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ABSTRACT
Network Models of Habituation
(Seprember 1976)

James C. Stanley, B.A., Purdue University
M.S., Stanford University, Ph.D., University of Massachusetts

Directed by: Professor William L. Kilmer

How nervous tissues mechanize behavioral plasticities in animals
is for the most part unkown. A number of theoretical models of plas-
ticity have been presented that seek to explore the link between
neural éctivity and behavior. In order to be relevant, such studies
require a detailed specification of the behavioral aspects of the
plasticity to be modeled, together with constraints on the possible

circuit and synaptic effects that underlie the observed plasticity.

Habituation is a well-defined fé}m of plasticity that has been
studied at both the physiological and behavioral levels in a wide
variety of organisms. Habituation 1s defined as a reversible decre-
ment of response due to repeated stimulation. A more specific oper-
ational definition consisting of nine detailed characteristics of
habituation is due to Thompson and Spencer. The wealth of data con-
cerning habituation and its continued interest to experimenters make
this form of plasticity an ideal subject for relevant theoretical
modeling. In this dissertatidn. I present two sets of analytical
models dealing with networks that exhibit habituation using simple

synaptic modification rules.
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A number of general theories of habituation exist that can

serve as frameworks for the construction of circuit-level models.
The most widely-accepted of these theories are the two-process theory
(TPT) of Groves and Thompson and Sokolov's stimulus model theory
(SMT). The SMT deals with complicated responses of complex systems,
and has not been developed in great enough detail to allow relevant
circuit-level modeling to proceed. The TPT has been expressed from
its Inception in terms of the actions of cells and synapses, and pro-
vides a sound basis for mathematical and computer modeling. Thompson
and co-workers have elaborated the TPT to include explanations of a
variety of the characteristics of habituation. Analytical wodeling

enables these explanations to be checked in detail.

In the first part of the dissertation, I describe a circuit
model based on a circuit put forth by Groves and Thompson. In my
model, synaptic decrement and facilitation governed by simple dif-
ferential equations driven by presynaptic activity realize the pro-
cesses of central habituation and sensitization. I show how this
system can account for the affects on habituation of stimulus inten-
sity and frequency. Generalization of habituation and the long-
term and below-zero effects are dealt with through simple extensions
of this wmodel. The model is further elaborated in a statistical
treatment of the input-output characteristics of a population of
cells with thresholds. It is shown how two forms of experimentally
‘observed stimulus intensity effect can arise in such a system. To-
gether, these results give detailed support for the TPT and supply

the experimenter with tools that will allow him to investigate par-

vig
ticular forms of synaptic plasticity that might underlie habituation. *
One characteristic of habituation whose underlying‘mechanlsm
has not been dealt with in detail in the TPT is temporal condition-
ing. The TPT and the SMT deal in somewhat similar terms wich this
characteristic. Each theory posits that an organism constructs a
model of the temporal characteristics of a regularly repeated stimu-
lus. The model is then used to sensitize the organism to the stimu-
lus or to alterations of the stimulus. Plausible circuit models of
this phenomenon have not been offered by proponents of either theory

of habituation.

The work of Vinogradova and her colleagues suggests that the
hippocampus is a brain region in which such temporal wmodeling may
occur. The hippocampus has been impiica:ed in learning and xemory,
and has been shown to display plasticity at the levels of unit ac-
tivity and synaptic operation. Accordingly, in the second part of
this dissertation, I present a temporal sequence memory network
based on the known structure of the dentate gyrus portion of the
hippocampal complex. 'This model network is so designed that once
it has been sufficiently exposed to a regularly repeated sequence
of inputs, it can repeat that sequence with the proper timing when
cued by an initial portion of the sequence. The network cmploys
traveling waves of activity to generate a dynamic representation of
the stimulus that codes both the set of cells excited by the input
and the interval that has elapsed since the stimulation. Represen-

tations are linked by a process of association to allow recall to
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occur, Simulation studies are presented which elucidate the network's
storage and recall capabilities. This network can be used as part
of an habituation sy#tgm exhibiting temporal conditioning of the form

required by either the SMT or the TPT.
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CHAPTER 1

HABITUATION: MODELS AND THEORIES

Introduction

One of the most intriguing aspects of animal behavior is ics
plasticity. Organisms must constantly adapt themselves to a chang-
ing environment in order to survive. Behavioral plasticity is
studied by a variety of disciplines and at a number of levels.

Some psychologists study overt behavior in order to characterize
learning and other forms of plasticity at phenomerological levels.
Psychologists and physiologists also deal with the neural sub-
strates of behavior in order to identify changes in the nervous

systen that lead to changes of response.

The notion that mathematics can be applied to the biological
sclences has led to a host of theoretical investigations into plas-
ticity that seek to complement and extend the experimental studies.
Some theoretical models deal with association learning and habitu-
ation with little regard for direct relevance to biological studies
(Amari, 1972; Andersen, 1972; Kohonen, 1974; Nilsson, 1965). These
models explore the possibilities inherent in particular circuit
anatomies or in given forms of plasticity. They also serve to ex-
tend the repertoire of mathematical and computer tools avallable to
the modeler. The extension of modeling methods is particularly
important, since interesting models often involve nonlinear or
probabilistic elements that are difficult to analyse. Studies of

the sort mentioned above can help to develop concepts to guide

modeling at a level closer to experimental data. More concrete
models are aimed at an understanding of a body of data pertaining
to a particular system, phenomenon, or mechanism (Kilmer and Olin-
ski, 1974; Marr, 1970, 1971; Wigstrom, 1974; Uttley, 1975; Hebb,

1949).

In some of the studies mentioned above, intuitive arguments
are given for the ways the models function. Other models, however,
are described using mathematical analysis or computer simulation.
The analytical approach to theories and models of physiological
systems has several advantages. Complex modeirs are difficult to
understand on an intuitive basis, and even in simple models, fac-
tors can combine in unexpected ways to yield unforseen effects.
Mathematics and computer simulations act in these cases as active
bookkeeping devices that take all factors properly into account.
The discipline necessarily invoived in turning the intuitive be-
ginnings of a theory into a rigorous mathematical system or a com-
puter program can élso uncover hidden assumptions and inconsisten-
cles in the theory. For example, it may be found that no range of
parameters exists within which the model operates as desired, forc-

ing it to be revised or rejected.

Analytical modeling can make three main contributions to ;hc-
ories and models that do what intuition says they should. First,
ranges of parameters can be found within which a model behaves
properly. Knowledge of these parameter ranges has a nuomber of

consequences for verification of the wodel. 1f the critical para-



meter ranges are too narrow, the model might be called into ques-
tion as being unrealistic. Modcl parameter values can be compared
with experimentally determined values and the model can be rejected
if the measured values fall outside the model's workable range.
Analysis might also predict that unmeasured parameters must fall
within particular ranges. The values of chose parameters can then

be sought experimentally to verify the model.

Secondly, analytical models allow direct, quantitative compar-
ison ofldiffcrcnt explanations of a given phenomenon. Models that
are found to require different parameter values can be differenti-
ated experimentally on that account. Finally, experiments can eas-
ily be performed on a model in order to generate pradictions that

support or refute the theory upon which the mcdel is based.

In order to be relevant to a course of experimentation, ana-
lytical modeling must be guided and constrained by experimental
data. Models less tied to experimental results can show what be-
haviors are possible in given anatomies employing particular plas-
tic mechanisms, but such models may be of use primarily in extend-
ing the available catalog of modeling techaiques, as discussed
above. The work of modeling begins with the casting of circuit
operation and the charac:erisgics of circuit elements intc forms
amenable to mathematical analysis and computer simulation. The
forms chosen must reflect the available data and the kinds of meas-
urezents that can reasonably be made on the system being modeled.

The 'use of imaginary or inaccessable variables may lead to an elie-

gant theory, but its elegance is likely ncver to be tarnished by
experimental validation. As discussed above, ‘the operaticn of a
relevant analytical model should be governed by parameters chgt
allow it to be testecd against other models and against the physic-

logical system in qucstion.

A useful model of plasticity thercfore requires data on a nuti-
ber of levels. First, a detailed description of the characteristics
of the observed plasticity is necessary to supply criteria against
which to judge a mogel. Second, reasonable constraints rwust be
given for the circuit anatonies and plastic mechanisms thae may
underlie the observed changes of response. Within these constraints,
the modeler must develop a parsimonious mathematical or computer
description of the decired phenomenon. This description should tell
how various characteristics of the modeled plasticity arise and how
they depend on the characteristics of the underlying circuits and
circult elements. As above, the model should be testable in terms

of predictions concerning parameter ranges and untried cxperizents.

One form of plasiici:y that has been widely studied at both
the behavioral and the physiologicalllevcls is habituation. Habic-
uation is definced as a reversible decrement of response due. to re-
peated stimulation (Horn, 1970). The many organisms and [-repara-
tions that display habituation have made this phenomenon especially
interescting to workers in physiology and psychology. The detailed
definition of habituation on the behavioral level and the wealth

of data concerning its physiological underpinnings give ti:e modeler



the guidelines and constraints necessary for the construction of
relevant models. These models can be used to guide further experi-
ments into the nature of habituation and can also illustrate and

extend the current repertoire of modeling techniques.

In what follows, I present two classes of network models of
habituation. In each case it is seen how simple synaptic modifica-

tion rules, together with reasonable circuit anatomies, can be

made to realize some of the detailed characteristics of habituation.

Analytical and computer investigations of these models lead to ex-
planations of experimental results and to testable predictions for
furcher experimeats. In the rest of this chapter, I first discuss
data concerning the physiology of habituation, then discuss two
major habituation theories. The first of these theories, the two-
process theory of Groves and Thompson (1970), forms the basis of
network models presented in Chapters IIl and IV. In Chapter V, 1
present a memory model that may be used within the framework of
either general theory to realize the characteristic of temporal

conditioning.

The Physiology of Habituation

Habituation to more or less natural stimulation is displayed
by’a wide variety of organisms. The earthworm exhibits a defense
response to vibration that involves contracting its body and hook-
ing its tail. Upon repeated stimulation, the body contraction

rapidly wanes, while the tail hook disappears more slowly (Gavdner,

6
1968, cited in Wyers, et. al., 1973). In the aquatic snail Aplysia,
a gil11 withdrawal response may be elicited by stimulation of the
gill mantle or sip£on with jets of sea water (Kandel, Castellucci,
Pinsker and Kupfermann, 1970). Upon repcated stimulation, the gill
j6 withdrawn less and remains withdrawn for shorter periods of time.
The spider Uloborus responds to stimulation of its web with a vi-
brating needle by turning toward the vibrating strand, then running
along it to the point of stimulation (Szlep, 1964). 1f on each
trial che needle is removed before the spider reaches it, repeated
trials lead first to a cessation of the running, then to cessaction
of the turning. Human beings, when exposed to low or moderate in-
tensity stimulation display an orienting response described by So-
kolov (1961) as a complex of changes of the autonomic nervous sys-
tem directed toward heightened perception. After a few presenta=
tions of a nonsignificant stimulus, many components of this response

wane and drop out.

While organisms from earthworm to wan show response decrements
to repeated stinulation, not every decrement is an Instance of ha-
bictuation. Habituation must be differentiated from sensory and
motor fatigue or accommodation. An habituated response may be
elicited by a stimulus sufficiently different from the habituating
stimulus, ruling out effector fatigue as cthe basis of the decre-
ment. Brief presentation cf a novel stimulus may result in renew-
ed responsc to an habituated stimulus, ruling out sensory fatigue
as the cause of habituation. This effect is known as dishabitua-

tion, and goes hand in hand with habituation itself. Dishabituva-
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tion has been demonstrated in all of the organisms referred to above.
The specificity of habituation to the habituating stimulus and to
similar etimuli, and the presence of dishabituation, serve to dif-
ferentiate between true habituation and fatigue or accommodation

effects.

Habituation is of obvious use to the behaving organism. In

. shutting out the effects of repeated, nonsignificant stimuli, the

organism is more able to cope with important stimuli. At the same
time, the ability to dishabictuate allows the organism to respond to
a hitherto insignificant stimulus suddenly made significant by a

change in the stimulus itself or in the stimulus context.

Given the variety of organisms that display habituatiom, it
should be no surprise that the charaé:eristics of habictuation have
been studied in detail. .Thesé studies were brought together by
Thompson and Spencer (1966) in an operational definition of habitu-

ation consisting of the following nine parts:

1. Given that a stimulus elicits a response, repeated stimulation

lends to decreased response.

This characteristic 1s n;turally the backbone of the definition
of habituation (though the defiﬂicion applies to invertebrates, as
well)., Figure 1.1 illustrates fesponse decrement in th; case of
the flexion reflex of the spinal cat (Thompson and Spencer, 1966).

As stimulation proceeds, the response decrecases with a negative ex-

1 1
] IG' 24 32 40 498 56 64 72 B0 B8 96 104 U2 120 128

Figure 1.1 Response decrement of flexion reflex of spinal cat (Thomp-

son and Spencer, 1966). Abscissa is marked in terms of
percentage of conirol response, ordinatc in minutes. At
arrow, habituation stimuli ceased and recovery test stimuli

began. Reprinted with the permission of the authar and pub-

lisher.
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ponential form. Note that the respense does not fall smoothly, but
is quite variable. In order to smooth the habituation curves and
make the decrement more apparent, responses are often averaged over
several trials and curves are plotted glving the average in each

block of trials.

The response in Figure 1.1 is measured in terms of percentage
of a control response taken before habituation training is started.
For inputs spaced at great-enough intervals the response ‘remains
constant, and thus can serve as a level with which the response
during habituation training can be compared. In using a relative
response mcasure; individual vailations in response are factored
out, facilitating comparisons of data taken from different prepa-
rations. The absolute decrement of response is also used to meas-
ure habituation. As is discussed in point 6 below, these two meas-
ures of habituation behave differently with respect to stimulus

intensity.

2. Presentation of a novel stimulus results in recovery of the re-

sponse.

This is the phenomenon of dishabituation. An example of dis-
habituation of the cat flexion response is shown in Figure 1.2,
takén from the work of Spencer, Thompson and Neilson (1966). Fol-
lowing habituation with a low intensity stimulus, a brief high in-
tensity stinmulus is presented. The response to the low intensity

stimulus is then retested and found to be increased for a short

10
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lime .n minytes

Figure 1.2 Dishabituation of flexion reflex of spinal cat (Thompson
and Spencer, 1966). Abscissa and ordinate as in Figure
1.1. Dishabituating stimulus given at point ci black
bar. Test stiouli follow that. Reprinted with permission
of the author and publishier. Copyright 1966 by the azerican

Psychological Association.
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time. Another example is found in the work of Rowell (1970) on the
locust visual system. After habituation to a visual stimulus, the
response of a unit in the tritocerebrum is reestablished after a
brief shock applied to an afferent nerve. A dishabituating stimu-
lus need not be strong or aversive, as will be discussed later in

conjunction with Sokolov's theory of habituation.
3. 1If the stimulus is withheld, the response recovers with time.

Response recovery is tested with application of the hnbiguacing
stimulus after rest intervals of various lengths following habitu-~
ation to asymptote. At longer test intervals the response is clo-~
ser to the control level. Recovery of the gill withdrawal response
of Aplysia is illustrated in Figure 173. taken from the work of Kan~
del and his associates (Pinsker, Kupfermann, Castellucci and Kandel,
1970). As shown there, recovery proceeds exponentially with time
from the point that the habituation training is stopped. Note that
in this case, recovery appears to proceed rapidly for a short time,
then more slowly. A further characteristic of recovery is illus-

trated in point 5 belbw.

4. The more rapid the stimulus frequency, the more rapid or pro-

nounced the decrement.

This effect is illustrated in Figure 1.4 taken from the re-
sponse of the ventral root of the isolated frog spinal cord to lat-

eral column stimulation (Farel, et. al., 1973). For the sam¢ nun-

Average percent recovery
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Figure 1.3 Recovery of habituation of the gill wicthdrawal respense

of Aplysia (Pinsker, et. al., 1970). Reprinted with per-
mission of the author and publisher. Copyright 1970 by

the American Association for the Advancement of Science.
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Figure 1.4 Effect of stimulus frequency on habituation (Farel, ec.

al., 1973). Reprinted with permission of the author

and publisher.
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ber of stimuli, as stimulus frequency increases so does the rela-

tive responsc decrement.

