge. These include processors

for perspective, occlusion, and shadows. For example the perspective
module requires an analysis relating physical real world dimension

to image dimensions; it entails a process which must be able to rotate
descriptions of the shape of the surfaces of objects and frames so
that the point of view can be inferred. The occlusion module will make
inferences on spatial relationships and missing portions of objects.
The shadow module might hypothesize the location of the light source
and the grouping of regions with different intensities into a single
object. A deductive module must examine the consistency of the model,
etc.

Redundancy of information - At the segmentation level there are many
algorithms which can be based upon many possible features. Rather
than hope to find the single choice for each which will provide a useful
partition and description of all parts of an image, the low-level
system expects that multiple representations can be brought together,
much as the four representations of the frog's view of the world [27].
Here, partial redundancy is expected and utilized to increase the
confidence in the results of the processing.

At the semantic level the arguments are similar. One might
hypothesize a mountain in the distance on the basis of the shape of
the upper boundary, the bluish cast of the region, the context of

the scene, etc. One does not throw away secondary evidence and base

a decision on the singie strongest piece of evidence. The totality

of the information should be integrated into globally strong decisions.
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