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ABSTRACT
The Use of Context in Character Recognition
(March 1976)

Edward G. Fisher, B.S., University of New Hampshire
M.S., Ph.D., University of Massachusetts

Directed by: Professor Edward M. Riseman

In this dissertation new algorithms are developed for the applica-
tion of context in character recognition. Improvements ti binary n-gram
algorithms are proposed which facilitate the use of different types of
n-grams for a collection of words of varying lengths. Algorithms which
utilize this extended data base for the detection, location, and correc-
tion of insertion, deletion, split, and merger errors are presented. A
primary feature of the new algorithms is that the n-grams are anchored
to one or both ends of the word.

Experiments are performed which show that the algorithms are effec-
tive for all of the error types. For example, in a dictionary of 10000
words, without a priori knowledge of the types of errors being processed,
the contextual postprocessor was able to correct 8l% of single substitu-
tion errors, 57.7% of deletions, and 63.2% of double substitution errors.
Numerous experiments were performed to examine the performance of the
postprocessing algorithms as a function of dictionary size, as a function
of word length, and as a function of the size of the contextual data base.

The application of these techniques to postal reading machines is
explored in the latter part of this work. A brief exposition of the
problem of mechanicall& sorting mail in the Post Office is provided. The
algorithms are further developed to employ additional binary n-grams

to correlate the redundant information in city-state-Zip Code addresses.

vi



They place a hierarchical emphasis upon the postprocessed data in order
that the ouwtput may be viewed in the context of its relevance to the
type of routing being performed.

Simulating a classification system which has a character error
rate of 3 to 4%, errors were produced in u43% of the city-state-Zip
addresses. The postprocessor was able to sort 97.5% of the erred
addresses, yielding a gross sort to the correct region of 98.9% with

an error rate of .04%. The CPP was able to sort 97.2% of the addresses

to the correct city.
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SEES & v v b e e e T e The recognition of text by machine has been studied for many years.
4.1 An example of the use of various types of n-grams to Hachine reading of text has long been viewed as a means for eliminating

locate the position of an assumed error. . . . . « . . . . . 90

many of the most tedious jobs in our society, such as: computer irput

6.1 Decision structure flow diagram. . . . . + « + « ¢« « ¢« + « . 136

of a hundred miliion tax forms each year; sorting of biilions of pieces
cf mail per year; processing of credit card transaction slips; and
sorting all of the checks which must go through a few banks and clearing
houses and be charged to the proper account. Checks can be read with
fewer than one error per million because all of the printipg is done in
a single font with magnetic ink by carefully controlled machines. The
numbers on credit slips can be read with some reliability because the
character set was designed for optimum readability. Social Security
forms which are typed by either typewriters of various fonts or computer
printers can be read well enough that machines can read 2& of 100 million
lines of data; the remaining lines are input to a machine by key oper-
ators. Machines have also been installed to sort mail; however, in
order to restrict these machines to a one percent error rate, it is
necessary to force them to reject twenty percent of the mail they pro-
cess.

From each of these examples, it might be noted that the success of

the recognition system is related to the amount of control over the



characters being read. Various attempts at recognizing uncontrolled
hand-printed and hand-written material have been ruch less successful,
It is not surprising that hand-writing is by far the vorse of the two
problems.

Many researchers of optical character recognition systems have
noted the results of two important experiments in human recognition of
characte;s and text. Neisser and Weene (1960) discovered that humans
are only able to correctly identify 96.8% of isolated hand-printed
characters. Miller and Friedman (1957) discovered that humans have
difficulty reading individual characters but are capable of reading most
text properly because of the context of the material.

The goal of this research is to demonstrate that context can be
successfully applied to a large, real-world problem such as.a postal
reading machine. To this end various new algorithms are presented which
develop the methods of binary n-grams to detect and correct a wide range
of different types of errors. The algorithms are then extended to
include a correlative ability for relating state names and Zip Codes to

city names for application to the Fost Office sorting problem.
1.2. TFOREWORD

éhapter II reviews some of the research in the field of pattern
recognition. The emphasis of the review is upon the various methods
which have been used to improve the performance of pattern recognition
systems. Among the methods is the use of context; it is shown that

context is the best and most consistently reliable method.

Chapter III reviews the methods of binary n-grams. The algorithrs
and capabilities of the systems developed in the prior literature are
discussed. The chapter also cites many of the results of the prior
research.

Chapter IV broadens the scope of the method of binary n-grams, both
in breadth and depth. Additional algorithms are presented to facilitate
the processing of words of different lengths. The methods are expanded
to include a capability for detection and correction of additiomal types
of errors.

Chapter V presents the results of several experiments which deron-
strate the effectiveness of the algorithms developed in chapter IV. The
experiments evaluate the methods for different sizes of dictionaries and
different sizes of contextual data bases; they also demonstrate the
relationship between the effectiveness of the postprocessing techniques
and the length of the words being processed.

Chapter VI presents a brief discussion of the Post Office sorting
problem; The methods of binary n-grams are extended to utilize the
structure and redundancy of addresses and 2ip Codes. Experimental
results are presented which demonstrate the viability of the algorithms.

Chapter VII concludes the dissertation. The major innovations
introduced in this dissertation are summarized, Some extensions of the

algorithms are presented.
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CHAPTER II

REVIEW OF THE LITERATURE
2.1, INTRODUCTION

This chapter briefly reviews the field of pattern recognition in
general. Because of the failure of most pattern recognition systems to
perform as well as humans would expect them to, most of the researchers
have selected a particular component of a pattern recognition system and
attempted to improve the system by improving the component. Thus our
emphasis will be upon the various means which have been researched in
order to improve contemporary pattern recognition systems. Two of the
methods stand out as providing outstanding improvements: the placing of
constraints upon the input pattern space and the use of context. It is
shown that, given a problem domain which cannot be controlled, context
is the best method for improving the performance of a pattern recog-
nitiea system.

The latter part of this chapter surveys context in pattern recog-
nition. It is shown that context may be applied in two ways: context
may be incorporated into the classified, and context may be applied as
a postprocessor. Saveral research papers are reviewed for each of these

methods.

2.2, PATTERN RECOGHITION

There have been many studies of the various aspects of pattern

recognition and, more particularly, character recognition. Most of

these projects are surveyed by lagy (1968) and Kanal (1974). Harmon
(1972) surveys the recognition of print and script.

The problem design of primary concern is presented in figure 2.1.
First, features are extracted from patterns (digitized characters). The
features are then processed statistically by a classifier and output as
"text," possibly garbled. The other two components, the preprocessor
and the postprocessor will be discussed later in this chapter.

The automated recognition of various types of patterns seems to be
bounded by some generally accepted error rates. For example, an esti-
mate computed by Neisser and VWeene (1960) for the recognition of hand-
printed numerals and upper case English characters by humans appears to

be accepted as a lower bound on machine recognition of this class of

E

characters. (See, for example, Harmon, 1972.) Neisser and Weene achieved

a pooled best guess error rate of 3.2% when certain reasonable decisions
were made about what not to call an error, such as 0-0 confusions.

Several different approaches to solving the character recognition
problem have been taken, and may have improved the system performance-of
the character recognizer being simulated. Each approach has usuvally

attacked some particular component of the system design of figure 2.1.

2.2.1. Improving the Feature Set

A system component which has frequently been studied is the feature
selection algorithm. The related problem is usually phrases as: “Given

a pool of N features, select the best set of n features (n ¢ N) for

<

recogniting some class of patterns." The fact that there are (x)



possible subsets makes the problem computationally difficult

200) 35

(e.g., ( 30’ °© 4,1 x 10°°). Therefore, an algorithm which can select a

c .

I
S
(%]
i
3

Fb-q "very good" subset is sought. Hucciardi and Gose (1871) experimented
e

: § :;: with several techniques for chcosing subsets of pattern recognition
Qd

: §.§ : properties in an EKG problem. Their weighted sum technique produced an
. &

: E‘EE: error rate of 36% with 50 of 157 features. Fifty randomly selected
[-¥

| IS |

features had an error rate of 42% and all.of the other algorithms had

error rates from 36 to 42%. (They cite other research as finding that

disagreement among groups of electrocardiographers is as high as forty

percent.) Their conclusions were not that they had found a best algo-

% Classifier

rithm but that their own algorithm compared favorably with the others

and that a choice would have to be made on the basis of implementation

feature
vector
X

g5 considerations and problem design.
05 g gé Fisher, Hanson, and Riseman (1974) developed and compared several
g g g g’g feature selection algorithms in a character recognition problem. The
e E § g'g error rates of the algorithms they used ranged from 10.3% to 20.7$ when
1 - §'§ 40 features were selected from a pool of 200. In this case it appears
)
{Zn —1 that choice of algorithm did make an appreciable difference although
: g""?: : several of their algorithms did have error rates below 13%.
: E_éé: Another approach to feature set improvement is to select a larger
i_ﬁ :3; set of features. Both Mucciardi and CGose and Fisher, et al., display

Feature
Space

results of such experiments. MNucciardi zud Gose's experiments reduce
the 36% rate for 50 features to 33% for 78 features. Fisher, et al.,

improve the 10.3% rate mentioned above for 40 features to 8.9% for 70

Figure 2.1 Schematic of the typical components of a pattern recognition system.

features. A phenomenon of this methodology is the fact that in some

Pattern
Space
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s jon. h -
experiments the error rate has been known to increase when larger and standardization. The relative effectiveness of these schemes is depend

itivi = ion. For £
larger feature sets were applied to a problem. This "peaking phenomenon" ent upon the sensitivity of the features to variation example, i

. . r ior mid T is a
is discussed by Chandrasekaran and Jain (1975). There are several the nurber of intersections through the middle of a pattern a feature

. . and the characters are allowed to move about in the pattern matrix, the
reasons for the peaking phenomenon: if the features are not independ- P ’

: . feature is sensitive to such variation; however, if the character is
ent, the covariance matrix becomes singular as soon as the feature set

s s centered in the pattern matrix, made to stand vertically, and noise is
is larger than the training set; if the features are all independent, e P ? a ¥Ya

. eas . . : removed from the pattern, the feature should be more reliable. For
theoretical results indicate that an arbitrary increase in the size of &P >

the feature set will improve recognition only if the underlying model is example, Toussaint (1972) experimented with some position dependent

. . s . . . featu g ks which meas the density of fixed portions of
Bayesian (the a priori distribution of the patterns is known). However, eatures, e.g., masks vhich measured the sty P

: s . s . . ™ trix; 1 ior of e normaliza to the i
in practice it is not possible to obtain arbitrarily many independent the pattern matrix; applicatior size normalization to the Input

features. patterns reduced an error rate of 32.3% to 26.0%. Fisher (1974) applied

size normalization to the same characters but in a problem which included

2.2.2. Improving the Pattern Space many topological features (topological features are essentially position

: . ind d 3 improvements wi less dramatic, 10.9% to 9.1%.
If the feature set cannot be much improved perhaps the patterns independent); error cate improvements were le G ¥ 0 9.1%

’ i , L Y 4
themselves can. If the patterns can be enhanced, the quality of the Lin and Scully (1874) achieved an error rate of % on constrained

. - ers. Thei b, desi included the u £ 49
measurements obtained should be better and the error rates lower. Two hand-printed characters. Their problem design incluce se o

. . . character classes and reauired the subjects to print on a standard form.
techniques for refining characters are image enhancement through pre- a q J pris

: : . . s Each character stroke was to be on top of a line of the standard form.
processing and application of constraints to the patterns in the pattern P

space They state that the subjects who generated the data said that the con-

s o s . . strained characters "were not overly complicated, were reasonably eas
Preprocessing as a means of refining images has occasionally been y P ? y y

: s . W siv sier to use as the testi
quite successful. Various preprocessing transformations are applied to to get used to, and became progressively ea t esting

. continued."
the patterns in an effort to standardize them before feature measure- ninu

h occasionally indicated that people tend to
ment. The purpose of the transformations is to reduce the amount of Research by others has occasionally indica peop

variability in the patterns. Examples of such preprocessing are size dislike constraining their printing styles, becore inefficient printers,

normalization, noise extraction, skew normalization, and line thickness and even sometimes rebel against the constraints. -(Caskey and Coates,
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1972; Devoe and Graham, 1968)

Troxel (1974) speaks of pattérn recognition machines which make one
error in every twenty to fifty thousand characters processed, provided
that the source documents were generated by a particular type ball with
a particular quality of fibbon and grade of paper. Thus, given a par-
ticular problem domain whose quality can be carefully controlled, some
means exist to improve the perfofmance of mechanical reading equipment

by improving the quality of the source documents.

2.2.3. Improving the Classifier

There are many alternatives in the design of classifiers. Some of "
these pertain to the statistical assumptions madé about the featu%es,
whether they are to be described by parametric, non—éarametrie, gaussian,
linear, non-linear, or piecewise linear models. Other alternatives
concern the decision mechanism: is it to be sequential or parallel?
Further classifier design alternatives involve incorporating contextual
information either in the classifier or in a special processor which is
to operate on the text output by the classifier. Context will be dis-

cusgsed in greater detail in the next section of this chapter.
2.3. CONTEXT

1f the problem is changed from that of character recognition to the
problem of word or text recognition, the identity of characters can be
considered in the context of those characters in the neighboring text.

Shannon (1951) discusses the redundancy of English text and presents the
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results of a few experiments which demonstrate the ability of humans to
£il1l in gaps in text. Shannon estimates that English is so redundant
that each character of English text actually conveys less than 1.3 bits
of information (in contrast to log, 26 = 4.67 bits maximum for randomly
occurring characters). The use of context is so interwoven with human
recognition processes that we frequently recognize familiar objects and
persons from a few contextual clues instead of looking for complete,
detailed information. Humans read over typographical errors without
noticing them. Detective novels often have mistaken identity as a key
item of the plot. ("Vell, the murderer and the defendant were both
wearing a brown coat and a green hat!). We never question the meaning
of the spoken word "bar" (bare or bear) because context always makes.
clear which of the two spellings and twenty or more meanings are intended
by the speaker. When helping a child or adolescent with his reading, we
are often asked, "What does this word mean?" And we often respond, "How
is it used?" Context is a very important part of the human recognition
process.

Miller and Friedman (1957) studied the ability of humans to correct
a variety of mutilations in printed English texts. They found that the
"average" person with limited time to work will not be able to correct
passages perfectly if more than 10% of the characters are mutilated and
that the job was even more difficult if the mutilations were random sub-
stitutions of erroneous characters. However, "superior" persons with

unlimited time were able to correct text which had been 50% mutilated
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through deletion of either every other character or all vowels and
spaces.

It is important to note that the use of context implies the recog-
nition of aggregates of patterns. Because of this, system error and
recognition rates are often given in terms of words instead of charac-
ters. The difference is significant because in thé non-contextual
(independent) recognition of patterns, a 10% character error rate on
four-letter words translates directly to a 34.39% word error rate
(.3439=1-[1-.1 ] u). However, when context is used to recognize pat-
terns errors are not independent; therefore, error rates (character vs.
word) are not so clearly related; words with errors in them are more
likely to have a secord error than they are when errors are independent.
Thus, there are slight differences; a few will be cited when available.
However, just as most researchers have used data bases which don't
permit comparisons of results, many have used only one means of pre-

senting error rates.

2.3.1. Types of Context

There are several levels at which context may be applied in the
recognition of patterns. These correspond to the various levels of
detail being used to differentiate among the candidate patterns, whether

they be characters, text, speech, or scenes
2.3.1.1. Global Contexts

At the highest level, there exist the cultural, temporal and
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physical circumstances under which the text was generated. A system to
use this sort of context would be at the forefront of research in arti-
ficial intelligence. Multiple levels of world knowledge provide various
contexts in which to interpret the same data. In text recognition such
a system would know that an Englishman would write "colour" instead of
“color." In speech recognition or natural language processing the
system would adapt itself to the vocabulary of, say, an eight-year old
speaker or the accent of a West Virginian before attempting to resolve
ambiguities. In scene analysis, the system would account for the season
of the year and the angle of the sun vhile identifying the components of
scenes. That is, such a system would use contextual information vhich
is not immediately apparent and would continually adapt its contextual
base to changes in the pattern space. Of course there are reasons for
the fact that these techniques have not been implemented: they are very
complicated and the lower level systems are not yet very well developed.
For example, until “here are good speech recognition systems, “he
refinement of adaptation to provincial pronounciation is an unnecessary

embellishment.

2.3.1.2. Syntax and Semantics

The semantic and syntactic contexts in which words exist have been
considered occasionally. Szanser's General Content check (1971a) is one
erample of a successful application of global content analysis in the
recognition of text. The occurrences of "content" words are counted

when they are encountered in a body of text. In a second pass words

g
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which have multiple resolutions are resolved on the basis of the most
frequently occurring alternative of each of the ambiguous forms. Szanser
also used some linguistic syntax rules to choose among multiple resolu-
tions (1971b); this was primarily useful in the resolution of short
words.

An interesting application of syntax and semantics to the automatic
correction of spelling errors is in the restricted domain of programming
languages. Duda and Hart (1968) researched a character recognition
problem in which they attempted to "read" a FORTRAN program from coding
forms. Their algorithms reduced a 9.3% character error rate to 2.4%,
and they suggest that additional programning should have reduced it to
1.2%. They add, however, that the remaining errors would have eluded
any additional clever programming.

Heinselman (15872) built a compiler addendum which searched for and
found many spelling errors in student programs. Morgan (1970) desﬁribes
several spscialized techniques for efficiently incorporating spelling
correction algorithms into compilers and operating systems. CORC and
CUPL (Conway, et al., 1963a, 1963b; Walker, 1967) were two student
oriented prog amming languages at Cornell University designed to find
and correct spelling errors.

Alter (1968) applied contextual constraints to the automatic recog-
nition of a "spoken FORTRAN" language. Only prelirinary results are

presented in the paper.
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2,3.1.3. Context among the Patterans

Context which has bsen used much more frequently has involved the
statistical or linguistic relationships of letters within words. The
vwork in this area has taken two pathsﬁ many researchers have designed
classifiers which used contextual statistics within the classification
process itself; and others have designed a subsequent machine, a post-
processor, which observes mutilated text and detects and corrects errors
in the text. The postprocessor has also been designed as an independent
data entry aid which was independent of any character recognition scheme
per se but which still had the task of scanning text and detecting and
correcting errors.

The two alternative methods are detailed in the next subsection of
this chapter and in the forthcoming chapters. The first, context within
the classifier, has involved various sequential decision techniques in
which the characters are viewed in the context of their immediate neigh-
bors. The second, the postprocessing technique, has sometimes taken a
slightly broader view in which characters are viewed in the context of

the entire word which contains them.

2.3.1.4, Context within the Patterns

A fourth area in which context can be used is within the structural
context of the patterns themselves; i.e., the graphical, speatial, syn-
tactic manner in which the components of the language elemerts are

assembled. To use this context a pattern recognizer concerns itself
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with the characteristics of the parts of the character. UNany resecarch-
ers have concerned themselves with the stiroke order of handwritten
letters. (Ehrich and Koehler, 1975; Frishkopf and Harmon, 1961; Mermel-
stein and Eden, 1964; Sayre, 1973) Gold's lorse Automatic Decoder
(HAUDE) (1959) was a language independent pattern recognizer which used
rules for distinguishing between short marks and.long marks (dots and
dashes) and among symbol spaces, letter spaces, and word spaces, given
the context of the surrounding marks and spaces. The relative duration
of the marks and spaces of hand-sent Morse code varies among senders and
even over the length of time of a single transmission by a single opera-
tor. The rules are therefore specific to the local context of struc-
ture. For example, the first rule is, "The longest of six successive
spaces is almost always a long space." (The particular type of long
space is determined by application of other rules at a later time.)
Vhile the character error rate was one percent over the several tested
eperators and geveral messages, 15 of the 184 test messages had rore
than 10% errors. Space errors (letter vs. word spaces) posed a serious
problem; 60 of the messages had more then 20% space errors.

Cox, eflall, (1974) considered the problem of font design with the
hope that a pattern recognizer's knowledge of particular font charac-
teristics would improve its recognition rates since documents are
usually printed with a single font. This is not always true since
Hennis (1968, p3u8) says that his group encountered rmany documents that
were typed in different fonts and that they found at least one orcur-

rence of five fonts on the same document. Shillmen (1974) conducted
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experiments to increase the understanding of human perception of dif-
ferences among characters given the graphical context of the printing
style. Fu (i975) discusses many of the methods of syntactic pattern
recognition and provides an extensive list of references to the litera-

ture in this field.

2.3.1.5. Total Integration of Context and Pattern Recognition

At every level of automating the recognition of patterns or groups
of patterns or understanding the words formed, context can be usefully
employed. Vhen putting the strokes together to form characters, a
feature extractor can use already deduced information about the other
strokes in the character. When deciding the identities of characters, a
recognition system can use the information that it thinks is correct
about the surrounding characters to make some final decisions. To
further resolve ambiguities or understand the text they process, they
caL assemble great quantities of detail frem the substance of the text

and use this to further process the data as might a literary critic.

2.3.2. Context in the Classifier

Abend (1968) is a good reference on compound decision procedures of
the sort used in this area. He shows that compound decision theory pro-
vides the optimal sequential procedurs “or taking context into account
in the classification problem. The ba: for the research is that Bayes

classification is known to provide the optimal classification scheme
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recognizer cannot distinguish patterns well. If the pattern recognizer
given the statistical constraints of the model; however prior Bayesian

is good, P(Cn-llzr-l) will be near one for the correct value of Cpq 20d

48
near zero for all others; thus, the term P(xn-1’ Cn—i) will be largest

work ignores the context of the pattern. The prior probabilities P(C)

of Bayes' rule
for the correct decision and the summation in (2.1) will approach

. P(xic)
P(CIX) = —W P(C) P(Cn'Dn—l)'

Raviv (1967) simultaneously and independently developed the two
are replaced by transition probabilities to compute the maximum a posteriori
above formulas; he a2lso extended the formulations to a "look ahead" mode
likelihood for first order Markov-chain dependence

of decision and applied the decision rules in a pattern recognition
P(x (C) )
- . : . : - .
P(cnlxn,xn_l) —5(2;7—— &, P(cn'cn-i) P(xn-i’cn-i) (2.1) problem. Raviv considers the pattern X in the context of the preceding
and succeeding characters in both the optimal and suboptimal decision
where C is an arbitrary character label, C. is an arbitrary label for )
J rules; the suboptimal decision rule in "look ahead" mode is
the character in the j-th position, X is a pattern vector, xj is the l
P(X_fc )
. . et . _ n'!™n
vector of the pattern in the j-th position, and the sum is over all P(Cnan_l,xn,Dn+1) = _—?T?;T_ P(cn’Dn-l) P(Dn+1|cn) (2.3)

possible values of Cooye (Abend credits himself and Raviv (1968) with

- Obviously the decision D,
independent discovery of this rule.) This formulation is the optimal :

4 can be arrived at in the same way as the

decision on Cn; however Raviv leaves one to wonder at the means used to
sequential model; the decision on Cn is conditioned only upon its pattern

determine Dn+ since sonehowr something has to wait for the decision on

vector xn and a function of the pattern Xn_1 and not upon any decision 1
C - Presumebly some tentative decision is made about its identity for

which might have beer made about the identity of X Abend also

n-1 the purpose of identifying Cn, then the decision is discarded and the
presents the suboptimal rule which recuces to the a posteriori like-~

maximum a posteriori decision is cocmputed as above for Cn+

40
1ihood
Raviv performed many experiments, varying both the contextual data
P(X_1C )
- n n . . . . P -
P(Cnlxn,Dn_l) ——?YEET- P(Cn|Dn—1) (2.2) base and the pattern data base. In the first and one of his most success

ful experiments, the contextual data base was eight million characters
where Dn-l is the decision made on the preceding character. In his

of legal text, the pattern design set was 89076 samples of 53 characters
analysis of error bounds on these two formulations, he found that the
’ from 28 different fonts of type. The data set used for testing the
suboptimal procedure was almost as good as the optimal procedure when
design was 27000 characters of legal text typed with an IBY Selectric
the pattern recognizer is good; however it is very poor when the pattern .
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with an elite font. Allowing for no rejections, 98% of the characters
were recognized correctly when no a priori distribution information was
used in the classifier; 99.3 with only the suboptimal formulation which
did not use "look ahead" information; and 99.4% when the "look ahead"
mode was used. The reduction in error rate from 2% to .7% and .6% is a
significant reduction; it is proportionally the best which has been
achieved with compound sequential decisions.