S. The effect of habituation may proceed beyond the asyuptotic re-

sponse level.

If enough habituating stimuli are given, the response generally
falls to an approximately steady asym%totic level. The asymptote
may be zero, or some non-zero level. In some systems, continued
stimulacion leads to a slowed recovery. This.effect is illustrated
in Figure 1.5, taken from the work of Farel aund coworkers (1973) on
the ventral root response to electrical stimulation of the lateral

column of the isolated frog spinal cord.

6. Weaker stimuli produce greater habituation; strong stimuli may

produce none at all.

Figure 1.6 taken from Thompson and Spencer's (1966) work on
the flexion reflex of the spinal cat illustrates this effect. As
stimulus intensity increases, relative habituation decreases. Farel
and coworkers (1973) demonstrate that the lateral column to vengral

root response of spinal frogs also displays this effect. In the

dorsal root to ventral root response of the frog spinal ccrd, the

absolute response decrement incrcases with increasing stimulus in-
tensity (Farel and Tnowmpson, 1972). 7The statement ¢f this habitu-
ation characteristic, then, refers to relacive habituation, rather

than to absolute habituation.
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Figure 1.5 Illustration of the below-zero effect. Response re-

covery is slowed following prolonged habituation (Farel,
et. al., 1973). Reprinted with permission of the author

and publisher.
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Figure 1.6

The intensity effect in habituation of the car flexion
reflex (Thompson and Spencer, 1966). Reprinted with
permission of the author and publisher. Copyright 1966

by the American Psychological Association.
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7. Repeated series of habituation lead to more rapid or pronounced
habituation.
This 1s called the long-term effect. As 1llustrated in Figure
1.7, the gill withdrawal response of Aplysia becomes more pronounced
with each successive series of habituation trials followed by a
period of recovery (Carew, Pinsker and Kandel, 1972). This effect

in Aplysia can last up to two veeks. A similar long-term effect

has been reported in the chronic spinal frog (Farel, 1971), and in
the orlenting response of cats (Sharpless and Jasper, 1956).

8. Dishabituation habituates upon repeated elicitation.

MEOUAN RLSPONST
DURATION (oo ige)

Figure 1.8, taken from the work of Farel and Thompson (1972)
on the dorsal root to ventral root response of the isolated frog
spinal cord shows that the peak response reached upon dishabitua-
tion with a shock becomes smaller with successive shocks. This
may be thought of as a long-term habituation effect, as the period
between dishabituation trials here is greater than that between ha-
bituvation trials.

Habituation due to one stimulus exhibits generalization to

9.

other stimuli.

In testing habituation generalization, the response to one
stipulus is checked before and after habituaction with a differcnt

stimulus. If the response to the first stimulus is decreased fol-
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Figure 1.7 The long-term effect, illustrated by the gill withdrawal
reflex of Aplysia (Carew, et. al., 1972). Habituation
is greater with each successive tralning session. Re-
printed with permission of the author and publisher.
Copyright 1972 by the American Association for the advance-

ment of Science.
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lowing habituation to the second, then habituation is said to have
generalized from the second to the first. An example of this effect
is provided in Figure 1.9, taken from Thompson and Spencer's (1966)
work on the flexion reflex of the cat. Two differeant branches of
100 1 the same afferent nerve were ysed to elicit the response. Habitu-
‘ ‘ ating stimuli (cthac is, stimuli given at a rate great encugh to
” -
‘ ‘ produce habituation) were given to one branch and test stimuli were
8o { presented at a lower rate to the other branch of the nerve. The
70 ‘ result shown in Figure 1.9 indicates that habituacion transferred
‘ * to the test branch as stimulation proceeded. N
P B
3 L :
= sol \ Petrinovich (1973) has suggested the addition of a tenth com-
a
‘s monly-seen characteristic of habituation to the list of nine basic
- qor features given above. This characteristic is due to Hinde (1954):
£
c 30 ' !
o
o 10. Habituation proceeds more rapidly with spaced rather than
®* 20}
wmassed trials.
or
Working with chaffinches, Hinde (1954) found that the mobbing
o 1 1 (] Il 1 1 1 1 1 1 'l i 1 1 1 i
4 .
181015 :‘z:‘i::'::nlw]_:i:f i?;:::c]o L& response to owl models habituated more to short presentations on
]

successive days than co a single long presentation. A similar re-
sult was found in the gill withdrawal response of Aplysia (Carew,
Pinsker and Kandel, 1972). Note that the conditions under which
this effect is tested (widely-spaced habituation series with re-

covery between series) are the same as those under which the long-
Figure 1.8 Habituation of dishabituation in the frog spinal cord

term effects are studied. This effect, then, should probably be
(Farel and Thompson, 1972). Dishabituating shocks applied

considercd in conjunction with characteristic 7 above.
at arrows, Effect of successive shocks decreases. Re-

printed with permission of the author and publisher.
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Generallzétlon of habituation in the cat spinal cord
(Thompson and Spencer, 1966). Test and habituvating

stimuli given to two different branches of an afferent

nerve. Response to test decreases during habjtuation of
other input. Reprinted with permission of the author
and publisher. Copyright 1966 by the American Psycho-

logical Association.

22

This operational definition of habituation has been widely but
not universally accepted. In particular, Hinde (1970) has question-
ed 1t on the basis that these characteristics are not detailed
enough to be of use or general enough to cover the whole range of
behavioral and physiological experiments. On the other hand, Thoup-
son and others have demonstrated the applicability of this defini-
tion in a wide variety of experiments. It is probably best, then,
to consider these ten characteristics as guidelines to the pheno-
menon of habituation that may be used in the study of a given pre-
paration. A preparation that dlsplay; a number of these character-
istics may be said to habituate, and may then oe used to verify or

modify the operational definition of habituation itself.

A number of preparations have been studied at a level that re-
veals something of the neurophysiological mechanisms that underlie
habituation. One of the best-studied examples of habituation is
the gill withdrawal reflex of the marine snail Aplysia (Pinsker,
Kupfermann, Castellucci and Kandel, 1970; Kupfermann, Castellucci,
Pinsker and Kandel, 1970; Castellucci, 2insker, Kupfermann and Kan-
del, 1970; Epstein and Tauc, 1970; Jacklet and Lukowiak, 1975; Ca-
rew, Pinsker and Kandel, 1972). When a jet of seavater is used to
stimulate the Aplysia gill mantle or the siphon, gill and siphon
are withdrawn for procection. Upon repeated stimulation, the gill
is withdrawn less and for a shorter period of time, as illustraced
in Figure 1.10. This decrement of response exhibits eight of the
ten characteristics of habituation, lacking only the below-zero

effect and generalization to different points of stimulation. Dis-
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Figure 1.10 Response decrement in the gill withdrawal response of
aplysia (Pinsker, et. al., 1970). Height of each curve
gives size of response, Number of stimulus giving
rise to each curve is indicated beneath the curve. Re-
printed with permission of the author and publisher.
Copyright 1970 by the American Association foi the Ad-

vancement of Science.
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habituation of the response takes place following strong stimula-
tion of che animal's head, rather than stimulation of the gill man-

tle or siphon.

The circuitry serving the gill withdrawal response in Aplysia
has been worked out in detail by Kandel and his co-workers (Kupfer-
mann, é:. al., 1970). Figure 1.11 illustrates their findings. The
muscles of the gill and mantle are contracted by the actions of a
nucber of motoneurons in the animal's abdominal ganglion. These
neurons are in turn activated by two tactile pathways. In one path-
way, the tactile sensory cells make direct conta;t with the moto-
neurons. An interneuron is interposed between the sensory cell and
the motoneuron in the second pathway. There are other (nontactile)
inputs to thesa motoneurons, but those inputs do not show habitua-
tion. Weak stimuli activate the direct path to the motoneurons,
while stronger stimuli result in the firing of the interneurons as

well.

In a series of experiments on the direct pathway, Caséellucci
and his colleagues (cé;s:enucci. et. al., 1970) demonstrated that
habituation is a result of a decrement of the EPSP produced by the
synapse connecting the sensory cell with the motoneuron. Effector
fatigue and sensory adaptation were excluded as the basis of the
response decrement. Owing to the presence of other nonhabituating
synapses on the motoneurons, changes in the overall excitability of

those cells could not be the cause of habituation. Presynaptic in-

hibition due to activation of nearby afferent fibers was ruled out
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Figure 1.11 Circultry mediating gill withdrawal in Aplysia (Kup-

) fermann, et. al., 1970). Sensory neuron activated by
tactile stimulation of the siphon makes synapses with
motoneurons and with interneuron. Motoneuron action
withdraws the gill and siphon. Reprinted with permis-
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through direct electrical stimulation of a single affercnt. These
results suggest that habituation of the giil withdrawal response
of Aplysia is due cither to a decrement in the amount of transmit-
ter released by the synapses connecting sensory cells with moto-
neurons, or to a decrease in the sensitivicty of the postsynaptic
membrane. The results of Castellucci and his colleagues (Castel-
lucci, et. al., 1970) show that the EPSP evoked on the motoncurons
by tactile stimulation continues to decline following failure of the

notoneuron spike, suggesting that the decrewent is due primarily to

activity in the presynaptic fiber.

Studies of dishabituvation of this response (Castellucei, et.
al., 1970) indicate that it is a form of sensitization; stimulation
of the nerves connecting the cerebral ganglion with the abdowminal
ganglion leads to an increase in EPSP's generated by both habitu-
ated and nonhabituated synapses. Several authors have suggested
that this sensitization is a foim of heterosynaptic facilitation
(Castellucci, et. al., 1970; Kandel and Tauc, 1965, a, b; Epstein
and Tauc, 1970). Epstein and Tauc (1970) hive demonstrated that
facilitation functions indepcndently of activity in the cells that

originate and receive the facilitated synapse.

Therefore, thesc resultsrindlcnte that the depression of re-
sponse seen upon repeated stimulation of the gill of Aplysia is
most likely due to decreased transwmission at the synapses connect-
ing the tactile sensory cells with the motoneurons countrolling the

8111 muscles. Dishabituation of the responsce may be a form of pre-
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synaptic facilitation caused by activity in cells outside the direct

stimulus-response link.

Another example of response decrement in a simple system is
habiéuation of the crayfish tactile-defense reflex. The crayfish
exhibits a tail-flip response to stimulation of abdominal sensory
cells. The tail-flip acts as a defense mechanism that carries the
animal away from the source of stimulation (Wine and Krasne, 1972).
Electrophysiological and anatomical studies of this response (Z2ucker,
1972, a; b; Wine and Krasne, 1969; Krasne and Roberts, 1967) have
shown that it 1s mediated by a pair of lateral giant fibers acti-
vated by the abdominal sensory cells through interneurons. The
efficacy of the synapses connecting the sensory cells with the in-
terneurons decreases with stimulation at rates as low as one per
five minutes, resulting in decreasedvreflex response. Similarly,
the electrical junctional potential generated in the abdominal wmus-
cles by the action of the giant fibers decreases with stimulation
at rates of about one per minute (Bruner and Kennedy, 1970). Stimu-
lation at an intermediate rate (1l/sec) leads to an increase of the
junction Potential, while with still greater stimulus rates (5/sec),
the potential increases then decreases. These effects appear to be
due to changes in the presynaptic element only (Bruner and Kennedy,

1970).

Habituation due to depression of synaptic efficacy has been
reported in the stellate ganglion of the squid (Horn and Wright,

1970), in the pariecal ganglion of the land snail Helix (Pakula and
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Sokolov, 1973), and in the abdominal éanglia of the cockroach (refer-
ences quoted in Eisenstein and Per;tz. 1973).° Each of these pre-
parations was studied by stimulating a nerve buqdle or fiber anJ
recording the resulting monosynaptic EPSP. Some controversy exists
as to the mechanism of habituation in Helix. Holmgren and Frenk
(1961) report a build-up of inhibition recorded intracellularly in
neurons of the parietal ganglion concurrent with the development of
the response decrecment. Sokolov and Pakula (1973), however, point
out that stimulus rates employed by Holmgren and Frenk were greater
than thése that cause behavioral habituation. -This indicates that
build-up of inhibition may be a factor in response decrement at
rates great e;gugh to cause addition of successive IPSP's, while
synaptic decrement may be the main source of response decrement at

lower stimulus rates.

Two habituation systems that are more complex than those men-
tioned above are the cat and frog spinal cords. Each of these sys-
tems exhibits responses with habituation characteristics suggestive
of synaptic depression. The spinal cord of the bullfrog may be re-
moved from the animal and kept in a physiological state for several
hours (Brookhart and Fadiga, 1960; Machne, Fadiga and Brookhart,
1959). During this ctime the i{solated cord is readily accessable
for stimulation and recording; Two systems within the cord display
habituation to electrical stimulation. The first system is a set
of descending fibers called the lateral column that runs the length
of the cord and makes monosynaptic contacf with motoneurons in the

ventral roots (Brookhart and Fadiga, 1960; Machne, et. al., 1959).
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The response vecorded in the ventral root to stimulation of the

Jateral column displays eight of the ten characteristics of habitu-

ation (Farel, Gl and Thomp , 1973). Farel and co-workers
(1973) have indicated that the response decrement is due to de-

creased efficacy of single synapses.

The second habituating response in the isolated frog spinal
cord is the electrically recorded response in the ventral root due
to dorsal root stimulation. This system involves at least one in-
terneuron (Machne, et. al., 1959), so is more complex than che lat-
eral column system. The ventral root response to dorsal root stimu-
lation displays eight of the ten habituation characteristics (Farel
and Thompson, 1972), but has not been studied at a level of detail

that would allow the mechanism of habituation to be proposed.

The flexion reflex of tﬁe cat is mediated by the animal's spi-
pal cord. The reflex is studied in spinal cats--animals in which
the midbrain is transected in order to remove descending influences
~—-through mechanical stimulation of the skin or through direct elec-
trical stimulation of a nerve entering the dorsal root (Thompson
and Spencer, 1966; Wickelgren, 1967, a, b; Spencer, Thompson and
Neilson, 1966). This reflex has been shown to display the nine
basic characteristics of habituation (Thompson and Spencer, 1966).
Thompson and his colleagues have indicated that habituation of the
‘flexion reflex is due to decreased efficacy of synaptic transmission,
and that dishabituation is the result of sensitization, or increased

transmission, at other synapses. This notion will be discussed in
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greater detail below. Other authors (Wickelgren, 1967, a, b; Wall,
1970) have suggested instead that build-up of inhibicion is respon-
sible for the decrement. Again, this system has not been studied

in great enough detail to resolve the controversy.

In systems simple enough or accessible enough to be studied in
detaii on a neurophysiological level, then, habituation gegerally
appears to be the result of homosynaptic depression, or self-gean-
erated depression (Horn, 1967). ‘“lomo" here indicates that only
activity in che stimulated pathway itself is altered by the stimu-
lacion; “hetero” indicates that activity in one pathway affects the
conduction properties of others (Kandel, et. al., 1970). Circuits
involving pre- or postsynaptic inhibition medfated by interneurons
or afferent collaterals have been rendered less likely candidates
for the mechanism of habituation in the simpler systems mentioned
above (Pakula and Sokolov, 1973; Castellucci, et. al., 1970; Farel,
et. al., 1973). Though such inhibitory effects certainly exist
even in simple systems (Holmgren and Frenk, 1960; Tauc, 1965) and
so will act to shape overall response, the notion of homosynaptic

depression will guide the circuit modeling presented in later chap-

ters.

Two Habituation Theories

A variety of theories exist that seck to explain habituation
in general. Two theories that have wide appeal are Sokolov's model

theory and Thompson's two-prociss theory. The model theory was de-
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rived from experiments on the human orienting response (OR) (Sokolov,
1961, 1975). The OR is released by a wide range of stimuli and
causes changes in such variables as heart rate, blood pressure, GéR.
and EEG. These changes are believed to be produced by signals orig-
inating in the reticular formation. In Sokolov's theory, repeated
presentation of a stimulus causes a neural model of the stimulus
to be constructed in cerebral cortex. This model is then compared
with incoming stimuli. If the model and the stimulus match, sig-
nals are generated that inhibit sensory input to the reticular for-
mation,‘causing a diminution of the OR. A mismatch caused by pre-
sentation of a new stimulus restores the OR ana presumably alters
the model or loosens its inhibitory hold over the reticular forma-

tion's inputs, resulting in dishabituation.

