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COMPUTATIONAL TECHNIQUES IN VISUAL SYSTEMS

PART T. THE OVERALL DESIGN1

Michael A. Arbib and Edward M. Riseman

COINS TECHNICAL REPORT 76-10
July 1976

Our overall goal is to define computational techniques to be used by
2 system in making a visual scan of a dynamic environment with which it
is to interact. Here, we discuss both brain mechanisms in the visual
systems of animals and humans and computer techniques for the analysis
of color photographs éf natural scenes. We present schemas as a formaliza-
tion of the system's 'knowledge units'. This notion is helpful for
our work in both the BT (Brain Theory) and AI (Artificial Intelligence)
appgoaches. We further present specific studies--from our own group
and from elsewhere--of subsystems of both animal and computer visual
systems. We shall examine the interaction of high-level processes
with low-level systems, as part of a general emphasis on integrated
system design. Part II (Riseman and Arbib [1976]) will focus on

techniques for segmenting single static colored images.

1 This work was supported in part by NIH grant SRO1L NS09755-06 COM
and by ONR grant NNOOl4-75-C-0459 and NSF grant DCR75-16098.
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A human drives a car without accideant down a busy street; a frog
snaps up a fly; a computer system locates different resources by scanning
satellite photographs; and a robot uses input from a TV camera to guide
its manipulation of objects on an assembly line. In each case, a pattern
of visual input (possibly a simple black-and-white photograph; possibly
eoriched by color and depth information; possibly changing over time)
must be analyzed to yleld an internal representation of the world. The
visual input is itself a 'low-level' representation in terms of the
brightness of 1ight at each point and time. The internal representation

13 a 'high-level model' which is semantic in the sense that meaning has

been ascribed to regions of the visual scene, which is now interpreted
as a collection of objects in space. Each o‘ject may be represented by
a name, by a more detailed description, or by a program for the aystem's
interaction with the object. The internal model will also contain infor-
mation about the state of, and the relationship between, the objects.
Before going on, we should note how much the internal model will
depend on not only the nature but also the goals of the system. Clearly,
a frog ‘sees' a very different world from that of the assembly-line robot.
More subily, what wve see depends to a great extent on what we are looking
for--in recognizing a house, we may rarely p;rceive the type and location
of the windows unless inteant on breaking and entering, or on washing the
windows. Again, while the representation of visu;l input will enable
an animal or robot to ans&er questions about a given (possibly changing)

scene, and ald in the generation of plans for interacting with and

wmanipulating the environment, partial plans may well determine the
directions of the system's attention.

Our emphasis in this paper is on imape understandlng--the'process
of visual perception in animals, and of scene analysis in cowmputers and
robots. There is an overlapping field of research called image processing
which, for example, provides ways to—enhance contrast and remove noise
to make an image easier for a human to use. We shall only study such

processing to the extent that it provides the front end of a system-rbe

it a neural network or computer--which comes to name significant regfons

in the image, or to plan patterns of interaction with the world that the

image represents.

Cooperating Systems

In analyzing image understanding systems, it helps to break the
computations into low-level and high-level tasks.

Lov-Level Systems perform feature extraction and segmentation.

The raw representation of the environment in terms of measurements of

visual input is replaced by a representation in terms of local features

based on boundary, depth, motion, color, and texture cues. Further

processes then segment the scene (aggregate the features) into relatively
large reklons each delimited by a continuous boundary, or by a consistent
pattern of depth, motion, and/or texture. An image understanding system
cannot function unless the wide range of colors and intensities in a
tree can be viewed as a unit. Neither people's clothes, the surface of
streets, a wispy cloudy sky, nor buildings, fields, or water have uniform

visual characteristics of huve, saturation and intensity. Natural variations
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in surface color are cumpounded by reflections and shadows due to the irregularity

of the surface, position and type of light source, and the effect of nearby
objects. (Beck [1975) provides a useful discussion of the complexity of these
effects.)

We shall sce segmentation techniques that form boundaries via the gradients
of edges as well as techniques that grow regions on the basis of cues of color,
texture, depth or motion. In each case, the segmentation processes do not
operate directly on the 'raw' visual input, but rather operate on an array of

preprocessed fcatures. Two classic papers in neurophysiology show that the

peripheral visual systems in animals preprocess the input, rather than simply
transmitting the ‘raw' input back to-the brain. Lettvin, Maturana, McCulloch
and Pices [1959) showed that the frog's retina sends back to the brain several
arrays of coded features--with one feature being.the presence of a 'bu;—llke'
small wiggling object. Note well that this 13 a motion feature, and cannot be
extracted from a single static scene. Hubel and Wiesel [1962] showed that the
cat retina enhanced contrast (exc.:e.llent preprocessing for boundary detection)
while visual cortex had cells which responded best to line stimuli of a given
orjentation.

Further studies showed that depth is also a significant feature for the

activation of such cells. While ananimal has many high-level cues for recognition

of depth--such as parallax or the apparent size of objects—-and a computer
attached to a camera may use a range-finder; the dominant depth cue at the
level of preprocessed features in the visual systems of animals with forward
looking eyes is retinal disparity. To see how this is achieved, note that a
single photograph (or the input to a single eye) maps the spatial direction of
image points, but does not represent the distance to the stimulus point. How-
ever, two photographs of the same statie scene can, §f taken From different
angles, provide depth tnfurmation. We can see this by unulyzi;g the visual

system of an animal with stereopsis,

While each retina provides only a two-dimensional map of the visual
world, the two retinae between them provide information from which can
be reconstructed the three-dimensional location of all non-;ccluded
polntslin visual space. We indicate this in Figure 1 where the right
retina can not distinguish A, B or C (A.R - BR = CR)' and where the
left retina can distinguish them but cannot determine where they lie
along their ray. The two retinae can actually locate them on the ray:
(AL. AR) fixes A, (BL. BR) fixes B, and (C , CR) fixes C. In fact,
'depth detectors® which combine information from the two input patterns
to determine the three-dimensional location.of a point have been found
in the brain of cats and monkeys. Barlow, Blakemore and Pettigrew
[1967)," Pectigrew, Nikara and Bishop [1968], and others found cells
in vigual cortex which not only respond best to a glven'orientallon of
a line stimulus (as shown by Hubel and Wiesel) but do so with a response
which 1s sharply tuned to the disparity of the effect of the stimulus
upon the two retinae.

We have already seen that animals have motion detectors. Computer
systems, too, will benefit from the extra cues that motion provides.

As ve know from our experience with television and motion pictures,
continually changing visual input can be approximated without perceptual
deficit by a sufficiently rapid sequence of frames (in the usual cinema-
tographic semse). With this dynamic input, the system

should not be overburdened by a complete set of static features

for every frame. Rather, the system should use features generated by
motion detectors--a set of co-moving points being prime candidates for

segmencation into a single region.



Figure 1:

The Notfon of Disparity.
The poiats A, B, C with the same right retinal cocordinate have
disparate left retinal coordinates. It is this disparity that

allows the inference of the depth of the stimulating point.
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Before leaving the topic of feature extraction, we should note that
animal studies show that feature extractors can be 'tailored’ by ex-
perience. In this way, the animal can quickly respond to those iocal
features which occur significantly in his particular environment. The
experimental analysis and theoretical working-out of such learning
wmechanisos is a major thrust of our group, but is beyond the scope of

this paper--a review is provided by Arbib, Kilmer and Spinelli [1976].