Raviv also experimented with a design factor to attempt to deter-
mine a relative weighting of contextual and measurement information. To
employ the design factor an exponent F was applied to the feature neas-
urement term, P(ancn), in (2.3); a value of F=1.0 would be equivalent
to not using a design factor and a smaller value of F would have the
effect of piacing less reliance upon the measurement information and
more upon the contextual information. The experiments sought the opti-
mal design factor. VWe cite the results of two more of his experiments.
The same pattern set as described above was used (28 fonts). The con-
textual data base was 100 typical business documents. In "look ahead"
mode and with no design factor (F=i.0), the machine recognized 96.3% of
the characters; the optimal design factor (F=0.5) yielded a recognition
rate of 96.6%. TFrom these and other experiments, Raviv concludes that
it §s important to give the proper weighting to the input to be obtained
from context. We feel that the difference is inadequate for so strong a
conclusion and that the marginally better results obtained from the use

of a design factor may be an artifact of the data. The use of the
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suboptimal decision rule should rot have adversely affected his results
since he seems to have very good classification results; therefore the
better results obtained from the use of a design factor are probably a
measure of the lack of relationship between his test data and his design
data. Also, the design factors were chosen as the result of several
experiments on the test data; they were not again tested on & new test
data set.

From other experiments Raviv concludes that use of bidirectional
first order Markov statistics in the "look ahead" mode (2.3) is better

than the use of the second order probabilities obtained by replacing

n-1’"n-2

P(cnan_i) P(C_ID _..) by P(CnlD D .) in (2.2) a-ove. He also states

n n+l

that other preliminary results indicate that more specialized learning
of the material to be processed will provide better results; however he
also warns that such training restricts the data base and renders it
less reliable than the more globzl training procedurc used in the above
experiments. We would agree with this and suggest that the specialized
training might render the design factor to be neaningless.

Forney (1973) surveys various uses of the Viterbi algorithm and
sketches an implementation éf the Viterbi algorithm as applied to text
recognition. The Viterbi algerithm is a recursive optimal solution to
the problem of estimating the state sequence of a discrete-time finite-
state Markov process observed in memoryless noise. Neuhoff (1975) used
the Viterbi algorithm in conjunction with Bayes classification to recog-

nize text. MNeuhoff simulated a classifier with the confusion matrices
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published by Raviv (1957). Results obtained using diagram statistics
were similar to those of Raviv (1967) although Meuhoff conjectures that
the results whould have been better if he had used classifier likeli-
hoods instead of the decisions of Raviv's paper. Formey (1973, p275)
clains that the Viterbi algorithm is simpler to implement; however,
since the Viterbi algorithm is essentially an algorithm for finding the
least cost path through a graph, a careful evaluation of the two methods
remains to be performed. '

Donaldson and Toussaint (1970) and Toussaint and Donaldson (1972) .
investigated some simple contextual decoding algorithms to improve
recognition system performance and/or reduce system cost. Application
of their algorithms did reduce the character error rates from 19% to
4%,

Shimura (1973) describes recognizing machines with parametric and
non-parametric learning methods which use contextual information. While
this i#, on the whole, a good paper, Shimura clouded the whole issuve of
the use of contextual information in his second paragraph where he
states (p1l49-150):

" ..It is noted that if information about the preceding
jetter is used instead of the succeeding letter, recognition

may be made based on wrong information when the preceding

letter is misclassified. Thus we believe that the method

the succeeding pattern is more desirable than that using

the preceding pattern."

He is apparently unaware of Abend's work and interprets the use of con-
textuél statistics as requiring that in the case of the preceding letter

he uée the suboptimal formula (2.2). FHowever, in the case of succeeding

characters he chooses the character Cn which maximizes

L. e Loy e . o - L T
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2ax P(Cn,Cn+1IXn,Xn+1)= ma>:(P(cn,xn) P(X

" ) P
n+l n+l

"
n+1"n n+1'cn)) :

whi imi '
The letters Cn and Cn+1 which maximize P(Cn’cn+1lxn’xn+1) are the Bayes
(optimum) decisions for the two positions, given only the information
about the two patterns; however, the decision Cn is made on this basis

and xn+ is reprocessed with Xn+2 to make the decision Cn+1, etc.

1
Although there is some sense of making an optimal decision here, it is
neither optimal in the sequential sense of Abend nor in the recursive
optimal sense of the Viterbi algorithm. Thus the question of which
decision mode is more desirable remains unanswered and Shimura's con-
tribution might be greater if he had supported his beliefs with data and
done a better review of the literature.

Casey and Nagy (1968) report on a project which was primarily
concerned with the clustering of patterss. Training on a set of 3000
characters, 26 unlabelled clusters were formed using a complicated
clustering algorithm; then, a transition matrix was compiled. (At this
point the cluster members are only lzbelled by numbers.) The clusters
were then identified by an algorithm which matched the transition matrix
to a digram frequency matrix for English in a manner similar to the
solution techniques used for simple substitution cryptograms. Final
error rates on 30000 characters of legal text are 0.2% for the "Prestige
Elite" font of type and 2.0% for a script font.

For the special case where the context is generated by a two-state
stationary Markov chain, Chu (1971) obtzined an upper bound on the

average error probability of an optimal recognition procedure based on
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compound decision functions. Chu admits that the restriction to two
states is a drawback. However, he does claim that his results support
the prevailing feeling that context cannot materially improve an other-
wise unreliable recognition system and that the more interdependent the
consecutive characters are, the more helpful is the use of context. It
would be useful to know how unreliable aArecognition system would have
to be before such an application becomes useless. Further elaboration

of the formulation may be found in Toussaint (1972) and Chu (1972).

2.3.3. Context in a Postprocessor

There have been many studies of the use of context in a postpro-
cessor or as a data entry aid, Here it is the primary purpose of the
processor to detect and correct errors in the text so that the corrected
text can be either stored in a retrieval system or used as a key to
retrieve data from a file repcsitory. In the systems which have been
implemented, “he processed text is either used as a data retrieval key
or output in manuscript form. As a data retrieval key, the text must be
used to find other data in a data base; for this to be successful,
accuracy of the data key is essential, Trequently this data is entered
by a person at e teletype and, therefore, the spelling of the input
datum is not assured. If the data is to be output in manuscript form,
the originating agency would be as particular about the accuracy of the
manuscript as if there were a person doing the tedious transcriptions.
Szanser's system (1971a-b) was designed to output both court and parlia-

mentary transcripts.
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Many of the techniques used in these processors involved use of the
dictionary of interest. There is no systen which is more accurate for
detecting errors than searching a dictionary, unless syntax or semantics
is used. However, if the dictionary is large, correcting errors can
require a great deal of computation unless either an associative memory
or sophisticated algorithms are available. These algorithms generally

select a subdictionary for searching; that is, they point to a small set

. of dictionary words vhich might contain the correction. Assuming that

the error is of some prespecified type, if it can be shown that the
correct subdictionary is always selected, then the algorithm has the
same power as any full dictionary search algorithm.

As a simple example of subdictionary selection, suppose we are

given a string of characters X=x ceeXos such that x is incorrect; and

1%2
there exists y such that Y=x1...xi_1 Y Ry ¥ is in the dictionary.
An algorithm which selects the set of all m-letter words from the
dictionary is a "correct" subdictionary selection algorithm. Howeve:r,
since the subdictionary of m-letter words has length proportional to the
size of the entire dictionary, search time grows with the size of the
dictionary. For a dictionary of length n, this algorithm could be

considered to be of order O(cn-n), c_=1; that is, the amount of
1

™
computation required is linearly proportional to the dictionary size and
the constant of proportionality is o the expected proportion of words

of length m in the dictionary. (Approximate values of c, can be obtained

from Ku¥era and Francis (1967).) Algorithas of order less than 0(n) are
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desired; ﬁowever, the algorithms in this field have not been studied for
their timing characteristics.

The research in this area could be classified by several criteria.
The most important criterion is the particular algorithm, if any, used
to select a subdictionary since its effectiveness is, ultimately, the
measure by which the algorithms should be coﬁpared. A second criterion
is the size of the dictionary for which the algorithm is intended; an
algorithm which is reasonably effective on a one hundred word dictionary
might fall apart when given a one thousand word dicticnary.

Since this processor is sort of én after-the-error-has-been-rade
processor, the third criterion is the type of errors which the algorithm
is designed to detect and correct. The most obvious error when a pattern
recognizer is involved is the substitution error; i.e., the substitution
of one letter for another. Also of the one error per word variety are
insertions and deletions. These are essentially spelling errors in
which the author Las either added or deleted a letter. The transpo-
sition error is frequently considered to be a single error. Of course,
multiple combinations of all of these are possible.

Some early, theoretical discussions of the problems are presented
by Glantz (1957) and Thorelli (1962). Glantz considered the problem
only in terms of exact and near matches. He proposéd conmparing the
input word to each dictionary word and computing a simple figure of
merit as the ratio of the number of matched characters to the length of

the longer of the two words; he would then select as a correction the
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particular word which had the highest figure of merit. Thorelli describes
the problem as being the study of two processors. The first is an error
generator; the second is an error corrector, a degarbler, It is the

task of the second processor to degarble the output of the first using
the expectations of the original inputs and its knowledge of the process
by which the first processor generates errors. The elegant part of the
characterization is that it does not require that the first processor be
a machine, only that there exist a model of its error generation pro-

cesses and its inputs.

2.3.3.1. Abbreviation Techniques

Several researchers have investigated various abbreviation tech-
niques: given an input word ¥, systematically throw away a number of
letters, and then look up the abbreviated form in a dictionary of simi-
larly abbreviated words.

Blair (1960), Davidson (19582), and Jackson (1987) developsd systems
which used various abbreviation techniques. Blair and Davidson assign
a utility measure to each of the charzctiers in the input word, depsnding
on the particular character and/or its position in ths word. The vord
is then abbreviated to four characters by discarding the characters with
the lowest utility neasures. Both methods work well on small diction-
aries and, because of the abktreviaticn techniques used, are capable of
working in the presence ¢f the most likely of the substitution, inser-
tion, and deletion errors. For example, from Davidscn's paper, after
keeping the first letter the characters rost likely to be discarded are:

vowels; H, W, and Y; and all but one occurrence of adjacent repeated

L - -
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consonants (adjacent after deletion so that the second '"m" of the
syllable "mem" would be deleted). Damerau (1964) provides a comparison
of his method with that of Blair. Jackson uses a 'reasonable'" operator
keyed abbreviation. In his system, nearly any reasonable abbreviation
results in fast, accurate accessing of data from his data base of
corporation names and aliases.

Tanaka, et al., (1971) designed a network which would output the
correct word if the input word contained a minimal set of key letters in
the proper positions. A key letter set, KL, is a set of letters in a
particular set of positions which uniquely identify a word from among
the set of dictionary words. G%RL is a KL of GIRL. The network for
four-letter words would consist of u4x26 sets of switches labelled:
1A, 1B, ..., 1Z, 2A, ..., 4Z. Given the three-word dictionary, “GIRD,"
“"GIRL," and "SUIT," the KL's of "GIRL" are "G¥RL," “G&%L," ":IRL,"
“GI*L," and "®IRL"; "G"*L" is represented in the network as a circuit
which connects switches serially at 1G ard 4L. When both switches are
closed the circuit is able to "respond," representing the fact that the
KL belongs to the word "GIRL." Inputting the one-error string "GURL" to
the network would close gate 2U for "SUIT," gates 1G and 4L for "GIRL,"
and gates 1G, 3R, and 4L for "GIRL." The network correction teéhnique
requires that the number of KL responses for candicdate words meet a
minimum threshold N; in this example, X=1 would cause rejection of the
word because there are two qualifying responders, but K=2 would correct

the word since only "GIRL" responds twice. Using a dictionary of 124
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seven-letter words, setting N=5, using KL's of three letters or fewer,
and simulating a classifier error rate of 10% (leading to a word recog-
nition rate of 48.39%), the network improved recognition of words to
95.33% with an error rate of .16% and an undecided rate of 4.52%. The
power of the technique remains to be demonstrated éince their dictionary
was not very large.

Tanaka and Kasai (1572) developed a method called Crcdered Key
Letters (OKL) which generalized upon the earlier KL method to include
correction of insertion and deletion errors. Thus, the precise position
of a letter was no longer important as long as the key letters main-
tained their precise relative order. Aftier modifyirg the OXL technique
to use a uniform length OXL (MOKL), they performed a number of experi-
ments. With a dictionary of 610 five to nine letter words and KOXi's of
four letters, the MOXL system was able to correctly identify 9u4$ of
single error seven-letter words and 67% of double error seven-lettier
words .

The key letter method is effective for substitution errors while
the ordered key letter method is effective for substitutions, insertions
and deletions. Tanaka and Kasai (1972) compared their method to the
earlier KL method as well as a minimum distance method and the methods
of Blair and Vossler (to be described later). Blair's method did not
compare favorably to MOXL because Blair used abbreviaticn methods which
ignored the actual information content of the letters in the words in
the dictionary. Vossler's method had a 90 to 95% correction rate~-

though it is difficult to compare the methods on this basis alone.
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2.3.3.2. Dictionary Methods

Bledsoe and Brovming (1959) provided the first quantitative evalu-
ation of context in a pattern recognition system. The process was that
the classifier would compile 2ll of the P(Cnlxn) probabilities and theng
using each dictionary word of the correct length, compute a figure of
merit for the word using those probabilities; the cictionary word with
the highest figure of merit would be choser as the word to be output.
Though the procedure is unsatisfactory computationally, the paper did
show the importance of context. Applied to cursive seript, the methods
successfully read 9%.32% of the data; the next best method read only
60.% correctly.

In his description of the IBY 1975 Optical Page Reader, Hennis
(1968) proposed an ingenious procedure which was not implemented but
which clearly illustrates the relative values of correct recognitions
versus errors and rejections. Proposing the use of a million word
dictionary of American surnames, he suggests that each name either be
accepted as read, changed and then accepted, or changed and then rejected.
Thus, "Jones" is to be accepted, but "Janes" is to be changed to "Jones"
and then accepted because the recogrition process>£s likely to .erro-
neously call a "Jones" a "Janes" fifty times for every two '"Janes's"
that it is likely to encounter; thus, accepting "Janes" as "Jones" is
expected to fix 25 times as many errors as it should cause. On the

other hand, "Bones" might be converted to "Jones" and then rejected
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because the probability of error of such a chenge is greater than 5%.
This technique can correct any likely error simply by placing the
appropriate misspelling in the dictionary. Any forn, whether correct or
incorrect, which does not occur in the dictionary may be rejected since
it does not occur often encuzh to have 2 significant effect on the
system reject rate. Hennis did overlook the fect that adding the most

likely erred forms of names to his list of Americar surrames would

greatly enlarge the storage needed; for exemple, including several

like, say "Pietrowski" would expand the dictionary sigrificantly.
Szanser (1968, 1970a-b, 1971a-b) developed a technique called
elastic ratching which is capable of correcting all single errors excep:
transpositions. Each dictionary word is coced into a series of ccmputar
words as bit maps. As described in the 1982 paper, words are broken
into parts (lines) and then encoded into 2 series of cemputer words, one
computer word per line. £ line is a sequence of contiguous, alpha-
betically ordered letters from a word. For example, “BLOUSESY is bro¥en
up as "BLOU/S/FS." The line "BLOU" is encoled in a computer word as 1's
in the second, twelfth, fifteenth, and twenty-first bits, for "8," "L,"
"g," and "U," respectively. A matching operation (exclusive-or'ing of
lines) against “BLOV/S/ZS" would produce a two-bit discrepancy in the
first line, signifyiﬁg a possible substitution error. Other substi-
tution errors, such as "“BLOUZ/ES" and “BLO/!IS/ES" are also recognized by

their particular mismatching characteristics, as are deletion and insertion
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: “"for the" and "we" and "wee." The problem was designed so that the
errors, such as "BLOS/ES" and "BLOU/S/S/ES." An input werd with, say, r
solution would include an editor who could review the computer trans-
lines and m letters, is matched against all of the subdictionaries whose
criptions and resolve the labelled ambiquities instead of having each
words are described by the (line,letter) pairs (r,m), (r-1,m), (r-1,m-1),
: Palantypist transcribe her own Palantype tape. Though his project met
(r,m-1), (r+i,m), (r+i,m+1), and (r,m+1). If no near match is found,
its fundamental goals, Price admits of two shortcomings: operator
the word is either not in the dictionary or does not have the right type
performance was not of a sufficiently high standard for the system to
of error. If precisely one discrepancy is found; i.e., one bit is
. work properly and Palantype transcription itself was being abandoned in
different in the coded form, a candidate for the correction has been
favor of audio tape transcription. Szanser's elastic matching algorithms
found. A few search algorithm improvements have been presented (Szanser,
(1971a-b) were designed to work with Price's system but with operation
1971b) which improve the search time by factors of 4 and 16. (In abso-
times of about one second per word for correcting errors, it was hardly
lute terms this represents reducing 3.3 to .9 and 16.0 to 1.0 seconds of
satisfactory.
CPU time on a KDFS computer, but it is difficult to meaningfully compare
. Giangardella, et al., (1957) developed a vector representation for
timing figures among machines.) Szanser (1971a) later permutes the .
words. Any two of the three components, magnitude, angle, and distance,
letters to be included in a line to a2 non-alphabetic ordering; the
are sufficient to identify a word. Words which contain the same letters
reason for the new ordering is that it results in a smaller average
("bear" and "bare" and "polo" and "pool") have the same magnitude but
number of lines per dictionary word and, therefore, lowers the storage
the angles are different if the spellings are different; if two words
requirement of the dictionary.
have the same magnitudes but different angles the system checks for a
Price (1971} describes the organization of a 71000 woré dictionary
transposition error. If the input word has a substitution, insertion,
into a search tree for a Palantype transcription system. A Palantype
or deletion error, its magnitude cannot differ from that of the correct
machine s a mechanical shorthand machine (typewriter) used in England;
spelling by more than a fixed amount; thus the system selects from the
syllables are vecorded as separate "chords" on separate lires of a strip
dictionary all words whose magnitudes are within a specified range. Of
of paper. Each node of the dictionary tree represents a chord or sub-
210 common misspellings of a set of words, 13 were uncorrectable because
tree of words similar to a parse tree of a grammar. He describes search
they were the correct spellings of other words in the 4286 word diction-
algorithms as well as a number of dictionary modifications which had to
ary. Another 14 were discarded because 'they contained more than one
be made because of Palantype ambiguities such as "fourth," 'forth," and
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type of spelling error." The remaining 183 words which were deemed
correctable contained 11 transpositions, 64 substitutions, 78 &eletions,
and 30 insértions. There are several flaws in the methodology of this
paper. The 14 errors which were discarded were rejected by hand;
Giangardglla could have sgbjected them to machine processing so that the
reader could see whether the system would reject them or would improp;
erly modify them while attempting to correct them. Further; it is said
that they were rejected because they contained "more than one type of
error”; while this is sufficient cause for rejection, the less stringent
criterion of "more than one error' i; all that is necessary for rejec-
tion. Finally, Giangardella does not provide any information about the
system's ability to correct the 183 errors; he only cites the fact that
it corrected 100% of 37 other errors which had been artificially gen-
erated in 15 apparently unrelated words.

Damerau (1964%) coded words into strings of 28 bits: one per
alphabetic character, one for digits, and one for special characters. A
bit iﬁ the code word is one if the corresponding character cccurs in the
word; duplicated characters are not counted again so that "BLOUSE" and
55;00525? Eave the same codewords. When a word is input to the pro-
cessor it 18 coded and the codeword is compared against all dicticﬁary
‘eodewcords. If there is a match the input word is'cohpared character by
character to tha qorréspcnding dictionary word. 'If no successful ’
matchings occur, the word is not in the dictionary and a second pass is

begun to correct the word. The codeword is exclusive-or'ed with each of
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the dictionary codewords; if the result Las two or fewer bits that are
one, it is possible that the input word is the result of appiying a
substitution; deletion, insertion, or transposition error to the diction-
ary word so the word is then compared to the dictionary word to check
for such a possibility. Damerau tested his method with a dictionary of
1593 (?) words: it correctly identified 96.4% of 964 [sic] words with
spelling errors. He tested B}air's metkod on his problem; Blair's
algorithm correctly identified 81% of the words in error. Damerau does
point out, however, that many of the 964 errors are macﬁiné errors; as
we mentioned earlier Blair's method is particularly geared to correction
of the most common of human errors so this comparison of methods might
be considered irrelevant.

Thorelli (1962) proposed that a measure of similarity be compiled
between a word to be processed and an appropriate dictiorary subset
(selected by length). He admitted the difficulty of compiling many of
the transitior probabilities necessary for his measure of similarity;
transition in this case refers to the garbling process rather than
letter adjacencies. Okuda, et al., (1975) formalize this with a WYeighted
Levenshtein Distance (WiD) as the measure of similarity. Computation of
the WLD requires dynamic programming to find the least-cost path through
a graph. The weights of the WLD are the relative costs of substitutioné,
insertions, and deletions. ‘These weights are assigned to the edges of
the graph with zero as the cost of a letter's being substituted for
itself. The method is capable of correcting substitutions, insertions,

and deletions.
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Okuda and Tanaka propose a hardware realization of their method in
which each dictionary word is represented by a network. W¥hen a word is
input to the processor, it is transmitted to each network in the diction-
ary. If the input word has m letters and a dictiomary word has n letters,
the corresponding network has nm comparators to establish the corres-
ponding substitution-cost edges. The costs of the transitions are
implemented as delays: the delays which represent insertions and dele-
tions are preset; the delays vhich represent substitution costs are set
by the comparators at either zero or a predetermined cost. The WLD is
computed as the number of clock pulses required to get a signal from the
initial node Hoo
least-cost path is delayed less than all other signals.

to the terminal node ”nm; the signal traveling the
The quickest
word to respond in the dictionary is the one with the least WLD. While
this could certainly be implemented with LSI circuitry, it is quite
complicated. Assuming the use of a sténdard chip for, say, a maximum
word length of 12 letters, the comparators alone would require more than
2000 gates: 1u4 five-input and-gates, 720 two-input or-gates, and 1440
two-input and-gates, ignoring the fact that LSI circuitry only uses nor-
gates or nand-gates. It would also require 100 three-input or-gates for
the nodes of the network and 363 delay units for the edges with at least
seven gates per delay unit plus whatever number of gates is necessary to
count the delays. Together with driving circuits, input and output
logic, etc., they are proposing at least 5000 gates per chip. The chip

design is feasible. However, how much power is required to run, say, a
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five thousand word dictionary or even to boradcast a single word to all
of the networks in the dictionary? Further, what is to be done if the
delay logic is kept simple and new chips have to be built to set fou
delay values? It is a good design but it is also one which will require
careful cost analysis before implementation.

Alberga (1967) reported on several algorithms for computing meas-

ures of string similarity.

2.3.2.3. n-Grams

A number of algorithms have been developed which used various sorts
of n-grams. A probability digram is a matrix whose elements dij repre-
sent the likelihood of the letter pair Cicj occurring ir adjacent
positions in any word in the dictionary. This notation is immediately
extensible to trigrams and quadgrams which require commensurately more
storage; for an alphabet of size d, an n-gram requires a” storage
locations ( (d+1)" if space is an admissible character).

Sitar (1961) used probability digrams and trigrams to detect and
correct substitution errors and to correct rejection errors. The
algorithm which Sitar used to locate a substitution error with a prob-
ability digram would look up the probabilities of each of the letter
pairs of a word in the digram. If two consecutive letter pairs have low
probability of occurrence (p =.003), the algorithm considers the common
letter to be in error (e.g., x5 if % %Xy and x.x, are judged to be unlikely).

An "error" is detected by a trigram if two or more coansecutive letter
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triples have low probability (p = .002); in this case several rules are
used to locate the supposed error. If three trigrams detect the error,
it is presumed to be in the position common to all. If there is no
position common to all or if two or four or more leiter triples have low
probability, the digram method is used to localize the error. Pro-
cessing 100 wor&s with random §ubstitution errors, the digran mathod
successfully located 32% of the errors; the trigram method was success-
ful with 46%. In some more realistic experiments in which the processor
vwas fed data which exemplified the output of a script recognition system,
the respective localization rates were 81.5% and 90%.

Sitar corrected an error in position i by selecting that character
y which maximized the trigram expression P(xi_i,y,xi+1). Application of
this rule to the random error model resulted in the correction of approxi-
mately 30% of the errors (28% for digrams and 32.6% for trigrams)
resulting in gross correction rates of only 9 and 15%. In the experi-
ments in which he used data which modelled the output of the cursive
script recognition machine, he incorporated information about the like-
lihoods of various substitutions; this resulted in correction of approxi-
mately 73% of the detected and located errors, yielding over-all gross
correction rates of 24.5% and 39.3% for this set of errors. Sitar also
presents experimental results concerning: improper correction of errors;
introduction of a second error into words because of improper locali-
zation of the original error; and rules for cetection, localization, and

correction of deletion errors. Accounting for the spurious errors as

well as the error correction techniques, the resultent character recognition

rate was only improvei from 90.5 to 93.7%. A three percent inprovemeﬁt
is disappointingly small for so ruch effort in develcping algorithms; it
was probably so small because the digrams and trigrams were over the
entire language and no attempt was made to reétrict the vocabulary to a
known dictionary. bﬂarmon (1552) describes the above system for the
machine reading of handwriting as requiring careful, legible script.
Harmon and Sitar (1955) hold a patent on a pattern recognition method
and apparatus with a contextual postprocessor.