Two experiments crucial to the dévelopment of this theory in-
volve the response to a change in stinulus intensity and to the
withholding of a regularly repeated stimulus. Sokolov found that
after habituation to a stimulus of low intensity, the OR would re-
turn when a stimulus of still lower intensity was presented. This
result indicated to him that habituation could not simply be due to
a decrease in synaptic transmission or to a build-up of inhibition,
since a weaker stimulus could not be expected to break through these
decremental barriers to reest;blish the OR. It was also found that
if one of a regular train of stimuli was withheld, the OR would re-
appear at about the time the stimulus was expected. A theory that
involves only a decremental process cannot deal with this effect.

However, a theory that posits 3 neural model that encodes the tem-
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poral properties of a stimulus, and match-mismatch circuits able to
inhibit and to generate arousal can easily accdunt for this effect.
Sokolov's model theory, then, relies on complex coding of stimulus
properties in higher centers, or in the reticular formation itself
(Hernandez-Peon, 1960). together with inhibitory blocking of arous-

al to account for habituation.

Thompson's two-process theory was derived from experiments on
the hindlimb flexor reflex in spinal cats (Groves and Thompson,
1970). This reflex may be elicited by stimulation of the skin on
the limb, and involves a general withdrawal of the limb from the
point of stimulation. In 1906, Sherrington studied the habituation
of the flexor reflex of the dog. It has since been studied in a
variety of animals and qnder a number of conditions (See refercences
in Griffin, 1970). Thompson and Spencer (1966) showed that habitu-
ation of the flexor reflex of the spinal cat displays the nine char-
acteristics of their operatiohal definition. They postulated that
the response decrement is caﬁsed by a decrease in transmission
through chains of interneurons linking cutareous afferents with
motoneurons. Dishabituation in their scheme is caused by a transi-
tory, superimposed sensitization of transmission. The two processes
of decrement and sensitization arise and develop independentlyfof one
another, and their effects add on a final common path to produce
the observed characteristics of reflex habituacion. 1In the case of
spinal habituacion, Thompson and Spencer consider the decrement to
be produced by failure of transmission at single synapses, while

others (Wall, 1970; Pearson and MacDonald, 1973; Wickelgren, 1967,
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a, b) feel that an inhibitory process is involved. Sensitization,
likewise, is felt by Thompson to be the result of increased synap-

tic transmission or increased cell excitability.

Two experiments crucial to th}s theory involve the interaction
between habituation and dishabituation. First, it can be shown that
a strong stimulus causes subsequent sensitization of the response to
.a nonhabituated weaker stimulus (Spencer, Thompson and Neilson,
1966; Thompson and Spencer, 1966), as illustrated in Figure 1.12.
Some form of sensitization occurs in the spinal response, then. In
the second experiment it was first establishea that a stimulus of a
given intensity applied at a low frequency caused no habituation,
while the same stimulus applied at a higher frequency led to re-
sponse decrement. This stimulus could then be used at high fre-
quencies to induce habituation and at lower frequencies co test the
extent of habituation without disturbing the system. The response
was first habituated, then dishabituated with a stronger stimulus.

The test stimulus was then used to see how the response recovered.

The result of this experiment is shown in Figure 1.2, taken
from Thompson and Spencer (1966). After a brief increase, the re-
sponse settled back to about the level of maximum habituation, then
slowly recovered. If dishabiiuation is an actual disruption of the
decrement that produces habituation, then it should be necessary to
present more habituation stimuli to return the response to a lower
level. With no further habituation stimuli, the response to a test

stimulus should remain at a higher constant level, or increase to-
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Figure 1.12 Sensitization of response in cat spinal cord. Follow-
ing a briefl shock, applied at the point of the bluck
bar, the response to a less intense stimulus is height-
ened for a time (Spencer, Thompson, and Neilson, 1966).
Abscissa In percentage of control response ordinate in
minutes. Reprinted with permission of the author and

publisher.
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ward the control level as the system recovers. Lf dishabituation
is instead a superimposed response sensitization that decays more
rapidly than habituation itself, the response will return to the
hapituated level with no further stimulation, as occurred in Figure

1.2.

Alchough these two theories deal on different leveléluith dif-
ferent reséonses. tﬁey are in fact similar in some respects. Soko-
lov's theory demands that a stimulus model be encoded in some neur-
al system that is able to influence direct stimulus response chan-
nels to produce decrement and sensitization. The decrement, in
particular, is due to inhibition produced by signals indicating a
match between incoming stimuli and the stimulus model. In Thomp-
son's theory, deérement is produced at the synapses of cells that
form the stimulus-response channels themselves. As pointed out by
Groves and Thompson (1970) and by Segundo and Bell (1570), depleted
synapses are a sort of model of previous stimuli, and further stimu-
11 are compared with this model by means of simple overlap of sets
of activated synapses. To Sokolov, new stimuli trigger mismatch
signals that result in renewed response. In Thompson's scheme, new
stimull excite undepleted synapses, also resulting in renewed re-

sponse by a kind of mismatch operation.

Despite this similaricy, the two theories differ in ways due
primarily to the differences in their origins. Sokolov's theory
was derived from studies of the orienting response, and deals pri-

marily with that response. The OR cogether with associated defen-
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sive reflexes form a complex interacting system. In humans, the OR
has been shown to be sensitive to cognitive activity (Sokolov, 1961;
Graham, 1973) as well as to simpler stimulation. It seems reasona-
ble to employ this concept of stimulus model in conjunction with so

complex a system.

1t is not easy, however, to generalize Sokolov's theory to
simpler organisﬁé or reééﬁnses. The stimulus model has been defined
by Sokolov (1975) as a "matrix of potentiated synapses" which code
variqus stinulus propertiégf"ﬁturonal circuits have been proposed
to encode relevant stimulus parametere (Sokolov, 1975) and to per-
form model matching operations (Horn, 1967). This neural machinery
does not fit the fact that very simple organisms and preparations
display habituation. The proposed circuits and the current elabo-
ration of the model theory, do not touch directly on such issues
as the relation between habituation and dishabituation, and the
realization of the intensity and long-term effects. Sokolov's the-
ory, then can be useful in considering habituation in complex sys-
tems, but much work is needed before useful circuit modeling of a

particular system can proceed.

The two-process theory of Groves and Thompson (1970, 1973) was
Jerived from cxperiments on simple responses in simpler systems.
The notion of additive interaction between a process of decrement
and one of facilitation unifies data from a number of preparations

that display habituation. Thompson and his colleagues (Thompsen,
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et. al., 1973) have gone far in employing the TPT in explaining a
variety of erperimental results at the behavioral and physiological
levels. These explanations have from the start been couched in
terms of plausible neuronal circuitry. For these reasons of com-
pleteness and of closeness to physioloﬁical data, the TPT 1s attrac-

tive to the modeler.

Tvo features of the TPT leave work for the modeler, however.
First, the notion of the "state systen" as employed in the TPT is
vague as to physiological substrates. The state of the organism is
defined as its general level of arousal or readines; to respond to
atimﬁli. Activity in the state system 1s to increase and then de-
crease as habituation training proceeds. On this basis, cells pos-
aibly involved in the state system of the cat spinal cord have been
identified (Croves and Thompson, 1973). In any given system--the-
oretical or experimental--the state or facilitatory components must
likewise be identified on the basis of their behavior during habitu-

ation training.

Though the TPT appears to deal satisfactorily vith the ninpe
basic characteristics of habituation, there is one phenomenon asso-
ciated with habituation in relatively complex systems that is not
properly explained. This 1s ihe phenomenon of temporal condition~
ing, whereby dishabituation occurs if the duration or period of a
.regularly repg?ted stimulus is altered following habituation to thact
stimulus. Workers both with human OR (Sokolov, 1961, 1975; Pender-

grass and Kimmel, 1965; Graham, 1973) and with single-cell respoascs

a8
in a variety of brain regions of animals (Vinogradova, 1975) have
reported findings of temporal conditioning. The effect may be weak,
however (Vinogradova, 1975), and its exact workings are controver-

sial (Graham, 1973).

In dealing with temporal conditioning, Groves and Thompson
(1970) relegate the effect to entrainment of the state system to
the regularly repeated stimulus. Such entrainment requires that
the state system be capable of supporting long-period oscillations
(up to 40 sec. in the case of the study by Pendergrass and Kimmel
(1968)). Entrainment of that sort is in effecr. a temporal model
of the stimulus, kept by the state system. Sokolov (1975) has pre-
sented neural circuits employing time delays to realize temporal
conditioning, though it is not clear how long time delays are to
arise in neural systems. In the case of this effect, then, the
TPT wakes a much closer approachk to the model theory of habitua-
tion. Both the TPT and the model theory require the invention of
plausible neural circuitry to deal with temporal conditioning.
Whether this circuitry is to reside entirely within the state sys-—
tem, as suggested by Croves and Thompson (1970), or is to be used
with model matching circuits as required by Sokolov (1975) will de-

pend upon the particular system being modeled.

This consideration of the two major habituation theorles sug-
gests that relevant analytical modeling can proceed in two main
directions. Both the TPT and the model theory require more work

concerning temporal conditioning. One brain region whose responses
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display temporal conditioning is the hippocampus (Vinogradova, 1975).
The hippocampus is a region of cerebral cortex that has been impli-
cated in learning and memory (see discussion and references in
Chapter V); as such it is a prime candidate for modeling of plasti-
city. In ChapterV, I detail a model of a temporal sequence nemory
based on the structure of a part of the hippocampus called the den-
tate gyrus. This memory circuit may be used to allow the hippo-
campus to habituate to the temporal qualities of stimuli in a man-
ner suggested by Vinogradova (1975), or to become more aroused when
presented with regularly repeated stimuli, as in the TPT (Groves
and Thompson, 1970). The main feature of this model is its use of

propagaiing waves of activity to obtain long time delays.

The TPT is reasonably complete in its handling of the other
characteristics of habituation, as eléborated in the work of Groves
and Thompson (1970, 1973; Thompson, et. al., 1973). As mentioned
above, this theory has been presented in terms of simple neuronal
clrcuitry. Groves and Thompson (1970) illustrated the TPT with
the circuit shown in Figure 1.13. In this circuic, synaptic de-
pression occurs in the direct stimulus-response channel, as indi-
cated by synapses marked H. Facilitation occurs in the state por—-
tion at synapses marked S. The state system also displays signifi-
cant circuit dynamics, as 1nd1£ated by the cycle of cells in Figure

1.13.

Though it is reasonable that this circuit should be able to

duplicate the properties of habituation discussed by Groves and Thorp-
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Figure 1.13 Two-process habituation circuit of Groves and Thompson
(1970). Circles represent cells, N denotes nonplastic
synapse, S denotes sensitizing synapse, D denotes de-
pleting sinapse. Reprinted with permission of the
author and publisher. Copyright 1970 by the American

Psychological Association.



41
son (1970), 1its operation remains to be explored quantitatively.
As discussed previously, an analytical model of such a two-process
circuit would help to tell what is demanded of its components in
order that it function properly. Some of the properties of habitu-
ation may be seen to be crucial in guiding the wmodeling effort--
and hence may be crucial to experimental investigations of habitu-
ation--while others may follow directly from the wodeling of the
wmore crucial properties. It may be found that some of the charac-~
teristics of habituation can be modeled independently of the more
vital properties, and that in this regard they do not emerge as

fundamental properties of habituation.

Chapters II through IV of this work, themn, deal with analysis
and simulation of a simplified version of the two-process circuit
of Figure 1.13. It will be shown that a simple mathematical frame-
work can embrace the properties of response decrement, facilictation,
and spontaneous recovery. These response properties are related to
properties of synaptic modification through simple rules of cell
or cell population operation. In Chapter II, I show how one form

of experimentally observed intensity effect and a form of frequency

effect can arise ir a two-process circuit. Modeling of other habitu-

ation characteristics is sketched there more briefly. In Chapter
111, I deal with the intensity effect in a more detailed circuit
employing a population of cells and afferent fibers. I show there
.that different intensity effects can arise, depending on circuit
parameters and on the forms of the synaptic modification rules.

This work is summarized in Chapter IV. Together, these results

show how some simple central mechanisms can give rise to observed

properties of response habituation. . M
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CHAPTER 11

LUMPED MODELS OF THE TWO-PROCESS THEORY

1 have chosen the two-process theory of Groves and Thompson
(1970) as the basis of this study of habituation networks because
the TPT is more complete in its handling of habituation data than
Sokolov's (1961) model theory, and more detailed in terms of plau-
sible neuronal realizations. A network is to be found that embodies
the assumptions of the TPT and that is amenable to mathematical
analysis and computer simulation. Using this network, it should
be possible to show ways the two central processes of decrement and
sensitization can interact to produce the observed properties of
response habituation. Furthermore, it should be possible to relate
the ways the processes vary wiﬁh continued stimulation to plausible

characteristics of cell operation and synaptic variation.

Not all of the habituation characteristics‘should be included
in the general process-level model. Trying to model all ten char-
acteristica.of the operational definition of habituation would
most likely lead to a system complex emough to obscure its own work-
ings. As noted in Ch;ptet 1, it seems best to concentrate on those
characteristics that appear most crucial to the workings of habitu-
ation. Other characteristics may arise naturally in a model of the
more vital properties. Still other properties of habituation may
be included in a basic model through the use of additional opera-
‘tional mechanisms. Characteristics that do not seem vital to the

workings of the basic model will therefore not be included in the
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inicial modeling effort. Models that include these characteristics
will be presented following discussion of a basic habituation cir-

cuit.

Which properties of response habituation seen crucial to the
form of the network model? Response decrement and sensitization
form the basis of habituation in the TPT. Proper modeling of these
effects will allow realization of habituation, dishabituation, and
their spontaneous recovery with time. It will be seen later how
the effectsof stimulus frequency come naturally out of the charac-
teristics of sponfaneous recovery. Of the remaining properties of
habituation, the effect of stimulus intensity seems the most crucial.
It is this effect that determines the basic anatomy of the two-pro-
cess circuit, and which necessitates the use of synaptic modifica-
tion rules with particular forms. Within the framework of a cir-

cuit that properly realizes the desired intensity effect, the other

characteristics can easily be realized.

The intensity effect actually takes a number of forms in dif-
ferent physiological éystems. Figure 1.6 illustrates one form of
intensity effect demonstrated by the flexion reflex of the spinal
cat. In this case, relative habituation decreases as stimulus in-
tensity 1s increased. A similar effect is shown in the ventral root

response to lateral column stimulation in the isolated frog spinal

‘cord (Farel, et. al., 1973), as illustrated in Figure 2.1.
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Figure 2.1 Habituation of the ventral root response to lateral
column stimulation (Farel, et. al., 1973). Relative
response is plotted for stimuli of various intensities.

Reprinted with permission of the author and publisher.
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The cat flexion reflex displays another form of imtensity effect,
as shown in Figure 2.2. In this form, at the lowest stimulus inten-

sity, relative response falls rapidly with the first few blocks of

. stimuli and reaches a low asymptotic level. At a moderate intensity,

sensitization gives rise to an initial increase over the control
level, followed by a decrease to an intermediate level in later
trials. The peak value at the highest intensity is greater, occurs
later, and is followed by a fall to an asymptote that may be above

the control level.

The curves of Figure 2.2 are more complicated than the simple
description given above, however. At the highest intensity, a dip
in the curve occurs before the peak begins to build. Groves and
his colleagues (Groves, Lee and Thompson, 1969; Thompson, et. al.,
1973) suggest that sensitization in the spinal cat consists of two
components with different time courses and different reactions to
high intensity stimuli. A fast component that dominates responses
in early trials actually decreases with increased stimulus inten-
sity, while a slower component that predominates in later trials
increases in size with increasing intensity. Other authors have
also suggested that sensitization in general consists of more than
a single componént (Graham, 1973; Goodman and wéinberger. 1973).
Mixtures of such effects can be used to fit the habituaticn curves

generated by experiments on particular preparations.