Let us turn now to high~level systems. These employ the output of

low-level systems to build the interpretation (internal model) of the
visual input. This constructfion requires the use of various ‘knowledge
structures’. It should seem obvious to one who drives a car that the
general view of a road is expected: the road elongated (wlthAperspective
distortion), cars, dotted lines, gravel on roadsides, sidewalks, grass,
trees, and houses; they roughly fit together into a very familiar model,
albeit one that possesses enormously many variations. Similarly, our
prior experience of driving at night allows us to 'see’' a red pinpoint

of light as a car or traffic light. Moreover, we can use a few features

to perceive an object from many different views, even with significant

portions of an object occluded or obscured in shadow. Again, perception
differs when we look for a house rather than simply driving dowm a
street.

In this paper we shall outline a number of approaches to both seg-
mentation and interpretation in which local processes communicate to
achfeve global organization. In Part II, we shall turn to.detailed

computer algorithms for segmentation of static scenes. Even the best

of these algorithms is subject'to certain weaknesses and does not perform
to desired levels. The performance of animal visual systems is thus

a constant challenge to our Al studies of scene analysis. On the other
hand, our detailed understanding of brain mechanisms for vision is still
quite limited. However, each arca--Al and BT--leads in the understanding
of certain visual mechanisms. It i3 the strategy of our group to en-

courage the interactive develop t of computer systems and brain models

to advance our insights into sight.
We have been particularly influenced by brain studies which reveal
interaction of many brain reglons in a functional organization subserved

.

by simultaneously active interacting processes of competition and coopera-

tion. For example, the reticular formation wodel of Section 3 represents
competition between gross modes of behavior, while its functional modules
c;operate by passing information back and forth until some form of consensus
is reached.

This viewpoint suggests the utility of systems of routines. Region
growth, boundary formation, and depth and motion analysis each have
strengths and weaknesses; but their fidelity varies for different patterns
of visual input, and so they can be used to invoke a complementary analysis
in the particular area under consideration. For example, initial boundary
detection can Qefine major boundaries, yielding distinct subareas in which
region growing can take place (see Part II).

The interpretation of low-level output by high-level systems requires
the extensive use of 'general knowledge' to compensate for the relatively
limited data supplied by visual input fn a specific sitvation. It also
wust include routines“for dealing ‘with changes in perspective and distance,

and with the occlusion of one object by another. This mention of 'general



knovledge' leads us to one of the central studies in AI at present:

the organization, storage, retrieval and application of knowledge. (See

Minsky [1975] and, for a useful collection of articles, Bobrow and Collins
{1975).) The current view is that the elementary 'knowledge units' must
be grouped into larger structures so that access may be gained from
relevant 'entry points’ elsewhere in the 'knowledge network' to avoid a
great degree of redundant storage.

The low-level systems can also receive guidance from the high-level
systems. Thus, the partial model, expected objects, context, direction
of the light source, and s0 on, might all aid segmentation. Conversely,
the low-level system can pass, in additlon to the delineation of a
set of regions, other useful information to the high-level. Regions in
proximity, with similar hues but different intemnsity, signal a hypothesig
of shadow and this information can be passed from low-level to high-level
gystems. Other hypotheses include reflections, different orientation of
surfaces to light sources, as well as characteristics of the surfaces.

If the various routines are to be viewed as a system, then the opera-
tion and output of these subprocesses must be properly coordinated,

including the determination of the consistency of results and the extent

to vhich any particular result must be verified by panion proc

The coordination mechanism can be viewed as what computer scientists call
an operating system with a set of resources and tasks. The gsubset of
resources that will be employed at any moment is dependent upon the nature
and importance of the particular subgoal to be achieved. The system must
systematically fit the results of boundary analysis to the IEGiODS deter-

mined by depth, texture or motion analysis. If the results are inconsistent,

10,
ft must be able to direct o more detailed investigation to determine the subsyiten
and results which arc in crror and properly wmodlfy them.
Much of the work on image understanding arew ont of earlier studjes of

pattern recognition--the study of techniques for classifviag an isolated pattern,

such as a handwritten numeral, a face, or a fingerprint. In much oi image
understanding, we stress the need for segmentation prior to object recogaition,
However, in some cases, local cues (c¢.g., the texture of a cat's fur) may trigger
higher-level pattern recognition prior to the completion of segmentation. The
properties of the classified object can then guide the segmentation process. We
shall have more to say about the interaction of low-level and high-level svstems
in Section 3.

In much Al work, the process of scene analysis stops when the scene has been

segmented, and each segment bears a name: 'tree', ‘'house', 'grass', 'sky', and so
on, would be typical labels for the analysis of an outdoor scene. VWorkers in Al,
and many psychologists interested in verbal behavior, stress the importance of
this symbolic representation of the input (lewell and Simon [1976])). Of course,
many problems for which a computer vision system would be desired would require
the further specification of the relationships between objects. For example,
even the simpler blocks-world systems found it necessary to gu on to asserting
objects, such as geometric position and support, in order to reason about assembly
and disassembly of blocks-world structures. From an Al point of view, these
relatlonships would also be represented symbolically.

However, the internal representation of an object must often include a pro-
gram for the system's interaction with it. Arbib [1976]) has introduced a new

concept of a achema1 vhich represents significant chunks of the world. with

routines for recognizing the occurrence of an object or situvation, for

1 Arbib [1975a) provides some historical background on his theory of schemas: while
Arbib [1975b) compares schemas with Minsky's concept of a frame as a 'knowledge
unit’.
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making use of context, and for acting appropriately. He posits a whole
population of schemas of varying levels of activation, with parameters tuned
to exigencies of the environment in such a way as to prepare a variety of
action routines to guide the system in interacting with that environment.

We suggest that the two views can be reconciled by regarding the symbolic
representation of the vorld as an approximation to the full schema repre-
sentation.

If we consider only the high-activity schemas, discarding all schémas
whose activity is below a certain threshold and discarding all but the
crudest information about the tuning of parameters, we may capture a .
rough description of the scene, structured by the answers to questions
1ike 'What are you looking at?' (symbols corresponding to gross states of
object motion) and 'What are you doing?' (symbols corresponding to action
routines). We posit that the brain works with the full analogue repre-
sentation, with the symbols remaining implicit in the pattern of schema
activation unless elicited by a need for verbal interaction. However, in
computer systems, it often proves cheaper to work vith-synbolic representa-
tions tailored to the mode of scenz analysis involved, restricting the
computation to the sequential exploration of a restricted set of repre-
sentations at any one time. In the present paper, we shall concentrate
on the stripped-down problem in which the action-routine of a schema is
restricted to conveying the symbol associated with the object that the

1
schema represents .

1 For a look at the problem of parameter-tuning in the neural control
of movement, see Sectiocn 2 of Arbib (1975a).
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Let us briefly outline the main comp ts of a sch

(1) Input-matching routines: A schema correspunds to an 'object'

whether a concrete object in the usual sense, or a concept at a very
abstract level, such as ‘winter', or 'a differential equation' or some
social occasion. A schema thus requires routines whose job it is to
search sensory stimuli, as well as messages from other schemas, for cues
as to the correctness of the hypothesis that the 'object® which the schema
represents 1s present 1q, or descriptive of, the system's environment.