Edwards and Chambers (1964) perturbed Alt's (1953) moment recog-
nition system with noise to introduce an error rate. Th2 noise was
introduced as a normally distributed random variable with mean equal to
the means published by Alt and with dispersion as a functicn of the
noise level; they experimented with a number of different noise levels.
They then incorporated a subsystem which used digranm prodabilities to
make decisions from armong the two characters selectc2 &s being the most

-~

likely alternatives by the classifier. The result was thac, for a noise
level of .2, a 10.5% error rate was reduced to 9.4%. They note further
that for a noise level of less than .4, the digraph probazbilities intro-
duce more errors than they correct. This result is counter to the
suppositions of Chu (i971) and Abend (1968) that context could do less
for a poor recognition system than it could do for a gocd recognition

system; this was probably because of the weakness of tre recognition

system design and the digram algorithms.
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Carlson (1966) tested n-gram procedures on a data base of over
73000 christening records. He states that, with a scanner error rate of
5%, the trigram replacement technigue can correct 95% of the errors,
leaving an error rate of 0.25%. He suggests that, since the largest
numbéf of trigram errors occur at the beginning and end of words,
quadgrams night be useful for these particular cases.

Cornew (1988) desigﬁed an algorithm which uses probability digrams
to pick the position of a word which is most likely to contain an error,
performs substitutions with the most likely alternatives, and makes
dictionary lookups. On the average, seven dictionary lookups are
required before an error is resolved, whether correctly or incorrectly.
With a dictionary of the 1000 most common words of English, his program
correctly recovered 73.5% of the randomly selected, randomly placed
errors; it also makes 24.1% incorrect recoveries. The remaining 2% had
been garbled into valid dictionary words.

McElwain and Evans (1962) describe the Degarbler, a program for
correcting machine-read lorse code. The Degarbler scans the output of
MAUDE (Gold, 1959) attempting to parse the strings into words. A number
of heuristic search procedures are used to find word boundaries. If the
Degarbler gets hung up trying to find word boundaries, it stops and goes
forward to find the beginning of another word. On a second pass, it
rescans the nonsense strings vhich it geve up on. It uses 211 of the
available letter pair and triple information as keys to those words in

the dictionary which contain the pairs a2nd triples, looking for multiple
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incidences of references to the same word. It is in the second pass
over the strings that the Degarbler corrects the errors made by MAUDE.

Vossler and Bramston (1964) experimented with three systems. Using
a simulated character recognizer which garbled 20% of its letters, they
compared dictionary and digram correction algorithms on a children's
primer. The dictionary method reduced the number of errors by 89% and
the digram method by 35%. Using the same simulated recognizer with more
difficult text, some of whose words were not in the dictionary, they
combined the methods and applied digrems to words not found in the
dictionary in order to reduce the number of garbles in thése words. Of
the word occurrences in the text, 25% were not in the dictionary of 3737
word forms. The latter system reduced the net number of errors by 45%
although many of the errors in the final text were errors which had been
introduced into words which were not in the dictionary.

Thomas and Kassler (1257) combired quadgranm occurrence lists with
context-dependent syllable grammars. They define an n-gram occurrence
grammar as a grammer in which the production rules produce only those
strings in which every congtituent n-gran occurs in a particular list.
They also define a syllable grammar in which a word is defined as con-
catenations of initial, medial, and final strings (listed in their table
VII). They propose the use of the intersection of the two grammars for
text procecsing. Mo quantitative evaluation is presented.

Riseman and Ehrich (197C) reasoned that, since 42% of all digrem

occurrences in the English language are zero (Sitar, 1961), they could
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quantize the probabilities to zero or cne and substitute algorithmic
methods and greater quantities of digram information for the single huge
digram or trigram which had been used previcusly. The storage,is saved
because instead of a floating point word's being required to store a

probability, a single bit is sufficient. Thus, it became economical to

incorporate information about many positionzl dependencies. For example,

although it is known that adjacencies provide the greatest quantity of
contextual information, non-contiguous positions do provide some useful
information. Then, through the use of appropriate algorithms errors can
be located and corrected (Riseman and Ehrich, 1971; Ehrich and Riseman,
1971; Riseman and Hanson, 1974; Ehrich and Kochler, 1975; and Hanson,
Riseman, and Fisher, 1275). This particular technique is explained in

greater detail and gencralized in chapter III.
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CHAPTER III

BACKGROU#D: THE KETHOD OF BINARY n-GRANS
3.1, INTRODUCTION

In this chapter the method of birery n-grams is reviewed. First,
the methods and techniques of applying binary n-grams to text are pre-
sented. Then, the achievements and results of a number of research
papers which employed binary n-grams are reviewed.

Riseman and Hanson (1974) applied binary n-grams in a contextual
post-processor which processed simulated classifier output. A sub-
sequent paper applied additiona2l postprocessing to resolve arbiguities
which had been rejected by this posiprocessor (Hanson, Riseman, and
Fisher, 1975). Riseman and Ehrich (197i) used binary n-grams in a
contextual postprocessor (CFP) of substitution set data. The substi-
tution set techniques were later elaborated and applied to cursive
script recognition (Ehrich, 1873%; and Ehrich and Koehler, 1975).
Finally, an 2lgorithm for selecting a good subset of binary digrams was

explored by Ehrich and Riseman (i971).
3.2. BACKGROU!!D

Strings of data are input to the contextual post-processor by a
character recognizer. The task of the CPP is to determine whether or
not each input string is a word. If it is determined that a particuler

string is not a word, the CPP must attenpt to determine what is wrong
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with the string and then, if the problem is among some predetermined set
of problems, the CPP must try to correct it.

It is a relatively easy matter to determine whether or not a string
of characters is a word; the CPP only has to look up the string in the
dictionary. If the string is not in the dictionary, an error has been
detected. Suppose the CPP detects an error in an m letter word. How is
the error to be corrected? The obvious, straightforward, scheme is to
replace each character of the word by some other character: twenty-five
alternates for the first position, twenty-five for the second, etc. If
the string represents an m letter dictionary word with one substitution
error, this method is guaranteed to resolve the error after 25m diction-
ary lookups. IFf the word has two substitution errors there are 25 (g)
substitutions and dictionary lookups to be made. Some better means must
be found for locating and correcting errors. In addition to the compu-
tational difficulty of searching the dictionary it might be impossible

to store so large a dictionary.

3.3. THE METHOD OF BINARY n-GRAMS

3.3.1. Binary Digrams

A positional binary digram is a matrix Dij vhose elements dij(a’b)
are 1 if and only if the letters Ca and Cb occur in positions i and j,
respectively, of some word in the dictionary; 0 otherwise. Thus, a
binary digram possesses some information about the words in the diction-

ary. Without loss of generality we can require that i < j since Dji

us

would only be the transpose of Eij arywzy. Similarly, a positional
binary trigram is a binary acray Tijk whose elerents tijk(a’b’c) are 1
if and only if the characters C,, €., and €, occur in positions i, §,
and k, respectively, in some word in the dictionary. For ease of
notation, trigrams will frequently be referrsl to with the initial D in
the text; when it is necessary to distinguish among the various types of
n-grams, the context will be sufficiert.

Binary n-grams differ from probability n-grams in a number of ways.
The techniques which employ probability n-granms (reviewed in the last
chapter) generally consider only adjacent positions as indices of n-
grams. The methods of binary n-grars do not ignore the far-reaching
relationships of letters several positions apart. Probability n-grams
were usually used without regard to position; for ezample, the same n-
gram which was used for positions 1, 2, and 3 would be used for positiens
2, 3, and 4, and 4, 5, and 6, etc. These'n-gvams are defined and dis-
cussed later in this section.

Binary digrams require 26" bits of storags while probability
digrans require 26" floating point words; the storage saved per n-gram
permits a system to use a far greater number of binary n-grams than
probability n-grams and, in this manner, bring a far greater quartity of
contextual information to bear upon the problen. (Toussaint (1974)
claims that the floating point words used in Markov methods require only
four bits; however, he provides nc quantitative cemparison of methods.)
Also, operations on Dij are boolean in nature while the probability

digram Pij requires floating point arithrnetic.
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Since binary n-grams are quantizeé versions of probability n-grans, with some sense of absolutensss; when a word is determinz? to have an
they lack information about relative likelihoods; for example, error, the candidate positions are selected with the_same sort of

dlz(e’n) - d12(e'q) but P12(e’") . Plg(e'q)' The comparative informa- boolean operations used for detecting errors. It must now be shown that
tion could be used for determining the letter most likely to be in error the loss of information is not a handicap since the small size of the
(Sitar, 1961). Thus the binary digren provides some convenient compu- digrams allows a systen to incorporate nore Dij wetrices tran it would
tational considerations in exchange for a loss of comparative informa- if 1t were using probability digrans.

tion. There are other differences which arise because of the boolean 3.3.2. Hethods of Detection, Location, and
' Correction Of Substitution Errors

nature of the arrays. Probability n-grams are usually defined for the

entire language: Sitar used n-grams which had been corpiled for the The applicabion cf binary n-grams to text processing was initially
English language; Raviv gathered language statistics from his training explored by Riseman and Hanson (1974). They compared contextuzl post-
data but allowed a finite, non-zero probability for those combinations processors which used several different n-gram techniques for detection
of letters which had not occurred in the training set. Obviously, and correction of substitution errors.
n-grams would lose all of their value if they allowed a ncn-zero like- Let us denote the application of an n-gram D to a sequence of
lihood for those_combinations which never occurred. (The algorithms characters X as D(Y) where D(%) is defined as dij(xi,xj) and ¥ is a
could allow such a finite, non-zero probability but the binary n-grams string Xy Xgeo X such that each xg is a character of the alphabet.
themselves would provide no information if they did because every Given a set of n-grams P, 2 string X is an admissible sequence if for
quantized probability would be 1.) each D € D , D(X)=1. If X=x x,...x has a single substitution error in
Binary n-grams differ is the sense that they refer to-a definite position r then, for some character y, there is a dictionary word
portion of the language. The portion of the language is a fized, pre- Y=x1x2"'xr-1 Y Xppqee ¥ which is the correct spelling of ¥. For
defined dictionary and, therefore, a fixed, well-defined application . example, "HOVSE" is a single substitution error version of "HOUSE" with
domain. Because 0f the well-defined domain; the zeroes of an n-gram r=3.

indjeate that the corresponding n-tuples of letters never occurred in
3.3.2.1. Single Error Detection

the relevant portion of the language. Erroneous positions are located
Given the set of positional n-grams [, an crror has occurred if

the "dictionary syntax," as represented by the n-grams of $, has been
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violated. Given a sample word X, X=x,6x e Xos and each %y is a member
i

172
of the alphabet, then X is not admissible if If the product (3.1) is zero, some set of digrams has rejected the word
TT X. The incorrect position r must be one of the positions of each
CDx)=o0. O (3.1)
DeX v rejecting digram. Else, if Dij(x)=0 and r#i and r#j, something is wrong

with the chzracters in positions i and j and the hypothesis of exactly
That is, since the product is zero if at least one D(X) is zero, scme

. one error, a substitution in position r, must be false. The above rule
digram in the set & has rejected X as inadnissible.
also applies to binary trigrans.
However, some words in error will not be detected by this test. As

There are essentially three different situations which may occur
a simple example, consider the four word dictionary "SOLE," "CARE,"

when using n-grams to process a word with a single substitution error.
"“CULL," and "CORN." The word "COLE" has a digram undetectable error

The cases are best illustrated by using trigrams. In the first case the
because each of its letter pairs occurs elsewhere in the dictionary.

. position of the error is easily pinpointed. As a simple example,
(The digrams "-OL-," "-0-E," and "--LE" occur in "SOLE," and the digrams

suppose the rejecting trigrams are T and T,..; it is clearly indi-
"C--E," "C-L-," and "CO--" occur in the words "CARE," “CULL," and 12s 156’

cated that if X has a single substitution error, it is in position one.
"CORN," respectively. However, "COLE" is not a trigram undetectable

Correction can then be attempted as discussed previously. The second
error because the trigrams "C-LE," "CO-E," and "COL-'" do not occur

case occurs when the position is not clearly indicated. If only Tl,_;s
anywhere else in the dictionary.

rejects ¥, under the hypothesis of a single substitutior error, one only

3.3.2.2. Location of Single Errors knows that the error is in either of positions one, four, or five. If

T reject the word, then it is known that a single

1450 Tioy» @04 Type

Define the function Pos such that Pos(Di.)= {i,j} ; that is, when
error must be in either of positions one and four. Finally, if the

J

Pos is applied to a particular n-gram, it yields the set of positional
. input word in error is an admissible sequence, it contains an undetect-
indices of that digram.
able error; note that the statement (3.2) is still true.
If there is a single substitution error in position r of X and the

product in (3.1) is zero then 3.3.2.3. Error Correction
r ¢ {Pos(d) | DFf 2, D(X)=0} . (3.2) Binary digrams can be used to attemp: correction of the errors
which are detectable. Consider a six-letter word, 7% X% XeXe s with xa
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the only character that is incorrect. If the binary digrams used are
sufficiently sparsel, several of them may detect the error,

D13, 023, Dsu, 035, and D35' If at least two of them detect an error
(say D23 and D35), the position is fixed by noting that position 3
appears as one of the indices of each of the.digrams. If some character
ig to. replace Xg» then each of the five dig;ams contains séme informa-
tion about the identity of the replacement. The row dla(xl,*) contains
a 1 in all locations in which the torresponding character is allowable
in position 3, given X, in position 1; similarly, the column dau(*,xu)
contains a 1 in all locations in which the corresponding character is
allowable in position 3 given that Xy is in position u. ff the proper
rows and columns of the five digrams are logically intersected, all
available information will have been utilized in error resolution. If
the j-th entry in

* e . ¥ A 1
dia(xI,*) A d23(x2,’) A dau(*,xu) A d35(",x5) dss( ,xs)

is 1, then the substitution of Cj for x, will be acceptable to all digrams

. and produce an admissible sequence according to the dictionary syntax.
If there is more than one entry in the product vector which is a 1,
there is an ambiguity and the word is either rejected or subjected to

further processing, such as a dictionary lookup which may or may not

1 Of course, these algorithms are heavily dependent upon the sparseness

of the n-gram arrays. Sitar (1961) reported that only 50% of all possible
digrams and 13.2% of all possible trigrams occurred in a sample of English

text. In the n-grams used in chapter V, we found that 12 to 30% of the
positional trigrams and 6% of the ron-positional quzdgrams occurred in
our sample of 19196 city names.
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resolve all of the ambiguities. As an exzmple of such an ambiguity,
suppose that in correcting "HCVSE" it is ciscovered that both U and R
fit the third position; the correction cannot be resolved and the word

must be rejected.

3.3.2.4. Some Examples

Figures 3.l.a-f present a fized dictionary and s¢veral exemples of
words which are assumed to contain single substitution errors, Each of
the sample words contains an error which is different with respect to
the contextual postprocessing algorithms; they are: in figure 3.1.b, an
undetectable error; in 3.1.c, an unambiguously correctable error; 3.1.d,
an ambiguous correction which is unambiguously located; 3.l.e, an
ambiguous correction whose position is also ambiguous; and, in 3.1.f, an
unambiguous correction vhose position was initially ambiguous. For the
sake of the illustration we are using all possible binary digrams;
generally, hovwever, it has been found that trigrams provide the CPP with
better correlative power.

The undetectable error ("FEZLD") in figure 3.1.b is digram unde-
tectable (i.e., undetectable by birary digrams) because each of its
digrams (letter pairs) occurs in at least one word in the dictionary.

Figure 3.l.c presents an example of an unambiguously correctable
error. To clarify the correction method, the process of intersecting

the appropriate rows and columns of the binary digrams is illustrated in

. o . L b B L bl e



CELT
FELT
FOLD
MALT
MELT
MOIL
SLIT

Pigure 3.1.a2 The dictionary used in Figures 3.1.b-£f

Input word: FELD
d1,(F,E) = 1 ’ dpy(E,L) = 1
d13(F,L) =1 ‘ d24(E,D) =1
dlﬁ(F’D) =1 dsa(L,D) =1

TT p(FELD) = 1
Deg

figure 3.1.b An example of an undetectable error, giyén the dictionary
£ Figure 3.l.8 and the CPP which uses all positional binary diagrams. '
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Input woxd: FEIT
dlZ(F’E) =1 dl4(F’T) = ] §24(E’T) =1
dlB(F’I) =0 dZS(E’T) =0 d34(I,T) =1

The error is in position 3.

613(F)*) Adzs(El*) A d3l‘(*aT)

|
]

]
|

[
|

= {L} = FELT

CO0O00DOO0O0O00OOOOROOOOODO0OO0O0CC
OOOOOOOODQOOOOHOOOOQOOOQOO‘
CO000CO0C0O0O0OO0OOCOHOODOOOCODOOOO

1
i
i
-
t

Figure 3.1l.c Example of an unambiguously correctable word.
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d;,(C,A) = 0 d,,(A,1) =1
d,.(C,L) =1 d,,(A,T) =1
Input word: SELT 130 2D
d;,(c,1) =1 dq, (L,T) = 1
d,,(5,E) = 0 d,,(5,7) =1 d,,(E,T) =1 If there is a single substitution error in CALT, it must be in either
d position 1 or position 2.
13(S:L) = 0 dy5(E,L) = 1 dg,(L,T) = 1

Attempting to correct position 1:
The error is in position 1.

: a.,(*,8) A d,,(*,L) Ad,(*T) = {})
2> 13t 4%
d4)3(5E) 4y, (xL) ), (x,T) 1 !

Attempting to correct position 2:

- - L R o
0 0 0 0 X % *
: 0 o o d,,(Co*) A dya(¥,L) A dg, (%,T) = {E}
1 1 1 1 The correct form is either MALT or CELT; therefore the word is rejected.
0 0 0 0
0 0 0 0 »
1 1 1 1 Figure 3.l.e An example of an ambiguous position which results in an
0 0 0 g ambiguous correction and, therefore, a rejection.
0 0 0
0 0 V] 0
0 0 0 0
0 0 0 0
0 0 0 0
1 A 1 A 1 - 1 | = {C,F,M}
0 0 0 0 Input word: MLIT
0 0 0 0 | = CELT,
0 0 0 0 FELT, or
0 0 0 0 MELT ) - -
o 0 p p dlz(M,L) 0 d23(L,I) 1
0 0 1 0 = =
o o o 0 d13(n,1) 1 du(L,T) 1
0 0 0 0 = =
0 o o 0 dlé(M’T) 1 d34(I,T) 1
0 0 0 0 If there is a single substitution error in MLIT, it is in either position
0 0 0 0 1 or position 2.
0 0 0 0
0 LO o o Attempt correction of position 1:

dlz(*,L) A dls(*,I) A dla(*-T) = {8}

Attempting to correct position 2:

Figure 3.1.d An example of an ambiguous correction.
£ ) ® d,,00,%) A dya(*,1) A dy, (5,T) = ()

i.e., there can be no error in position 2 because no letter fits there,
given the context of the other characters.

Figure 3.1.f An example of an ambiguous position which is resolved and
corrected.



e e s oo

this and the next examples. HNote that the third vector, which repre-
sents dau(*,T), contains more than one l; the extra 1 is "anded out" by
the other vectors. In actual practice each vector often has several
1's, most of which are eliminated by intersection with the other vec-
tors. Figure 3.1.d presents an example in which the position is deter-
mined but the error is not corrected.

Figures 3.l.e and 3.1.f deal with the case of the ambiguous position;
that is, the position of the error is not clearly indicated. 1In the
example of figure 3.l.e, no correction is made because there is a pos-
sible correction for each of the positions. The example of figure 3.1.f
is corrected because there is no character which can be placed in position
2 to correct the word; therefore, the error must be in position ope and
cqrrection is made. Of course, it is also possible for the positicn to
be resolved in this manner without resulting in a correction.

3.3.3. Locating a Double Substituticn Zrror

If X is a word with substitution errors in positions q and r and

is a set of n-grams, then

for each D £ £ such that D(X)=0 (3.3)

q £ Pos(D) or r £ Pos(D).

That is, if an n-gram rejects X and if X is a word with two substitution
errors, then it must be that q £ Pos(D) or r £ Pos(D) since otherwise
there would be no reason for D to have regjected X other than the possi-

bility that the hypothesis of exactly twd errors--substitution errors in

el S 2T Sl ST Sl el Sl Sl el A
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positions q and r--is wrong. For example, let X="NOVSEZ," an incorrect
spelling of the dictionary word "HOUSE"; q=1 and r=3. It is not pos-
sible that D2u5(2)=0 since there is nothing wrong with any of the
positions 2, %, and 5 and neither 1 ¢ £2,4,5} nor 3 : {2,4,5} .

In general, if X has s substituticn errors, in positions

ml, Myy cees Mgy then

for each D * £ such that D(X)=0

there exists i, 1< i< s, m; € Pos(D).

The reasoning here is similar to the above since under the hypothesis of
s substitution errors, there cannot be a rejecting n-gram D which does
not use at lcast one of the R Note that it has never been said that
each of the m; must belong to any of the rejecting n-grams.

If it is found that a word has more than one substitution error, an
attempt is made to correct it under they hypothesis of two substitution
errors. The same approach to courvection is taken as in the single error
problem; correction is first attempted in each pair of positions which
might contain the errors.

One way to deternining the positions which might contain substi-
tution errors is illustrated by Tables 2.1 and 3.2. In Teble 3.1,

D D 5 and Dw5 have all detected errors. Each row of Table

123° D1au’ 13
3.1 marks the positions of one of the trigrams that detects an error.
It should be clear that the set of positions in error must'accouht for

at least one * in each row; othervise the trigram in that row could not
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TABLE 3.1 have detected an errcr. Thus, if a single error ozcurrel, it must be in

BXAHPLgRg§%£IsixGngfhfgiiEIO“ oF position one. However, if two errors occurred, thers are several pairs
ITION!

BINARY TRIGRAH of positions which could account for the particular set of rejecting

trigrams. This can quickly be determined by enumeriating all of the

m : Tt . . .
(2) pairs of positions to determine which cculd contain two errors. In

D;,3 ¥ * * Table 3.2, six positionzl trigrams have detected errors and it is not
Dlau * % * possible that the word could be a one error word; there is only ons pair
D,a45 * * # of positlons which could contain a double substitution error. Of course,
Dl“5 ¥ ) * # there could be more than two errors. This algorithm is similar to some
Possibilities for oﬂé error-- {13 . of the algorithms for selection of essential prime implicarts in switch-
Possibilities for twc errors-- 11,2) ,
11,3}’ 11;43’ {1’53’ 11,67, 1B,8 ia,s} . ing theory and to various set covering algorithms in graph theory
(McCluskey, 1965; Even, 1973).
TABLE 3.2

3.3.4, Correcting Multiple Substituticn Zrrors

EXAHMPLE OF FIXING THE POSITION OF
ERRORS VIA PCSITIONAL

BINARY TRIGRAMS . The condition which must exist in order for there to be substi-

1 2 3 y 5 6 tution errors in pnsitions Mgy Mpy oo, Were presented in (3.3) and
(3.4). Let us now consider their implerzantation. The errcr detection

X = o
Dy2u " ) l system provides the indices of the trigrazms which reject the word X
Dyas i i : (i.e., the trigrams for which T(})=0; this information can then be used
DISG ® * * to hypothesize the indices of the positions which might contain errors.
9235 * * * The first assumption of the CPP is that the word input to it has no
Daus # # * errors. Once this hypothesis is contradicted, the CPP atteipts another
Dyse # * % i hypothesis; is it possibl. that the word has a single substitution
Possibilities for two errors-- {2,5§ . error? If there are no admissible one error substitutions, the CPP

L e L L . ot f D TN (RN NS SHN WU U U S | S
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assumes that the word has two errors and attempts correction.

The method of single error correction using binary digrams--row
intersection of the proper rows (or transposed columns)--is also used
with trigrams. The process used for correction of two error words will
now be outlined. Suppose that positions two and five are both suspectad
of containing substitution errors. Each trigram T such that 2 ¢ Pos(T)
but 5 { Pos{T) is applied to find a set of characters which might fit
position 2 given éhe context of {he rest of the word other than position
5. The same procedure is then applied to find a set of letters which

fit position 5. The set of trigrams such that §2,5} £ Pos(T) are

'“:ﬁéﬁ’aﬁﬁized in an attempt to find the set of characters which fit both
positions given the context of the rest of the word. If any of the

three sets sought in this procedure is empty, positions 2 and 5 cannot
both contain substitutior errors. If there is more than one candidate

set of corrections available, the word is then rejected.