A third kind of intensity effect is found in the ventral root

response to dorsal root stimulation in the isolated frog spinal cord
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Figure 2.2 Curves of relative habituvation of the flexion response

of the cat generated by stimuli of different intensities
(Thompson, et. al., 1973). Intensities as marked on

graph. Abscissa in percent of control, ordinate in blocks

of trials. Reprinted with permission of the author and

publisher.
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(Farel and Thompson, 1972), as illustrated in Figure 2.3, a and b.
It may be seen that absolute decrement of teaﬁonse depends directly
on stimulus intensity, while for higher intemsities, relative habit-

uation 1s essentially independent of intensity.

It is apparent, then, that the intensity effect is not siwmpie,
but may take different forms in different preparations. in a wmono-
synaptic system such as the lateral column of the ffoé spinal ‘cord,
the cause of a given type of intensity efféct must be sought 1in
synaptic morphology and biochemiétty. Network effects are likely
to contribute to the stimulus intensity characteristics of more
complex systems, however. It is to such systems that the current
modeling effort is.addressed. In what follows, it will be shown
how curves similar to those of Figure 2.2 can be generated in a
simple two-process network. I will consider only systems with uni-
tary sensitization components. Results of inQestigationa of these '
systems could be used to help guide more complicated modeling efforts.
It will be shown, for example, that in a two-compoment circuit, the
position of the peak value of relative response shifts sigaificantly
to later trials as stimulus intensity increases. This effect wmuat
contribute to ghe peak shifting seen in systems having multi-com-
ponent sensitization. A part of the network will generate curves
of the form shown in Figure 2.3b, operating according to the dic-
tates of the current TPT (Thompson, et. al., 1973). Curves of the
form shown in Figure 1.6 can also be obtained easily with the pro-
per parameter Settings. Thus, the wodel circuit will be shown capa-

ble of realizing these three main forms of the intensity effect.
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The circuit modeling to follow, then, concentrates on the pro-
perties of decrement and facilitation and their spontanecus recovery,
and on the intensity effect as discussed above. The stimulus gener-
alization effect will be discussed later as a simple extension of
the basic two-process circuit. Likewise, the below-zero and long-
term effects will be added as extensions of the basic model. This
model thus provides an understandable framework within which these
characteristics of habituation can be easily related to circuit and

synaptic operation.

Qualitative Models of the Two-Process Theory

A simplified two-process circuit. As mentioned in Chapter I,

Groves and.Thompson (1970) have presented an habituation circuit
based on the TPT. Their circuit realizes the TPT using homosynap-
tic depression and sensitization, as illustrated in Figure 1.13.

The circuit consists of several cells that make up separate stimu-
lus-response and state systems. Circuit response is the sum of ac-
tivity in these two systems, as required by the TPT. Cell and cir-
cult dynamics (as exemplified by the cycle of cells in the state
system) act to shape the circuit's response. Response plasticity

is a function of the plasticities of the many decrementing and in-
crementing synapses and of their interactions through connections
between the cells. Groves and Thompson do not explicitly specify
the forms of dependence of decrement and increment on pre- and post—'
synaptic activity. Complicated modification rules could add signif-

icantly to the complexity of operation of this circuict.
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While computer simulation is well suited for dealing with the
complexities of this circuit, the results of such simulation might
not be readily interpretable. Diverse factors could easily combine
to yleld effects that would not be easy to explain. Likewise, many
modes of circuit operation might be possible, and some could be
missed in exploration of model parameter settings. Accordingly, I
have chosen to investigate a network based on the one of Figure 1.13,

but simplified in two ways.

First, I will not consider the detailed operation of the SR
and state pathways. Each pathway will instead be lumped into a
single element. The elements of the following models, then, repre-
sent processes rather than the cells that realize the processes.
Fol;ouing the diclates of the TéT, the outputs ;f the decremental
and incremental processes will sum on an output element that gener-
ates the circuit's response. Thz response of egch process will
vary with stimulation in a manner suggested by the physiological
results discussed earlier. Modification rules.aﬁd circuit parame-
ters will be found that enable the simplified process-level circuit

to realize the desired habituation characteristics.

The second simplification involves the exclusion of the effects
of circuit and cell dynamics. The response of each process will be
assumed to be a function of its current input only. The time scale
considered--that of synaptic change--is assumed to be great enough
that ;he circuit dynamics can be ignored. Under this assumption,

the system is active only during stimulation, and responds to all
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stimuli with a stereotyped discharge. Relaxation of this assump-
tior is discussed following presentation of a more detailed popu-

lation-level model of habituation in Chapter I1I.

In this chapter, the investigation of two-process habituation
networks proceeds in twq steps. First, a simple circuit based on
the network proposed by Groves and Thompson (1970) is analysed and
simulated. Numerical values are found for the parameters of the
simplified system so that it displays the desired intensity and
frequency effects. Secondly, mechanisms are added to the basic

model to realize the habituation characteristics not initially mod-

eled. In the following sections, I first deacribe the TPT in greater

detail, and present the process-level model and results of its simu-

lation.

Details and first models of Thompson's twe-process theory. The

basic assumptions underlying the TFT, as given by Thompson and co-

workers (1973) are:

1. A stimulus both elicits a response and alters the state of the
organism. The stimulus-response (SR) path is considered the
most direct route through the organism from stimulus to response.
The state of the organism refers to its general level of arousal

as discussed in Chapter 1.

2. Repetition of a stimulus results in an "inferred decremental

process” in the SR path, called habituation. This central dec-
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rement is the basis of the empirically observed response decre-

ment. .

3. Repetition of a stimulus results in an "inferred incremental
process” in the state system, called sensitization, that forms

the basis of dishabituation.

4. Decrement and increment develop independently of one another

but combine to yield the final response.

5. A stimulus that is presented following habituation to another
stimulus elicits a decreased response to the extent that it
activates elements in the SR path that were activated and habit-
uvated by the first stimulus. This "common elements” hypothesis
applies as well to the state system, where the response to one
stimulus 1s augmented to the extanc that it activates elements

that are sensitized following previous stimulation.

This amounts to a restatement of the TPT as given originally by

Groves and Thompson (1970).

The first four.characteristlcs of central decrement and sen-
sitization are embodied in the network of Figure 2.4, which is
based on the more complex network of Groves and Thompson (1970).
Decremental and incremental processes, marked .D and S, respectively,
in the figure, sum at a final common point to produce the output.

1f the outputs of D and S change properly with time, number of stim-
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uli, and stimulus intensity, then the overall output will display
the desired habituation characteristics. A network composed of a
number of such circuits as basic elements can employ the common-
elements scheme to realize generalization effects. Such a network
is 1llustrated in Figure 2.5. There, the D-process boxes are
cross-coupled such that activation of an SR channel causes decre-
ments in nearby channels. This approach, which employs coupled re-
sponse channels to realize a general habituation network, is simi-

lar to those of Horn (1967) and Segundo and Bell (1970).

Note that this network models habituation entirgly on a pro-
cess level, dealing only with the ways the decremental and incre-
mental processes might interact to yield the characteristics of
empirical response habituation. So far, only the common elements
notion suggests a mechanism involved in the operation of the under-
lying neural circuitry. It is necessary now to fill in the opera-

tional details of the D and S boxes.

Further details. The inferred central processes of decrement
and sensitization must be given properties that enable them to re-
alize the‘defining characteriscics of habituation. Thompson and
co-workers (1973) give central habituation and sensitization the

properties detailed below.

a. During habituation training, habituation proceeds exponentially
to its asymptote, while sensitization first increases then de-

creases.

Figure 2.4
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b. Upon cessation of stimulation, both habituation and sensitiza- sial. OGraham (1973) has shown that sensitization that omly increascs

tion spontaneously recover. with successive stimulation may be combined with a decremental effect

c. The degree of relative habituvation is weakly and inversely re-
lated to stimulus intensity. Note that this mcans that absolute

decrement due to habituation is directly related to intensity.

d. The degree of relative habituation is strongly and directly

related to stimulus frequency.

e. The degree of sensitization is directly related to stimulus

intensity and to stimulus frequency at higher intensities.

f. Repeated series of habituation training result in progressively

more, or more rapid habituation.

g- Repeated presentations of a sensitizing stimulus result in pro-

gressively less sensitization.

These characteristics are sufficient for the sum of central
decrement and sensitization to display the frequency, intensity,
and long-term properties described in the operational definition
of habituation. Characteristics (a) and (b) are directly related
to the observed time course of habituation in a number of prepara-
tions that display response semnsitization. These points refer to
points (1) and (3) of the operational definition. The notion that

sensitization first increases then decreases Is somewhat controver-

to give curves that first increase, then decrease. This behavior
will be verified in the models below, and the role of decrecases in

sensitizacion will also be explored.

Points (c), (d) and (e) of the extended definition deal with
the effects of stimulus intensity and frequency on habituation, and
relate to (4) and (6) of the vperational definition. It will be
verified later that two frequency ranges may be defined in terms of
the recovery properties of the synapses in question. In a range of
moderate frequencies, little recovery from habituation occurs be-
tween stimuli. 1In that range, habituvation is independent of fre-
quency and depends only on the total number of stimuli. Thompson
makes the following simplification of (d), which 1 have interpreted

as above in terms of the recovery time of the decrement:

d'. Within a range of moderate frequencies, relative habituation
is independent of stinulus frequency, and depends only on the

number of stimuli presented.

Fer lower frequencies, recovery occurs between stimuli, and rela-

tive habituation depends more strongly on frequency.

Finally, the dependence of habituvation on stimulus intensity

is simplified in a restatement of (c):
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¢. Relative habituation is independent of stimulus Intensity.

As-discussed previocusly, the ventral root response to electrical
stimulation of the dorsal root of the frog spinal cord exhibits
intensity-independent relative habituation (Farel and Thompson,
1972). In point (¢), Thompson extends this to a property of habit-
uvation in general. It will be shown in the models below that the
intensity effect of point (6) of the operational definition of
habituation can easily be realized by the sum of habituation and
sensitization operating under characteristics (c') and (e) as de-

fined here.

A Quantitative Model of the TPT

In this section I describe a process-level model based on the
networks of Figures 1.13 and 2.4 designed to realize the stimulus
frequency and intensity effects described earlier. 1 will show how
the detailed characteristics of the previous section may be used to
£i1l in the D and S boxés of Figures 2.4 and 2.5 in a way amenable

to analysis and computer simulation.

The simplest way to represent the operation of the D, S and out-

put boxes 1s to assume that the output of each is a weighted sum of
its inputs. This operation is in fact too simple, and will be shovn
later to lead to a conflict with a requirement of a more detailed
statement of Thompson's theory concerning intensity gencralization.

This assumption is worth pursuing, however, as a first approach to
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habituation modeling. In this case, the operation of the unit of

Figure 2.4 is given by

D= "01
S = NID

0= HZD + NBS

where 1 is the intcnsity of the input to the unit, and “j are the
coupling weights between processes, j = 0, 1, 2, 3. Figure 2.4 is
redrawn in these terms in Figure 2.6. There, the direct path from
D to O represents the SR channel. The state system is represented
by the circle labeled S, and the state system's effect on the out-
put is represented by the total transmission from D to O through S.
In this model, the output of each node may be considered to be the
level of activity of an associated sec of cells, and the coupling
weights may be taken as the total synaptic strength between cell

populations. In what follows, I will refer to the nodes as cells,

for the sake of simplicity.

If the output of this network is to change with successive
stimulus presentations, the coupling weights themselves must change
with use. The ways the weights change must be consistent with the
principles put forth in the previous section. Both exponential de-
cay toward an asymptote and spontaneous recovery can be mcdeled by
representing each weight with a first-order differential equation of

the form:

Ti “1 = “.10 - l"'i + ai Ji’ wi(o) = “ioo i=0,1, 2,13,
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D— FIXED OR DECREMENTING SYNAPSE

O— SENSITIZING SYNAPSE

D—— DECREMENTING SYNAPSE

Figure 2.6 Lumped model presented in terms of cells and coupling
weights. Synapse mogification properties are as indi-

cated on the figure.
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where

T is the weight's modification time constant,

W is the resting and initial weight value,

10

Ji is the modification input, and

ay is the weight's modification gain.

Each weight, "i has a resting value, "10’ toward which it re-
turns following displacement by the modification stimulus, J. If

a, and Ji are positive, presentation of the modification stimulus

i
will increase the weight value. If their product is negative, the
weight will be decreased by the modificacion input. These two

effects simulate sensitization and habituation, respectively.

Differential equations can now be associated with the weights
in Figure 2.6. For the sake of simplicity, the weight connecting
the afferent, 1, with the D-cell will be considered fixed. Any
plasticity it might dispTE;'EEﬁ‘jusL as easily be ewbedded in the
other weights. Central halbituation is to occur in the SR path, so
“2 must be decreased by the output of D. Sensicization is to oceur
in the state system, and is to increase then decrcase across trialss
The transmission from input to output through the state system is
simply the product of Nl and "3' This product will increase and
then decrease If Wi decreases slowly while H3 increases rapidly, or
vice versa. The former case will be considered here. Following
the notion that habituation is likely to be due primarily to pre-

synaptic effects, each weight will be modified by presynaptic ac-

tivity only.
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These considerations lead to the following equations for the

weight values:

‘11 Nl = "10 - "1 - a fl(D)

W, = "20 - “2 - a, EZ(D)

Ty Wy = Hyy - Wy + a5 £5(5)

where

W (0) =W, 1=1,2,3, and
fi(-) determines the way each weight is changed by its modifi-
cation input. Each fi is positive for all values of its argument,

and each a; is positive.

It must now be shown that this system fulfills the detailed
assumptions on the operation of central habituation and sensitization
given in the previous section and that it realized the desired habic-
vation characteristics. As mentioned above, the use of weights governed
by differential equations ensures that central habituation will fall
toward an asymptote and recover when left unstimulated. Similarly,
central sensitization can be made to increase then decrease across
trials, as will be seen below. Sensitization will also recover follow-
ing cessation of stimulation. The model mirrors these basic properties

of habituation and sensitization, then.

1f relative habituation is to be independent of stimulus in-
tensity, an odd assumption 1s necessary concerning the way “2 is

modified by the D-cell's activity. To see this, suppose that the
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output depends only on the SR path, so that ouly the properties of
central habituation are reflected in the response habituacion. The

control-level outpui (the output before habituation training) is

0, =Wy 1. 2

assuming “0 equal to one, so that D = I. After habituation to asymp-
tote, w2 has been decreased ‘according to the differcntial equationm

above to the value

where it is assumed that fz(D) = D for the sake of illustration.

The output after habituation is given by
0H = ("20 - a, I 1,

and the absolute amount of habituation is

2
A= 0c - 0H a, 1.

As desired, this depends on the intensity of the stimulus. The rela-

tive habituation, however, is

32
%20

R= A/Oc = i
which is not independent of I. A similar result will be cbtained for

any function f2 whose value increases with increasing I.

In order to obtain a relative decrement that is independent of

stimulus intensity, the decrement of W, must itself be independent

2
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of intensity. Then

0,

g = (Mo - 3) I,

A=a,l,

2

and

Intensity-independent velative habituation can be achieved in this
model only when the synaétic decrement is independent of intensity.
As will be discussed later, a further statement of Thompson's the-
ory requires a synaptic decrement that depends on stimulus intensity.
The simple model considered here will give way at that point to a
more detailed population model. The current model may still be used
in an initial exploration of the characteristics of decrcment and

sensitization required by the definition of the previous section.

Central habituation is independent of stimulus frequency in
this model when no recovery occurs between stimuli. In that case,
the degree of habituation depends only on the number of stimuli pre-
sented. This independence occurs when the time constant of H2 is
considerably greater than the interstimulus interval. Similarly,
central sensitization depends on stimulus frequency within a par-
ticular range when the time constant of w3 is on the order of the
interstimulus interval in that range. The model can therefore re-
alize the desired frequency characteristics if the time constants

are properly adjusted.
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Intuitive arguments show that this simple network, with coup-
1ing weights that vary according Lo first-order differential cqua-
tions, can be made to realizc¢ the desired frequeancy and intensity
characteristics. Detailed numerical evaluation of this system is

carried out below to investigate the intensity and frequency effeces.