In their fullest gernerality, the input-matching routines will not simply
match statlc aspects of the envirorment, but will match dynamic aspects--
as, when crossing the road, rather than perceiving the make of the car,
one is more interested in perceiving how the car is moving so that one
can avoid 1ic.

(11) Action routines are available to guide the activity of the system
in interacting with the 'object' which the schema represents. As input-
wmatching routines adjust the parameters of the representation more accurate-
1y, the action routines should be adjusted so that the action they would
release becomes more and more appropriate for the current environment
and goal structures--as, in perceiving the motion of a car, we determine
which way to jump to avoid it.

(111) Competition and cooperation routines: Different schemas will

compete to 'cover' the 'object' in a given part of the animal's world--is

that moving object a nearby insect or a distant bird? At the same tiwe,

various sch will perate to between them provide a coherent repre-
sentation of a number of regions in the world--if we recognize one region

as a face, 1t becomes more likely that the region below it is a body.



This process of competition and cooperation will depress some schemas

and increasingly activate others, yielding a 'collage' of active schemas
which provides an acceptable representation of the environment. Further
competition and cooperation routines (planning routines) are then required
to turn the range of possi#llities afforded by the action routines of the
activated schemas into a coherent plan of action for the organism. For
example, if an animal sees a bowl of water andva dish of food, its state
of hunger or thirst will help determine which way it turas.

As well as schemas for objects, we may also have more abstract
schemas such as one for winter. Now at thé change of seasons, the first
fall of snow may be the signal for winter--so that we must posit the
activity level of ihe snow-schema as providing excitatory inpur to the
uintet-schema; However, in the mormal course of events, the organism

knows that it is winter, and can use this contextual information to faver

the hypothesis that a white expanse is snow rather than burnished sand,
say, or moonlit water. It 1s this type of reciprocal activation (whether
ve regard it as an additional input, or as the action of a cooperation

routine) that gives the system of sch its heteratchicall character.

In an extended theory of schemas, one must not only spell out, for
example, the detailed working of the competition and cooperatiqn routines,
but must also specify how input-matching actually serves to tune the action

parameters; specify the way in which the matching of dynamic properties

1 Strictly defined, a 'heterarchy' is a system of rule by alien leaders.

But in AI, stimulated by, Minsky's response to McCulloch {1949), it now
denotes a structure in which a subsystem A may dominate a subsystem B
at some other time.

14

of ‘objects’ enables the organism to act in a predictive fashion; and
specify the way in which the organism can 'learn from experience'. This
updating of memory structures must involve the combining of old schemas
to form new schemas; the tuning and editing of schemas to better fit
them to a changing world; aﬁd provision of increasingly rich relational
information—enbodied in part in competition and cooperation routines--
to coordinate schemas to better encode relations between the ‘objects’
that they represent. The understanding of such procedures provides an
outstanding challenge to both Al and BT. In this paper we shall devote
most attention to variocus neural (Section 2) and computer (Part 1I)
approaches to segmentation of the visual world. In Section 3, we further
explore the notion of schemas, and give a simplified theory of thefr
competition and cooperation, because it is these kind of structures that

utilize the results of the segmentation processes.

The VISIONS System

A more explicit feel for the role of high-level and low-level
systems in scene analysis can be gained from schematic views of the

VISIONS project (Hanson and Riseman (1974, 1975]), a computer-based

visual perception system we are developing at the University of Massachusetts

at Amherst. The structure of the entire VISIONS system, Pigure 2, is
quite complex and involves the interaction of many subsystems. In teroms

of our basic division, we may distinguish low-level processes uhoseigoal

is the segmentation of the image into regions and (major parts of) concep-
tual objects, eich with a set of associated visual features; and high-level

processes to construct a model of the three-dimensional world represented
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Global Organization of the VISIONS System.

The system divides into two major sections: a low-level systen
for segmentation of an image into reglons representing (major
parts of) the conceptual entities to be recognized and a
variety of feature descriptors of these regions; and a high-level
system whose goal 1s the interpretation of the image by building
a chree;dimensional semantic representation of the world
depicted in the image. The low-level system is a hierarchically

structyred array of local proc (a pr ing come) which

transforn and reduce the image data in parallel. The high-level
system employs modular processes which construct a model by
interfacing the symbolic output of regions and boundaries to

stored world knowledge in a semantic data base.
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in the scene. The latter involve the use of a semantic data base, expecta-

tions abdut the » deductive mechanisms, analyses of perspective,

occlusion, and shadows, etc.

The design goals of the system include the utilization of:

1) a flexible interface of visual data to semantic knowledge;

2) flexibility of processing: data-directed, knowledge-directed
and model-directed--with many kinds of knowledge, many levels
of representation and redund;ncy of information;

3) a sketch of control history and basis of decisions to allow
directed but limited backtracking;

4) an interface between local and global processing, as well as
serial and paralllel processing.

The low-level system subdivides into two components: the cone

structure and the low-level executive. The cone structure corresponds

to the array of feature preprocessors we have seen to constitute the front
end of animal visual systems. It 15 meant to provide a general computational
structure for the numerical analysis of visual data. The processing cone
is a parallel array computer that is hierarchically organized into a
layered syastem (Figure 3): its major function is the transformation and
reduction of the large amounts of data normally found in digitized images.

Information flow up, down, and laterally within the cone 1s control-
led by defining local parallel functions, applied to local windows which
are duplicated across the entire array. Functions operate on the 2562
grid of image data and reduce it, layer by layer, to single cells each
of which contains informatlan extracted from the entire scene. Many

interesting parallel algorithms can be developed for processing of images;

18

e.8., algorithms for edges and lines, regions, texture, etc. For
related work on hierarchical structures see Kelly [1971), Rosenfeld and
Thurston (197}], Uhr (1972], Klinger and Dyer {1974) and Tanimoto and
Pavlidis [1975).

Many of the procedures that we will detail in Part II are operations
that can be applied in parallel to local windows of the scene. In the
cone implementation, the results of these parallel operations are stored
in pseudo-image arrays which are also available for further processlhg
by local operators. During a reduction process upward through the layers
in the cone, the data are reduced because portions of each window are non-
overlapping. An fteration process allows the data to be analyzed and/or
transformed at a fixed level of the cone; the size of the array remains
constant due to overlapping of windows. A projection process allows
information in upper layers to influence computation in lower layers.

The development of the wodel-building portions of VISIONS has pro-~
ceeded under the assumptioh that a data structure, known as RSE (for
Reglons, line Segments, and \Endpoints) has been successfully built as
a result of low-level processes (Figure 4). Information in the RSE data
structure is produced under the control of the low-level executive and
18 represented in symbolic form. The high~level processes accept this
data as input and define the oapping of this information into progressively

higher levels of organizationl.

1 This general transformation of sensory data into different representa-

tions of increasing abstraction is similar to the structure found in
HEARSAY, a computer speech-understanding system that we discuss further
in Section 4.
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Figure 3: The Preprocessing Cone for the VISIONS System.
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Levels of Representation in VISIONS.