3.3.5. Transposition Errors

In the process of locating, detecting, and correcting double sub-
stitution errors, transpesition errors can also be locateé and corrected.
In the simple case, if only one pair of positions could be in error, if
they are adjacen®, and if there is only one pair oflletters vhich could
fit the word, it ".1 be corrected whether it be a transposition error

or a double subs . .ution error. If there are several candidate pairs of

oo

il A
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letters and only one in adjacent positions, &nd if there is a correction
for a transposition available, tﬂe possibility of a transgosition error
will have to be weighted against the possibilities of a double sub-

stitution. If a transpositicn is more 1likely than a double substitution

error, it will always be corrected if it is Zdetected.

3.3.6. Non-Positional n-Grams

A non-positional binary digrem is & binary array C whose elemsnts

c(a,b) are one if and only if the characters Ca, an Cb occur in adjacent
positions in some word in the dictionary. Here, the infcrmation from
the different adjacent triples cf positions is combined under union. A
non-positional n-gram carries information about more of the word but it
is less specific about any particular pesition in the word. Usually
these n-grams tequire 27" bits of storage because they are also used to
check for end of word conditioms (the blank is the 27-th cheracter).
The definition and methods extend easily to binary trigrams and quad-
grams. Riseman and Hanson (187%) compared the results of using non-
positional digrams, trigrams, and quadgrams in their experiments with
n-grams.

In the next chapter, we shall need a consistent definition of the
position function, Pos, so we shall now present a cefinition of Pos as
it applies to nop-positional n-grems. Let C be a non-positional digram.
It is meaningless to speak of Pos(C) sinze C is non-positional., How-

ever, if C is applied to X and C(X)=0, a method is needed for referring

e
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to the positions indicatzd. Lev c'i=c rz a unique nare for C which is
the name used when C is to be applied 1o positions i and i+1 of X.
Then, define Pos(c'i) as gi,i+1§ . It then follows that 2ll of the
statements concerning cdetection, location, and correction of errors are
consistent with this cefinition. The definition of Pos extends nat-

urally to use with non-positional n-graws in general.

3.4, BINARY n-GRANME I A CPP

Riseman and Hanson (197&) co:éared several CPP designs which used
binapy n-grams. Using dictionaries of 300, 800, 1300, and 2755 siw-
letter words, they compared the results of implementing a CPP with 15
positional binary digrems, 20 trigrams, one non-positioneal digram, a
non-positional trigram, & non-positional quadgram, a few subsets of the

set of 20 positional binary trigrens, ard a dictionary look-up algorithm.

3.4.1. Comparing n-Granm lethods

-The experiments compared and contrasted these methods using the
detection, correction, ard error rates for single, couble, and triple
error words. The methods were ranked consistently in nearly every one
of the ccmparisons. For example, the error detection and correction
rates for one and two error vwords when the dictionary had 2755 words are

presented in Table 3.3.
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TLBLE 3.3

A COMPARISON OF n-GPAl TECENIQUES

One Substitution Two S:ubstitutions
n-Gram Bits of Conditional Cerditional
Technique torage [Cetected | Corrections | Detected Corrections
Dictionary 82656+ 99.7% 8y.1 10C.% 46.8
Non-Positional
Quadgram 531844 96.9 57.8 9€.9 7.5
20 Positional
Trigrans 351520 98.6 62.4 93.8 34.1
6 Positional
Trigrams 105456 93.8 26.8 98.8 L.6
4 Positional
Trigrams 70304 88.2 19.4 98.2 2.4
Non-Positional
Trigram 19683 78.0 2.8 91.5 (4]

15 Positional
Digrams 10140 69.6 .5 87.6 —_—
Non-Positional
Digram 729 32.5 0.0 43,4 -—

Notes:

The dictionary had 2755 six-letter words.

-—-is used to indicate that correction was not attempted.

A weak rule of thumb is that the power of the CPP is related to the
quantity of storage required for the binary arrays. However, the excep-

tions to the rule are at the top end of the rankings. Table 3.3 also
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prasents the number of bits recuired by each technigue. It chould be
noted that the rankings are in the context of dictionaries of - :-letter
vords; Ehrich and Riseman (1971) compared one non-positional - lzram to

21 positiornal Eigrams for seven-letter words and found the 2 ':rams to be
superior.

Using a dictionary of 2755 six-letter words and 20 pe:itional
trigrams, the CPP was able to detect that errors existed in 98.6% of one
error words and 99.8% and 99.7% of two and three error words, respec-
tively. They were subsequently able to correctly modify 62.4% and 34.i%
of the one and two error words in vhich errors had been detected.

They also observed that 76.4% of the rejected one error words had
only two or three ambiguous single error forms; from this they surmised
that additional processing to resolve ambiguities would yield higher
correction rates at the expense of some small additional error rate.
Thus they suggest that, if the classifier had a charactar error rate of
10% (leading to a word error rate of #45.85%), their CEP would properly

correct 52.8%, reject 44.6%, and err on 2.4% of the errors. This would

e

yield a system (classifier plus CPP) word recognition rate of 75.2%. To
resolve ambiguities, they assume that guesses could be forced correctly
80% of the time for those ambiguous forms which required only two
choices and at a rate of (.80)‘1-1 for other combinations involving n
choices. Then, with the above classifier error rate of 10%, they con-

jectured that the system could correctly recognize 88% of the words it

would process.

o
(qu

3.4.2. Additicnal Postnrozescing

Hanson, Riseman, and Fisher (19¢75) researched the problem of reso-
lution of ambiguities (rejections) using various other information
available to the postprocessor. The rescarch goal in this paper was to
resolve the rejections cue to ambiguities. 4 Bayes classifier was built
(Fisher, Hanzon, and Riseman, 1974) to classify handprinted characters
(Hunson, 1968). Kords which simulated text were then randonly generated
using a set of test patterns from Mumson's data. They were processed ty
the classifier and formed the input to the CPP. A module was attachzd
to the CPP. The goal of the mwodule was to correctly resolve those
ambiguities which could rot be resolved by the CPP. The input to the
module was the questionnable form of the word as output by the classi-
fier and the et of ambiguous forms-—-For any word hypothesized to have
three or fever substitution errors.

The various resolution schemes used were: (1) use of substitution
probabilities which had been accuired on the training set; (2) use of
the original Bayes classifier probabilities associated with the patterns
thought to be in error; (3) use of specialist features selected for
their ability to resolve the ambiguities in question; and (4) combina-
tions of each.

The research also studied the results of integrating the classi-
fier, CPP, and the decision module. For a six-letter word error rate of

45,8% (a character error rate of 8.7%), the system achieved a word error
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rate of 2.7% with less than 0.1% rejections. With some selectiveness in
the decision process--i.e., rejuiring confidence in '-:isions--a word
error rate of 1.7% and a reject rate of 2.7% were ac 2d. Incorpo-
rating a dictionary as the ultimate arbiter to reduc. =he number of
errors and ambiguities, the rates just cited were reduced to 1.2% error
and 0.1% rejections for the case of forced decisions and 0.9% error and
0.7% error for the case in which some confidence was desired.

In the system simulated there was a total of 4528 words rejecfed by
the CPP to the decision module; the methods were compared on the basis
of their ability to resolve these ambiguities. The general result was
that the Bayes probabilities were the most successful single method; the
specialist features were a close second; and the substitution prob-
abilities, third. When the methods were forced to rake a decision they
correctly recognized 91.0,.87.3, and 76.8%, respectively, of the 4528
rejected words. Combining the methods provided marginally better
results. The best was the combination of the Bayes classifier decision
likelihoods and the substitution set probabilities; but this method only
achieved a recognition rate of 91.9%.

» The final system recognition rates, 97.2% of the words processed
and 98.5% Hheg using a dictionary, are very high for a system which uses
so large a dictionary end which has so large an initizl error rate. A
pattern recognition system which is to use such a decision module with a
CPP would have a very simple addition to its design; it would only have

to transmit from the classifier to the CPP the classifier likelihoods
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which are assoicated with its decislons.

3.5. BINARY n-GRAMNS APPLIED TO SURSTITUTION SETS

Riseman and Ehrich (197i) experiments2 uith a different processor
design. Their modified character recognizer outputs sets of characters
(substitution sets) instead of single charectcr decisions. For example,
if it were to output a substituticn set of four characters for the inmput
character "X," the set mizht be fK,V,X,Y} (or even {A,K,V,Y} if the

recognizer made errors.)

3.5.1. Postprocessor DNesign

Their contextual postprocessor used the binary digrars as z set of
snytax rules to determine which sequences.of combinations from the sub-
sitution set were admissible sequences. F£n admissible sequence is a
sequence of characters HyaRpseeesdos vhich conforms to all of the rules
of the dictionary syntax as represented by the birary digrams. The CPP
of Riseman and Ehrich applies its digrzm set to the string of substitution
sets to determine the set cf all admissible sequences. The admissible
sequences are then looked up in the dictionary. FEach admissible sequence
which is found in the dictionary is an admissible d-sequence. (The words
in the dictionary are called d-sequences.)

A simple example of the use of binary digrams in this experimental
design is given in Figure 3.2, where the alphabet consists of four

letters, the dictionary has 6 three-letter words, the substitution sets

have two letters, and the dictionary syntax uses 3 digrams. Of the 8

AR AU SN AU FRNA AN U SUD ANUR GUNU (NI (U (N SN SUN AP S S
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three-letter sequences vwhich can be formed, only twe are admissible and

only one is in the dictionary.

DICTIOHARY DICTIONARY SYNTAX

{DAD 0001 01073 0001
BAD 1000 0000 0001
CAD 1000 0000 0101
DAD 1000 0001 o1oj,j
CAB
ADD,

SUBSTITUTION SETS

(2 [l GGl (k)

ADMISSIBLE SEQUENCES

ADMISSIBLE D-SEQUENCES

BAD

Figure 3.2 Example of the use of binary digrams with
substitution sets

Note that while there are 8 three-letter saguences which can be formed,
it is not necessary for a sequential processor to completely form more
than four of them to check for admissibility since D12 can be applied to
the partial sequences "BD-".and "AC-" to iﬁhibit further development‘of
these scquences; thus, four of the eight sequences do not have to be
completely checked out.

If more than one of the admissible secuences are admissible
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d-sequences, the vord must be either: (%) rajected, (2) subjected to
further prccessing;ro; (3) output for human intervention with some
auxiliary data such as the set‘of adnissible d-sequences and the sur-
rounding resolved text.

Riscrizn and Fhrich conclude their theorstical development by pre-
senting a few formulas for the exp#cted number of adnissible d-sequences
given the size of the substitution sets, the particular set of words in

the dictionary and their respective a priori probabilities.

3.5.2, Experimental Results

They then present a rumber of experiments which demonstrate ihe
effectiveness of the method. They experiment with various seven-letter
word dictionaries of from 50 to 350 words. With five letters in the sub-
stitution sets and a 350 werd dictionary, the postprocessor was able to
correctly resolve 97,02% of the input strings--assuming that the correct
letter was always in each substitution set and that the rest of the
members of the substitution sets occurred randomly. They also experi-
mented by varying the size of the substitution sets and with differing
strategies vhich required forced decisions in some cases when many ‘

admissible d-sequences were encountered.

3.5.3. Recognition of Cursive Script

Ehrich (1973) applied binary digrems and substitution sets to <he
problem of dynamically recognizing cursive script. Because the recog-

nition of handwriting presents a segmentaticn problem, Ehrich marked each
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initial Cownstroke of each character by a segment mark and each major
downstroke with a presegment mark. The task of his CPP was to determine
which presegment marks were segment mar¥s. To accomplish this, a word
with four downstrokes required four substitution sets whether the word
had two, three, or four letters, onevsubstitution set per presegment
mark. Any character is automatically associated with the number of
presegment marks which it requires. Thus, if an "a" (two presegment
marks) is in the first substitution set, its selection for the search
tree would force it to be associated‘yith a ¢ (indicating no presegment
marks) from the second substitution set. (A few characters are associ-
ated with different numbers of presegment marks.) Other characters which
require only one presegment mark would always force the search routine to
ignore any ¢ in the second substitution set. Thus, the search routine
alwvays associates each character with the proper number of substitution
sets. To avoid saturation of the digrams used, Ehrich proposes to use a
different set of digrams for each set of words of different lengths in
the dictionary.

Ehrich and Koehler (1975) describe the cursive script recognition
system which implemenfs the above scheme in an on-line pen tracking
system. Using a dicfionary of 300 seven-letter words and testing on the
training data, they achieved a correct recognition rate of ©8.7% with
1.3% rejection and .0004% error; without any contextual statistics the
recognition rate was only 16.5% on the same data when the recognizer was
forced to output its bést.QﬁéGSes. When the contextual system was

applied to the handwriting of & stranger--a person on wvhose handwriting
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it has not been trained--it correctly prouessed 70.:% of his words,

rejected 29.4% and errad on .17%.

3.6. A DIGRAY SELECTION ALCORITEM

Ehrich and Riseman (1871) investigated the probiem of selectirg a
good subset of a set of digrams. They present their algcrithms and
demonstrate the algorithms's effectiverness with some experirents. The
set of 21 digrams for seven letter words is a highly redundant set. The
information present in D, 4 overlaps with the information in Dy and D,,.
If the boolean sum iga d12(a’i)d23(i’b) is zero, then
d13(a,b)=0. Therefore, given that 012 apd D23 have already been selected,
the additional information contained in 313 is provided by those elements

. : T
of D13 which are zero wvhen D12023 is not; i.e., all the ones of

- i rodu £ +the tw matri
D12D23 D13. (D12!J23 is the procduct of the tivo boolean matrices D12 and

D23 and is formed by using boolean addition and boolean rmultiplication of
the elements of the matrices.) Ehrich ernd Riscman exploit thic fact
through its many complex combinatoric forms--many of the interdepend-
encies involve more than just a few digrams. Their experimental results
demonstrate that, using 11 of the 2i possible digrams for éeven—letter

words, their algorithm compares favorably against both a randomly selected

set of 11 and a set of 11 selected by a simpler heuristic.
3.7. DISCUSSION

An important consideration with thesz techniques is the quantity of

gtorage required; the twenty positiorel trigrams used by Riseman and
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Hanson (1974) and Hansoﬁ, Risemén and Fisher (1975) used 251,521 bits of
storage (5-25k depending on the machine being used). In view of the
continuing trend toward cheapep_memories in the industry, this objection
becomes‘minor.

It is apparent that there are several misconceptioans which might be
formed about the tecﬁniques. Tousszint (2974) points out a few of these.
It is not necessary for a CP? to use all of the n-grams which are pos-
sible. It is felt that for longer words, since the redundancy per letter
is greater and thg diction;ries'are éélatively smaller, the number of
n-grams to be used could be reduceé to mucﬁ less than the combinatoric
maximum of (2). It appears that some sort of inverse relationship eiists
between n-grams vequired and ﬁord length. It is known that even a
dictionary is insufficient for processing short words (Szanser, 19271);
n-grams must also be shown that word length is related to CPP effective-
ness.

Another possible complaint about storage requirements is that it is
necessary to use a differert set of n-grams for every different word
length in the dictionary. This is not true since one could easily con-
ceive of a system with one standard size of word (padded with blanks) for
which a single set of n-grams is used; or even sets of n-grams for short
words, sets for medium length words, and set for long words.” From the
works of Riseman and H;nson (1974) and Hanson, Riseman, and Fisher
(1975) we see that a dictionary is not a necessary part of the system.

Toussaint (1974) also trieq to compare the digram methods to the

various Markov methodés on the basis of storage alone. Obviously the
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positional Linary n-gram methcds have procuced superior results and com-
parisons will have to be baced on the relative merits of problem design
and goals rather than storage alone.

Responding to Toussaint's claim that the Harkov methods may be
adequately applied with only four bits per transition probability, we
must point out that his comparison was totally inadeguate. He stated
that only four bits were necessary for each of the transition proba-
bilities and, therefore, that only llx252 bits are needed to store the
probabilities. He then points out that this is far less than the
(1§)x26 bits required for the use of all ps;sible binary digrams for all
words up to 12 letters in length. The pﬁblisﬁed results, cited in the
previous chapter, concerning use of trigrams vhich reduced a character
error rate of 2% to .6% are not as remarkable as thcse of Hanson, et al.,
(1975) in which a character error rate of 2.7% was reduced to less than
.43%. Because of this, we must dismiss the objectiun; however, we add
that, should it be useful to do so, such four-bit-per-element n-grans
could be used by oub algorithms.

In the forthcoming chapters, new methods of binary n-grams will be
presented. The methods will permit efficient solution of the multilength
vord problem and will introduc; algorithms for locating -and correctiné

insertion, deletion, merger, and split errors with n-grams.
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CHAPTER IV

NEW DEVELOPMENTS IN THE KETHODS OF BINARY n-GRAMS
4.1. INTRODUCTION

In chapter III, the methods of binary n-grars were presented togeth-
er with techniques for detection, location, and correction of single and
multiple substitution errors and transposition errors. In the first part
of this chapter the concept of the binary n-gram is extended to include
notions of positional anchoring. With this additional concept the char-
acters of a word are viewed in the context of their distance from either
or both ends of the word. The positional anchoring allows improved
methods of correction of additional types of errors because it provides a
new interpretation of the rejection; a rejection Dijk(X)=c implies that
at least one of those characters does ro* look right in one of those
positions." Prior interpretation of this has been used to correct
incorrect characters; applicetion of n-gram techniques to other error
types allows a system to consider the possibility that a character may be
correct but in the wrong tositioa. In this chapter n-grams are applied
to the detection, location, and correction of insertion and deletion
errors as well as to some similar types of errors, splits and mergers,

vwhich are defined in the chapter.

4.2, HEW BINARY n-GRAH DEFINITIONS

In this section the concept of positional anchoring is presented.

The systems that were discussed in the last chapter used sets of imput
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ther six or seven letters.

=
[+
.
2]
poe

words which were 2ll the same ler

Thus, for siw-letter words D.. always reletas the last two letters of a
4 56 i

word to each other; and D _ always relatss the first character to the

16
last. In ret2ining this notion of pozitizn when using word sets whose
words are of varied lengths, 2 system loszs the capability of relating
only word endings to each othsr. That is, since D56 relatss the last two
characters of a six-letter word but the middle characters of an eleven-
letter word, the system would not have an zbility to interrelate only
word endings. Similarly, such a syste: wciald not have an ability to
interrelate the characters near the end of a word without having other

interfering noise.

4.2.1. Positional n-Grams Anchored to the End of a Word

Define a backward-oriented binary Clzgram Bij as a binary array
whose elements bij(a’b) are 1 if and cnly i the characters C, and C
occur in positions m#l-i and m+l-j, respectively, of some m-letter word
in the dictionary. Again, we reguire that i = j without loss of gen-
erality. In this manner, a set of these n-grams anchoreé from the end of
words represents the endings of all words rather than a set of word
endings mixed with some word niddles. The cdefinition extends to binary
n-grars.

This n-gram variant permits the ccrrelation of the letters of a word
ending with the other letters of the word with less interference from

word-size problems. If all of the words ere of the same length, every
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backward-oriented n-gram of the form Dij is precisely equivalent to an

n-gram Dab vhere a=m+l-j and b=m+l-i; therefore, in the context of a

dictionary whose words are all of the same length, the concept of backward-

oriented n-gram is a useless addition. Houever, let us consider a dic-
tionary of words of different lengths but similar endings, “amicable,
honorable,'dependable, and denumerable.” The digram D78 has four entries
(“"1le," "b1," "ab," and "ra") while the backward-oriented digrams

812’ 323, Baq, and others, have only one entry, ihdiéating the strength
of the relationship among the letters of the endings. Such a measure of
stronger relationships would be expected to provide greater power for an

error detection-correction system.

4.2.2. Positional n-Grams Anchored to Both Ends of Words

Define an ends-oriented binary digram Eij as a bipary array whose
elements eij(a,b) are 1 if and only if the characters C, and €, occur in’
positions i and m+l-j, respectively, of some m-letter word in tne dic-
tionary. The first index is the index of a position in a word counted
'From the beginning of the word; the last index is the index of a word
position counting from the end of the word. This invention allows a
system which is to use words of different lengths to interrelafe the énds
»of words with éach'other. In extending the concept ko Binary n-gramns
there is an awmbiguity which must be resolvéd. To what positions does the
eﬁds-orien{ed trigram Eijk fefev? vwhen it is necessary to differentiate,

the following notation will be used. Let E'Y,

ijk be an ends-oriented
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trigram which refer; to positions i, j, and m+l-k while E"ijk refers to
positions i, m#l-j, and m+l-k. As in the case of the backward-oriented
n-grams, if all of the dictionary words ere of the same length there is
no need for the concept of ends-oriented n-grams since every ends-

oriented n-gram is precisely eguivalent to some conventional n-gram.
4.2.3. HNotation

Some conventions of notations must be adopted. Since the system is
to work with words of different lengths it is possible to apply the
digram Dls.to a five-letter word; that is, the digrem refers to a posi-
tion vhich does not exist. Since the particular positions to which some
n-grams are to be applied may not be defined in some m-letter word,
define % = space if i =1 or i> m. Thus, every word is considered to
be padded with a sufficiently large number of blanks, left and right.

If it is necessary to differentiate among the various types of
n-grams wﬁich have been defined, the positional n-grams of chapter IIZX
will be referred to as being forward-oriented n-grams. 'They will be
abbreviated as D, regardiess of their dimensions; the notations Dij and
Dijk wil% be used when it is necessary to refer to particular indices.

The position function, Pos, is to be defined for the additional
n-gram types as yielding the pbsition indiges of the n-gram tonwﬁigﬁ it
is to be applied but‘aluays counting positions from the beginning of the
word; for example, Pos(Bij)= {m+l-i,m+l-j} vhere m is the length of the

word being processed. An additional pair of position functions will be
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useful in the treatment which follows. Define the positicn functions
Posf and Posb as functions vhich are applied only to ends-oriented
n-grams. Posf can be said to yield only the set of forward-counted

indices while Posb can be said to yield only the set of backward-counted

indices. If m is the length of the words to which the n-grams are to be.

applied, then:

Posf(E;) = £} ,

Posb(Eij) = {m+l-3f
Posf(E'ijk) = {1,3} ,
Posb(E'; ) = {at1-%] ,
Posf(E"; 5 ) = i , and
POSb(E"ijk) = {m+1—j,m+l—k} .

4.3. DETECTION, LOCATION, AND CORRECTION OF ERRORS

The first part of this section relates the n-gram concepts of this
chapter to the error types of the preceding chapter (substitution and
transposition errors). The latter part of the section shows how the
backward-oriented n-grams and ends-oriented n-grams may be used to

correct insertion, deletion, split, and merger errors.

4.3.1. Substitution Frrors

The statements made in chapter III concerning the detection, loca-
tion, and correction of snbstitution errors are valid for the various
types of n-grams defined in this chapter; hcwever, the notation must be

updated. Given a collection of arbitrary n-grams, vhare the n-grans are
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of various types, if ¥ has q substituticn errors, in positions
My Myy weey mq, then
for each £ such that A(X)=0,
3i, 1=i=q, m, € Pos(A).

That is, regépdless of the characteristics of the particular n-gram A, if
A(X)=0 at least one of the m; must be a position relevant to A, otherwise
the hypothesis of exactly q substitution errors in the given positions
must be false.

The method of correction of substitution errors with the additional
types of n-grams is essentially the same as described in chapter III.
The general technique, intersection of the appropriate rows and columns,
is still used. The addition to the technigue comes from the double-ended
nature of the ends-oriented n-grams. For example, given an n-letter word
X in which n-grams are to be used to correct an error in position r,
there are three ways in which ends-orientsd n-grams may refer to this
position. The n-grams may be of the forr Bi,m+l-r’ Er,j’ and Er,m+l-r'
For example, in "BO%TON" E3l refers to the third and last characters of
the word while Elu refers o the first arnd third chavracters and Eau
refers to only the third position. An inplenentation rust use the first
two of these in the conventional manner. The row vecter which is fo be
used for the third case is the diagonal of the array Er,m+1—p‘ Tﬁe
strong "BO“TON" can only be corrected in the third position if there are

1's on the diagonal of E, Any admissible letter rmust be acdzissible in

"
both positions r and m+l-r; thus, if eau(l2,l3)=1 and esu(le. ¥=1, both
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“BOLTON" ‘and "BOSTON" are possible corrsctions to "BOTOH." When using
arbitrary n-grams the diagonal used must be carefully selected. For
example, for six-letter words the trigram B'SSH refers to positions 3, 5,

and 3; thus, for “BO*TON," the diagonal of E' to be used is that set

354
of clements E'Ssn(i‘xs’i) for i=a to z.