Computer Simulation of Inténsity aund Frequency Effects

Introduction. The model described above has nine parameters
that must be specified in order to gencrate habituation curves of
the sort shown in Figure 2.2. The weight time constants have been
loosely specified in terms of their relacion to interstimulus in-
terval in some range, but the parameters have not been determined
beyond that. In order to generate qualitatively correct relative
habituation curves at different stimulus intensities, 1 cousider
two cases. In the first case, the stimulus is assumed to be applied
continuously, rather than periodically. The effects of recovery
between stimuli are not included in this case, then, corresponding
to the situation discussed above in which moderate stiiulus fre-
quencies are employed. Further, the synaptic modificatior functions
employed in this case are lincar functions or constant:. This situ-
ation is simple cnough to be solved analytically, leading o an ex=
pression for relative habituacion as a function oi time. & corputer
program called HABIT was designed to evaluate this expression and
to gencrate the resulting curves of relative habituation. Thu oper-

.

atfon of the circuit of Figure 2.6 was explored in this siaplificd

case using 1T,
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Next, a more complicated computef program called UATION was im-
plemented to carry out numerical integration of the synaptic differ-~
ential equations. This program enabled me to explore the frequency
effects using non-constant stimuli. The effects of nonlinear modi-
fication functions were also investigated. Using results from HABIT,
parameter ranges were easily found within which the desired habitu-
ation characteristics could be realized. I describe below the re-

sults of simulations with these two programs.

Simulation, Part 1: HABIT. The HABIT program was designed to

explore the ways the network of Figure 2.6 can duplicate the inten-
sity effect. Under the assumptions of continuous stimulation and
linear or constant weight modification, the synaptic equations in

the last section may be solved analytically, yielding:

~-t/t
Hl(t) = "10 - 81(1 -e 1)

-w, - - et

Wy(t) = W) - a,(1 - e ''2)

-t/T o -tit

st Tt te L
1.73

"3(t) = H30 + a3l(ulo - al) (1 ~e 3) + aa

e-t/T3)

These equations are derived in Appendix A. The HABIT program allows

exploration of tne possible parameter settings to determine ranges

of parameters that give the desired habituation curves.

Curves of relative habituation are to be generated that are
similar to those of Figure 2.2 illustrating the variation of rela-
tive habituation with time and with stimulus intensity. In che case

of continuous stimulation, the curves are functions of time rather
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than of the number of discrete stimuli. Qualitatively, the curves
generated by the program with low intensity stimuli should be hega-
tive exponentials of the number of stimuli. As stimulus intensity
increases, relative habituation should decrease, and sensitization—-
responses greater than the control level--should appear. At the
highest intensities, the response may show only sensitization, but
the sensitization should increase and then decrease with time. The
model will have duplicated the cffects of stimulus intensity on

relative habituation with the generation of such curves.

Two strategies may be used in the system of Figure 2.6 to gener-—
ate curves that increase then decrease similar to the habituation
curves of Figure 2.2, In Strategy I, the D to S weight is‘held con-
stant , while the D to O weight decreases and the S to O-weight in-
creases. 1ln this strategy, then, central sensitization only in-
creases across trials. If w3 incteases more rapidly tham w2 falls,
the output will first increase then decrcase. This strategy works
best when the D ;o 0 path dominates the output before habituation.
For example, if the initial transmission through the SR path is
equal to that from D to O through S, then decreased transmission
in the SR pathrwill lead to a maximum of 50% habituation. In this
strategy, then, large percentages of relative habituation are ob-
tained at low stimulus intensities when the initial value nf u2 is
considerably greater than_the product of "1 and H3. At higher in-

tensities, the increase in H3 leads to reduced drop in overall out-

put, as desired. This strategy is illustrated in detail below.
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In Strategy 11, “2 is held fixed while Hl decreases and H3 in-

creases with time. As mentioned above, if W, decreases morc slowly

1
than H3 increases, the overall output will first increase then de-
crease. At a low intensity, the drop in Hl will cause a significant
drop in overall output when the path tirough the state system domi-
nates the output. Hence, Strategy Il works best to produce pronounced
relative hablt;ation at a low intensity when w2 is less cthan the pro-
duct of ul and "3' At a higher stimulus intensity, the increase in

u3 causes an initial increase in response, but a significant drop in

“1 leads to decreased outputs at later times, as shown below.

The curves shown in Figures 2.7 chrough 2.12 illustrate these
strategies. Fach figure shows relative habituation curves generated
by evaluating the equations above with the HABIT program. In each
case, the abscissa is marked in terms of percentage of the un-
habitvated output and the ordinate is given in arbitrary units of
time. Following the condition derived in the previous seccion con-
cerning intensity-independent relative habituation, weights wl and
Hz decrease independently of stimulus intcensity. Weight "3 is modi~
fied by a linear function of the output of cell §, reflecting the
fact that sensitization is to increase with increasing stimulus in-
tensity. Table 2.1 gives the values of parameters used to generate
the figures referred to below. Note that the weight time :onstants
are expressed in terms of the same units of time used to prepare the

figures that follow.

TABLE 2.1

Para@eter Values Used With HABIT

W

T

a

Figure # 2 3 1 2 1 2 3
2.7 1 .1 12 9 0 91 .15
2.8 3 .1 12 9 0 2.9 .4
2.9 1 .1 12 12 0 91 .15
2.10 0 9 6 .81 0 .5
2.11 1 .1 12 9 .2 .91 .15
2.12 1 12 6 .5 91 .35
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Figure 2.7 illustrates Strategy 1. There, the SR path dominates

at low intensities, W, is fixed, and wz changes more slowly tkan "3'

1
At the lowest intensity, the curve is a negative exponential with

no peak. At moderate intensities, an initial peak is followed by

a drop to a value below the control level. At high intensities, the
peak gives rise to a level above the control level. Note that the
position of the maximum value shifts with stimulus intensity, to

occur later at higher intensities. This is a general property of
these curves, as described in Appendix A. A similar peak shift occurs
in the data from the cat spinal cord, as discussed earlier. While
gome of the shift is likely to be due to the combined effects of dif-

ferent weight time constants, the property illustrated here must also

be a factor.

Note, too, that sensitization only increases across trials here.
One assumption of the TPT is that sensitization firet increases then
decreases across trials (Groves and Thompson, 1970). It has been
suggested by Graham (1973) that the decrease is unnecessary for the
production of curves like those of Figure 2.2. The result of Figure
2.7 shows this to be the case. It will be seen later, however, that
decreasing sensitization can be employed in a parsimonious explana-

tion of the habituation of dishabituation.

When the SR path is a more dominant factor in the output, greater
-relative habituation is generated with low intensity inputs at the
expense of the size of the peak at higher intensities. This effect

is illustrated in Figure 2.8, where the value of wz is greater than

160,
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2 4 6 8 10 12 14 16
NUMBER OF STIMULI
Figure 2.7 Curves of relative response generated with HABIT. Stimulus

intensity marked on each curve.

given in Table 2.1.

Assoclated parameters are
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Figure 2.8 Curves of relative response gencrated with HABIT. Stimulus
intensity marked on each curve. Associuted parameters are

given in Table 2.1.
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that used to generate Figure 2.7. The modification gains have also
been altered such that the final value of H3'1§ greater. A still
larger H3 modification gain would result in curves more like those
of Figure 2.7. The curves of Figure 2.7 and 2.8 illustrate the de-

‘pendence of the model's response on the absolute values of the synap-
tic coupling weights. Curves of the proper shapes can be obtained
with any value for Nz; only the relative valges matter in determin-
ing relative response levels. In what follows, "2 will be set to

unicy.

Figure 2.9 shows that weights with larger time constants result
in curves that change more slowly, as would be expected. In particu-
lar, the peaks at higher intensitieg are somewhat broadened and occur
at later times. It was mentioned earlier that the later peak in the
high intensity curve of Figure 2.2 might be due to a sensitization
component with a large time constant. Figure 2.9 verifies that such

a component gives rise to a later peak.

Strategy 11 is illustrated In Figure 2.10 for the case that the
transmission through the direct SR path is identically zero. A large

W. modification gain is eqployed to obtain greater peak levels at

3

high stimulus intensities. To get large decrements at lower inten-

sities, W, must be made to decrease considerably, leading to asymp-

1
totic output levels that differ little with different scimulus in-
tensities. This compression of asymptotes is a disadvantage of

Strategy I1, as habituation data generally show greater final dir-

ferences across intensity. This result makes it more likely that
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Figure 2.9 Curves of relative response generated with HABIT. Stimulus

intensity marked on each curve. Associated parameters are

given in Table 2.1.
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Figure

2.10 Curves of relative response generated with HABIT.
Stimulus intensity marked on each curve, Associaced

parameters are given in Table 2.1.
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the tvo processes develop in parallel as Groves and Tﬁompson (1970)
suggest. The serial combination of Strategy II gives rise to curves

of the wrong form.

The two strategies may be mixed to good advantage, houevef. as
illustrated below. If Strategy Il is added to a system that employs
Strategy 1 by allowing a small decrement in ul with a long time con-
stant, the tails of the relative habituation curves are pulled down.
In that case, greater peak values may be obtained with a larger H3
modification gain, while asymptotic levels are kept closer to the
control level. This is illustrated in Figure 2.11, where'w1 varia-
tion 1s added to the system of Figure 2.7. Note that the curves all
drop to lower final levels, but that che final levels are not as
compressed across intensities as those of Figure 2.10, where the
drop in Nl was significant. In a similar fashion, Strategy I may
be added to a Strategy II system to allow greater decreases at low
intensities due to the decrease in "2' This is shown in Figure 2.12
for the case in which the SR and state paths have the samc initial
strengths. Once again, the asymptotic levels do not differ as greatly

across intensity.

Either strategy may be used, then, in the simple network of
Figure 2.6 to generate curves of the proper shapes, depencing on
which pathway through the system dominates the response. When the
direct SR path dominates, Strategy I is needed to allow the response
to fall to low levels with repeated stimulation. Strategy lI is

required when the state system is foremost in generating the re-
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Figure 2.11 Curves of relative response generated with HABIT. Stimulus
intensity marked on each curve. Associated parameters are

given in Table 2.1.
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sponse. The simulations illustrated here have shown that the two

strategies can also be mixed to allow variation in all three of the

weights.

160 The important results to come out of the investigations of the

HABIT system concern habituarion strategies and relevant parameter
140 ranges. The circuic of Figure 2.6 1s simple enough that two stra-
] tegles couiq be readily found for which the desired curves are gen-
erated. These strategies show how the SR and the state pathways can
1204 be used in habituation. Simulations have shown what paramcter values
\ are necessary within each strategy in order to generate the proper

100 relative habituation curves. In Strategy I, the incrementing weight,

"3» must rise more rapidly chan the decrementing weight falls; so

% CONTROL

T, < T,- In Strategy 11, also, Tg < - In order to get curves that

®
K=l
y

are near asymptote after about ten stimuli--in this case, after about

~ ten units of time--the time constant of the decreasing synapse must have

60
a value equal to three or four units of time. Processes with time

constants having these relations should be sought experimentally.
“0
The weight values, too, are fixed by the model. Strategy 1 ap-
2q plies when the unhabituated transmission through the SR channel is

greater than that through the state channel. 1In this case, the model

indicates that intensity curves of the proper sort can be 3enerated

L . "
v T T Y u

2 4 6 8 10 12 14 using sensitization that only increases across trials. When the

NUMBER OF STIMULL ) state path has a significant effect on the control-level response,
Figure 2.12 Curves of relacive rcsponse generated wich HABIT. Stimulus relative habituation 1s less at low stimulus intensities. 1In this
intensity marked on each curve. Assoclated parameters are case, Strategy II may be necessary to pull the response down in later

given in Table 2.1.
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trials. The model thus illustrates when decreasing sensitizacion is
of use in fittlng relative response curves. The assumption of de-
creasing sensitization that is part of the TPT can be checked in a
glven preparation if the state and SR channels can be independently

stimulated to determine the contribution of each to the output.

Two further uses of this wodeling can be suggested here. Firsc,
the simple model presented above can be extended by relaxing the
assumptions made initially concerning multiple components of decre-
ment or sensitization. Using the knowledge gained through explora-
tions with HABIT, the full circuit of Groves and Thompson (1970)
could profitably be explored. It should be possible, for example,
to determine what minimal anatomy--that is, how many serial or paral-
lel decremental and incremental components and how many cross-coup-
1ings between state and SR systems—-is needed to fit a set of rela-
tive habituation curves with a prescribed level of accuracy. This
minimal circuit will then give some indication of what circuit to
expect in the preparation in question. It may be found that some
specles require much simpler model circuits than others, clearly in-

dicating differences in their underlying response circuitry.

The notion of curve fitting to data from particular preparations
indicates the second use of the model. An on-line computcr system
could use experimental data as it is taken and could generate the
-set of model parameters that best fit that data. These sets of para-
meters could then be used to "track" a preparation during the course

of an experiment to tell whether its responses were changiong materi-
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ally. This could make it easier to tell when a preparation had be-

come--or was becoming--nonphysiological. Individual preparations

could be more easily compared in terms of their model parameters, as
well. Through comparisons of wmodel parameters, the use of different
drugs or surgical procedures could be more easily compared in terms
of their effects on the systems that underlie Lhe response. While
modeling has been used in this way in Freeman's work on cortical
average evoked potentials (Freeman, 1975), it has seldom becen uscd
elsewhere. The models discussed here offer the experimenter in habic-

vation the use of this simple but powerful tool.

Simulation, Part II: UATION. The system considered above is

based on the assumptions that the synaptic modification funcrions
are all lirear and that continuous stimulation (or stimulation with
interstimulus intervals considerably less than the swallest time
constant of the system) is employed. These assumptions enabled a
straightforward solution of the synaptic dynamic c¢quatioas to be
found and programmed. The response of the linear habituation net-
work to pulsed inputs can also be calculated, as shown in ‘ppendix
A. The model investigated above could therefore be citended to han-
dle noncontinuous stimulation. It is nout always possible, however,
to derive analytical solutions for the system rvesponse when nonlinear
weight modification functions of any complexity are employ:d. In
order to continue investigation of the properties of the habituation
network, I implewmented the UATION program for numerical integration

of the synaptic modification equations.
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The UATION program is described in detail in Appendix B. This

program allows a variety of simple habituation networks to be simu-

lated. As in HABIT, cell dynamics are not considered here, so the
output of each cell is a function only of its current input. Synap-

tic dynamics can be wore complicated now due to the numerical inte-
gration procedure. A pulsed input can also be simulated with UATION,
so frequency effects based on recovery of the synaptic weights may be

studied.

In each of the simulations discussed below, the network was
started with all synaptic weights set to their resting values. A
pulsed input of constant intensity, duration and period was presented.
During the times the stimulus was nonzero, the network's output was
calculated. The synaptic values were calculated using their differ-
ential equations throughout the duration of the simulation. This
process 1s illustrated in Figure 2.13. The entire simulation cor-
responds to one habituation session. Each period of time during

which the input is nonzero is denoted a stimulus presentation.

In order to construct habituation curves, the network's response
to a stimulus presentation must be defined. Since the output changes
during each presentation as the weights change, the initial or maxi-
mun response levels do not adequately capture the operaticn of the
system. In what follows, the response at each stimulus presentation
is defined as the total output generated by the network during that
presentation. Tﬁis amounts to counting the total number of spikes

emitted by a neuron following presentation of a stimulus, or taking

-
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Figure 2.13 Stimulus conditicns and representative resulting weight

variaction in the UATION program. The weight increases

when the stimulus is on, recovers between stimuli.
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the area under the potential evoked by an input. The system's con-
trol response must also be defined. The control response level is
to correspond to the response given by an unhabituated system, as
discussed in the introduction. This level may be defined in two
ways in the simulation. In the first way--called the frozen control
paradigm-—-the response is calculated with all weights held at their
initial (resting) levels. This control level is truly that given
by' an unhabituated system. In the second scheme, the control level
is that given in response to the first habituation stimulus, and 1in-
cludes the effects of that stimulus on the synaptic weights. Simi-
lar results can be gained using either paradigm, though parameter
values differ in each case. In the simulations discussed below, the
frozen control scheme was used. The parameters used in these simu-

lations are shown in Table 2.2.