The segmented output of the cone represents tvo-dimensional
visual syntactic information. It is stored in symbolic form

as a layered graph in terms of repions delimited by line
segments, and line Segments delimited by endpoints. This

data structure forms the major interface between the high-

and low-level systems. The semantic levels are represented

by surfaces, objects, and frames (or schemas) which are

familiar submodels or scenarios, such as a road scene or sub-
urban house scene. A node on each of these levels is defined

in terms of the entities on levels below. The left hand set

of planes represents the 1iage specific model which is constructed
by the model builder, while the right-hand set of planes repre-
sents a priori stored knowledge of the world. An image specific
model is defined by pointers from the left side to the right
side. Each of these pointers represents a hypothesis that a
specific entity is a member of some class of entities that the
system has knowledge of--for example a particular region RJ

may be pointed at by some object 01 which has a pointer to the

class of trees stored in long-term memory.

PR R ittt ittt

~

22.

Hodel Builder

Frame Class Net

Frame Attributes

/ Franes . C—(

Objects

Object Class Net

Object Attributes

/ Surfaces

Surface Class Net

Surface Attributes,

Y Ar
[ )

Deu

Regiou Types

and Attributes
Segnent Types
and Acttributes

tion /

Endpoint Types

|
r
|
'
]
'
I
|
|
|
|
!
|
|
|
|
|
]
)
[}
'
[
|
[
!
|
I
I
[
L}
'
[}
[}
[l

Endpoints ::t:::::’SOf and Attribute
L of RSE
———-AXxoo oo .:nsu_le_s_ Yezerso o CT T T T 7T -

.'- : High-Level System

Suguenlltlo4 € Image !
' Low-Level Executive : Low-Level Systenm
' P4
[}
] Visusl Feature :
] Extraction and .
] Segmentatfon '
] Processes '
! |
! |
| i
! '
| [
]

Imsge Data Input



23

The goal of the VISIONS high-level system is the construction of a model
vhich describes the major concepts and three-dimensional space of the scene
under consideration. Again, this portion of che system may be divided
into several subparts:

a) Image specific model or short term memory: . this consists of

the information contained 1in RSE and the interpretation placed

on this data by the tic pr » 1l.e., the left hand side
of Figure 4 including RSE and the planes abdve.

b) World knowledge or long term memory: contains the general world
knowledge which provides the data for structuring the image
specific information into a model of the image, i.e., the right
hand side of Figure 4 from the permanent ateribute representation
of RSE and up.

c) Control processes and sources of knowledge: these are the model
building functions which are responsible for structuring the image-
spécific data, beginning with RSE and expectations concerning the
image, into a consistent representation and interpretation of the
image. They utilize modular knowledge sources of perspective,
occlusion, shadow, deductive system.'context setting, while main-
taining and using a history of control.

At one level, the model builder is based on a 'hypothesize and test'
mechanisa employing many forms of knowledge: these include information
permanently stored in the semantic data base ('long term' stor;ge) and
image-specific data (short term storage) in the form of the RSE data.

The model will contain hypotheses about surfaces (and volumes), as well

as schemas for objects and appropriate frames (representations of familiar

24

scenarios in the sense of Minsky [1975]). At another ievel.the model builder

aight instantiate frames which provide a more global direction to the model

construction process. The construction of the model may be data-directed,

knowledge-directed, or model-directed (through the partial development

H
of the model). This may only take place by effective methods of control

" of the interaction of the modular processes.
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2.__An Approach to Sepmentation

In Part II, we shall analyze in detail computational techniques for
segmenting a scene--both by forming edges to provide boundaries which
delimit edges, and by growing areas of a cert@in texture. A quick glance
at the texfhre and outline of a tree suggests the complexity of systems
which can handle natural outdoor scenes in full generality. In this
section. ve provide a simpler segmentation algorithm--derived from neural
modelling--which handles an image which must be broken into regions, each
lsbelled with a member of a small set of preassigned labels. This
contrasts with the situation in Part II where the variety of color and
texture 18 so immense that the system must generate a new set of labels

appropriate to each scene.

Segmentation on Depth

The general schema for segmentation on preassigned features (Arbib,
Boylls and Dev [1974], Dev [1975)) can be sotivated by the queation of
how disparity-detecting neurons (recall our discussion of Figure 1)
wight be connected to restrict ambiguities resulting from false correlations
between pairs of retinal stimuli. Julesz (1971} invented random-dot
stereograms to show, inter alia, that this depth perception can arise even
in the absence of the cues provided by monocular. perception of familiar
objects. The slide for the left eye is prepared by simply filling in,
completely at random, 50X of the squares of an array. The slide for the
right eye is prepared by transforming the first slide by shifting sections

of the original pattern some small distance (without changing the pattern
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within the section) and othervise leaving the overall pattern unchanged,
save to fill in at random the squares thus left blank. When one slide

of Julesz's arrays is presented to each eye, subjects start by perceiving
visual ‘'noise’ but eventually come to percefve the 'noise' as played out
on surfaces at differing distances in space corresponding to the differing
disparities of the noise patterns which constitute them.

Note well that both stimuli of the stereogram pair are random patterns,
Interesting information is contained only in the correlations between the
two--the fact that substantial regions of one slide are identical, save
for their location, with regions of the other slide. The visual system
is able to detect these correlations. If the correlations involve many
regions of differing disparities, the subject may take some time to per-
ceive so complex a stereogram--during which time the subjective reports
will be of periods in which no change i3 perceived followed by the sudden
emergence of yet another surface from the undifferentiated noise.

To clardfy the ambiguity of disparity in Julesz stereograms, let
us caricature the rectangular arrays by the linear arrays of Figure 5.

The top line shows the 21 randomly generated 0's and 1's which constitute
the 'left eye input®, while the second line is the ‘'right eyevlnput'
obtained by displacing bits 7 through 13 two places left (so that the bit
at position 1 goes to position 1 - 2 for 7 S 1 < 13) while the bits
at position 12 and 13 thus left vacant are filled in at random (in this
case, the new bits equal the old bits--an event with probability 1/4),

with all other hits left unchanged.
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The dl§pa:1ty array of Figurg 5 suggests the stripped-doun cari-
cature of visual cortex which we shall use for our wmodel. Rather than
wimic a columnar organization, we segregate our mock cortex into layers,
vith the initial activity of a cell in position i of layer d corresponding
to the presence or absence of a match for the activity of cell i of the
right retina and cell 1 + d of the left retina. (This positioning
of the elements aids our conceptualization. It is not the positioning
of neurons that should be subject to experimental test,.but rather the
relationships that we shall posit between them.) As we see in Figure 5,

the initial activity in these layers not only signals the 'true’ cor-

relations (A signals the central 'surface'; B and D signal the 'background'),

but we also see 'spurious signals' (the clumps of activlty at C and E .
in addition to the scattered 1's, resulting from the probability of 1/2
that a random pair of bits will agree) which obscure the 'true' cor-

relations.