In the remzinder of this section, methods of detection, location,
and correction of other types of errors are presented. The types of
errors to b2 discussed are insertions and deletions and some new but
similar types, splits and mergers. In this chapter we discuss methods
for covrecting only single o:currenceé of thase types of errors; appendix

A presents a method for location ané correction of double deletion errors

—--2nd_the manner in which this method may be extended to locate and correct

multiple deletion, insertion, merger, or split errors.

.

%.3.2. Deletion Errors

If X=xlx2...xm has a deletion error in position r, then there exists
a character y and a dictionarv word Y such that Y=x1...xr_ly X Ryt Xpe
The index of the ﬁosition of the errcr may be any number from 1 to m+l.
For example, if X="SPRIGITLD," r=7; y="F," and Y="SPRINGFIZLD."

The process of locating and correcting deletion errors is different
from that used to locate and correct substitution errors. Correction
could be blindly attempted by stretching out the word X and attempting to
correct each of the resulting m+l forms as if they vere single substi-

tution errors. This would be tadious and inefficient since it is quite

uncertain that X even has a deletion 2rror. Thus, it is desirable to be
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able to determine that ¥ has no deletion errsrs ¢r at least to limit the
search for corrections.

If the only error in X is a deletion error in position r, and & is a
collection of n-grams, then:

a) if D(X)=0, D £ £ , r = max(Pos(dN),
b) if B(X)=0, B & , r=> min(Pos(®)),
c) if C'(M)=0, C'f¥ , r g maz(Pos(C'))
and r > rin(Pos(C')),
d) if E(X)=C, E £& , r = wax(Posf(E))
or r = min(Posbh(E)).
Let us consider the cases in order:

a) 1If Dijk(x)=0, r =< k because Dijk(x)=0 implies thet scmething is
vrong with the ccrbination of characters X5 xj, and %, ir positiecns i,
j, and k, respectively. Since the hypcthesis is that thz only error in ¥
is & deletion error, if it is in position r = k, it cannot affect the
admissibility of %5 xj, and Ry therefore, 1 cannot be greater than
nmax(Pos(D)) if D has rejected X.

b) The reasoning for the case of backward-oriented n-grems is

similar to that for forward-oriented n-grams. If B,. (¥)=0, » > m+l-k

ijk
because, under the assumption of a single celetion error, r must be
geeater than the index of the leftmost character which appears to be in
the wrong lccation. Consider the following example. Sugpose

X="SPRINGIELD", (#%)=0 implies

B1us
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d) Since the ends-orienic? n-grars encompass the features of both
r > min(Fos(B))

the forward-oriented and backward-oriented n-grams, the logiz is similar.

B
|_r

r > min( (5’7’103 ) However, if E(X)=0, all that is determined is that something is wrong

r > 6. vith either a set of positions at the bsginning of the word or a set of

This provides the information that each position in the set {7’8’9'10’11} positions at the end; i.e., either the first man(posf(E)) or the last

could contain the error. _ m-min(Posb(E)) positions of the word. For example, if X="SPRIKGITLD",

The subtle "equality" difference between the two conditions, Eus(x)=0 means that no dictionzry word has an I in the fourth position

r =max(Pos(D)) and r> min(Pos(D)) should be explained since it will recur

and a G in the sixth position (fifth position from the end); it also

in vari . rard-ori -gran c: . . s s : . -
ious forms. The forward-oriented n-gram cxpresses the fact that implies that a deletion error must be in either the first four positions

. fran
the deleted character should go before the character pointed to by a of X or the last five. (In this case, the last five are: after the G

forward-oriented n-gram, or possibly even in the indicated position. after the I, ..., and after the D.)

However, the deleted character must go after the position indicated by a The algorithm for locating *he position of a deletion error follows

backward-oriented n-gram because it cannot go into the indicated position. from the sbove. Suppose that some D, % has rejected an m-letter word

kt

X which has one delction error. 1]L(Y) J implies that the position of

Note that in ¥=“"SPRINGIELD," (r=7) it is possible for D1u7

(%)=0 but not Blzq(x)=0.

(X)=0 but not

(X)=0; also, it is possible for B

146 125

c) If X has a deletion error and a non-positional trigram C'i

the error, r=k or, equivalently, ré [1,k]; that is r is a member of the

interval of integers [1,k]. Similarly, sijk(x)=o implies that the position

rejects X, the combination x, 3 %541 % 40 DEVED appearcd in adjacent posi-

1+17i+2 of the error r=m+l-k or, equivalently, »€ (n+l-k,nm+l] = [m+2-k,m+l],

s : PP F € p= ' . . ] ) .
tions in the dictionary. or example, if r=i+l and C (Y) 0, *i%161 %142 where the half-open interval of integers is more cleariy rspresented hy

violates the dictionary syntax. On the other hand, if r =i or r = i+2, the equivalent closed interval of integers [m+2-%, m+1l: If D.. (¥)=0
erval cf ir s [mi2-k, mel)e IF Dy (%

it would not be possible for C'. (X) 0 since x.X. rnust appear in the

i 1+1 i+2 and D.. ((X)=0 then ¥ = min( k,k' ) which is equivalent to the state-

dictionary. Thus, if C'(X)=0, converient bounds are placed on the pos- ment I'E[l,k] N[L,k']. In this manner,
sible values of r; i.e., i<r=i+2. In "SPRINGIELD," the non-positional
trigrans C'S(X) or C'S(X) night be zero but no other C'i can be zero if
"SPRINGFIELD" is in the dictionary. Convenient bounds are placed on the

position r if any C'(X)=0.

L 6 B __ L £ . & E e e - o L. - - . - o
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re (N [1,max(Poc(D))])
De®
D(X)=0
a (N [min(Pos(5))+1,m+1])
B:¢®
B(%)=0
N (N [nin(Pos(C'))+1l,max(Pos(C'))]).

Cle

c'{X)=0
Thus, an interval {i,j] which coatains r is obtaine¢. If the interval is
empty, it canmot be true that X contains exactly one deletion error. (In
the event that there are no rejecting n-grams in one or more of the above
sets; the empty intersection is defined as the intervel [l,m+l]. For
example, if there is no D¢ , such that D(X)=0, then
(0 [1,max(Pos(D))])=[1,m+1].
DE®
D(X)=0

Let us now incorporate the positionzl information which is to be

gained from the ends-oriented n-grams. Consider the ends-oriented digram
333 which correlates the characters in positions 3 and m~2. If E33(X)=0
a deletion error must be in the set of positions
(1,31 n (m-2,m+1]={1,3] 0 [m-1,m+l). If ¥ has five or fewer characters
(m = 5), the pair of intervals degenerates to the intervel [1,m+1]; i.e.,
this particular n-gram has provided no location infermation. The infor-
mation which is to be gained from the set of rejecting, ends-oriented
n-grams is that the set of positions which may contain the error is given

by

A ([2,max(Posf(E))] v [min(Posb(E))+1,n+1])
Etg
E(X)=0
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vhich can bz intevsected with the previcus set of pesitions to deteraine
the set of indices of positions in which it is possible for a substitution
error to occur. Then, r £ S, vhere

S = (AN {1,rax(Pes(2))]) A ( A [rin(Pos(B))+i,m+1])

D&Y By
D(X)=0 B(%)=0
A (5 [min(Pos(C'))+1,m2x%(Pos(C' 1) ])
cre ¥
c1(%)=0
Nt (A ([1,naz(Posf(E))] v [min(Pesk(E))+1,n+1])).
Etk
E(X)=0

To correct a deletion errow, the CPP must iteratively ezpand the
word to contain m+l characters, leaving a space in each position r ¢ S
which night contein the deletion error. Then the CPP must determine
vthich character czn fit the space which has been left, given the content
of the m letters in thz rest of the word. If the error can be unam-
biguously corrected, only one character will fit the several irsertions.
As with the substitution errors in chapisr III, the systém could attenmp*t
to correct & suspectsd deletion error in 21l positions 1, 2, ..., m#l
without raising any ad¢itional ambigulties or erroneous corrections; the
method of position location only serves to reduce the amount of searchirng
needed to deternine all possible corrections. »

The ends-oriented n-grans are & special case because they have the
potential to divide a region § into disjoint intervals. It has already

been shown that for a word X with a deletion error in position r,



Eij(X)=° irplies that either rx= igr r<mtl-j; nov an exarple will be section for deletion errors.

presented to illustrate the manner in which the interval of location may a) if p(X)=0, D £ & , r=mnax(Pos(b))
. s s T HIAXANS >

be broken into three parts. Let X be a six-letter word in which it is b) if B(X)=0 B t £ , »=min(Pos(3)),

known that the interval S has been determined to be [2,8] before applying e) if C'(X)=0, C' £ & , r=rwax(Pos(C'))

any knowledge of the rejecting ends-oriented n-grams. Suppose that X has and r = min(Pos(C')),

been rejected by E'142 and E"2u3. This information may be epplied in the d) if E(X)=0, E ¢ ¥ , p=max(Pcs(E))

following manner: or r=nin(fosh(E)).

Let us consider the cases in order:

Pos(E'.. ) = §1,4,5§ - Pos(E"_ .) = §2,3,u}
142 >4 243 12,34 . a) If Di'k(x)=°‘ r = k because Dijk(x)=° implies that the com-
max(Posf(E'luz)) = 4 max(Posf(E"zus)) = 2 . ]
bination of characters x5s xj, and %y is inadmissible in positions
min(Posb(E'luz)) = 5 min(Posb(B"243)) = 3

i, j, and k, respectively. Since the hypothesis is that the only error
(2,6 » ([1,4] v [6,7]) n (C1,23 v [&,7D)
in X is an insertion error in position r, if r = k, an insertion error
([in‘] v [5]) n ([1a2] v ['4,7]) .
cannot possibly affect thes admissibility of Dijk(X)' Thus, » cannot be
£2] v (u] v (6]

greater than max(Pos(D)) if D has rejected X.

P et . b The reasoning for a backward-oriented n-gram is similer to that
The error is in position 2, 4, or 6. The interval [2,6] was selected for ) & grai

te 3 an . . for a forward-oriented n-gram. If B,. (¥)=0, r = m+l-k since under the
the example because it is the shortest interval which can bes broken into & ijk ? e

st s = . . assumption of a single insertion error, » rust be ir or after the posi-~
three disjoint subintervals; of course, there are many ways in which an

: tion m+l-k. That is, an insertion error in position r-=m+l-k cannot
interval may be broken into two or more parts.

affect the admissibility of Bij?(x); therefore, rzm+l-k. Consider the
4.3.3. Insertion Errors following example. Suppose X="SPRINGEFIZLD"; BLuB(%)=0 implies

r z nin(Pos(B))

I X3X)eeeXy has an insertion error in position r, the correct
7

s R r=oin( 7,9,22 )
spelling of X is szl""r—lxr+l"’xm for some dictionary werd Y. The = i >

st . r= 17,
error position r may be any position from 1 to m. It will be found to

satisfy the following inequalities, similar to those given in the preceding

e - - e e - - ¢ € L . e & L. - - . - -
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To ccwreet an insertion error, tha CPP rmust iteratively shorten the

i7,8,9,10,11,12}cou1d contain the error. word to contain m-1 characters, deleting the character in each position

c) If X has an insertion error and a non-positional trigram c'i r ¢S which might contzin the insention error. Then the CPP must deter-

rejects ¥, the combination XiX: 1 %i4p DRVET appearad in adjacent posi- mine whether or not the resulting word is in the dictionary. As with the

tions in the dictionzry and is inadnissidls. Or the other hard, if substitution errors in chapter III, tha system could attenpt to corrsct

r < i or r > i+2, it would not be pcssible for C'.(X)=0 since insertion ervors in 21 positions 1, 2, ..., © without raising any
i

RiRe 1 ¥s oo must appear in the dictionary. additional ambiguities or erronecus corrections; the rethod of position
F R T e T
da) Since the ends-oriented n-grams encompass the features of both location only serves to reduce the amount of searching needed to deter-

the forward-oriented and backward-oriente? n-grans, the logic is similer. mine 2}l possible corrections.

However, if E(X)=0, all that is determined is that something is wrong _ . i .
' 4,3.3.1. An Example of Correction of an Insertion Error

with either a set of positions at the bezinning of the word or a set of

positions at the end; i.e., either the first max(Posf(E)) or the last Figure 4.1 presents an example which illustrates the ability of the

m~min(Posb(E))+1 positions of the word. For example, if X="SPRINGEFIELD," additional n-grem types to limit the search time required for correctirg

Bus(X)=° implies that an insertion error nmust be in either the first four an insertion error. The forward-oriernteé binury digram D;. indicates

positions of X or the last six. that, if there is an insertion ervor in the word "FZARDED," it must be in

The algorithm for locating the position of an insertion errov is or before positior five. Without additional algorithrs. five corrections

similar to the algorithm for detection and location of a deletion error. would have to be attempted in order to assure that the word is unam-

The error position r is known to be in the set S where biguously corrected. Apglication of backward-oriented n-grams further

S = (N {1,man(Pos(D))]) n ( n [rin(Pos(B)),rl) reduces the number of searches required to three since they irndicate that
g;;;=o g;;?:O the error is in or after positiorn three. The ends-oriented n-gram E13
a O a [min(Pos(C')),max{(Pos(C')]) ' . ' ' further reduces the possibilities to position five. When the letter in
g:;;;=0 position five of "éEARDED" is deleted, the resulting word “FEAkED"'is
A (n ( [1,man(Posf(E))] v [min(Posb(E)},r] )). ) found to be in the dicticnary. Hon-positional binary n-grams provide no
EEfR

E(X)=0 ' assistance in this sample.
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fhe Dictionary: HEAD
BREAD
BREADED
HEARD
FEARLED
HERDED

[nput word: FEARDED

dls(F,D)'= 0= r <5,
= the correct word may be either

EARDED, FARDED, FERDED, FEADZD, or FEARED.

blS(D,A) =0, bzs(E,A) =0, énd b35(D,A) = 0= r 2 3,
=+ the correct word may be either
FERDED, FEADED, or FEARED, when used with the

information from the forward-oriented n-grams.

e13(F,D) =0=*+r<1 or r2z35.
=+ the correct word must be FZARED, if FEARDED

contains an insertion error.

Figure 4.1 An example of the use of various types of n~grams to locate
the position of an assumed insertion error.

o)

9l

Again it must be pointed ouv thut the exarple is sirgle-nmindzd and
only illustrative. In actual problems, such as thoze expicred in the
next chapter, a nurber of binary trigrans of various tyses is used; and

much larger dictionzrics are used as data hases

4,3.4. lMergers and Snlits

.

Although spelling errors are primarily substituticns, insertions an
deletions (Hasters, 1927), the CFP which works with OCR equipment should

also allow for correctior. of machine gernsrated segirentation errors. Such
segmentaticn errors stem from an jnadbility to properly delineate one or
more characters. Define a merger error as the joining and classification
of two distinct characters as a single character. This is not ths save
as a deletion error sirce tha resulting joined charzc £znerally weuld
be classified as a character different from either of the original joired
characters. Define a split error as the improper segmzntation and classi-
fication of a single chzruzter as & pair of characters. Again, this is

different from an insavrtion because it is most probsztle that neither of

5]
. 5
|...
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[
=
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o
F03
[+
n
(3]
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the resulting classified characters is the same as the o
ter. A split in which onz of the resulting characters is given the label
of the original character may be treated as an imsertion; and a merger in
which the merged character is labelled the same as cne of the origiral

characters may be treated as a deletion.

These errors were referred to as machine generated sezmaintation

errors because they are caused by the irahility of a pattern recognition

.machine to properly segment strings of characters in the manner in which
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the author intended. Hewsaver, the segmentaticrn pro:lenm is usually caused
by flaws in the source document such as broken typz and poor or crowded
printing or handwriting. Humans are quite capable of making these seg-

mentation errors also.
4.3.4.1. lierger Errors

If x-rlx2...xm has a merger error in position r, there exist char-

acters y and y' and a dictionary word Y such that
Y=xlx2...xp_l yy! %ae1t ¥ is the correc% spzlling of X.

Determination of the location of a merger error is idertical to that
process for an insertion error. The reason for this is that the errone-
ous character x, does not belong in the r-ih positicn of the word.
Although the insertion involves the presencz of an errcnsous character
and the merger implies the absence of two characters with the substi-
tution of another in their place, both problems have the same symptonms;
the character in position r is incorrect. TFor exzample, in the merger
Y="SPRINGXELD" (r=7), the character "Z" uust be replzced by "FI" and in
the insertion X="SPRINGYFIZLD" (r=7), the character "Y" rust be removed;
both cases have an error in the seventh position and both display the
same symptoms to an error detection and location system.

After determining the set S in which an insertion error could occur,
the CPP can use the same set as the set of positions in which a merger

error could occur. A merger error is corrascted by first expanding the

word to m+l letters by inserting a space into each potentially erroneous
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position and then treat the resulting word as

substitution errors in pocitions r and r+l. for
X="SPRINGYELD" and S=(6,8], try correcting WSPRINMGHELD, M "SPRINGHNELD,"

and "SPRINGX*ELD."

4.3.4.2, Split Errors

If X-xlx2...xm has a split evvor in positien r, there exist a char-
acter y and a dictionary word ¥ such that Y= ByRgeo oMy 5 ¥ Ao ro¥y, i
the correct spelling of X, If the only error in ¥ is & split error in

position r and is a collection of n-grams, then:

a) if p(¥)=0, © t £, rz=nan(Pos(d)),

("N
2]

b) B(X)=0, 2 & ¥, rz=nin(Pos(3))-1,

c) c'(x)=0, C' ¢ v, r=ian(Pos(C'))

[vs
*h

and r > min{Pos(C*))-1,

.

d) if E(X)=0, T £ §, r=zrax(Posf(E))
) or rzmin(Posb(E))-1.

Determination of the position of the errer d'r:e:s fron the other
three forms because of a subtle difference in the gefinitions. When
locating deletion errors, intervals of the form [min(Fos(2))+1,m+l] arose
because the character which appearsd to bz in the wrong location
(min{Pos(2))) actually hz2 to precede the missing chzracter and was
actually in its proper location. When locating inserticns and me rgers,
the intervals uere of the form [min(Pos(E)),m] because the errant char-
acter could kave heen in the position which appeared to have been in

error. How, however, intervals of the form [min(Pes(3))-1,r} are
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encountercd because, vhile the character observed to be out of place may
be in error (one of the two "split-ecs"), the error position may be the
position prior to the apparent position; that is, location r+l may be

observed to be in error because it is only part of the error,

u.u, SUNHARY AND DISCUSSIGCH

In this chapter, new developments in the method of binary n-grams
have been presented. The concept of binary n-gram has been extended to
include notions of positional anchoring. It was showvn that an n-gran
could be considered to interrelate only word erndings, word beginnings, or
both ends of words. It was also noted that the additional concepts are
of no use unless the dictionzry is to contain words of different lengths.

The algorithms for error detection and correction weré extended to
include the classical spslling errors, insertions and deletions. Ifethods
of detection, location, and correcticn were presented for two additional
types of errors. These errors, splits and mergers, are essentially
machine generated errors. It was shown that while the errors appear to
be similar both the source of the errors is different frem the source of
insertion and deletion errors and the algcrithms for correction are
slightly different from the algorithms to be used for correcting inser-
tions and deletions.

In the next chapter, experimental results will be presented which
attempt tc determine the relative effectiveness and value of the methods

developed in this chapter. The experimentzl results will examine the
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effectiveness of the CPP algerit
different quantities of CPP storege, and different mixes of n-grams. Ore

of the implications of thace results is that, given a fixed quantity of

storage, a CPP which divides the storage among different types of n-grams

is more effective than & uees cnly ong type of n-gram.

t

No attenpt was made in this chapter *to discuss any nethods for

1)

correction of multiple deleticn, insarticn, etc., errors, For a classi-
fier errcr vate of 10%, the expected progortions of sixfletter vords with
one and tuo errors ars 202.¢ and 17.6%, respectively, a ratio of 2.28:1.
For lower rates the proportion of single to double error words would be
even higher. The computaticn required for correctior. of double errors is
about four times that required for single errors; triple errors reguire
about four times as much effort as double errors--ve do not attempt
correction of triple errors in this resezrch. Oa the other hand, how-
ever, is the fact thzt =o much more computation must be done to provide
just a little bit grezter correction. At some point correction attempts
must cease. If the reccznition rate is 27% and triple errors represent
.5% of ths data, we know that correcting 211 of thex will orly raise

correction to 97.5%; analysis must determine whether or not thet .5%

U]

is worth it. In the research of Hemson, et al., (1975) z 98.4% word
recognition rate with 2.3% error was achieved; the remaining percentage
‘.alonged to the triple error words. Correction of the triple error words

saised recogrition to 97.3%.

L. € €__ & L L €. ¢«

L o . - - bt
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s = . . cCHAPTLR V
We are now faced with a probler of even greater complexity. Five
. : . . EYFERININTAL PZSULTS
different types of errors have been considered; each cf these requires a
slightly different algoritim for location and/or correcticn. There are 5.1. HTRODUCTION

25 ways in wvhich they may occur in comihinations to make a two error word.

The preceding two chapters detailzl the metheds of binmary n-grams:

le feel confidant that correctior would be just as cffective for most of
P N . . chapter III reviewed the prior research end chepter IV presented some
these as it is for double substitution errors; however, no real world

i

new techniques and ralated the new technigues to detection and corresc-

distribution data exists to show whether or not the various combinations -
. . tion of additional types of errors. To examine the effectiveness of the
occur often enough for tha algorithms to be worthwhile. As azn example of - ¥t ‘

algorithic, some experiments were perfornme . ;0 which

the location and correction methods which may be used for these double

s . s . . uses several algorithms and various dictionary sizes.
errors, appendix A describes a method for locating and correcting double & ' y

. Experiments were then perforiezd to exanine the effectiveness of the
deletion errors.
‘ samz CPP wlen larger and snhaller contextusl dzta bases are employed. It
is also shoun that CPP effectiveness is rzlated to the length of the
words beirng processed.

In tha above experinents, various different mixtures of n-gran
types were used. Bec2use of the enpense of finding good sets of
n-grams, only a few such experinents were performed. Section 5.4

rary exceriments which led to the use of

briefly describezs the prel
the particular sets of n-grams used in the evperiments of this chapter.
The important result is thet little is gained fron either the non-
positional quadgram or the ends-oriented n-grams until a very large

contextual data base is recuired.

5.2, BACKGROUME OF THE EXPZRI}

In this section, the groundwork is laid for the experiments to be

97
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performed. First, the experimental design «f the CPP is presented. 5.2.2. The Test Lata

Then, the source of the "dictionary” wcris is presented alorg with a .
Scveral types of errors were generated in each of the words in the

brief description of the words in the dictionary.
ipt B Y 1000 word dictionary. The generated sirirgs were then ussd in the

5.2.1. The Dictionawy experimerts to be described in the next ssction. Thus, even thougn the

contextual data base of an experiment night be the 100CO word diection-

The master dictionary for all of these experirents was obtained by
\ . ary, the CPP design would be tested with the same se¢t cf 2a%z which was
extracting the city (o» toun) names for =1l of the first, second, third, )
used to test each of the other CPP desi

gns
gns.

and fourth class post offices in the U.S.A. from the Zip-A-List tapes e .
With a few excepticns the results shown in this chapter will ée-
(USFS, 1973). Spaces were celeted from the names. lames with digits . .
scribe the capability of the CPP orly as it applies to singie substi-
and names longer than 16 characters werz deleted from the list. Af er . .
tution errors, insertion errors, and double substitu+ticn errors: sib-
duplicates were also deleted, 12196 names ranained. It must be noted .
stituticns were used because they provide the Lest link with prior
that these names are not typical of English text; a statisticel com- . .
research and insertions because they deronstrate the effecti-ensss of
parison of the word list to other lists of typical words is presented in .
the new algorithms. Lest we be accused of sweeping everything else
Appendix B. ) .
PP under the rug, the first experirent will present the results of pro-
In order to compare the effectiveness of the CPP design when zpplied .
cessing several types of errors. Evrors were generated In each of the
to dictionaries of different sizes, three subdictionaries were created. .
test words by first randomly generating *he position oF the error and
The names vere selected for exzch dictionsry so that it is also a sub-
then the error.
dictionary of the next larger sized dictionery. Thus, 1000 names were .
There were two basic types of errors generated. Tor the first type
selected for the smallest dictionary; en additional 4000 were selected .
. ) of error, letters were selected randemly to fill the position of the

for the dictionary of 5000; and 5000 more were selected for the dic- '
error. For the second type, a reject character (""") was chosen to £ill

tionary of 10000. To assure that the smallest dictiorary has an ade- . .
the questionable position. The reason for the two types is that they

quate number of words of each length, the selection procedure was biased . . .
' provide a comparison between a classifier vhich makes a guess when it

to guarantee that each length set has at least 20 names. (Table B.l in . . . ]
g ’ cannot decide the identity of a character and a classifier which rejects

Appendix B presents the distributions of the word lengths in the four

dictionaries.)
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the input datum rathev than nake a mistehe. These protedures were used

in almost all cases; one exception is the deletion errors which are

unrelated to such a methodolszy. A ccmplete set of 10090 of each of the

following types of errors was generated; again, these ware 2ll usel for

the experiment of section 5.3.1, but only three types were used for the
L) S R4

subsequent experiments.