Figure 2.14 shows the result of a simulacion by UATION of the

same system lnvestigated with HABIT. All weights employ linear modi-

fication functions, though in this case a pulsed input with period

and duration indicated in Table 2.2 is employed. Figure 2.14 was

generated by a Strategy 1 system corresponding to that of Figure 2.7

simulated by HABIT. The similarity between the twe figures confirms

the use of UATION in investigating these habituation systews.

The main reason for constructing UATION was to be able to ex-
plore nonlinear weight modification functions. Thompson (personal
communication) notes that the transmission through the state path

should be modified as a sigmoidal function of stimulus intensity.
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TABLE 2.2

Parameter Values Used With UATION

sigoip® | sTM.x | sTIN.%

ST 1 % 1% B O 4 Y R PMéANE’[I)‘ERS DURATION| PER10D
2.6 (1] 1].12| of 4 o] -6.4 1.5 .6 2
2.16 | 1] 1).0{12] 9of 4 of-6.912.d 44 .84 .6 2
2.17 |1} 1]|.3)12j 9f 4 o]-6.517.0 376l 1.71 .6 2
2.8 |11 ].2f12] 9ol 4 -.5-6.5 z.aN .6 2
2.19 {11 I.1 12| 9| 4 -.9 -6.9 17.(ri 376] 1.31 i .6 2

+ - Where applicable; see text.

* - Stimulus period and duratfon expressed in terms of same time

.

units as weight time constants.
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This function is 1llustrated in Figure 2.15, and given analytically

.

by

1

£(S) = —.
1 + ce ds -

160 _ .
This function may be used to alter the value of W,, making that weight's
e ——— 3

differential equation:

140 | N
T, Wy = W =W, +a, * —————
373707 3T T ds

120} Figure 2.16 shows the result obtained in a Strategy I system
when the differential equation above for HJ is used. At the lowest
scimulus intensity, the effective modification gain is very small,
and the decrease in Wz dominates the response (compare with Figure
2.14 above). At an intermediate intensity, the overall medification
gain is larger, leading to reduced final drop in the curve. At the
highest intensity, there is a greater relative drop in response than
60 1 in the linear case due to the saturation of the sigmoid curve. The
sigmoid's wain effects, then, are to increase the relative decrements

40 | at low and high intensities and to decrease the decrement at moderate

intensities when compared with the linear case.

204
In Figure 2.17, a sharper sigmoid is used together with an in-

i 3 " 1 3 )
g , p : v N crease in the modification gain of H3. Because the sigmoid value is

2 4 6 8 10 12
NUMBER OF STIMULI very small at the lowest intensity, the response curve there falls

Figure 2.14 Relative habituation curves generated by UATION in Strategy rapidly to a low value. The responses at moderate and high inten-

1 system. sitles are enhanced, however, and the increased U3 gain leads to more

prominent peaks. A sharper sigmoid, then, can be used to generate
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Figure 2.15 Sigmoid function employed in sensitizing weight modifi-
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cation.
Figure 2.16 Relative habituation curves generated with sigmoid function

employed as modification gain of sensitizing weight.
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Figure 2.17 As 2.16, but with sharper sigmoid curve and 1ﬂcreased
H3 modification gain.
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considerable response depression at low intensities, and greater

peaks at higher intensities.

Strategies may be mixed here, as in the systems simulated using
HABIT. As in the HABIT systems, addition of a small variation in vl
to a Strategy I system gives greater re!alive decrement in later
trials, while allowing greater peak responses in early trials. This
effeét is illustrated in Figure 2.18, for comparison with Figure 2.14.
In this case, the final response levels differ somewhat less across
intensities due to the decrease in w. Figure 2.19 shows the effect
of mixing Strategy I and Strategy II when a sharp sigmoid is ewployed
in the modification of 93. The curves for moderate intensities are
severely depressed by the drop in wl as reflected through the sigmoid
(compare with Figure 2.17).

These results show that the simple network of Figure 2.6 can
give rise to the desired effects of stimulus intensity when non-con-
stant stimulation 18 employed. The two programs discussed above give
some indication of the ways the proper curves can be generated and
what parameter values give rise to those curves. The model can also

demonstrate the property of recovery from habituation and the effects

of dishabituation, as discussed below.

To test recovery and dishabituation, the system is first habit-
uvated to a low intensity stimulus, and then a novel (usually strong)
stimulus is applied in the rhythm of the habituating stimulus train.

The habituating stimulus is then reapplied as a test input to deter-
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Figure 2.18 Effect of "1 depression in Strategy 1 system. Parameters

as in Figure 2.14, but with increased W, modification gain.
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Figure 2.19 Effect of Hl depression on system of Figure 2.17.
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wmine how the response has been altered by the dishabituating stimu-
lus. Following brief retesting with the habituating stimulus, the
system is allowed to rest for a time and is then retested to deter-
nmine how much it has recovered from habituation training. Figure
1.2 shows the result of performing this experiment on the cat spinal

cord.

As discussed éreviously, dishabituation in Thompson's theory is
due to heightened transmission through the state pathway following
presentation of a novel stimulus. I will consider pere the case in
which dishabituation appears following the presentation of a strong
stimulus. The cases in which dishabituation arises from presentation
of a weaker stimulus or a stimulus of a different type will be touched
on in the section on generalization effects. Figures 2.20 through
2.22 illustrate the results of performing dishabituation experiments
on the systems of Pigures 2.14, 2.16 and 2.18, Tespectively. In each
case, a curve results that is similar to that of Figure 1.2. Note
that, due to saturation, the percentage of increase following dis-
habituation is less when the sigmoid yelght modification is employedr
(Figure 2.21). The increase is reduced still further in the mixed-
strategy system, following the decrease of "1 (Figure 2.22).' As will
be described later, this effect can form the basis of the phenomenon

of habituation of dishabituation.

Results of recovery tests performed on each of the systems con-
sidered above appear on the figures illustrating dishabituation. In

each case, recovery to approximately 90% of the coatrol level occurs
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after about ten stimulus periods. This time course of recovery re-
flects the fact mentioned earlier that in order to obtain habituation
curves that vary in the proper way with the number of stimuli, time
constants of the decreasing weights must equal several periods of the

stimulus.

yote that these figures were not derived from experiments that
fairly tested the recovery properties of the ;yatem. In a fair test,
the circuit would be habituated and dishabituated, and a single test
stirulus (identical with the habitu;tion stimulus) would be applied
at some time following dishabituation. A number of ciycuits (or the
same circuit at different times) can be subjected to this treatment
using different recovery-time intervals between dishabituation and
testing, and the results brought together in a single graph illus-
trating the recovery properties of the system. In the figures above,
the system was given several habituating stimuli following dishabit-
vation. The result of this Frain of stimull was to keep the decreas-
ing ueighs at asymptote while the value of the sensitized weight fell.
Tﬁerefore. the curves of Figures 2.&0 through 2.22 illustrate the

decay of sensitization, rather than the full recovery properties of

the system.

Figure 2.23 shows the result of the full recovery test procedure
described above. System parameters are given in the figure. Follow-
ing habituation to asymptote with twenty low-intensity stimuli, a
st:zong dishabituating stimulus is given. A single test stimulus iden-

tical with the habituating stimulus is then applied at various inter-
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Figure 2.23 Fair test of system recovery properties.
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habituated, dishabituated, then tested at various intervals following dishabituation.
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vals following dishabituation, with the results shown oa the graph.
The response increases shortly after dishabituation due to the in-
crease of the sensitized weight, then decreases as sensitization
decays. At the same time, the habituated (decreased) weight recovers
as indicated by the dotted line, eventually bringing the output up
to about 90% of control level. When the full recovery properties of
the system are tested, then, sensitization appears as before, but
against the backdrop of recovery of habituation. This is quite simi-
lar to the result obtained by Spencer and coworkers (Spencer, et. al.,
1966, their Figure 6). Note th;t 1f the time constant of the habit-
uvating welght were made very large with respect to that of the sen-
sitizing weight, then little recovery from habituation would have
occurred while sensitization was apparent. In that case, Figure 2.23

would have looked more like Figures 2.20 through 2.22.

In this model, recovery between stimuli accounts for the effects
of stimulus frequency. Since the weights are modeled with differen-
tial equations, the final level of habituation depends strongly on
interstimulus interval in a range of intervals approximately equal
to the weight time constants. This effect is explored in Appendix
A, where results are given for a linear system subjected to a pulsed
input. Stimuli with periods in the range of the system time con-
stants or greater give rise to a frequency effect im which shorter
period stimuli yield greater habituation than longer period stimuli.
Over a range of frequencies with interstimulus intervals that are
shurt with respect to the weight time constants, however, lictle re-

covery occurs between stimuli, and habituation is approximately inde-
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pendent of stimulus frequency. Thus both the frequency effect alluded
to in the operational definition of habituation and that given in

Thompson's more detailed specification of habituacion can be realized

by the model.

The effect of stimulus frequency is shown in Figure 2.24 for the
system of Figure 2.14. Stimulus period is indicated on each curve
in terms of the time constant of the decremenélns weight. A low in-
tensity stimulus is employed so cthat only the frequency properties
of the decrement are displayed by the output. It may be seen that
the higher frequencies lead to more pronounced habituation. For this
range of frequencies, then, the systems illustrated display charac-
teristic (4) of the operational definition of habituation. At still
higher stimulus frequencies, there 15 lictle reco&ery between atfmu-
lus presentations and the response is approximately tndepeqd;nt of

frequency.

Point (e) of the more detailed specification of the properties
of central decrement and sensitization states that sensitization 1is
directly dependent on stimulus frequency at higher intensities. In
the model presented here, sensitization has a smaller time constant
than central decrement (Compare the time constants of "3 and "2 in
Tables 2.1 and 2.2.). Thus at stimulus rates for which decrement
is weakly dependent on frequency, sensitization is more stroangly de-
pendent, and the model is able to satisfy points (d') and (e) simul-

taneously.
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Figure 2.24 Effect of stimulus frequency on the system of Figure 3.16.
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The UATION program, then, has verified the results of the HABIT
program and extended those results to the éase of a nonlinear weight
modificacion function and to noncontinuous atimuli. It was seen how
the sigmoid-shaped modification function for sénsitization altered
the habituation curves and allowed gréater peak values and asymptotes
closer to the control level. Simple dishabituation and recovery tests
vere attempted and were found to follow experimental data. Finally,
the effects of stimulus frequency were seen t; depend on the weight

time constants relative to the interstimulug interval. Both frequency

dependence and independence could be obtained with the proper para-

meter settings.

These two sets of computer simulations have given detatiled sup-

port to the intuitive argumencs presented earlier that the basic

“habituation network operating accorxding to Thompson's definitions

of central decrement and sensitization can realize the desired fre-
quency and intensity effects. In so doing, parameter ranges have
been found within which the model circuit,pehavea properly. As dis-
cussed in Chapter I, these ranges of valueé can be compared with
measurable parameters of physfological systems to help verify the
TPT. Sets of parameters that.yield the best fit between experiment-
ally generated habituation curves and those generated by the model
can also serve as the basis for comparing two different preparations.
In this way, the model serves to relate experimental data more di-

rectly to the underlying mechanisms of habituation.
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One further use of the computer simulations comes in the abilicty
to tailor synaptic modification functions to fit habituation data.
The sigmoid curve employed above in driving the sensitizing weight
has th?ee parameters that determine its shape. I have shown how the
shape of the sigmoid affects the habituation curves themselves. In
ficcing data, the sigmoid parameters would be adjusted along wich
weight values and time constants. The computer program in fact allows
the use of more complex functioﬁs; any such fu;ction would also be
adjusted to fit the response to the desired level of accuracy. This
allows the possibility of finding the best function or family of
functions to fit the data. The shape of that function might help to
tell the experimenter more about the circuit or modification rule
underlying the data. Again, the function shape and parameter values
also offer quantitative bases for comparing data from different pre-
paracions, or data taken from the same preparation at different

times.

Further Habituation Characteristics

The modeling of the previous sections has dealt with the charac-
teristics of recovery and the frequency and intensity effects of
habituacion. In this section I show how the other characteristics
of habituation can be realized-within the framework of the present
circuit model. It will be shown how the circult can be extended to
realize the properties of generalization of habituation and dishabit-
uation. The synaptic modification rules themselves will be altered

in simple ways to obtain the below-zero and long-term effects. To-
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gether, these changes allow the quantitative expression of all of

.

the major habituation characteristics within a single model.

Part I: Generalization of habituation and dishabituation. So

far, 1 have dealt with the effects of a single stimulus applied to

a single habituation unit. Experiments with natural systens show
that the habituation produced by one stimulus may generalize to
other stiouli. Likewise, the response to one ;timulus may be dis-
habituated following presentation of a different stimulus. In Thomp-
son's theory, generalization effects are explained through the use
of the common elements concept introduced earlier. The habituation
unit of Figure 2.6 can easily be extended to model gencralization
effects according to the common elements theory. This extension will
be discussed following presentation of experimental data on generali-
zation effects, and discussion of other circuit models of generali-

zation.

Generalization of habituation and dishabituation are illustrated
in Figure 2.25, a and b. In Figure 2.25a the response to stimulus 1
is habituated, as indicated. During the course of this habituvation,
test stimuli are given to channel 2. Habituation is said to genera-
lize from stimulus 1 to stimulus 2 to the extent that the test re-
sponses to stimulus 2 are decreased by habituvatioa to stimulus 1. In
Figure 2.25b, a strong stimulus applied to channel 2 results in dis-
habituation of a previously habituated response to stimulus 1. Agaim,
dishabituation exhibits generali.ation to the extent that the response

to stimulus 1 is affected by presentation of stimulus 2.



Figure 2.25a

Figure 2.25b
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Generalization of habituation. Habituation stimulus

is applied to input 1, as indicated by the solid bar

on the graph for imput 1. Test stimuldi, indicated by .

individual impulses, are given at the same time to in-
put 2. It is assumed here that these test stimuli are
presented at such a rate that they have no modifying
effact on the system. The output due to stimulus 1
declines. The output due to stimulue 2 also declines

as the result of generalization of habituation.

Generalization of dishabituation. Habituation stizu-
lus is applied to input 1, as in Figure 2.25a. Mid-
way through the habituation training, a strong stimu-
lus is given to input 2, as indicated by the bar on
the stimulus 2 graph. The output due to stimulus 1
is temporarily increased, illustrating generalization

of dishabituation.
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Such generalization effects have been demonstrated in a variety
of preparations. Horn (1974) shows generalization of habituation in
a rabbit tectal unit. In the isolated frog spinal cord, the response
recorded in the ventral root due to electrical stimulation of the
dorsal root exhibits habituation that generalizes across segments of
the cord (Ferel and Thompson, 1972). Siwmilar generalization of habit-
uation has been found in the response of the cat spinal cord to stimu-
lation of two separate branches of the same afferent nerve (Wickel-
gren, 1967, a, a; Thompson and Spencer, 1966). Examples of general-
ization of habituation to auditory stimull of different frequencies
are found in cat cochlear nucleus response (Buchwald and Humphrey,
1973), 1in human GSR (Graham, 1973) and in the orienting response as
measured by the duration of alpha rhythm depression following pre-
sentation of a tone¢ (Sokolov, 1961). In each case, a curve similar
to that in Figure 2.26 is found. Following habituation to stimulus
So, the response to similar stimuli is depressed. Note that general-
ization exhibits a pronounced gradient, such that stimuli more dif-
ferent from the habituating stimulus 1 are less affected. Pakula
and Sokolov (1973) cite an example of habituvation in snails that
generalizes within a single modality (light), but does not general-

ize across modalities.

It should be noted that in some systems, no generalization of
‘ habituation has been found. These systems usually involve a mono-
synaptic pathway from stimulus to response. This is the case in
the gill withdrawal response of Aplysia (Kandel, et. al., 1970), in

which sensory cells make direct, habituating contacts with wmotor

% CONTROL LEVEL
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"

So S

Figure 2.26 Gradient of habituation generalization. Ordinate gives
values of a continuous stimulus parameter, abscissa shows
absolute response levels before (dotted line) and after
(solid line) habituation to stimulus S,- After habituation,
responses to stimuli near So are depressed. Those suffi-

ciently far removed are unaffected. (After Sokolov, 1961).
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neurons. Habituation of the response elicited by tactile stimula-
tion of a portion of the gill served by one sensory neuron does not
generalize to areas served by different sensory cells. Similarly,
the monosynaptic path from the lateral column to ventral root of
frog spinal cord does not exhibit generalization of habituation
(Farel, et. al., 1973). Presumably, in each of these systems, there
is no overlap between eiements activated by different stimuli, hence

there is no transfer of habituation (Farel, et. al., 1973).