Segmentation on Preassigned Labels

Consider, now, any set of preassigned features--with one spatially
coded array of detectors for each feature. We then have the following
situation for the problem of segmentation of prewired features:
Conceptualization: ‘lLayers’ of cells, one for each preassigned feature.
'Ptinclﬁle: Segment activity into a small number of comnected regioms,

each confined to a single layer.
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Can we, then, interconnect the 'layers' in such a way that clearly
defined segments will form? We wmight imagine (but only as a crude first
approximation) the resultant array of activity as then provi&ing suitable
input for a higher-level pattern-recognition device which can in some
sense recognize the three-dimensional object whose visible surfaces
have been so clearly represented in the brain.

Arbib, Boylls and Dev [1974) provided a neurally plausible inter-
connection scheme which yields qualitatively apptoprl;te behavior of the
array: the essential idea is given by the rule that there be moderate
local cross-excitation within a layer; and inhibition between layers
which increases as the difference in feature increases. Let than xdi(t)
represent the activity of the cell in position i of layer d at time t
(vhere we now let activity vary continuously between 0 and 19; and let
h(j) aAd k(j) be functions of the form indicated by Figure 6. The
effective input to cell di from cell d°'1i' i3 then h(d - d')k(l-—i')xd.l.(t)
vhich 1s poéitlve 1if 4 - 1' 1s small (cells belong to 'nearby’ features
1 and 1') but 1s otherwise negative. The strength of the interaction
decreases as d' gets further from d (cells are from widely different
locations) and h(d - 4') decreases. Adding together the effects of
all the other d'1i' cells, the change of activity of cell di is given
in our wodel by the equation

X e+ 1) - d):'i); h(d - d)k( - £')xy,,(e) + x5, (t0) 1)

where it is understood that the sum ‘saturates' at 0 and at 1.
What this scheme does is allow a clump of active cells in one layer

to 'gang up’' on cells with scattered activity in the same region but
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Segmentation on Disparity Cues.

(a) The two upper rows yield the five rows below; with a

1 occurring every time the corresponding 'retinal inputs'

match with the disparity that labels the row. The job of

the segmentation routine is to suppress spurious regions like

C and E, so that B, A and D are available to high-level systems.
(b)=(d) Actual simulation pf our model for segmentation om

disparity cues. The right-hand side shows the input read in

by touching a light pen to the disparity lines (compare the

displacement terms in (a)). The system then computes the
correlations for different disparity shifts--as shown in the
5 left-hand displays. Excitatory interaction within each
;rray and interaction with the inhibitory érray dramatically
brings the signal out of the noise as we go from (b) through

(¢) to (d).
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k(j)

inhibitory interaction excilatory - interaction

of layers

Figure 6:

of neighboring cells

The interaction terms for the segmentation netwerk of equation
(1). h shows B excitatory interaction decreasing with increased
difference in spatial location; k shows the inhibitory interaction

for different feature points.
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J.._Cooperative Computat ton
35 Many contributions tobrain theory suggest (Arbib [1975a]) that we model a setr

f brain reglons as a coopcrative co tatd system--a distributed structure
in other layers (1 = 1'), while at the same time recruiting mederately ° atn rees ope mputation sy s ¢ petare in
which each system has its own 'goal structure' for selecting informati act
active gells which are ncarby in their own layer (small d - d'). The e ea y B neture clecting Informatlon to act on
from its environment, and for transmitting the results to suitable receivers (or
system then tends to a condition in which the activity 1s clearly separated & ¢ v ¢
. simply broadcasting them). To this we must add that in many rcallstic s stems,
into regions, with each region having its owm unique feature (layer of P & y Y
the overall behavior must be produced within a limited time and that there is
activity). In other words, such a scheme resolves feature ambiguity .
often no right answer--rather the best answer available within the time limita-
through suppression of scattered activity, thus permitting activity related
tions. Conventional computer science views debugging a program as rewriting it
to only one feature in any one locale. Moreover, returning to the stereopsis
to remove errors in the sense of departures from an overall prespecitication of
example, the dynamics of the model does represent the.Julesz phenomenon
its behavior. However, when the desired behavior of a system cannot be completely
of a nolse stereogram taking some time to be perceived, with each new
prespecified we do not restructure the system to get the 'right' answer. Instead,
surface being perceived rather abruptly. This is simulated in the model
we need a system that can be continually restructured to ensure that over time the
by the fact that, once a sufficient number of clumps achieve high activicy,
overall behavior of the system improves cumulatively.
the recruiting effect fills in the gaps between the clumps to form a good
’ The main technique of neurology is to learn about the structure of a svstem
approximation to its final exteat.
by observing leslon-lnduced‘defects. [Neurology is the clinical study of brain
Although the analysis of moving scenes is beyond the scope of this
damaged humans. It is neurophysiology, together with related anatomical and

paper, it is worth noting that Ross [1976] has extended Julesz's work
chemical tools, that traces the behavior of single neurons and of neural circuits,

to vandom process stereograms, and that Burt [1976] has extended the Dev
Unfortunately, the gap between the region-by-region analysis of the neurologist
model to handle moving stereoscopic input, as well as to explain certain
and the few-neurons-at-a-time analysis ot the neurophysiologist remains immense.
phenomena of apparent motion. An important point of such a study is
While the neural net modeller, as in the Dev 11975) study, investigates the

that ooving boundaries provide a very powerful aid to segmentation. Thus,
behavior of nets of formal neurons, the neurological modeller must study the

even though moving images offer far more data at the frame-by-frame level,
effects of subsystem deletion in a distributed structure of cooperating systems.

they may--1f properly preprocessed in terms of motion detectors--prove
In many such systems, computation will proceed to some sort of completion despite

easier to segment than the static images on vhich we focus in Part II.
damage--so long as the dcleted subsystem is not an output svitem. To see this,

Clearly, such a system leads to a representation in which the activated
consider the effect of removing one physician from a panel of physicians (eachwith his

schemas are maintained for extended periods of time,.with input serving to
own strengths) trying to reach consensus on the diagnosis of a patient. Insome happy cases,

re-tune their parameters, with relatively little computation required for

resegmentation and the activation of new schemas.

convergence on congensus may be sped up because the missing physician would have been
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grossly wrong in his initial dfagnosis had he been present. In general,
however, the absence of a member from a panel will slow convergence--the
other physicians will still be able to reach their decisloﬁ, but could
certainly have profited from his input. Finally, the results may be
disastrous when the patient's disease 1s so unusual that only a specialist
has any chance of correct diagnosis, and it i1s that specialist who is
missing.

Clearly, then, each subsystem must have a good enough model of the
others to communicate effectively to get some ability to make up deletions.
This model can be a very crude one. For example, our model of the 1nier-
national banking system is simply that if we buy travelers' checks in one
country, then we can spend the money in another country. Further infor-
mation about the actual pattern of transactions required to bring this
about 1s not golng to affect our behavior.

This last observation probably offers the key to the case against
executive control in the implementation of the cooperative computation
strategy. In executive control, we do not require subsystems to know
anything about other subsystem3--it is the job of the executive to switch
in a subsystem as and when it is needed on the basis of executive monitoring
of the completion of other tasks. However, if each system is truly complex,
a central controller could be overloaded by simulating or in other ways
studying each system in sufficient detail to determine the communication
scheduling. While the throughput of local communication strategies may
be suboptimal, the time lost in suboptimal computation may be far less

than that required by an éxecutive to actually compute the optimum.