One substitution-~A character, different from the evrpr
is randomly sclected to £ill the position of tha errc

ed character
»

One substitution, rejected--A rejected character is put into the
erred position.

One deletion--The word is shortened <o cmit the chavzcter in the
selected position.

domly generated, different

One merger--An error cheracter is ran
s; it is then substituted in their

from the two relevant character
place and the word is shortened.

One merger, rejected--The twd relevant letters are replaced by a
reject character and the word is shorvtened.

One insertion--A letter is randomly selected and inserted into the
erred position.

One insertion, rejected--3 redect character is ipserted into the
erred position.

One split--ﬁ pair of characters, both ¢ifferent from the erred
character, is gcne“agee to replace *he erred lett

A
o
er.

One split, rejected--A pair of reject
character.

characters replace the erreé

Two substitutiong--
erred characters.

so rendomly salested characters replace the

Three substitutions--Three randomly sclected characters replace
the erred characters.

fr— 1

/MU L /SN N /AR (AN S |
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5.2.3.1. Contextual D&

For a majority cf these ewperivants, the CPF will use a simple

nivture of n-gram tyoses

5.2.3.2. The Internal Jecisicn Logic

When a string is input tc the CPFP, it will be first assumed that
there is no error in thz string. If this is found to Le incorrect,

e essumed that the word

o

i.e., some n-grem rejects the string, it will

has one substitution error., If this hypothesis is fourd to be

incorrect--because there is nc position in which a subst

could occur—-it will e assumsé that the worl has eizier

errors. If this hypothesis is also prowvern teo be falsz, the word will be

rejected. The order
ever, if a data model existed to show that the errcr types could be
ranred differently, the o

there is no inhercnt ondar amsng the 2




The last set of expar «s the effectiveness of

group; if an error from this group is corrected, it is because there is

. . . the CPP as the contextual da*a bzse varies in size. In two experiments,
no other correction pessible arong this group. If a word containirg,

. . . . . th CPP is given first a smaller runler of n-grams with which to progess
say, a deletion error is rejected, the reason is either that there are

. . . . text and then a much larger nurker of n-gramc. These results are then
several possible correcticns to it as a deletion error or that there are

o e . . compared to those obtained by using a similer CPP uhich uses a diction-
some admissible correctiors as a deletion and scme &s sove other type of

s . . ary before deciding whether or not a string is admissible.
error in the group. If cdzta existed which proved thst scme one of the

particular errors in this group should bz corrected before the others, 5.3.1. &4s a Function of the Various Types of Zrrors

the decision hierarchy could be altered to implement such an ordering of

In these experiments, the CPP's ccntextual data base will consist
error types.

of seventy forward-oriented n-grams and seventy backward-oriented

BTN T I P ~ e 3
5.3. EXPERINERTS n-grams. The dictionary of 10000 weris i 4

n

us

m®

: . . . The results of testing the CPP against all of the various types of
The first experiment, in section 5.3.1, demonstrates the effective-

. . errors are presented in table 5.1. Of the 1300 single substitution
ness of a single CPP cdesign against 2ll of the types of errors which

: e s . . - errors, ©5.6% were detected and 8l. % were corrected; thera vere only
were generated. This is done to give the reader & feel for the power of

1.4% in ervor. Because of the CPP design, 21l of ths 15 CFP errors wevs

the CPP when operating upon the various types of errors; such detailed

. . . . . words in wrich the CPP did rot detect thz substitution error, lote that
results are not again pressnted in this chaptar. In the experiments in

the second line of table 5.1 is better t +he first; it provides the

section 5.3.2, the perfornmance of the CF? is comparsd for the four

zted classifier rejected a

e
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different dictionary sizes; for three types of errors (single substi-

. s . . . . . letter instead of making & zad guess. It is Cetter because reject
tutions, insertions, and double substitutions) the relationship between

st . s . characters ("#") are always Jetected anl tecause the position of the
dictionary size and CPP effectiveness is presented. In section 5.3.3, a

. . . error is immediately determined. (For example, "BUSTCH" is easily
figure is presented which shows the relationship between the CPP's

corrected as "BOSTCN" but "BASTON" could also be correctad to "GASTON"
ability to detect and correct errors and the lengih of the words which

since the position of the error canrct be tramhiguously determirel.)
contain those errors.
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Cu et Z 0O O N © o ™ A Deletions and mergers form o w szoT in contextual processing.
2:‘:‘ O e N -~ o~ o~
E'::é Of the 1000 deletion errors process:ad, only 760 are detected as having
0
$a . -
E o at least a deletion error and cnly 577 cf them are correated. Of the
©
3 o . . .
9 remaining 240 which were not detected as having deletion errors, 33 had
8 3, I 9 , ~- I — I — .
g - no detectable error and the othar 207 cc:1d have been cne error words;
S
64 of these were unambiguously modifiecd as if they had been single
R
o . . s
v & substitution errors and the rermaining 143 were rejected. In summary,
vE | ~
&9y o w the CPP made a total of 577 corrections and 97 errors.
B sfe| [ | 282322 |88 .
& oH o - A ~ 8 Insertion and split errors are detected and corrected even better
= Y| Lo e o
g ¥ - £ than substitution errors. Agein, slightly better detection and cor-
(7] t (3 "_ﬂ‘
[4] ™ Lo~ = . a e . N
a @ 0o (3 rection rates are found when rejections are output by the simulated
e o P (=B B v T~ S - T T2 T - SO U 7 T o ot -
e O [I¢ ] ~ W W I & o ~H o~ N Ll
[N [T - - A NN - ~ & sps . sz s
o © £ g classifier instead of erroneous classificztions. 1In thz cese of merger
- A a
v WA o se s : . . .
w B8 £ errors this improvement is quite marked: the rejection flags the
2 g
@ o 4-4 ses N : s
s <k g 32 position of the error so well that 22% more of the words in error are
5o sl s gEg88Egss av
- v ) -
»F £ © ® W0 LWL O D W e & detected, 7.6% more are corrected, and there are half as many errors.
-
v A 0 w 6 ©
ww O e O . . — P =
& H Eda In the case of insertion errors, a rejection corresponds more closely to
[~} ot o
= o Bgkg . . s . . .
5< 3 N the machkire classification of z smudge or other noise on the input
B o a8 Sw®
b 8 az’ S+ 9 document than to the usual insertiocn which is a spelling error.
$2g5| 22882388838 | &S
£ 48 e~ ® o o0 o0 O D ® ~E More than half of the double substitution errors are corrected. It
QU Q5 - ~-l QO wv -
Awmoe Nfg
- N ® 354 should be noted that of the 152 strings in which the double substitution
. . . P . g 9 w O >0 Q
& © ) -1 [ N 1 _ s . :
g - - 9 - & - 908 £ g =~ error was not detected, 103 were presumzé to have been of the insertion-
586¢ £ 68 w5 X d8% &
© Eeg S8 ¢cagpgpd - mES bas deletion-merger-split variety and that 73 of these were erroneously
Bl v 88 & b8 58H845% 135 A a2
& 859 5§ ¢ @44 008 corrected. If the data were to indicate that the system should be
£ w U E E A4 A4 0 O B0 g,) 5
E ¢ U © © 9 0 ¢ U O 0 & oo~ redesigned, these 103 strings cculd slsc have been detected as having
ESE5EEEEEEEEE o
%] 6 6 6 S 66 O 6 O & =z -
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double substitution errors. That is, if experimentation were to indi-
cate that it might be profitable, ve might examine 211 (or most) possi-
bilities before committing the CPP to rake a decision. Arother redesign
would place the insertion-deletion-merger-split cdecision after the
double substitution error decision and no doukle substitution error
ﬁords would be mistakenly identified as insertions, deletions, etc. Of
course, with such a redesign, sore of the words with deletions, inser-
tions, etc., would then be mistakenly identified as having double sub-

stitution errors.

§.3.2. As a Function of Dictionary Size

In these experiments the effectiveness of the CPP is tested with
each of the four dictionaries as a data base. The same CPP design is
used in each of the four experirents, the same number of n-grams and the
same order of correction. As may be seen in table 5.2, the CPP is very
effective for the dictioraries of 1030 and 5000 words. There is quite a
drop in effectiveness when the data base is exparded to 10000 words and
another sharp drop when the dictionary of 19126 names is used.

While it is clear that the CPP's power erodes as the dictionary
enlarges, the fact that, even in the worst case, the CPP is still able
to detect and correct more than 40% of the words with couble substi-
tution errors is significant. iany of the corrected double substitution
errors are difficult for lumans to correct (Hamnson, et 2., 1975). In
each case, the remaining double substitution error strings which are

rejected have an average of less than six alternate strings. Thus, if

TALLY 5.2

EFFECTIVELIES COF

HYE CPP AS A
\A

T
FUNICTION OF DICTIGNARY SIZE
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Error type Detected Corrected | Rejected | Errors
The 1000 word dictionary
One substitution 1c00 935 15 0
One insertion 999 agy 5 1
Two substitutions 981 928 56 16
The 5000 uvord dictiorary
One substitution agy 910 84 6
One insertion a76 973 20 7
Two substitutions 922 78¢ 182 50
The 10000 word dicticnary
One substitution 936 810 176 14
One insertion 58 92¢ 48 23
Two substitutions eug €23 293 ™
The 19186 word dictionary
One substitution 970 633 337 30
One insertion 887 849 113 32
Two substitutions 756 ue3 Leu 93
liote: Stqrage requirements, 2.8 million bits.
f
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an additional processor were to be built to resolve ambiguities, it 100 AAAXA 100 T }A‘ttﬁﬁﬂ&}
~ byt

would have to process an average of six strings per decision on words
with double-substitution errors. Hanson, et al., (1975) show that, for
triple errors, such methods are effective against even 40 or more 30+ 50T

alternates; as many as 89% of the cases were corrected with an average

percent
percent

of 22.6 alternates per case.

Oy ° '/:\“.’ ;

|
5.3.3. As a Function of Word Length 3 16 3 16

no. of letters in word no. of letters in word
The outputs of the CPP vere recorded for each different word (a) One substitution (b) One insertion

length. The results are presented in Figure 5.1 for the three partic-
ular error fypes. In all cases the CPP performs better .on long words

than on short words.

ye

It appears that the CPP has trouble with words which are longer 100 1

than ten characters since each of the graphs shows one or two drops /#75\&ﬁ#»4
r

after this point. This anomaly is probably explained by the fact that
Key to symbols

the n-grams used only reach a distan.e of ten letters from either end of ' 50 -
4 corrected

words; that is, the maximum subscript on the n-grams is 10. Thus, 8
e errors g
n-grams of both types are used to correct errors in any position of any E
word if it is not more than ten letters long; however, as words become 0.. k‘
3 16

longer, the letters at the beginning are out of reach of the backward-
no. of letters in word

oriented n-grams and the letters at the end are out of reach of the
(c) Two substitutions

forward oriented n-grams. This behavior is accepted since altering it

without commensurately increasing the total number of n-grams in use
: Figure 5.1 The relationship between word length and ecror correction and

word length and errors made for three types of errors.
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would affect the other corrsctior rates; 11% of the twelve-letter words
is only 0.6% of the data set while 5.0% of the nine-letter words is also
0.6% of the data. Thus it would not pay to improve recognition of the

very long words at the expense of the intermediate length words.

5.3.4. As a Function of the Size of the Contextual Datz Base

The total number of n-grams used by the CPP was altersd to deter-
mine the relationship between recognition rates and storage requirud.
In the larger CPP design, a mixture of n-grams was used: 76 forward-
oriented n-grams, 76 backward-oriented n-grems, a non-positional quad-
gram, and 60 ends-oriented n-grams; the experiments vhich support this
decision are described in the next section. The alternate CPP designs
are, respectively, 65% smaller and 65% larger than the "standard" CPP
.used for the earlier experiments of this chapter. An additional experi-
ment performed in this section was to incorporate a dictionary processor
into the CPP strategy; in this case the CPP looks up each hypothesized
admissible sequence in the dictionary before making a final decision
concerning admissibility.

These experiments, shown in table 5.3, clearly indicate the
expected result that greater quantities of storage provide better
results.
returns enters into play here because growth from a contextual data base

of 1.8 million bits to 2. nillion bits raises correction rates about

However, the results also indicate that the law of diminishing

111
TELLE 5.3
EFFECTIVZINESS GF THE (P2 AS A
FUNCTION OF THE SIZZ CF THE
CONTZXTULL DATE BASE

Error type Detected Corrected Rejected Errors

1.8 million bits
One substitution 989 71¢ 251 20
One insertion oLy 889 82 29
Two substitutions 218 490 422 88

2.8 million bits
One substitution 286 810 176 b
One insertion suy 92¢ 48 23
Two substitutions 849 632 293 76

4.8 millien bits
One substitution 932 86k 128 e
One insertion 967 852 27 21
Two substitutions 870 69U 24) 65

The Dictionary (at least .8 million bits)
One substitution 999 9us sS4 1
One insertion 280 968 15 17
Two substitutions 9c3 783 184 73
Hote: Dictionary size, 10000 strings.
L L L [ [_» L L E - . L_ &
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10% while the next step, from 2.8 to 4.6 million bits, only improves the
correction rates around 6%. Note that using a dictionary of half the
size (the 5000 word dictionary in table 5.2) results in a greater
improvement than dcubling the storage requirement of the system (table
5.3).

Appending the dictionary provides even better performance. In
chapter II several subdictionary selection algorithms were presented.
The methods of binary n-grams could be viewed as being a subdictionary
selection algorithm. Assuming that the error in a word is properly
recognized, the difference is that the previous algorithms select a list
of candidate words from the dictionary; several of the words in the list
are possible corrections and one of the words in the list is the correct
spelling of the word. Although the n-gram methods also provide a list
of uords,‘each word in the list is an adnissible correction of the
questioned word but not all words in the list are in the dictionary.

The dictionary is useful in another respect in the contextual post-
processor. When the dictionary is used to check alternate choices and
corrections, it may find the hypothesis concerning error type to be
erroneous. Suppose a two error word is irput. Further suppose that the
n-gram system determines that it is not admissible but that it has one
substitution error and, as such, there are k admissible sequences which
are potential corrections. If k=1, the n-gram algorithms would consider
the word to be corrected; if k>1, the word is rejected. £, however, a

dictionary is incorporated into the system and none of the k admissible
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sequences is an admissible d-sequencc, the CPP rust reject its hypoth-
esis of one error and attempt another hypothesis.

It is important to note that the particular n-gran system to which
the dictionary system is appended does not affect the effectiveness of
the dictionary subsystem. However, a difference does arise in the
amount of computation time required. If the n-gram systen can be
implemented so that entire rows or columns of an n-fran can be accessed
and processed in a single machine instruction--or rows of several
n-grams in parallel--the n-gram operations would be faster than dic-
tionary references. In this manner, use of additional n-grams would
result in a smaller number of dictionary references. Such an imple-
mentation would have to consider the cost-performance curves of these
components. In the work of Hanson, et al., (1875) where adlitional
postprocessing was used to resolve ambiguities output by the CPP, the
use of a dictionary to reduce the overall number of arbiguities to be
processed improved CPP performance by reducing a word error rate of 2.7%

to 1.7%, a 35% reduction in the nurker of errors.

S.4. SELECTION OF n-GRAM SETS

This section describes the experiments which selected the sets of
n-grams which were used in the experiments of the preceding section.
The problem is to select the best set of n-grams, given sone storage

size. Ideally the set should be ver} good on all types of errors.
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However, no exhaustive search is desired; in fact, a restricted search
is necessary. The most thorough of these searches examined sets of
n-grams which required about 2.8 million bits of storage. These experi-
ments attempted to evaluate n-gram strategies instead of particular
n-grams; for example, one set of n-grams evaluated had 140 forward-
oriented n-grams, another had 36 forward-oriented, 36 backward-oriented,
and 40 ends-oriented n-grams and a non-positional quadgram.

Table 5.4 portrays the results of the experiments for a contextual
data base of 2.8 million bits. Three of the collections of n-grams
provide almost the same "best" correction rates; the set of 70 forward-
oriented n-grams and 70 backvard-oriented n-grams was selected for use
because of the homogeneity of the algorithms used. From these experi-
ments, it appears that there is nothing to be gained by using either the
non-positional quadgram or the ends-oriented ngrams. An implementation
which requires 9n1y‘two types of n-grams is simpler than any which
requires three; and, in the particular case of these two types, they
could both be handled by the same reentrant code. It is clear that
neither the forward-oriented n-grams nor the backward-oriented n-gran
provides a sufficient data base individually. (For this experiment,
n-grams were assembled which had indices up to 16.)

Table 5.5 presents the results of similar, but less thorough,
experiments to produce a collection of n-grams for a contextual data

base of 1.8 million bits. In this case, no attempt was made to evaluate

.. e - - 6. L o 6 @ [ L [t

115
TABLE 5.4
EFFECTIVLNESS OF DIFFZPENT CPP DESIG!S
WITH A TOTAL STORAGE REQUIPE OF 2.8 MILLIOH BITS
Error type | Detected | Cecrracted | Rejected | Errors
140 forward-oriented n-grans
One substitution 970 630 338 30
One insertion 903 831 131 40
Two substitutions 779 446 479 75
140 backward-oriented n-grams
One substitution 973 703 270 27
One insertion 918 80 78 41
Two substitutions 797 503 413 su
36 forward-oriented n-grams
36 backward-oriented n-grams
40 ernds-oriented n-granms
1 non-positicnzl cuadgram
One substitution 988 776 212 12
One insertion 9ug 999 60 31
Two substitutions su3 573 347 80
S0 forward-oriented n-grans
50 backward-orierted n-grams
40 ends-oriented n-grams
One substitution 982 812 170 18
One insertion 956 925 52 23
Two substitutions 854 - 614 316 70
56 forward-orienteé n-grams
56 backward-oriente? n-grans
1 non-positional quadgram
One substitution : 288 813 175 12
One insertion 958 931 43 26
Two substitutions 855 624 303 73
70 forward-oriented n-grams
70 backward-oriented n-grams
One substitution 886 810 176 bt
One insertion ose 929 48 23
Two substitutions 1] 632 294 4
Note: Dictionary size, 10000 strings.
(R i i [ i
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TABLE 5.5
EFFECTIVENESS OF DIFFZRENT CPP DESIGHS
WITH & TOTAL STORAGE PZQUIREMENT
OF 1.8 MILLIO: BITS
Error type | Detected | Corrected | Rejected | Errors
25 forward-oriented n-grams
25 backward-oriented n-grams
16 ends-oriented n-grams
1 non-positional quadgram
One substitution 973 668 305 27
One insertion 920 835 119 46
Two substitutions 80l u21 479 100
36 forward-oriented n-grams
36 backward-oriented n-grams
20 ends-oriented n-grams
One substitution 971 720 251 29
One insertion 911 885 85 30
Two substitutions 81y 492 412 o6
33 forward-oriented n-grams
33 backward-oriented n-grams
1 non-positional quadgram
One substitution 274 671 283 26
One insertion 937 8.6 96 38
Two substitutions 802 425 561 102
46 forward-oriented n-grams
46 backward-oriented n-grams
One substitution 980 719 261 20
One insertion ouy 889 82 29
Two substitutions 818 490 422 88

Note: Dictionary size, 10000 strings.
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sets of only forward-oriented n-grams or oaly backwerd-oriented n-grams.
In these experiments, the CPP designs which used the ron-positional
quadgram were clearly inferior to the other two and the design which
used the forward-oriented ard backward-oriented n-grems was slightly
better than that which used thece and ths ends-oriented n-grams. For
the same reasons used above, the set of 46 forward-oriented and 46
backward-oriented n-grams was selected for use.

Little experimentation was done to select an n-gram set for the 4.8
million hit contextual data base because of the great expense of running
programs this large. However, table 5.6 shows an interesting phenomencn
vhich occurs at this level. The combination of only forward and back-
ward oriented n-grams (120 each) is barely better than the similar
mixture (70 each) for the 2.8 million bit contextual data base. In this
case the mixture of n-gram types is clearly better. This may be inter-
preted as meaning that the contextual information which can be obtained
from forward and backward oriernted n-grems was almost entirely gleaned
from the first set of n-grams in the smaller contextual data base. In
order to extract further contextual information, the other types of
n-grams, ends-oriented n-grams and a non-positional gquadgram, must be

employed.
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TABLE 5.6
EFFECTIVENESS OF DIFFERENT CPP DESIGNS
WITH A TOTAL STORAGE REGQUIREHENT
OF 4.8 MILLION ZITS
Error type Detected Cerrected Fejected Errors

76 forward-oriented n-grans
76 backward-oriented n-grams
60 ends-oriented n-grams
1 non-positional quadgram

One substitution 992 864 128 8
One insertion 967 952 27 21
Two substitutions 870 694 241 65

120 forward-oriented n-grams
120 backward-oriented n-grams

One substitution 987 823 leu 13
One insertion 861 936 y2 22
Two substitutions 852 663 265 72

Note: Dictionary size, 10000 sirings.

S.4.1. Better Results at Lower Cost

Table 5.4 clearly indicates that, for the fixed storage size of 2.8
million bits, dividing the storazge equally among both the forward-oriented
n-grams and the backward-oriented n-grarms (70 each) obtains better results

than those obtained by using either n-gran type exclusively. Table 5.6
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indicates that a much larger collcction of 120 of each of these n-grams
hardly does any better than the 7C eéch. Fron this an irportant peint
may be made. Given an initiz) CP? wvhich uses only forward-oriented
n-grams, it is more useful to ciscard some of them in favor of some
backward-oriented n-grams than to adl many more forward-oriented
n-grams. It is more uscful because the sam2, improved results with less
computation and storage are obtained at & far lower cost than the

results obtained by just adding backward-criented n-grams.

5.5.  SUMMARY AND DISCUSSIGCH

This chapter has demonstrated that n-grams provide & powerful means
of applying contextual information in the processirg of text. Certain
conjectures vhich would have been presumeé true have been affirmed; the
effectiveness of the CPP is inversely relzted to the size of the dic-
tionary and directly related to both word length and number of n-grams
used.

The experiments. did seem to indicate the relative effectiveness of
some of the n-gram components. OCnly for the largest of the contextual
data bases is it apparent that the ends-oriented n-grams and the non-
positional n-grams are effective. That is, for contextual data bases of
n-grams requiring up to 2.8 million bits, it is apparent that the
forward-oriented and backward-oriented n-grams adequately represent the
dictionary, at least as much as any comparable volune of n-grams can

represent the dictionary; however, exparsion beyond 2.8 million bits
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with only these n-grams is useless. This would appear to irdicate that
_the forward- and backward-oriented n-grams reach a plateau for the type
of information which they provide and that additional contextual infor-
mation must be provided from other sources such as the ends-oriented

n-grams.

The effectiveness of any contextual systen depends heavily upon the
data which is input to it. To extrapolate our results of application of
this system to a mix of error types requires an estimate of several
parameters, the likelihoods of each error type. We can perform a simple
extrapolation by assuming (a) a single error probability of 5% (inde-
pendent of type, (b) that the words have the same cistribution &s is
found in the list of 10000 words, and (e¢) that all words have equal a
priori probabilities. In this manmer. the percentage of words expected
to be in error is 28.32%. Similarly, there will be only one error in
24.94% of the words. Because longer words are more likely to have ar
error in them than short words, 85% of “he single substitution error
words should be corrected; 93.5% of the single insertions and 63% of the
deletion errors. If the errors are divided uniformly among these three
groups, 80% of the 24.84% error should be corrected, raising the 71.68%
word recognition to 91.63%.
It is expensive to evaluate these systems, largely because an

experimental system cannot operat¢ with a truly efficiently organized
memory.

A practical implementation of an n-gram system would be one

which could respond with an entire row, column, or sub-array of bits in

I
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a single memory-fetch cycle. There are three ways in which this could

be implemented for, say a trigrer system. The first wouléd reguire
special hardware arrays which when given two coordirztes, weuld resgond
by supplying the sub-array of data correspordirg to ell possible values
of the third coordinate. The second is a content adérescable repmory
which could be implemented to respond in such a rmanner; thus far how-
ever, the cost of content addressable mermcries has been prohibitive
(Foster, 1976). The third implementation would reguire orly state-eof-
the-art hardware; a conventionzl, coordirate 2ddressed remory (Foster,
1970) with a word size greater than 27 bits would stere the sub-2rreys
as elements accessible by the address (n-grem number, coordinate-l,
coordinate-2). This latter method would automatically tripls the matory

requirement of the n-gram; but it does have the advantage ot only

requiring state-of-the-art hardware.

g



CHAPTER VI

AN APPLICATION TO POSTAL OCR SYSTENS
6.1. INTRODUCTION

This chapter presents a discuésion of the Post Cffice mail sorting
problem. A postprocessor which uses binary n-grams is applied to the
context which is present in an address. In the latter part of the
chapter, several experiments are performed to demonstrate the utility of
the postprocessor design. The results clearly demonstrate the cramztic

improvements possible through the use of context in this preblex do:zain.