Generalization of dishabituation also occurs in a variety of
preparations. Horn (1974) shows a unit in locust tritocerebrum that
is dishabituated by a shock applied to an afferent nerve. Buchwald
and Humphrey (1973) indicate that the cat cochlear nucleus response
habituated by an 800 HZ stimulus could be dishabituated by presen-
tation of a 300 HZ tone. Farel and Thompson (1972) find dishabitu-~
ation across segments of the frog spinal cord, im the dorsal root to
veantral root response. Similar dishabituation is seen in the re-
sponse recorded in ventral roots of the cat spinal cord to stimula-
tion of different afferent nerves (Wickelgren, 1967 b; Thompson and
Spencer, 1966). In Aplysia (Kandel, et. al., 1970), the habituated
gill withdrawal response returns following a strong stimulus applied

to the animal’s head.

As discussed previously, habituation may be realized in neural
circuits by a build-up of inhibition or by a depression of synaptic
trrnsmission. These two mechanisms lead to different circuit reali-

zations of the generalization effects. Figure 2.27a shows a circuit
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due to Wickelgren (1967 b) that generalizes habituvation by weans of
inhibicion. In this clr;;it. the inhibita;y path through 1nterneur9n
1 is potentiated by repeated stimulation. The potentiation could be
due to a decrease of the cell's threshold or t6 an increased effect-
iveness of its efferent synapses. In either caée. the response to
stimulus 2 will be decreased below the cogtrol level following habict-
uvation to stimulus 1. Wickelgren (1967 b) shows that this circuit
may be cast in terms of presynaptic 1uhib1tioé. postsynaptic inhibi-
tion acting at the somas of cells 1 and 2, or postsynaptic inhibition

acting at selected cites on the dendritic trees of cells 1 and 2.

The common elements concept is illustrated by the circuit of
Figure 2.27b. There, habituation is the result of decrement of the
synapses from cells 1, 2, and 3 to the output cell. Cell 3 is com~
mon to the pathways from both stimuli to the output. Following habit-
uation to stimulus 1, the response to stimulus 2 is below its control
level due to the décrease in cell 3's efferent synapse. A variant
of this circuit is given by Horn (1970, 1967), who shows that gener-
alization of habituation may be due to activation of overlapping sets

of afferents.

Following my previous analysis of systems th;t involve synaptic
decrement as the basis of habituation, I will consider generalization
models based on this mechanism. Computer models based on other mecha-
nisms-~-such as the ianhibitory circuits of Wickelgren (1967 b)--could
also be éonstructed. As discussad in Chapter I, such modeling would

allow detailed comparison of the workings of different habituation
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Figure 2.27 Circuits illustrating gencralization of habituation.
INPUT * INPUT
a Generalizaiton via inhibicion (after Wickelgren,
1967 b). Circles represent cells, solid dots are
excitatory synapses, short vertical lines are in-
hibitory synapses. Inhibitory synapses grow stonger
with use. Generalization occurs due to the fact
that each afferent fires the inhibitoty cell (cell 3)

that affects each transmission cell (cells 1 and 2).

b Generalization via the common slement concept. Syn-
apses frou transmission cells (cells 1, 2 and 3) to Figure 2.27a
output cell (cell 4) decrease with use; other synapses INPUT INPUT
are nonplastic. Stimulation of either afferent ex-— 1 2
cites cell 3 causing its synapse on cell 4 to decrease.

That decrease is common to both afferents, then,

effecting generalization.

Figure 2.27b
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mechanisms. First note that the lack of generalization in some mono-
synaptic systems is easily explained with the common elements notiop,
as mentioned above. Gradients of generalization can also be explained
in these models through the use of gradients of overlap between nearby
stimulus-response channels, as illustrated in Figure 2.28. There, the
weights of synapses on cells in rank 2 from a given cell in rank 1
decrease with the distance from that cell. For example, the connec-
tion from cell 1 to cell (e) is stronger than.that from cell 1 to cell
(h). Suppose that only the synapses from cells of rank 2 to the out-
put cell, R, decrease with use. Following habituation to stimulus 1,
the synapses to the output cell from cells (c) through (g) are de-
créased. A test stiﬁulna applied to cell 2 will yield a considerably
reduced output due to the overlap of paths from célls 1 and 2 to the
output. Cell 3 shares fewer paths with cell 1, however, so the re-
sponse due to stimulus 3 will be less affected by habituation to

stimulus 1.

The basic unit of Figure 2.6 may be used in a similar way in
circuits that exhibit generalizaiton of habituation and dishabitua-
tion. Figure 2.29 shows one such circuit. This network employs an
input layer each of whose cells excites several habituation units as
in Figure 2.28. Here, stimulation of input cell 3 leads to depletion
of the paths from input 1 to cell 01. leading to generalizaiton of
habituation. Generalization of dishabituation is also realized here.
For example, stimulation of cell D1 by input cell 3 results in acti-
vation of cell Sl. with a conseqient increase in the synapse from S1

to 01. Application of a strong stimulus to input cell 3 will there-
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INPUTS

Figure 2.28 Circuit illustrating gradient of habituation generaliza-

tion. Synapses from cells of rank 2 to output cell (cell
R) decrease with use. Habituation generalizes as the re-

sult of overlap of stimulated synapses (after Horm, 1967).
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Figure 2.29 Generalization circuit based on the unit of Figure 2.6

and the scheme of Figure 2.28. Synapses are as denoted

in Figure 2.6. Synapses marked with arrows are nonplastic.
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fore restore the response of 01 to input 1 af:e; habituation to in-
pucl. This form of dishabitvation will itstlf habitvate if the syn-—
apse from D1 to Sl is an habituating synapse. ARepeated dishabitua-

tion will cause that synapse to deplete and reduce the effect of in-

put 3 on Sl, as was illuscrated in Figure 2.22.

A further effect may be gained through cross-coupling the D and
S layers as shown in Figure 2.30. Now each D;cell excites neighbor-
ing S-cells and output cells, and each S-cell excites neighboring
output cells. Activation of an input causes both increases and de-
creases in the paths from-the input to its own output.. In the case
of input cells with considerable path overlap, transmission decreases
may predominate, leading to generalization of habituation with a gra-
dient depending on the overlap as before. For inputs with less over-
lap, however, the connections shown in Figure 2.30 result primarily
in transmission Increases. Activation of input 3, for example, leads
to an increase in the connection from 82 to 04’ and no decrease in
any path from input cell 4 to 04. Following habituztion to input 3,
then, the response to input 4 will be increased rather than decreased.
Such a phenomenun is reported by Graham (1973) in studies of the
habituation of human GSR. Note that this effect relies on the fact
that the final common path between input 3 and input 4 is a sensitiz-
ing synapse from 52 to 04. If the busic unit were such that the syn-
apses from layer D to layer S were sensitizing and those from S to
0 were decrementing, this effect would not occur. The basic unit was

structured as it is partly for tYis reason.
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Figure 2.30 PFurther generalization effects due to cross-coupling of

~

basic units. Synapses are cenoted with dots here, but

modification properties are assumed to be the same as
those of Figure 2.29 with the exception that synapses from
D-rank to cells of S-rank decrease with use. Full set of
connections 1s shown only for unit 2, all other units are

coupled in the same fashion.
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It 18 clear then that this model, using the basic unit of

Figure 2.6 can duplicate some of the data én generalization of habit-
vation and dishabituation. The data on dishabituation of a response
due to presentation of the habituating stimulus qt:a decreased in-
tensity can be explained easily within this framework (6to;e5 and
Thompson, 1970). If it is assumed that a change in stimulus inten-
sity causes a shift in the active stimulus channels, then the model
above applies ALrectly. where different 1nput'ce11s code different
stimulus intensityies. A similar mechanism has been propoéed by
Sokolov (1975) as the basis of intensity effects. As noted previous-
1y, in the TPT the “neural.model“ of the stimulus--including its in-
tensity--is the set of synapses depleted by its repeated presentation,
and different stimuli are compared to this model in terms of the over-~
lap between the sets of synapses they activate and the set of depleted

synapses.

The basic habituvation unit in the generalization network of
Figure 2.30 operates under the rule derived for lntensity-lﬁdependen:
relative habituation; viz., depleting synapses are decreased independ-
ent of stimulus intensity. Thompson and co-workers (19732 indicate

that in order to deal with the full range of intensity-generalization

data, a synapse is needed whose value decreases as a function of

stimulus intensity. As discussed previously, such a rule cannot be
employed in the basic unit of Figure 2.6.if relative habituation is
to be independent of intensity. A more detailed basic model is re-
quired, then, to fit Thompson's theory. That model will be presented

following a brief discussion fo two final habituation effects.
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Part Il: The below-zero effect. In some preparations, recovery
from habituation is slowed if presentation of the habituating stimu-
Jus is continued after the asymptotic response level has been reached.
This 1s known as the below-zero effect (BZE). When it occurs, the
BZE is generally pronounced enough to be detected without recourse
to statistical methods. The effect does not occur in all prepara-
tions, however, so it should be discussed in che light of data from
a particular preparation. Following a discuséion of the ways the BZE
appears in physiological systems, I will sketch some general approaches

to modeling the BZE that may be applied in particular cases.

The below-zero effect is displayed by physiological systems in
three ways. First, a response may fail entirely during habituation
training and recover more slowly following prolonged presentation of
the habituating stimulus. This is the classical below-zero effect,
as first deascribed by Prosser and Hunter (1936) in che startle re-
sponse of intact rats. In the second case, the response reaches a
non-zero level and remains at that level with further stimulus pre-
sentations (Farel and Thompson, 1972; Farel, et. al., 1973). Whac-
ever change is involved in the BZE in this case does not alter the
asymptotic level itself. Finally, in the third form of the BZE, the
response level slowly declines with continued habituation training,
and increases more slowly upon recovery (Farel, et. al., 1973).

That one system (the ventral root response to electrical sctimulation
of the frog lateral column) displays both the second and third forms
of the BZE makes it seem a subsi“iary effect that may depend heavily

on the particular preparation studied. Further, some systems, such
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as the gill' withdrawal respunse of Aplysia (Kandel, ct. al., 1970)

do not display the BZE at all.

The BZE can nonetheless be added to the model of Figure 2.6 in
the following way. The equation employed above for the depleting

synapse 1s

T W= Ho -W-alil,

~

vwhere I is determined by

1; stimulus is non-zero

0; otherwise

Slower recovery may imply a larger weight time-constant following
prolonged stimulation. The BZE may be realized by making the weight

time-constant a variable governed by:
NT= T~ T +B1
vwhere

N is the weight time-comstant,
To is the time-constant initial and resting value,
B is the modification gain of the time constant,

and

1 is defined as above.

As the synapse is stimulated, then, its time-constant increases.

The asymptote to which the synapse is driven, and therefore the asymp-
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tote to which the output falls, is independent of the change in the
synaptic time-constant. If T is much less than N, and if B is not
too large, then the synapse will fall to its asymptote before the
time constant becomes too large, and the behavior of the system
during initial stimulation will be essentially as it was with a
fixed time-constant. With prolonged stimulation, however, the time-
constant will continue to increase and a greater period of recovery
will be needed to bring the weight back to 1té control level. This

model is applicable in the case that the response reaches a steady

asymptote, whether the asymptote is zero or not.

In the case of a system that shows the BZE with a slowly falling
asymptote, two modeling approaches may be taken. In the first ap-
proach, the system may be modeled as above with changing weight time-
constants, but with the addition of a second SR path. The second
path in this model has a smaller initial transmission than the first
and a larger time-constant. In initial habituation trials, the firsc
path depletes, accounting for most of the habituation of the response.
As habituation training continues, however, the second path slowly
depletes, resulting in a small, slow decline in the response level.

This second path will recover as slowly. This slow recovery can lead

to a pronounced BZE without the use of a variable weight time-constant.

The possibility of two paths with different time-constants was men-
tioned earlier in conjunciton with senaitizgtion and with recovery in
Aplysia. The utility of this notion suggests the investigation of
mofels with populations of synapses having different modification

characteristics. The beginnings of such modeling are discussed in
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the next chapter. For now, it is enough to note that a form of the

BZE may be modeled using two paths with different time constants.

fhe second approach to the BZE in systems with nonsteady asymp-
totes involves changes in the weighc‘resting level. If wo is de-
creased by stimulation and recovers slowly with respect to the weight
time-constant, then an effect similar to Fhat above can be achieved.
The form of habituation and recovery expect;d from these two models
is illustrated in Figure 2.31. Again, this is similar to the data

on recovery in Aplysia.

This model of the below-zero effect u&uld allow an exploration
of the overall characteristics of the effect and its interactions
with the other habituation effects. This fdrmulation does not shed
much light on the underlying ciécuit or synaptic mechanisms that may
be responsible for the BZE. As in&icated ﬁbove. more detailed models
of this effect will be discussed following presentation of the popu-

lation model of habituation in the next chapter.

Part I11: The long-term effect. As described briefly in Chap-

ter 1, many systems display a savings of previous habituation train-
ing. Successive episodes of habituation followed by recovery result
in mofe pronounced or more rapid habituacion. This long-term effect
(LTE) of habituation training is demonstrated in Figure 2.32 taken
from Farel and Thompson's (1972) work on the ventral root response
to stimulation of dorsal root of frog spinal cord. It may be seen

that following habicuation and recovery, further habituation training
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HABITUATION TRAINING RECOVERY

Figure 2.31

Habituation and recovery in a system for which decrement
displays two time constagts. Abscissa gives response
level, ordinate gives time during habituation training

and recovery. Fast component leads to rapid drop of re-
sponse during habituation and rapid recovery to a level
below 100Z. Slower component gives slow drop in asumptote
during habituation and slow recovery toward 100X response

level.
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Figure 2.32 The long-terw effect in the ventral root response to dor-
sal root stimulation in the isolated frog spinal cord
(Farel and Thompson, 1972). Two habituation training
sessions were employed, with a period of recovery between
them. Habituation is greater in the second session than
in the first. Reprinted with permission of the author

and publisher.
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leads to a lower refponse asymptote. A similar effect is shown in 20 SPACED TRAINING
Farel's (1973) work on the lateral column to ventral root response 1}

in the frog spinal cord. The LTE is shown in the same form in the " .\\\/\M%Lﬂqﬁ
} .9T
Aplysia gill withdrawal response (Carew, et. al., 1972), the cat ' 2 ) ‘ i ¢
oAYS

flexion reflex (Thompson and Spencer, 1966), the EMG produced in the

IN
thigh muscle of the frog in response to electrical stimulation of 0} MASSED TRAINING
the foot (Farei, 1971), and a wide variety of invertebrate prepara- l i (o \\L{:f
. [ 3 .
tions (see Wyers, et. al., 1973, and references therein). In each !5 st
£ — ~ ,\L..,,__.
case, the response falls more rapidly to a lower asymptotic level. E - -3 P — s ”
an DAYS
o
% I conrroL
Evidently, then, though transmission through the system has re- < o} Bi ()
covered, the propensity to decrement is enhanced by repeated habitu- : 1
wr
ation training. That this effect is not due simply to the total é st
number of stimuli given is illustrated in the elegant experiments of ) 2 [ 4 s
DAYS
Carew and co-workers (Carew, et. al., 1972) in Aplysia. 1In these ex-
periments, one group of animals was given repeated sessions of habit-
uvation followed by recovery, while another group was given the same
total number of stimuli in a single session. Figure 2.33 shows that
the massed trainihg led to less habituation and more rapid recovery
upon retesting than the spaced training. As mentioned in Chapter 1
- ffect in Aplysia (Carew, et.
this result is demonstrated in enough preparations that Petrinovich Figure 2.33 Massed verses spaced-trials e

1., 1972). Gill-withdrawal response of Aplysia is tested
(1973) has suggested that it be adopted as a tenth defining charac- 8les )

istic of habituati under two conditions. In (a), forty stimuli are given over
teristic of habituation.

the course of three training sessions. In (b), forty

stimuli are given in a single session. Habituvation tested
As with the BZE, I will show how the long-term effect may be

after recovery is more pronounced in the former case. Re-
addad to the basic model discussed previously. As with the BZE, the

printed with permission of the author and publisher. Copy-
addition will say little directly about the circuit or synaptic

e

rigic 1972 by the American Association for the Advancement

of Science.
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mechanisms that may be involved in expression of the LTE, beyond the
suggestion of some functional forms that the synaptic variation may
follow. More detailed modeling of LTE must await the population mo-

del to be presented in the next chapter.