“EARSAY

Our discussion of VISIONS made it clear that such a style of cooperative
computation not only provides the proper perspective for the analysis of brain
function, but should also provide the proper way of structuring computer per-
ceptual systems. Before turning toastudy ol coaperative computation, we laow
at an‘Al system which distributes the task of speech underscanding betweea 10
or s0 separate processors. The HEARSAY group (see, e.g., Erman and Lesser
[1975]) at Carnegie-Mellon University have built a speech understanding
system which is to be run uﬂ a network of PDP 11's. At the time of this
writing HEARSAY is still evolving. There are sufficiently many implementation
difflcultges in their approach to render premature an uncritical acceptance
of their approach, but the general viewpoint is an intriguing one.

Each computer contains a knowledge sovurce. One source is 'expert' at
going from formants to phonemes, another expert at taking a string of words
and making a syntactic analysis, while another can take partially analyzed
sentences and look for semantic interpretation:. One key idea ot their system
is that effective performance should not be dencndent upon an exccutive control-
ler which schedules tasks amongst these subsystems.  Rather, there Is o
central commmication center called a blackboard. FEach knowledge source
can take data from the Jevel in which it is interested and work upon i,
either returning to the blackboard an interpretation which wipes that ques-
tion off the blackboard, or adding new questions. A basic analyzer might
take certain phonemes of f the board, and return a number of consistunt
words. A syntactic analyzer might issue a request to cheek whether a
particular word it requires is present at a particular place in the Input.

Tt is clear that this is very much in the spirit of cooperative computation.
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in the sense in which we have Introduced it.

The uniformity of the structure and communication of these modular processes is
a stromg advantage for building a complex system--knowledge svurces can be very easily
added, replaced, or deleted witiout major side effects or system redesign. However,
the generallty of this approach as a system tool does lead to inefficiency when the
designer wants to have once module scnd a message dircctly te another. The flexibility
of more explicit and direct communication would avoid the overhead of writing and
reading from the blackboard when the communication path is inherently narrow.

One deficit of the HEARSAY implementation is that changes on the blackboard can
destroy 'history’ which may be needed if backup is required when new data call for
reinterpretation of other data. The basis of previous decisions {s not accessible,
only the results of the processing. This causes no difticulty when the hypotheses
are correct, or sufficient redundancy is available via other processes, but it is
not yet known how frequently these conditions may be achieved. The VISIONS group
(which Lesser will join in early 1977) is thus experimenting with the use of a
context tree to help direct backtracking. A problem there is to find the right
interactions to link competing and consistent models.

The goal of reliable and effective performance of both VISIONS and HEARSAY is
crucially dependent upon the quality of the initial stages of processing of the
sensory data. The history of the field of pattern recognition has made it quite
clear that high quality decisions cannot be based on low quality and unreliab!e
sengsory features. In HEAKSAY, acoustic and phonemic processing must usuqlly produce
a small set of alternatives which includes the correct hypotheses. Otherwise, as the
system works on higher levels of representation in the hypotheses of words, grammatical
structure, and meaning, they will be based upon a somewhat deaf e¢ar und will probably
be incorrect. Similarly, in Part II of this paper, we examine the initial segmentation
processes of VISIONS and visual systems in general.

Crucial to the general application of the HEARSAY approach is the
choice of approprlate levels for data on the blackboard. These provide

the true medium of communication, and so the use of a single blackboard

&%)

is probably a misleading feature. In fact, the HEARSAY implementation
lets one processor lock out the others when accessing the blackboard--and
this can~create deadlock problems. The provision of greater simultaneity
is not only more brain-like, but should lead to improved computer
structures. Of course, communication channels do not guarantee that the
system will converge upon a consistent representation of the input.

The designer myst anticipate conflicting interpretations and provide the
means for resolving disagreements via locally executable rules. A
challenging research problem is to determine whether this can be done
wvithout strong executive scheduling. The simplest form (although not
very satisfying) would allow process A to always dominate process B
during conflict if A is prejudged to be clearly more reliable than
process B. Often it would be hard to estimate reliability, and a better
strategy would demand further analysis by each subsystem to weight the
confidences of each of the analyses, allowing the resolution of conflicts
to be data-driven.

As the cost of microcomputers plunges well below $100 one can expect
an increasing interest in computer architecture based on networks of
oinicomputers and microcomputers. It must be admitted that there are
many problems attendant upon the current HEARSAY fmplementation. We
must develop a methodology for implementation of such systems with éomplex
local tntérnctlons; these problems overlap the current dialogue in the
Al community with respect to schemas and frames and other kinds of
representations of knowledge packets.

It is difficult for human designers to trace the processing and

debug a large system with many local interactions. If, tn fact, these



problems can be shown due to the novelty of implementing a complex
computation on a minicomputer network, rather than to any inherent
limitation in the approach itself, then cooperative computation should
become ever more important in computer science. It will certainly
provide an intriguing framework for the brain theorist. In any case,

ve argue the need for greater simultaneity in, and a finer grain of,
cooperative computation than that offered by HEARSAY. To get an example
of spch fine grain computation, we now turn to a model of how schemas

might interact in.the interpretation of a segmented image.

Competition and Cooperation Between Schemas

Imagine that a segmentation program has divided a scene into regions
such as those shown atop Figure 7. With only this much information
available, two quite different pairs.of schemas may be activated to cover
this input: In the first interpretation, the schemas would represent
green fcexcream and a brown ice-cream cone. In the second interpretation,
the schemas would represent the foliage and trunk of a tree. There would
be competition between the pairs, and cooperation between the schemas
wvithin each pair. Thus the system of interactions shown in the lowver
half of Figure 7 would have two large attractors corresponding to the
two natural interpretations, ;nd very small attractors for the *unreal’
pairings--though these could be forcéd by a trick photograph or a Magritte
painting. However (Figure 8) an initial configuration in which the schemas
for foliage, trunk, ice-cream and cone have comparable activity will
rapidly converge to a state of high activity in follage and trunk schemas

and low activity in ice-cream and cone schemas if context i3 introduced

I|2

by giving the grass schema a higher activity level than the hand schema.
(Further fllustrative visual examples of context significantly affecting
local interpretation can be found in Baird & Kelley [1974!.)

Casual inspection of a real-world scene frequently leads to ambiguities.
These can be resolved--in the sense of having only one schema highly
active for each region--either by shifting attention in a search for
decisive context (as in Figure 8), or by closer scrﬁtinizing of a region
(as 1in looking for details of texture in the upper region vhich are more
typical of foliage than of ice-cream). Thus, many schemas will have
action-routines which direct attention to confirming or disconfirming
features of the environment. Didday and Arbib [1975) have used this idea
to analyze the series of parallel computations which direct human eye
movements during visual perception. In the same way, any computer
system will have limited resources, and will need hlgh—ledel systems to
aid the type and locus of low-level processing which is to be applied at
any time. ’ 7