6.2. THE POST OFFICE PROSBLEH

The Post Office problem is described very simply as the problem of

sorting pieces of mail, e.g., 1) examining the address of an ervsioz

(4

or
package, and 2) deciding the bin or mailbag into which the mailzizce

should be placed. The various levels of detail wnecessary to the solu-

tion of the problem will be described in this section. It will ke shown
that, although the 2ip Code is much simpler to read than the zdéress, it
is extremely difficult to detect an error once it has been made ax

impossible to correct the error without additional context.

6.2.1. One View of the Sorting Problem

In this subsection we present a simple view of the soriing prcblea.

It differs slightly from that used by the Postal Service which is

122

.- — - - L bt

123

described in the next subsezction. The solution presented in this
chapter is casily adaptable to the Postal Service sortirg technigues,
but it is couched in different terms because of the lower dimensionzlity
inherent in the solution. Later it is shown that the difference between
problem definitions appears to be only a semantic difference.

Consider first the problem of sorting outgoirg mail. Thers are
over 30000 Post Offices in the United S+tates and each it potentielly the
destination of any outgoing letter. Hessinger (1862,1968) provides some
indication of the distribution of outgoing mail, "About 85% of the mail
[from a single Post Office] goes to only 100 cities and perhaps 28% goes
to 1000 cities." Though he was speaking of the mail from Washirngton,
D.C., he implied that a similar distributiorn would be found at any Post
Office. If a machine which processes outgoing mail can correctiy rcute
all of the mail going to the 1000 cities and reject most (three-guarters)
of the remzining 2% as unidentifiable, its error rate would be less thar:
1/2%. It seems reasonable to extrapolate that more than 98.5% of such
mail goes to 10000 cities; if a machine could handle this proportion of
mail well, it would have very low error and reject rates.

The problem of sorting incoming mail is somewhat different. HKail
coming into a state must be sorted to from 200 to 2000 different cesti-
nation post offices. Still, most of the mail goes to a few of the
cities. It would be reasonable for a computer to know all of the Post
Offices names within a state. Mail coming into a Post Office must be

sorted by mail route and Post Office Bex. To sort meil by route ir some
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cities, a machine would have to know al) of the relevant street namos as
well as the parts of strects allotted to cach route.

Although the same OCR system design might be usel to sort the mail
regardless of the particular goals of the sort, the useful contextual
information is different in each case.
the 2ip Code is significant; if it can be recognized correctly and
reliably, nnilpleces can be sorted correctly. However, if even a sirngle
error is made in reading a Zip Code, there is 2 high probability (38%)
that the resulting error will not be detected; if it is detected, it
cannot be corrected with only the information which is present in the
other four digits. But there is a gfeat deal. oF additional infornatiorn
on the mailpiece for detecting and correcting such errors.
name defines certain ssts of characters'uhich can be used as the first
two digits of the Zip Code; the city rame provides nearly perfect infor-
mation for correcting the remainder of the Zip Cole The éit; nane
only fails to provide sufficient information fer correctiné the lower
three digits of the Zip Code when the city is a multi-coded city (i.e.,
when the city has more than one Zip Code), but even than 1t can linit
the set of potential corrections to a reasonable set. If mail is being
sorted by state, the presence of the string "lNew York City" tells us

that the error in "1004&" is in one of the last two digits. (There is

no 1004h Zip Code.) The strings “"New York City" and "10044" provide
sufficiert information that a machine or human sertingz the mailpiece can

confidently route the mail piece to New York [State] or even to New York

City,

i)

In the first two sorts described,

E_? o E -
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One might wonder why so wach emphauis iz placed upon the reoog-
nition of the Zip Code if the state and city names p“0V¢dO 80 much move
information. The reason is that, in general, nore cryors can be
expected to be made on the state and city rorec than on the Zip Codez.
On the other hand, the greater emount of content present in these
strings mazkes them more ecasily corrcctable and, of course, the cverall

amount of information which is available from all thrze strings can ke

used to corroborate all decisions; i.e., there is a great deal of redun-

dancy present.

6.2.2. The fctual Implementation of the Latter Sorting Froblei

The use of context to improve the readability of mail is only &

small part of the entire engineering effort required to sort mail. In

the next few pages we shall present a brief overvier of the orgarnizztion
of a Mail Transport Unit (MTU) and some of the associated software

required to sort mail.

2

There are several gencral reasons for this. The most obvious is that

there are 10 digits and 26 alphabetic characters; that is, there ar:

fewer potential confusions for a class v to make when reading digits,
hence the process is inherently more relizble. Another reason is that
the alphabetic sirings ar~ longer; therefore, even if the chavacter

s
error rate vere the saze, the string error rate would be higher for
city names *than for Zip Codes., Pinally, lcuwer case characters are real
more poorly than upper case characters {er mumerals) because they are
(1) smaller (fewer pizels per image) and (2) more likely to have een

. typed by excessively dirty or damagcd keys.

g
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6.2.2.1. Hardware

The first component is the Loader. Letters are placed into the

Loader by an operator. The mailpieces are placed here by the handfuls
since they are to be processed at a rate of 12 per second (43202 per
hour). The mailpieces are in pcsition with their stamped edges trail-
ing. - '

' The Edger must place the lower and leading edges of envelcpes into
a standard position and feed them to the KTU. Here, the mailpieces are
jogged and blown to form loosely-packed bundles.

Pushers advance individual mailpieces to the feeder area. Sensors
detect the thickness of the advancing mailpiece and adjust the speed of
the pushers accordingly. The Feeder then must accelerate the mailpiece
to a speed of 180 inches per second with 15 inches between the leadi:
edges of the envelopes.

The Separator and Dedoubler Eust assure that multiple feeds
(envelopes stuck together) do not get processed as a single item.
Doubled envelopes are rejected into a stacker for later re-input to the
system by the operator. Numerous safeguards must be implemented so that
a jam or other machine malfunction either halts the machine components
or re-routes the mailpieces out of the MTU rather than permit mailpieces
to enter the jammed area and compound difficulties.

Ideally, mailpieces arrive at the scanning stations at the rate of

12 per second (or 12/n per second if n stations are multiplexed for
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greater throughput). The scanning subsystems must locate all of the
print on the mail piece, determine which is the address block, find the
print lines within the address block, find the charazcter patterns within
the print lines, and store the asscciated data. Video preprocecsing, if
any, must be performed on the pattern data. This may include such
miscellaneous functions as determination of line pitch, threshclling of
grey tonés prior to quantizaticn, determination of character helzht and
location within each line, and character isolation and normalizztion.
Firally character recognitior is performed. Fach character is
processed by both a digit processor and an alphabetic character cro-
cessor. FEach of the tiwo rrocessors makes its best guess at the identity
of each character in the aledged address block. For example, the
address 1367 No. Pleasant St., AMHERST, MA 01002 might look like:

BEEAGSE By 01002
AMHERST MA 0100Z

s €

i 5

1387 % )
I%b*% llo Pleasant St

(the hottom line of the envelops is scanred and output first) where +he
top line is the output of the digit processor, the lower line is the
output of the alphabetic processor, and stars(®) are used to inficate
rejections by the respective processors. Note that scme characters may
be recognized as valid characters by both processors. It is also possible
for a character to be rejected by both processors. There are other
codes output by the alphzbetic processor to indicate rejections but give

some idez of the actual character identity; for example, the code "§" is

used to indicate that the processor could rot identify the charzcter but
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"thinks" there is reasonable chance that it could be either an "I" or a
l'“ . "

The classification data is transmitted to the Directory Processor
for use in identifying bin codes. The Directory Processor will be
discussed later. The bin code identifies a location for the letter
sorting machine to deposit mailpieces. The bins correlate one-for-one
with the destinations of mail from the sorting Post Office. Some might
be individual mail routes; some, individual nearby cities; some, sec-

tional centers; and some might be groups of distant states.

6.2.2.2. The Directory Processor

The directory subsystem must process the dual output of the char-
acter recognition processors and determine a bin code. This subsystem
performs several functions. The quantity of context used to verify
correct reading of an address depends upon the amount of detail desired
in the sorting of the mail. If the Directory Processor determires that
the mailpiece is incoming, it is capable of performing ar extrerely
complex set of searches to route the mzilpiece to the correct carrier
route. The directory subsystem uses information such as street lists
and carrier route information to sort the mail. When a letter is
recognized as having a destination in a neerby city kin the same or a
nearby state), the actual lists of city names are used to verify correct

reading of the mailpiece. To sort mail to distant states, little cross
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checking of infornation is neaded to verify sufficiertly the correc<
reading of the address; for example, if the MTU is in New York, who
cares if the street name in some distant city cannot be read correctly.

Although the actuzl algorithms used to search directories are nct
knowvn to this writer, street, city, and state names zrsz generally cocn-
sidered to have teen found (matched) by the subsyster if the nare, &s
read, contains fewer than 20% mismatches froi the correctly spelled
directory name.

There are numerous glitches which must L2 accounted for by such &
subsystem. Letters are often addressed with no rore locator infcrrmztion
than "City," "NYC," or "IIY, NY." Often the bs<tom &ilress line is
"attn" or "attention." Zip Codes may be either concatenated to or

distinct from the state name or "City," etc.

6.3. FURTHLR DEVELCF

'S I THE METHODS CF I:

r.=3RLMS

In this section we presented a method for ceorrelation of city,
state, and Zzip Code data. A trivial correlatien could be cbtainad by
merely concatenating the city name, state nare, and 7ip Code and
treating the string forzmed as an extended word. Howaver, this vould
result in a few intolereble conditions: the average string would be rore

than fifteen characters long; and several strings would have the sanme

meaning, for example, "Amherst, MA 01002," "&mherst, Mass. 01002," and

"Amherst, Massachusetts 01002." There rust be some rore efficient way
to represent these strings without necessarily differentiating ameng

those with the same meaning.



There is a lot of correlative information in the typical "Cizy,
State ZIP" string. Representing the Zip Code digits as dld2dsduds’
each combination of the digits dld2 is, with a few exceptions,
restricted to a particular state. Similarly, given the state nzme and
dldz’ the digits dsd“ds usually refer to a particular city; i.e., given
the information Veity, MA 01002," it is immediately known thaf Yeity" is
“Amherst."

For convenience, the substring dld2 will be referred to as a zip
prefix and the substring dsdqu will be called the zip suffix. The
combination of the state name and the zip prefix will be termed the

state name-zip prefix or SNZP. The combination of the city rame and zip

suffix will be termad the city name-zip suffix of CNZS.

6.3.1. A Simple Extension

In this section the method of binary n-grams is extended to include
the notior of a fixed semantic contextval relationship.

Define a generalized n-gram as an n-gram which is based upon two
related strings or substrings. For example, let us say that the n-gram
Dij/k correlates the i-th and j-th characters of a primary strirgz to the
k-th character of the related string. In the context of this discussicn
the primary string is the city (or Post Office) name and the reléteé

string is the Zip CQde. Thus D correlates the digit d3 of the Zip

u/3

Code to the first and fourth characters of the city neme. 211 of the

n-gram types defined in chapters III ard IV except the non-positicnal
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n-gram can be extended to include this notion.
Substitution errors are detected, located, and corrected as in
chapters III and IV. However, for the sake of consistency, the Pos
s s . = €5 ;
function should be redefined. Define Pos(Dij/k) \1,3,zk} , where z

is used only to indicate that the referenced position is the k-th positiqp
of the Zip Code. All substitution errors are processed as they were in
the previous chapters, regardless of the particular strings which is or
appears to be in error.

The notion may be further extended by 2llowing Di/jk to correlate
the i-th character of the primary string to the j-th and k-th chzracters
of the related string.

Insertion, deletion, merger, and split errors are detected, located,
and correlated as in chapter IV if they occur in the city name. If such
an error occurs in the Zip Code, it will be seen later that <The problems
become more complicated; for the present, we will just insist that the
Zip Code have five.characters so that neither an insertion nor & dele-

tion is possible.
6.3.2. The State Name

Generalized n-grams, as defined in the oreceding subsection, may
also be defined to correlate the state name to the Zip Code, in par-
ticular, the first two digits of the Zip Code.

The state name and the two-digit zip prefix (SNZP) carn ks rrocessed

differently frem the city name-zip suffix (CiiZS) discussed in the
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preceding subsection because, in the reccmmended form, they both have
only two characters. In this form the notion of having an inserticn,
deletion, merger, or split error is a useless concept since a docukble
substitution error is just as easy or difficult to correct. Surpose the
unit "KA 02" is interpreted as "* 02," it does not matter vhat the error
is called; if we are to insist that the "#" represents two characters
(rast) o they nust be either "MA," "RI," or "CT," because only these
states have zips with "02" as a zip prefix.

The state name-zip prefix is different in another respect. The
construct “MA O1" has precisely the same meaning as "Mass. 01" and
"Massachusetts 01." Thus, while all are different lexical forms, they
all have the same semantic interpretation; they are all synonyms for the
same sema2ntic entity, "Western Massachusetts." A practical system must
recognize all of the possible forms. Sirce the longer forms can all be
contextually recognized at least as well as the two-character form, we
shall not consider them other than to say that the system can process
them better than the two-character abbreviation.

Let us define a region 25 a set of state name-zip prefix groups. A
region might be the single semantic unit
{HMA 01} or it might represent the entire state
{MA 01, 02} or all of Kew England

{MA 01,MA 02,RI 02,CT 02,NH 03, etc. , etc.
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6.3.3. Joining The Technigues

Techniques for correlating some of the address information have
been presented. We have shown how birary n-grams may be used to cor-
relate Post Office names to thrce dipits of the Zip Code and the stete
names to two digits of the Zip Code. An algorithm will be provided for
correlating these two sets of strings. As we stated earlier, the state
name may exist in several different forms; a means is needed for repre-
senting the semantics of each of the different forms. The nethod pro-
posed will present a unigue identifier for each set of one or more SNZP
combinations.

Let a set of regions be defined ard assign a unigue identifier, a
number S, to each region. An n-gram triple will relate the region
identifier (formed from the SNZP) to the pair of elements fcrmirng the
CNZS. Define a generalized n-gram which includes thz region identifier
as a binary array D*i/j vhose elements d*i/j(s*,ci,cj) are 1 if and only
if the corresponding irdividual characters C; and Cj co-ozcur in some
CHZS string in the region denoted by S%. For example, suppose that
“"Western lassachusetts” (1$A-01) is encoded as "region 19." Then the
string "Avherst, Mass. 02002" is enccded as "19/Arherst/00Z." Thus,

(19,A,2)=1 while 4 (19,4,i)=0 for i=4,5,6,7, or 8 since these

4173 #1/3
combinations do not occur in "Western lassechusetts."
Detection of errors is the same as that defined earlier. However,

correction of errors is different for the region identifier; that is, if



it is deteccted to be wroung, as a suhstituticn, cerraztion must be
attempted in a different procedure frow that used in the earlier prob-
lenms.

In the next paragraphs we discuss a few strategies for correction.

Suppose the machine reader Cecides that it has read "Arderst, KA
01002." The local context of the string "Arberst" or of the extended
string "Amberst/002" may point out the error as being definitely in
position three of the city name. If this is so, the system will correct
the error or reject the string because correlation is ambiguous
Honever, if the error is not so well localized, e.g., if it is cdeter-
mined to be in either the third position or in the region identifier,
what course should be chosen?

Suppose that the machine reader has reccgnized the string
"Amherst, KA 02002" (the correct Zip Code is 01002) and that the string
"HA 02" is identified as “Region 18" vherzas the correct region is "19."

Hopefully the processor would discover the fault in the extended string
n1]181002/Anherst" with sufficient certainty that it would know that the
error is in the region identifier. Howevew, if it is deternined thzt
the region identifier is in error, what is to te dore. If the error
were to be treated as any other substitution error, the CPP would simply
use the set difference rule: "If it's not 'l8,' it;s one of the

others ~- any one of the others." In this case, that is thes inefficient

way. to do it. There is a hierarchy of alternztives. It is more likely

.. . 2 o L - - - i

]

that "HA 02" is a garbled form of "ML 01" than “UT £&"; the differance

in relative likelihoods should e taken into account.

6.3.4. The Pragnatics cf Procesuing

To incorporate the foregoing hierarchy into a CPP, the filersrchical
decision structure in Figure 6.1 was selected. The SUZP is scanned for
£
apparent errcrs; if no errors are apparent, the correszonding region

identifier is found and the resulting CHZS-region identifier extended
name is transmitted to the CHZSRI processor for scanning. If no errcrs
are apparent, the strirg is accepted as it was origirzlly ingut., IF
errors are apparent, corrvection is first zttempted within the CNIS part
of the stringz. If correction of 2 small number of errors (1l or %) is
possible within the CNZS, the corrzcticn is mede and the string is
output from the CPP. If more than orne correction of <he samsz type of
error, e.g., a double substituticn error, is possible, the string is
rejected as uncorrectable due to ambiguities in correcticm. If no
correction of a small number ¢f errcrs in the CHNZS is possitle, c» if
all attempts at corrcction indicate that the region identifier Ig ths
"position" in error, the region idertifier is rejected and the string is
returned to the SNZP processor for further scanning.

If at first the SNZP processor accepted the SNZP as correct, it

must now determine the set of all possible SI'ZP's which are one sud-

stitution different from the original SN7?. The region identiflers for




o Y o e e oo g [ —

[
[
(L)

input
address

i<«0

SKZP

exi1s

does an
i error yes
correction of

look up
region
identifiers

call CKZS
processor

possible city-
state-zip strings

=1 accept

or correction string

i+4+1
NO
i»>2?
YES
reject
| string
O

Figure 6.1 Decision structure flow diagram.

137

the particular
then transmitted to the CMZLSPRI precessor for correction ¢f possible
errors in the CNZS and selection of the correct rogicn idertifier.
Again, if no correctionz cen be made the string is either currect
or rejected, respectivsly, depending on whether one cr more correciicns

are possible. If correcctionc cannot be radg, the SHZP processor

“

attempts correction of a double error in the criginz) SNZP &xd cutput

e

the appropriate set of region identifiers to the CHZSRI presessor.

s

all this effort fails to find any correcticns, the string is rajested.

6.4, SOiE L¥PLR

Y

The system describad ir the preceding secticn hzs been aimed pri-

=}
n
]
bl
[
«<
n
ot
]
n
0
&
=3
e
-+
e
o]
b
[4]
+h
ot
o
o
|2}
i
‘U
o
£
]
rk
(23
“h
m
]
[H
"9
Q.
4
1]
"
1]
-
]
th
h
11
rt
)
)
“t
rt
1-e
]

eff.rt has been made to resolve zmbipuities in the CULP part of &n
address. For exampic New York City is a multi-coled city (i.e., it has
many [44] Zip Codes). "New York, LY 1001%" cannot be successfully

-

resolved by the syster e

the additional contextual
fore, given that the emphasis is on SNZP recognition, it must yet be
shown that the additional algorithms are necessary to iinprove recog-
nition of the SNZP as well as many ClZS strings.

The model of mail distribution used in these experiments is that

mail to be sorted is distributed among the states as are the destinatic:
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post offices; i.e., states with more post offices hzve more Talil., The
previous experiments in this paper and others have gonerally assume

that all words have cqual probability of occurrence tscause it is easier
to model the associated problem. In this chapter, the city-state-zip
strings will be assumed to be uniformly distributed; this ms2ns that the
multi-coded cities will be represented once for each Zip Colz in the
city. (Thus New York will occur 4t times in the datz base.) Other,
non-milti-coded Post Office names included in the experiments are

represented once.

6.4.1. Region Identification

Several experiments were corducted to determine the correciability
of the single and double substitution errors in the SNZP strings, bcth
with and without the additional context of the CKRZS. A few simplifi-
cations are made here. The first is that all state names are repre-
sented by their recommended two-lettrr abbreviation. Cleariy, if other
names or abbreviations ave used, contextual recognition is even simpler
since all names and all but one non-standard abbreviztion are longer
than two letters; Ohio has the only one letter abbreviation. A4lso, the
region identifiers have been implemented in such a mznner that a sub-
system which uses synonyms would be an easy addition. The second
assumption is that, for these experiments, identification of the last
digits of the Zip Code is of secondary importance; icentification of

regions and city names is more important.

f
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Some prelininary experiments were conducted TO correct single arnd
double substitution errars ir tle SNZP with ro additicnal ceontertual

information; i.c., the first two digits of the Zip Code are correlzted
to the state name but mo CNZS information is used. Only 82% of single
substitution errors and U5% of double substitutisn ervors are unarbig-’
uously corrcctable. With the additional context of a correct CNIS these

rates are raised to 99.1% and 92.0%, respectively; the corresponding

error rates were .19% and 1.00%.

6.4.2. String Identification

A few erperiments verc performed to recogrize typewritten char-
acters (the CAL-U.S. Postzl Service Alphanumeric Character Date 3ase
[CAL, 1971]). The technigues (features, feature selection glgerithe,
Bayes' classirier) used closely paralleled these use2 in prior resezrch
(Fisher, et al., 1974). From this it was determined that the numeric
characters could be recognized with error rates of 2 *c 2-1/2% zrnd
alphabetic characters vith error rates of 3-1/2 to &%, Test daza were
then randomly generated for the following experiments using a éigit
substitution error rate of 2% and an alphabetic substitutien error rate
of 4%; these "roundzd up" error rates wers chosen sO that "large" string

error rates might be obtained from the simulated classifier.

6.4.2.1. A National Data Base

To simulate a sort of cutgoing mail, the list of all first end

second class post offices and their associated Zip Coles was used as a
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dictioncvy; random errors were generated at tho above vates. The
resulting distribution of errors is presented in the first column of The set of n-grams used by ilie CFP censists of cne non-positional
table 6.1. Nearly U4% of the city-state-zip strings have errors in them quadgram, €8 forward-oriented n-grams and $3 backward-oriented n-zrams
backwa 3, N-zgrars.
and most of these strings with errors have only one error. Twenty each of the forward- and backward-oriented n-grams correlated

1oe

only city name positions; 63 correlated Zip suffiz positions to citv

TABLE 6.1
name positions; and 15 correlated city nawme positions to region identi-

RESULTS OF APPLYING CONTEXTUAL POSTPRCCESSIHG
TO A LARGE DATA BASE fiers. Although the total amount of storage recuiraed for all of these

n-grams varies with the number of regions used, the same set of n-grams

As output by As output by ) will be used for each of the experiments of this chaptor.
the classifier the CPP :
Recognition The result of applying our contextual postproceszor to these data
Category Correct Frror Correct Error Reject . .
is presented in the second set of columns of tabls £.1. These rasults
are presented in several different ways beccuse it is the ul<inz<e
Region Identification | 88.79% | 10.21% | 98.92% 0.04% 1.04% ys bee st ase

N design goal of the system which is important. That is, if the system is
Recognition of left

3 digits of Zip Code 81.05 8.95 86.65 0.72 2.62 expected to unambiguously recognize all of the city-stzte-zip informa-
Recognition of left . tion, comparative statistics concerning espected behavior of the PP
4 digits of 2ip Cede 88.16 11.84 o4 .45 1.46 %.07 -

will be found on the bottom line of teble 5.1; if oniy regions must be

Recognition of
Zip Code 85.70 14.30 82.52 2.70 4.78 unambiguously identificd as well as possible the relevent data will be

Recognition of found on the top line of table 6.1. Thus, while it is interesting to

city and region 61.51 38,48 97.20 0.1 2.68

know how the system mey be expected to perform on the toughest formu-
Recognition of city, ’
region, and Zip Code 56.25 43.75 91.12 2.78 6.10 lation of the problem, it is alsc important to note how the systen

behaves when the problem is formulated more realistically.

Notes: 1) There were 17471 city-region-Zip strings in the data base; of . N
these, 12652 were different cities. Fost (89.79%) of the strings output by the simulated classifier had

2) The storage used for the CPP's data base was 4.3 rillion bits. the region identified . B . =
3) Only substitution errcrs wera generated by the simulzted gion identified correctly. Context corrected 82.4% of the 10.21%

classifier.
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strings in error to raise the recogrition rate of 93.92%1, leaving an
error rate of 0.0u%. Recognition of city nomes and regions is improved

from 61.51% to 97.20; that is, the CPP unambiguously corrected $2.7

Ry
[¢]
h

the errors made by the simulated classifier on these strings. Zip Code
recognition was not improved as well; many of the Zip Codes are diffi-
cult to correct because of insufficient contextual information fronm the
multi-coded cities. The Zip error rate of 14.3% was reduced to 2.73.
Overall address recognition is raised from 56.25% to 81.12. Host of the
strings which the CPP fails to recognize are those with ambiguities in

the Zip Code. The difference between city-region recognition and city-

region-Zip recognition is the set of strings which could not be corrected

because of ambiguities in the Zip Code (€8.%7% of 2ll such uncorrectable

errors).