Let us now try to put competition and cooperation between schemas
on a formal level. We shall adopt an approach, due to Rosenfeld, Hummel
and Zucker [1976], vhich uses a nonlinear iteration process (called
a relaxation process) which operates on assignments of probabilities to
the different labelling hypotheses for each region. This is a generaliza-
tion of the constraint satisfaction method employed by Waltz [1975).
Since we may suddenly perceive the nature of an object purely on the
basis of its context, the algorithm allows continuously varying weights
to be assigned to each label for each region, and uses an operation which

can increase, as well as decrease, those weights.
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Pigure 7: The ‘tree' and ‘ice cream cone' hypotheses compete for the input Figure 8: 1If the input i3 aobiguous as in Figure 7, we cannot expect
gu :

rapid convergence to a state in which one consistent set of
plcture.
hypotheses overvhelams the other. However 1f a nearby region has
high activity in a schema consistent with only one set of

hypotheses, rapid convergence can follow. For example, 1f

a region is clearly a hand, the interaction quickly enhances
‘fce cream' and 'come' activity, with resultant diminution

of 'foliage’ and 'trunk' activity.
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Before going further it is worth stressing (Arbib [1976])) thact the
essential logic of this scheme was earlier used in the S-RETIC wodel of

Kilmer, McCulloch and Blum [1969). MHowever, the work of Rosenfeld et al.

grew directly from the need to augment the Waltz model by the use of weights,
rather than from the RETIC model. We have here a case of convergent evolution.
The S-RETIC was a model éf the reticular formation of the vertebrate brainstem,
and showed how cooperative computation could lead a collection of modules with
differing samples of an input to converge to a consensus on the proper mode of
activity of the animal. The main difference in the approach of Rosenfeld et al.

is that convergence 1is towards a labelling, rather than towards consensus on a

single mode.

We have a set A = [al.....an) of regions, and a set A = (Al,....ﬁn)
of labels. '(Racall that ve are now looking simply at labels for our
schemas, rather than setting parameters for action routines.) A labelling
P~ (pl,....pn) 18 a sequence of probability vectors Pyl A —— [0,1],
with pt(k) being the weight assigned by p to the hypothesis that ) s
the correct label for a..

We wish to design an operator P which--in the style suggested by
Pigure 7--will on iterated application move P towards a ‘correct' labelling.
The key idea is that the probability pi(x) of a given label for a, should
be increased (decreased) by F 1if other objécte that have high probabtlity
labels are highly compatible (incompatible) with A at a,. Thus the model

uses compatibility functions

tij: A X A —r l-1,1]\

such that i1f A’ on a, frequertiy co-occurs with (or lends support to) a
3 .
on a,, then rij(k.l') is positive: 1f their co-occurcence is implausible.

rij(l,k') i1s negative: and if{ their occurrencas sre independent,

r1j(A,A') = 0.
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It is clear that the memory structures required to produce the compat-
ibility functions may be quite elaborate. Returning to our example of
Figure 7, the system would have to use the observation that regions 1 and
2 vere contiguous, with region 1 above region 2, to obtain estimates like

rlz(foltage, trunk) = 0.7

r1¢§foliage. cone) = -0.8

rlz(}ce—ctean. cone) = 0.9, etc.
Incidentally, the very arbitrariness of these three numbers makes it clear
that the F we are constructing must be structurally stable--small changes
in the rij's must rarely perturb convergence. Unfortunately, we do not
yet have rigorous proofs of convergence~~though computer simulations are

encouraging--let alone structural atability.

Each § (AP () expr the 'c * of the labelling of
x'

3
satisfy the 'key idea', we define the 'change operator' & , which gives

by p as to the direction in which pi(x) should shift. Thus, to

the first approximation j?p to the change in the probability vector P,
by
CEe), M) =1 (] r. 2 (")
1 i |

There 13 vo reason to expect p + £p to be a probability vector,
Therefore, we need a normalization operator R to replace each Y of a
vector q by a corresponding probability distribution Rq‘ which better
reflects the compatibilities of different labellings. (S-RETIC had a
seq&énee of operators whick performed this R-functicn.) We ther define
cur updating cf the vector p to be the new probabilizy vector

Fp = Klr + 7]
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We imagine the following operation of this procedure:

(1) The segumentation routines divide the original data into regions.

Shape and texture descriptors are used to assign initial probabilities
pi(A) to appropriate labels ) for each region a,.

(2) Information such as relative position and the nature of the boundary
would be used to generate the compatibility coefficients rij
(cf. Yakimovsky and Feldman [1973)).

(3) F would be iterated a dozen times, say, to provide enhanced proba-
bllities. If the result is ambiguous, interaction with other systems--
perhaps using higher-level context more subtle than that expressible
1; the rlj (e.g., familiar submodels with consistent parts should
reinforce proper labels)--could be involved in disambiguation, with
the possibility of reinitiating P using a new set of probabilities.

In Section 2, we discussed an algorithm (Arbib, Boylls and Dev [1974],

Dev [1975]) which falls into the general 'relaxation procedure’ paradigm

that allow ‘clusters’ of low-level features having compatible lasela to

reinforce one another in segmentatfon processes. Interestingly, this al-
gorithm was developed independently of the rise of relaxation procedures
in AIL.

We have already noted the similarity of the monlinear probabilistic
model to the S-RETIC, but with the emphasis on ‘proper labelling’ rather
than on 'mode consensus'. The relationship of S-RETIC to Dev's and other

brain models has been discussed by Montalvo [1975).
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Semantics and Segmentation -

Tegenbaum and Barrow [1976) bring interpretation and semancics right
down to the heart of the segmentation process. In an application of the
relaxation procedure that we have just described, they integrate the ap-
proaches via constraint satisfaction. This technique is essentially a
relaxation process without probabilities for the compatability coef-
fictieats. Relationships between regions are used to constrain the pos-
sible labels of one region given a set of labels for the other region.
For example 1f one region is labelled lake, then the region below should
have the label of sky (1f it exists) removed from its list of labels.

In this manner, spatial, functional, and other semantic relationships
between a given region and all adjacent reéions can be listed to restrict
the interpretation of that reglon.

If ladels for possible interprecations are automatically produced
for all elementary regions (even individual picture elements!), then the
logal constraints in different areas of the image can propagate towards
the goal of finding one or more globally consistent interpretations of
the scene. Note that if there are no gemantic constraints, then un-
guided segmentation by standa;d region growing techniques (Part 11)
takes place. In interpretation-guided segmentation, pairs of adjacent
regions with the same unique interpretation are 'safely’ merged firsec:
vhile merges with disjoint sets of labels are never allowed. Otherwvise
low contrast boundaries are zerged and the nev set of labels is formed
by intersecting the label# for the original reglon. The intersection is
furthe; restricted by demanding consistency of each of these labels

with the attributes of the newly-formed region; if the new set of



labels is empty, then the merge is blocked. Thus, after each merge,
reinterpretation takes place by propagating constraints until, there are
ao changea and then the next safest merge takes place.

Using this approach semantic constraints via manually supplied
labels, geometric Qodels, maps, and partial descriptions from other
scene snalysis programs are possible. The authors demonstrated the
interpretation of a simple office scene (door, wall, baseboard, picture,
doorknob) by restricting the label set of a one pixel region to be the
unique correct interpretation. The process was highly effective in
carrying out 214 safe merges, 43 unsafe merges, resulting in a unique
consistent interpretation for the final 11 fegton'.