6.4.2.2. Some Statewide Data Bases

To simulate an incoming sort, some smaller experiments were con-
ducteé using data bases which consisted of all’'of the Post 0ffice nanwes
of a single state. The three states chosen for use were: Californie,
Pennsylvania, and New Hampshire. HNew Harpshire was selected because it
is small. California and Pennsylvania were selected because they are
both large. Pennsylvania has a much higher ratio of Pest Office nemes
to city-state-Zip strings (1816/2024 = .20) than does California

(115471750 = .66); thus, since Califorrnia has a higher proportion of

e e e B B B B B

-

e
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expected to be diffcrent for these two siates,
names to city-state-zip strings for llew Hampshire is far higher

(2u8/253 = ,98); however, New Hampshire was selected ecause it is small
and is expected to provide & different view of the €72 teckniguies. The
distribution of errors generated by the simulateé classifier anl the
results of contextual postprocessing these simulated 2ata are presented
in table 6.2.

In this problem it is more important that the enzire Z:5 Coile ke
read properly; the CPP does unambiguously recognize = greater percentage
of Zip Codes. We sce that the recognition rate for Zip Codes is Lar
better for Pennsylvania than for California since Pernsylvania has Tewer
multi-coded cities. llost of the rcjecticns in these cases ars the
strings which contain three or four substitutien errcrs.

At this point the system is able to correctly reosgnize about 328
of the strings processsd. In Letter Sorting Machires which use pectle
to specify bin codes, the system gozl is 95% correct sorts. The humzns
make, on the average, 2% error. The mechanical parIs of ths s:rtiﬁg
machine makes another 2% error.) Thus, the CPP perfornznce is aspromi-
mately equal to that of trained humans. If the CPP nad the postiz

directory available to it, it would be able to do even betier.

6.4.3. Other Error Tispes

In the preceding experiments of this chapter, chly stistituticn
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generating processes, no erperimants were poriornad in which &)l tyros

of errors appearcd. However, cxperiments wers perfor::d to dziernine
whether or not the CPP could effectively process insertion and f:zletion
errors. In the California data base, a rardomly seliccted deleticen error
was generated in each city name; 1706 (27.12%) were unznkigususly
corrected. The remaining tl4 (2.51%) were rejected as uncorrecta:le Cue
to ambiguities in the correction of the city name; thus, in any recog-
nition category which is not concerned with the precise recognition of
the city name, accuracy would have been 100%. Vhen randomly inssrted
errors were generated, only 5 of the 1750 insertion errors ccull not be
corrected; again, however, all of the ambiguities were in the ci<r

names.

6.5. CONCLUSION

A discussion of the postal sorting probliem was presented. I+ was
shown that the problem may be seen from several points of view: zthére
is a high level sorting of the mail in which mail is routed to large
regions of the country; a lower level sort in vwhich rmail is rcocuted o
segments of these regions, (the segments are of town to large-rart-of-a-
city size); and a lowest level scrt in which the mail is routed to
individual mailboxes. It would be desirable to use rachines to read ard
sort mail at least at the highest two levels because of the eccnemies

However, optical readers do make errors. Contextual post processing
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techniques were propesed to firnd and corrzcet these errors. The solu-
tions proposed and execmined in this chapter vere shoun to perfora very
well on the two highest levéls. The reader sinmulated made errors on
almost half of the strings prozessed. The CP? then corrected €0 to 95%
of the strings in error (raising the correcticn rates to the 91 to ©2
range and reducing error rates to .04 to 3%), cepending upcn the panr-
ticular experiment design and goals. No effort wac made to perform the
lovest level sort since greater amounts of coantextual informaticna must
be used to resolve ambiguities at this low level.

The proposed design for a CPP used several gencralizations of the
methods of binary n-grams. The strings correlated by n-grams were
defined to include an additional component, a segment of the related ZIp
,Code; both city naies and state names were correlated to segments of Zip
Codes. The city name-Zip-suffix (ClZS) strings were also correlated to

a region identifier.
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CHAPTLR VII

CONCLUSTION
7.21.  SUMMARY

It has often beern shovm thet character rzcogri<ion is & difficult
problem. Humans and machines both have difficulty recognizing isolated
characters; however, humans seldom recad characters without regard to
their context. Several attempts have been made to use context in the
mechanical recognition of text. Many of them achieved significant
improvements in their ability to recognize text.

In this thesis rew methods of binary n-grams have been 2pplied *o
the recognition of words. The new methods improve uzcn prior reseerch
with binary n-grams since they better facilitate the detection and
correction of errors in words of different lengths. The additional
types of n-grams developed in this thesis consider ths letters, pairs of
letters, and triples of letters in the context of their distance from
either, or both, ends of words. They also facilitate the de<ection and
correction of additiornal types of errors: thet is, imserticns, Cele-
tions, mergers, and splits as well as substitutions. The algorithms are
relatively effective when processing these types of errors even though

no prior information is available to the contextual ccstprocessor con-

cerning whether the error is ar insertion, deletion, merger, or split,
Chapter V presents the results of severzl experimenis tc deternine

the effectiveness of these new algorithms. For a distionary of 10500

pL:
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threc- to sixtcen-letter wvords, it was shcwn that the algorizhms ar
very effective for substitutions, insertions, and splits; corracrion was
over 80% for words with these types of errors. WYords with a Zeletion or
a merger error were corrected at least 50% of the tire. Experiments
vere alsc performed to deseribe the effectivencss of the CP? algorithrs
for different sizes of dicticnaries, different volumes of contextuzl
information, and different mixes of n-gram types. The results citel
above were for a dictionary of 10000 words; it was also shown that
dramatically better results may be obtained vhen a srmzller dictionary is
used.

Chapter VI described a potential application of context in the
recognition of text, namely used in a Post Office letter sorzing
machine. This is an ideal problem Comain for appliceziorn of contauxt.
The format of name-street adlress-city-state-Zip Codz providss a con-
veniently fixed sentential syntaz with a known (though large) se: of
elements for each component.

A specific solution to the use of context in the letter sorting
problem is proposed. The solution adapts the methods and algoritizs of
binary n-grams to interrelate the city, state, and Zip Ccde comscnents,
The last three digits of the Zip Code, the Zip suffix, is correlztel to
city names in a manner which forms an extended word from the city neme
and the Zip suffix. Similarly, the state namc and the Zip prefix (the

first two digits of the Zip Code) arc also linked to forn another
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extended word. The earlier cefinitiens of binary n-rrims are modified
to apply them to each of these extended words.

Sets of state rame-Zip prefixes (SHZP's) are Cefined as reglonc.
After detecting, locating, and correcting any errors in the SNIP, the
region identifier wvhich is identificé by the SNZP ic <hen correlatel to
the city name-Zip suffix (CNZS). Additional n-gram definitions are
presented to correlate the region identifier to the CiiZS. Vhen an SINZP
is found to be in error, there may be more than one region as alter-
native corrections; the algorithms developed resolve this tyse cf
ambiguity as well.

Experiments were performed to examine the effectiveness of the
generalized algorithms; it was shown that the algorithms significantly
improved the performance of the simulated pattern rezsgniticn syster.
with a national data base of over 12000 cities ard 17900 city-state-Zip
combinations, 43% of the strings output by the simulated classifier had
errors in them; 80% of these errors were corrected, lezving & firal,
system error rate of 2.8% with 6.1% rejections. liost of the 6.1% which
were rejected were ambiguities due to cities which ccntained nore than
one Zip Code; there was insufficient context to correct these Zip Ccles.
However, it might be noted that a letter sorting machire in lew York is
not concerned with correctly recognizing the precise zone of Los Angeles
as long as it can send the mailpiece to California. #ith this in mind

numerous other analyses of the CPP's effectivencss were presented. The

same simulated classificr coummitted errors on only 38% of the elzy-
state-region strings which it processed; 98% of these errors were
corrected, leaving a finel error rate of 0.11% withrz.sa% rejections.

The most crude sort desired by the Postal Service is by states (or
regions). Ten percent of the strirgs cutput by the clessifier hal
errors in the SNZP. Using all of the city-state-Zip informzticn,
whether correct or rot, the CPP reduced the SNZP errcr rate to .2-%;
1.04% of the strings were rejected, mostly because they had too many
errors.

Several experiments were also performed to determine the eflec-
tiveness of the algorithms on some state-wide data bases; the Pest
Office names and Zip Cecdes from Pennsylveria, California, end MNew
Hampshire were used. In the Pennsylvania experiment, the classifier
again output 45% of the strings (city-state-Zip) with errors in <hem;

this error ratio wes subsequently reduced to .u%.

7.2. SUSGESTIONS rOR FURTHER FRSTARCH

7.2.1. Ilusertions vs. Deleticn
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In section 5.3.1 it was seen that insertion errcrs are sign
cantly easier to detect and correct then are deletion errors (3% of
insertions are detected and 92% are corrected, versus only 75% and 57%,
respectively, for deletions). Split errors are also easier to cdatect
and correct than merger errors (97 and 81% versus 65 and 52%, recpec-

tively). These results suggest that a patterr recognition erstan should
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probably be geared to favor the production of insertion or split errors
. either "&" or "E," the posi-postprocesser should havz a feellity to
instead of deletions or mergers. Of course, some heuristics would heve
determine the relative likelihoods P( "W™ |"VI" ) and
to be employed so that the system would not blindly classify 21l avail-
P( “E" | "VI" ) through a priori knoulelge of such errors anc/or through

able noise as characters to produce words with many insertion errors.

reclassification of the pattern. (Reclassification of the tzttern with
Also, any combination of errors is less desirable than one or no errors.

information about the prior misclassification forms z feedlack loop o
Determination of a set of parameters which would lead to an optimum

the classifier.)
balance of errors is a topic' for further research.

7.2.3. Further Develcoment of Contextual Algorithms

7.2.2. Further Postprocessing

In chapter VI, it was shown that the recognitic: of state nanes
The research of Hanson, Riseman, and Fisher (1975) used a decision
could be improved by using the left two digits of the Zip Ccle. It was
mechanism to resolve ambiguities output by the CPP. Siiace the pattern
also shown that use of the city name and the remaindsr of the Zip Coile
recognition system they simulated made only substitution errors, thsz
’ could further improve a machire's ability to recognize the state nare
disambiguator only had to mzke some relatively easy cecisions: letter
and the first two digits of the Zip Code, even if there are srrors in
Ci in position p; versus letter Cj in position p:.l (where p; may equal
the city name., However, little could be done to detect or correct
pj); letters C;

s
ot

and ¢ in positions Py and p; versus another pair of
1 2 1 2 errors in the rightmost digits of the Zip Code of a multi-csled cityy
letters in an other pair of positions; etc. .
was shown that this ircapacity rade little cifferencc if the mail wzs
Wle have defined a more comprehensive problem to deal with the
s being sorted as outgoing mail to regicms.
additional complexitiss due to the presence of additicnal types of
After reviewing some of thc strings output by the CPP In the
errors; the associated disambiguator must be able to drocess these
tes experiments of chapter VI, we would conjectiure that Z1p Ccle recognition
additional types of errors. It must have a priori knowledge of the
. for the national data base would be 98% (instead of S1) if the 2ips of
relative likelihoods of all insertions, deletions, splits, and mergers.
’ the multi-coded cities were not rejected because of a=biguizies. 1If a
It should also have a facility for merging split characters or splitting
dictionary of all of the necessary city rames and their assasciated 2ip
merged characters in order to classify the result. That is, if the CPP
Codes were used to resolve ambiguities and assist in correction, abocut
should claim that the characters which were classified as "VI" should be
08.5% of the addresses would have been read correctly with ztout ,2%
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error and 1.3% rejections (negiecting 7ip Zlcie arbiguities). With
additional postproéessing (as suggested irn section 7.2.2) this could be
further improved. If correction of additional error *ypes such as
triple substitutions were to be attempted, these error and reject rates

would be furthor reduced.

Let us briefly describe a way to sort mail to the various Zip-Coded
areas of a multi-coded city. Define each Zip-Coded area of a multi-
coded city to be a region. Then form an extended word from the street
address. Using the n-gram techniques defined in chapter VI, the region
jdentifier (city zone) may be correlated to the extendad word (street
adéress) to detect and correct errors in the street address. This
adaptation of the algorithms could be used both to resolve arbiguities

in the low order digits of the Zip Code and to route mail within cities.

7.2.4 Other Application Domains

The algerithms presented in this thesis have beer applied to the
detection and correction of various types of errors in secuences of
alphabetic characters. A similar but more difficult problen is the
acoustical recognition of words im speech recognition. Although there
may be many ways to formulate the problem, one can tkink of speech units
as phonemes and sequences of phonemes as words. Eeéhanical processing
of these sequences suffers from many similer rroblems such as azbigu-

ities, substitution errors, insertions, deletions, rergers, and splits.

The binary n-gran teclmiigues developed hers may provide & reasonable

solution to the problem of recognizing linmited vocabulary speech.
Ehrich (1973) applied binary n-gress to the problem of dynanically
segmenting handwritten text. The additional types of n-grais developed
in this thesis may be adapted to the ¢ynenic segmentaticn algorithms for
use in speech arnd script recegnition. Because these problems are so
difficult, the improvement obtained through the use cf contextual

methods may be even rors dramatic than the improvemernt obtained in the

problems presented in this thesis.
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APPENDIX A
DETECTION, LOCATION, AND CORRECTION

Of DOUBLY DELETION ERRORS

This appendix outlines ths techniques rsguired for detecting,
locating, and correcting double deletion crrors in werds. The intent of
the presentation is to provide the reader with a grasp for the complex-
ity of detecting, locating, and correcting multiple errors of the

insertion-deletion-merger-split veriety.

N

If X=xlx2...xm is a word with deletion errors ir positions » &n

(r q), there exist letters y and y' and a dictionary word Y such that

c

= . ' L . \ 3 = e ' .---.
Y xl...xr_l y xr. xq_1 y xq xm Note that Y 3 ol Yy yr kn
is also possible (for r=q). Given a set of n grams &, the following
statements are true:

a) for each D ¢ & such that D(¥)=0, r

1A

max(Pos(D))
b) for each B ¢ © such that B(2)=0, q = min(Pos(B))
c) for each C' £ & such that C'(¥)=0 r <= max(Pos(C'))

and r > nin(Pos(C'))

or q < max(Pos(C'))

1A

and ¢ >min(Pos(C'))
d) for each E £ & such that E(¥)=0, 1 = max(Posf(Z))
or q > mir(Posb(E))
The argurients presented in chapter IV for the single deletion error must

be reworded here:
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a) As in chapter IV, if Dijk(x)=0, an error must precade k; since
r < q, it must be that r= k. Unfortunately, ncthing is implied con-
cerning position q; i.e., either of the conditions q < k or q = k could
be true. Thus, r¢ S8 = /\v;l,max(Pos(D))].

D(r=0

b) Similarly, if Bijk(x)=0, q > m+l-k and no information is pro-
vided concerning position r. Thus,
q £ S = N [min(Pos(D)),m+1].

Bty
B(X)=0

¢) At least one deletion must be included among the set of posi-
tions indicated by any rejecting non-positional n-gram; however, this
tells us little about the particular locations if there are several such
rejecting n-grams. Suppose, that C'G(X)=0 and c'7(x)=o and thet C' is a
non-positional trigram: if q (or r) is in position 6§ nothing is krown
about r (respectively, q); if, however, r is 7, ther q must be & or 9.
For position location we shall resort to the tabular rethod used in
chapter III to locate errors in words with two substitution errors.

d) At least one of the deletions must be armong the two sets of
positions indicated by an ends-oriented n-gram; however, just as the
ends-oriented n-grams presentéd a few problems ir localizing single
deletion errors, they also are difficult to use fof double deletion
errors. The positions q and r will be determined in a manner similar to
that used to find pairs of positions vhich might contain doulle sub-

stitution errors in section 3.3.3.

L

1€3

Suppose the folloving n-pravs have redectsd

X=x,% cee¥gl DlG’ n. B 23 ¢ C'u’ C’s, (C ic a ron-positiznzl

1%2 37°

trigram), E

T
22’ a2

14 and 223. The corresponding chart is presented in t2lle

A.l.

THELT A.1
EXtKPLE OF FIXING THE POSITION OF

DOURLE DELETION FRRCRS VIA n-GRAMS

1 2 3 4 5 6 7
DlG and D37 ¢ ¥ i Q] ?
1 1] 2]
D23 and Blu
' o X
c 2 114
'
C 4 .
1
¢
Elu ks % % B %
}:23 § & [ £

Possibilities for two deletion errcrs {3,5’ and {u,s .

Note that it is possible to represent the forward-oriented and backwari-
oriented n-gram information each on single lines since, for exa~jle, the
forward-oricnted n-gram with the least greatest position (316) irplies
all of the positions which are indicated by any of the others; sini-

larly, 523 is an implicant of R

314. Each of the rejecting non-positicnal
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n-grams and ends-oriented n-grams must be placed on lines of their cun. APPENDIY B

The only pairs of positions which could contain deletion errors are ON THE LENGTH OF WORDS IF THE DICTIORARY

3.6 ana .8 .

Correction is attempted for each of these pairs of positions by

The intent of this appendix is to provide a comparison of the

lengths of the words in the word lists of chapter V to the lengths of

"stretching" out the word X and attempting to find letters which will .
words in various lists of English words. The distributions cf the

fit into the resulting gaps. (In the above example, the gaps will te in . .
lengths of the words in the four dictionaries used in chapter V are

positions 3 and 7 or 4 and 7, respectively, for the sets iS,é} arnd

{s.6} ).

presented in table B.l. Since the research in chapter V assumes all
strings to be equally likely, the mean length of the words in each of
these dictionaries is 8.5 letters.

The length of the avarage word in a iist of "most common words"
depends heavily upon the size of the word list. Thorndike and Lorge
(1944) published several word lists; one, a list of the thousand most
common words of "standard English reading matter," had an average word
length of 5.01 characters. Roberts (1965) used a list of 10065 words
whose average length was 7.05 characters. Kufera and Francis (1967)
published a corpus of 50406 different lexical units (most of which were
words) with an average length of 8.13 letters.

In text, however, many words occur more often than others and the
length of the average vord is around 4.5 characters. Pratt (1842) cites
the length qf the average English word as 4.5 letters. Kuvera and
Francis (1967) found an average word length of 4,74 characters in their
total corpus of 1,014,232 lexical units (of which there were only 50406

different lexical units).
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TABLE B.l
. PO APPENDIX C
DISTRIBUTION OF WORDS BY LEEGTH IN
ABOUT THE INPLEMENTATION
THE FOUR SUBDICTIONARIES
c.1 INTROBUCTION
In this appendix we describe a few of the methodologies usel in the
number of words
word in dictionary programs vhich simulated the proposed contextual postprocessors. An
length 1000 5000 10000 19196
important consideration of the CPP is the storage management strategy
3 20 27 55 107 employed. The n-grams used in chapter VI of this thesis differed from
y 3y 176 352 676 earlier n-grams in that they were of several different sizes; a variablé
5 76 397 795 1526 size array structure was used to implement this feature. The descrip-
6 136 707 1415 2716 tions of forward-oriented, backward-oriented, and ends-oriented n-grems
7 14 742 1479 2835 were fairly complicated in their used of arbitrary subscripts. The
8 133 697 1393 2675 implementatior of this important feature is described in sectior C.3.
9 126 659 1317 2528 An efficient search structure was needed to facilitate the finding of
10 109 566 1131 2171 the set of all n-grams vhich concerned a particular position; the
11 78 %05 810 1554 algorithm employed is described in section C.4. In the final section of
12 54 283 567 1088 this appendix we describe the algorithm used to implement the bit
13 33 173 347 666 vectors which were continually "anded" with rows and columns of >it
i 20 88 177 340 vecters from the n-grams.
15 20 58 117 - 226 )
c.2 The Variable Sized Bit Arrays
16 20 22 45 88

The n-grams which were used in chapter VI were of mary different

sizes. These arrays were implemented by building arrays of dope vectors.
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Each n-gram's dope vector contains six elements: a pointer to the
logical beginning of the n-gram array; the first two Zimensicns of the
n-gram; and the position indices for vhich the n-grar (trigran) is to be
used. Thus, if the n-gram element G(i,3,k) is to be referenced and G's
dope vector contzins the elements (4,B,C,D,E,F), the n-gram elenznt
(bit) 6(i,j,k) is found by computing

(k*C+j)*B + 1 + A .
The same formulation is used regerdless of the ranges of i, j, and kj
that is, if the first index of G rcfers to digits, 1= i=s 1) (11
represents a reject character), etc.

The alert reader might note that the usual (FORTRAN) formulation of

the above is

((k-1)*C+j-1)¥*B + (i-1) + A’
where A' is the physical origin of the n-gram G. However, if we let
A = A' -B%C -B -1, the logical origin of the array is obtained arnd
millions of subtractions are avoided. {Cn the Cyber 70/74% 2.5 million

subtractions only require one second so that the difference is moot

anyway. )

c.3 String Representation

A 34 position vector was used to correlate CNZS with a region
jdentifier. The 2ip suffix was placed in positions 1, 2, and 3; the
region identifier was placed in position 34; the city name started in

position 7; and blanks were filled into the remaining locations. In

171

this form the string was processed by both forward-oriented n-gracs and
non-positional n-grams. In this manner the general, forward-vriented

n-gram D 30 which is to correlate positions 2 and 5 of the city rame

25/

to position 3 of the Zip suffix, is actually represented as 93,8,11 in
the terminology of chapters III and IV. The reason for padding at leazst
three blanks around the city rame is that the non-positional quelgran
can be generally applied to the city name without making exceptions for
the ends of the word.

To implement backward-oriented n-grams without an incredible amount
of bookkeeping to subtract indices from the length of words (plus cne)
and to keep the code as similar as possible, the strings implenente’ hal
the same format as those above except that the city name is spelled
backwards starting in position 7. Thus, 325/3, vhich is to correlate
positions m-2 and m-5 of the m-letter city name and position 3 of the
Zip suffix, can be more simply denoted as 3'3,8,11 within the progran.
(B' is used to denéte an altering of subscript notations.)

To implement the ends-oriented n-grams, in the contextuel post-
processor of chapter VI (even though the experimenés did not use the
implementation), the Zip suffix was placed into the first three posi-
tions of a 14 element string; the first five characters of the city name
were placed into positions 4 through 8; the last five characters were
placed into positions 9 through 13; and the region identifier was placed

into position l4. Ilote that a name less thar 10 characters lcrg will
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have some characters in two pesitions and that this ancmaly must be

considered when attempting to correct errors in these positions.

C.h4 Lists of n-Gram Indices

To facilitate the execution of many of the algorithms, numerous
list structures were built solely for answering the questions, "Which
n-grams use position i?" or, "Which n-grams use positions i and 32"

The trade-off here is the amount of time used to search the list of dope
vectors for the desired indices versus the amount of storage required to
contain the necessary pointers and counters. It is probably worth
expending the storage since there were rany cases in vhich no n-gram of
some type referred to a particular position of some word. For example,
if the greatest forward-orienteé index implemented is 10 (or 16 by

section C.3) any sixteen letter word has six positions vwhich are

irrelevant to the entire set of forward-criented n-grams.

c.5 The Linked-l.ist Bit Vector

In chapter V a few desirable methods of implementing storage for.
n-grams were discussed. Unfortunately, such a volume of storage was not
available at the time of this writing. A more storage-conservative
algorithm had to be designed. That is, we were unable to implement a
system vhich could always respond in one memory cycle with a vector of
26 bits. Ve could have simulated the desired strategy but the cgst of

fetching one bit was so high that 26 repetitions of the fetch on the
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Cyber 70/74% would still have required arourd 250 micro-seconds,
Alternately, a linked list was implemented. The list consisted of
a counter of the number of non-zero elements in the vector, a pointer to
the first non-zero element, and one pointer for eack "non-zero" element
in the list. Then, to "and" the vector with the desired 26-bit vector,
one merely f.tches the necessary elements of the 26-bit vecter., (An
element of the 26-bit vector is necessary if the corresponding element
of the linked list is "non-zero.") Then, if the fetched bit is zerc,
the corresponding linked list element is deleted and the counter is
decremented. Of course, the counter of non-zero elemants is redundant
since an empty list can always Le represented by a "null" pointer; but
the counter provides other bookkeeping routines with information they

need.
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