These impressive results must be viewed with caution. The domain
wvas very limited with few objects, so that it via feasible to allow
local areas to take on all pogssible interpretaticns. The crucisl point
is that with a much larger number of objects, one needs techniques which
can 25515 the number of labels for each area. The degree to which one
can satisfactorily label the possible interpretations of a small eection
of an Jijact on the basis of purely local information is lt!ll’unccrtnln.
It would appear that the technique would be more effective after a symbolic
representation of large regions and boundaries has been extract;d. Then
cues of occlusion, perspective, shadowing as well as semantic labels can
be used in their constraint-satisfaction scheme.

The potential power of semantics in guiding segmentation is predi-
cated on the ability to define meaningful constraining relationships
between objects. Many ?f those used by Tenenbaum and Barrow are basically
2D spatial relationshlps, and since this simple scene involved only the

wall plane. (i.e., 2D), the relationships were sufficient to achieve the
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desired goals. With more general three-dimensional scenes which might

be viewed from many different perspectives and involve occluding objects,
there are few 2D spatial representations that remain invarfant. This
requires three-dimensional representations of shapes of objects and
relationships between objects, but this problem is non-trivial. It ?an

be expected that the data base will contain far more instances of likely
relationships (tree crown atop trunk) than of the unlimited set of unlikely
relationships (such as ice-cream atop tree trunk!). *The presence of objects
and their relationships might be optional or variable (e.g., the presence of
guard rails alongside a road). 1Ia the 3D world the size of a region in an
image does not constrain the label of an object without consideration of

the distance of the object.

Earlier, we noted that pattern recognition procedures may sometizes
ba triggered prior to segmentation. One can provide procedural knowledge
(i...! knowledge stored ag algorithas which-can be applied to the situation
at hand) in‘the foru of pattern recognition programs which compare expected
features of objects and the actual (eatufes of a reglon in order to provide
coarse likelihoods for the alternative identities of a region. In Part 11
of this paper, we will give examples of histograms of features of various
objects such as sky, tree crown, grasa, roof, etc. Each seems to have a
‘signature’ in terms of its ‘waveform’ or distribution of feature values.
This implies that the object recognition routines might be very helpful
during the segmentation of the more difficult areas of the image. Given
that the problem has proven intractable to so many previous attempts, one
should consider the ways to relax the demands for complete segmentation

prior to inicial labelling of reglons; these processes might interact
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Qnd communicate. Trees in sunlight have a wide bandwidth in hue and
intensity. Consequently, they can provide aid to a reglon and texture
analysis in a particular area. Of course there might really be several
regions (possibly textured) whose union gives HSI distributions similar
to the tree's. The low-level system must manage these probleus, only
accepting suggestions and not conclusions from individual subprocesses.
This management of diverse processes fits in naturally with a need for
directing subsets of object routines to particular regions of the image.
Again they could be controlled by a low-level executive or one could
structure feature cues to invoke them in aheterarchical fa;hlon. but in
either case the :ooperation of these processes would aid both low and
high-level types of analysis.

The question facing Al reserachers is one of intuition concerning
the payoff in attempting to structure the syntactic-semantic tradeoff
in a machine. We expect the tradeoff to be task-dependent, and vary
from system,to system. At one extreme is the attempt to avoid semantics
entirely in early visual processing and at the other is its complete inte-
gration in early visual processing. The;cat visual system simply enhances
contrast at the retinal level, while the frog has retinal ‘'bug detectors'.
Again, an assembly-line robot has simply to choose between a small set of
alternatives, while analysis of outdoor scenes'continually provides chal-
lenging novelties. If the shadow areas in a road scene at night are to
be interpreted, one cannot rely on segmentation processes to set proper-
thresholds for extracting meaningful boundaries. However, we do believe
in the desirability of some degree of segmentation prior to the iatro-

duction of semantics. One must have a vision system uhich‘ls initially

data driven whether one 1s viewing a scene of sense or nonsense; other-
wise the system's expectations of what is out there might be nothing more
than day-dreaming. Once structures for partial segmentatien are avail-
able, feedback loops between high and low-level should allow both to

cooperate and update each other in a dynamic fashion.
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4 An Overview

Our view of the overall design of a visual system can be succinctly
suzmarized in Figure 9. The overall goal of the system is to infer
from the image an interpretation of the scene--which may name and locate
certain objects in the scene, or provide programs to guide interaction
vith the environment of which the scene 18 s sample. Eyes or cameras
form an intensity map of a scene. The map will often cover only part
of the scene, and it will be limited in resolution.

The light intensity at a point is almost meaningless. Processes
are thus required to extract features from local ‘windowvs’ (local in
space and, possibly, time). These are features which can provide meaning-
ful cues to the interpretation process. Features may combice tvo simul-
taneous inag;a to provide depth cues, or may combine several successive
images to pyovlde motion cues. 'Othe; features will relate to presence
of edges, local texture, and eo on.

The multiplicity and overlap of windows, and the inherent ambiguity
of local samples, implies that the output (A) of the inicial feature
extraction will contain much spurious activity. Thus processes--like
those we studied in Section 2 and shall meet again in Part II—are
required to eliminate false disparity cues, multiple indications of edges,
and so on. The resultant ‘cleaned up' feature map, (B), provides an array
of features which is far more likely to aid the interpretation process
than the orfiginal intensity map. It thus appears to correspond to the
'primal sketch' of Marr [}975]. This representation is ‘'quasisymbolic’

in that the purely numerical assignment, of intensity values in the original
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nap has been replaced by an assignment to each poilnt of feature descriptors
together vith intensity levels which evaluate the extent to which the
feature occurs in a ne;ghborhood of that point. ‘

In some cases, local features may directly activate schemas to inter-
pret a region of image. However, in most cases, further processes of
aggregation (to be discussed in Part 1I) are required. Edge features are
to be aggregated into lines and curves which may delimic regions. Regions
can also bé formed by aggregating local areas which--at least in the context
of the opecific image--have key features in common. The resultant segmented
image, (C), provides the major input to the semantic, high-level processes.
It contains descriptions both of regional properties, and of reiltlons
between regions.

High-level processes can then act upon (B) and (C) to interpret the
scene. Schemas can be activated by local properties of sppropriate regions:
and by global consideratigns--by competition and cooperation with other
schenas, and by use of the relationships in (C) on the basis of world
knowledge.

The flov of information is by no means one-way--the dashed arrows
give a sample of some of the more important feedback paths. It is impor-
tant to mote that the environment will frequently contain more data.than
the system can handle at any one time. HWe thus require mechanisms for the

direction of attention--allowing the system to focus on different places,

or at different levels of resolution, in the image--in reap to the
ongoing needs of the process of interpretation. Finally, ve note that almost
all aspects of the system—from feature extraction to the organization of

control structures for world knowledge--are subject to learning.



Figure 9:
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The Overall Design of a Visual System.

The visual input over space and time goes through a series
of transformations until a satisfactory high level interpre-
tation is achieved. Feature extraction over local windows
(in space and time) is followed by simple operations which
allow local organizing processes to remove spurious activity
due to such things as overlap of windows and false disparity
cues. At the next level processes for aggregating local
edges and areas into boundaries and reglons are applied.
This representation is at the symbolic level; the boundaries
and regions have names and 1ists of descriptive attributes
for texture, color, depth, etc. Schemas are activated by
local properties and interact in forming an interpretation
of the scene. Important feedback paths are shown as dashed

arrovs.

High-Level Interpretation
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