In the process-level model defined previously, the system's
asymptotic response is determined by the asymptotic levels of the
decrementing and incremenring channels. Each'channel's asymptote is
in turn determined by the modification gain of the asscciated synapse.
The modification gain of the decreasing weight may itself be a vari-
able governed by a differential equation; viz.,

~

T, W= No -W-al

T as= a; - a +V ;

where parameters are defined as before. If the time constant of the
modification gain is much greater than that of the synaptic weight,
then successive habituation sessions will leave the weight modifica-
tion gain increased, even though the weight itself is allowed to re-
cover between sessions. With each session, the gain is greater and

the asymptotic weight and output levels are lower.

Though this model realizes a form of the LTE, it does not handle
the effects of massed trials properly. In fact, the modification
gain 1s increased as a function of the total number of stimuli,
rather than as a function of the total number of habituation ses-
sions. This situation can be remedied in two ways. First, a short-

term fatigue effect can act on the modification gain equation to de-
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crease its drive as stimulation is continued. Thus:

‘[VV"VO-V—cI

1f T is about equal to T the change in the modification gain of
the synaptic weight occurs mainly in the first few stimulus presen-
tations in each session. As the weight itself recovers from habitu-
ation, so does the ability to increase its modification gain. Massed
trials will be less effective than spaced trlsls. then, in producing

the LTE in this system, owing to the decrease in V.

This model of LTE employs three differential equations driven
entirely by presynaptic activity. Another approach is motivated by
the observation that a system that is subjected to spaced-trials
habituation is more active than one given massed triyls. The cells
in the spaced-trials experiment fire more over the course of the
testing due to the periods of recovery between habituation sessions.
In the massed-trials experiment, habituation occurs rapidly and cells
fire less for the same number of stimuli. This observation suggests
that the LTE may be due partly to postsynaptic activity of the cell

driven by the habituvating synapses.

Consider, for example,

Ta a=ag-a vo

where O is the firing rate of the output cell. In the model con-

sidered here, (Figure 3.8)
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0=WD
ignoring the sensitization terms, so

T a=a -a+VWD

a 0

The modification gain, and therefore the synaptic weight itself, de-
pendson a combination of pre- and postsynaptic activity. Though

this situation is remeniscent of the Hebb synapse (Hebb, 1949), the
effect here is negative, rather than positive, feedback. As a in-
creases, it forces W to decrease and reduces its own rate of increase.
If Ta is large with respect to T the LTE and massed-trials effect

will again be exhibited by the model.

These two models for the long-term effect can be differentiated
experimentally if a way can bg found to depress the activity of the
post-synaptic cell. If the cell is unable to fire, the second model
says that long-term habituation will not build up; post-synaptic
activity makes no difference in the first model. One means to de-
press the post-synaptic cell midht be to stimulate a pathway known
to mediate a tonic inhibition of that cell. The cell's activity
wight also be affected by drugs that block synaptic transmission or

that desensitize post-synaptic receptors.

The long-term and below-zero effects can therefore be built into
the current model in various ways. Doing so would allow a “grand mo-
del” to be constructed in which the effects of stimulus intensity,

frequency, and duration and the number of habituation sessions could
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be explored. Such an analytical model would allow quantitative ex-
ploration of the habituation characteristics and of the ways they
interact to produce the overall observed response decrement. The
model is presented on a process level, but suggests underlying cir-
cuit mechanisms in its basic anatomy and in the forms of the synap-
tic modificatioﬁ rules employed. In the next chapter, I present a
more detsiled and realistic model of the circuit and synaptic effects

that might underlie response decrement.
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CHAPTER 111

A POPULATION MODEL OF MABITUATION

The process-level model detailed in the last chapter is able
to duplicate a number of the characteristics of habituation, under
the assumption that synaptic decrement is independent of stimulus
intensity. However, as mentioned in Chapter II, Thompson's full
theory requires a synapse that decreases as a.function of intensity.
In this chapter, I present a more detailed habituation model that
can realize intensity-independent habituation with intensity-depend-
ent synaptic change. This model represents a closer look at the
action of the SR channel in the lucped model of Chapter I. The
single cell of Chapter II is now replaced with a rank of cells; the
single fiber now becomes a fiber bundle. This model is still a.
lumped model, however, in that the fibers show no spatial preference
in their contacts with the cells. The population model exploits the
effects of distributions of cell and afferent fiber thresholds to
realize habituation that varies inversely or not at all with stimu-
lus intensity. The operation of the model is expressed in terms of
the statistics of populations of cells and afferent fibers. Resules
obtained here may therefore be more easily related to circuit wmecha-
nisms operating in particular physiological systems than those of
the process-level model. Following presentation of the population
wodel, extensions to circuit-level models of the below-zero and long-

term effects will be discussed.

The anatomy of the population model is shown in Figure 3.1.

There, a bundle of afferent fibers makes contact at random with a
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VR
CELL
RANK

AFFERENT BUNDLE

Figure 3.1 Anatomy of the population model. A bundle of afferents
makes random contact with a population of cells. Synap-

tic values decrease with use.
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rank of cells. The number of afferents excited by a system input
depends on the intensity of stimulation. This activacion of affer-
ents results in postsynaptic potentials that tend to excite the cells.
A given cell fires if ita total excitation exceeds its threshold.

The firing rate of a cell is defined as the positive difference be-
tween its total excitatory input and its threshold. The output of
the system due to a given stimulus can be described in terms of the
average number of active cells or the average firiag rate of those
cells. To realize habituation, the values of the synapses decrease

with presynaptic activity.

in what follows, I first derive formulas for the probability of
cell firing and for the average cell firing rate based on the distri-
butions of the cell and efferent fiber thresholds, and on the distri-
bution of the number of afferents each cell receives. Results of
computer evaluations of these formulas and curves of relative habit-
uation based on them are presented next. Finally, extensions of the

model are discussed.

System Response Calculations

In calculating the system response, I first consider the distri-
bution of input fibers to a given cell. 1 assume thgf each fiber
makes contact with a given cell with fixed probability. Because of
this random connection rule, the number of fibers making contact with
a given cell is a binomially distributed random variable (Marr, 1969;

Rall, 1955).
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PN(n) = probability that a given cell has n input fibers

The random connection rule above gives
\ “s n Ns -n
Py(n) = . p, (A-p)

where

Ns is the total number of input fibers, and

P. is the probability of connection from a given fiber to the

cell.

Afferent fibers are activated by an input as a function of stimu-
lus intensity. It is necessary to calculate the distribution of ac-
tivity in the afferent bundle as a funccion of intensity, then. Each
afferent fiber 1s assumed to have a threshold with respect to a given
stimulus. Thresholds vafy over the population of fibers, so the ac-
tivity in the afferent bundle must be expressed in terms of its thresh-
old distribution. For example, if the stimulus is current generated
by a pair of electrodes placed in or near the bundle, nearby fibers
will be activated at lower stimulus intensities than fibers farther
away from the electrodes. Note, also, that a fiber activated at a
given intensity 1s a;sg activated by higher intensity stimuli.

Let PSA(I) denote the fiber gthreshold density function induced by
a particular stimuluéj-:;;:zzéed in units of stimulus intensity, A

given fiber is activated only if the stimulus intensity is greater
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*
than its threshold. At a fixed intensity, say 1 , the probability
that a given fiber is activated is the probability that its thresh-

®
old is less than I . That is,

. . .
Pr [fiber is activated at intensity I ] = Pr [chreshold £ Bg, 1)

*
F, (1),

where FSA(I) is the cumulative distribution fumction associated with
PSA(I)‘ This relation between fiber activity and intensity is 1llus-
trated in Figure 3.2b for the case of the flat fiber threshold den-
sity shown in Figure 3.2a. Note that this probability is the same
for all fibers, so the activity over the entire fiber bundle is a bi-

nowial random variable with

Pr [(m fibers active at intensity 1} = PA(m, “s)

= Y F (1)m (1-F (I))N
SA sa 8
o

This distribution of active fibers is reflected in the distribu-
tion of active fibers making contact with each cell. 1f a cell has

a total of j input fibers, then

] o -
Pr [cell has m active fibers] = FSA(I) (1 - FSA([))
m

as above. The probability that a given cell has m active fibers, then,

is

N
8 J
m j-nm
Pila, 1) = T P()) I ] Fga (D™ (1 - Fg, (1))
j=m o
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Psh(l)

Figure 3.2a Fiber threshold distribution. Ordinate 1in units of

stimulus intensity.

Fa(D

1.07

L

Figure 3.2b Resulting fiber activation probability distcibution

function.
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This form takes into account all the ways that m active fibers com-

tact cells with different numbers of input fibers.

The activation of a number of fibers on a given cell yields a
postsynaptic potential depending on the strength of the activated
synapses. Ii is generally accepted that activation of a chemical
synapse by a single act;on potencial releases a number of quanta of
transmitter substance, each of which leads to.a small depolarization
of the postsynaptic membrane (Auerbach, 1972). The number of quanta
released is a random variable, generally considered to have a Poisson
distribution. 1In what follows, I suppress the statistical nature of
this process and deai only with the mean amount of transmitter re-

leased by a synapse upon stimulation.

Each cell 18 assumed to have a threshold chosen from a probabil-
ity distribution. The cell fires if its postsynaptic potential is
greater than or equal to its threshold, and is silent otherwise.
Likewise, the cell's firing rate is assumed to be the difference
between its postsynaptic potential and its threshold when this dif-
ference is positive, and is zero otherwise. Let the amount of depo-
larization produced by activation of a given synapse (the synaptic
weight) be expressed in terms of threshold units. 1 again ignore the
statistical nature of the synapses, and suppose that all synapses have
the same weight. A cell with m active input fibers experiences a post-
synaptic depolarization equal to mW, where W is the common synaptic
weight, and where linear summati.n of postsynaptic potentials is

assumed.
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A cell with threshold equal to A fires when

oW Z A
So,
Pr (synaptic drive > cell threshold] = PE (A, W, I)
N
8
=L, Pi® DU @2 4),
where
1; if x is true
U(x) =

0; otherwise

Note that this formula assumes a standard activation of the synapses,
independent of stimulus intensity and frequency. This assumption
and the assumption of linear addition of postsynaptic potentials will

be discussed later.

when
m > [A/W]

vhere [x] = least integer greater than or equal to x.

Let
R = (a/¥],

then
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PE (A, W, I)= ¢

PI (m, I), and
m=R

PF (W, I) = Pr [cell fires] = Pr [synaptic drive > threshold}
]
= £ PA (x) Pg (x, W, 1) dx

where it is assumed thaﬁ the cell thresholds are continuously dis-

tributed with density function PA (x). This integral cam be approxi-

mated by
M
_ P, (W, I) = jfm P, (3 - 08) P, (JOA W, T) M

N for some minimum and maximum thresholds given by m - AA and m + AA,

respectively, and summation increment AA.

This formula gives the probability of firing of a given cell in
terms of stimulus intensity and synaptic weight. Since the cells
fire independently of one another, the total output activity is a
random variable that is again binomially distributed, giving

[Nc] K “c -k

Pr [k cells fire) = . P (W, I)7 (1 - Pp(W, 1))
where L total number of cells.

In particular, the average number of active cells is just Né- PF w, 1),

which depends directly on the probability of cell firing.

A similar calculation gives the expected output rate of a given
cell. Let
x;3 x>0

T (x) =
0; x<0
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Then the outfgt rate of a cell with synaptic drive oW and threshold
A 18 .T (oW - A). The expected output rate of a cell with threshold
A 1s, then,

N
8

FB (A, W, I) = I Pr |[cell has m active fibers] * T (oW - A)
n=o

N
8

= L P_(m I) T (oW - A)
1
m=0
The expected output rate taken over all cell thresholds is
M
FF W, 1) = jfm PA (3 * 8a) FE (3 * 8a, M, 1) Aa,

where a sum is used to approximate the integral of the threshold

density function, as before.

These formulas express the probability of cell firing and the
expected output rate as functions of stimulug intensity and synaptic
weight. Computer-generated curves of these quantaties are shown in
Figure 3.3 for fixed synaptic weight. The probability of firing 1is
a sigmoid function of intensity, while the output rate function grows
quadratically. Similar results for the cell firing probability were
derived by Rall (1955) who considered the action of this system.

Rall did not deal with output rate, however. Though Rall did investi-
gate facilitation, he did not work with synaptic depression, as 1is

dealt with here.

In order to model habituation in this system, a rule is needed
for the way the synaptic weight lecreases with repeated stimulation.

As in the process-level model of Chapter 11, the synaptic weight will
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100.0 1.0
PL(D)

50.0 5.0
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FF PF 2.0 2.5 3.0 3.5 4.0 - 4.5 5.0

Figure 3.3 Curves of probability of cell firing and average output

rate as functions of stimulus intensity.
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be assumed to vary according to a first-order differential equation
in order to capture the properties of exponential decrease and spon-—

taneous recovery. Thus, the synaptic equation is:

. (X 3
W “0 -W-al

where

I+ is the synaptic modification input,
and all other parameters are defined as in the process-level

model discussed in Chapter IIL.

The synaptic modification input may be a function of stimulus inten-
sity or may be intensity-independent. Both cases are explored in
simulations detailed below. In this model, since'all synapses are
assumed to be identical, all of the synapses activated by a givéu
input can be modeled with a single differential equation. Relaxation

of the assumption of identical synapses will be discussed later.

System Simulation

The formulas for probability of cell firing and expected output
rate can easily be evaluated, given values for all parameters. A
computer program was written to perform this evaluation and to con-
struct curves of relative habituation as stimulation proceeded. As
in the UATION program of Chapter II, stimulation was a constant in-
tensity pulse with predefined duration and period. Also as before,
system response was defined as the cell firing probability or aver-

age output rate at the start of each stimulus presentation or as the
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total rate or firing probability during the time the stimulus was
non-zero. These two measures of system response yielded similar re-
sults. In the curves presented below, the latter measure is employed.
The control level of response was defined as the response to the first
stimulus. Since all synapses are assumed to be identical, a single
diffential equation was used to model ghanges in the common synaptic
weight. Results are presented for the cases in which f+ is constant
and in which it depends on stimulus intensity. Simulation parameters

are as listed in Table 3.1, and on the figures themselves.

Case 1: I+ constant. Figure 3.4 shows curves of relative habit-

vation of firing rate generated with constant synaptic modification
drive and flat fiber and cell threshold. density functions. Théae
curves display the inverse-intensity effect: as stimulus intensity
iqcreases. relative habituation decreases.. This effect is due here
to the nonlinear nature of the population output function. At a low
intensity, small changes in synaptic drive lead to the silencing of
relatively many cells. At higher intensities, more cells are above
their thresholds, and fewer drop out as the synaptic weight falls.
The change in overall output rate is approximately linear in the
synaptic decrement at higher stimulus intensities, since the T func-

tion 18 linear in W.

In this case, the synaptic modification drive is independent of
stinulus strength, so relative habituation is also independent of
input strength at ‘intensities great enough to activate almost all

cells. The curves of Figure 3.4 are the result of this interaction
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TABLE 3.1

Parameters Used in Population Model Simulation

N_ = 200

P =.75

W =1.0

= 4.0

Stimulus duration = .03
Stimulus period = ,2

Fou (D =14 (@-1D, 125155

Threshold values and synaptic modification gains indicated on figures.
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various intensities zre shown.

following figures.
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NUMBER OF STIMULL

Curves of relative habituation of output rate at
Intensity values as indi-

cated on the curves; the same values are employed on all
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between synaptic decrement and cell thresholds. Note that if all
cell thresholds were zero, this case would reduce to the process
model simulated previously, in which cell thresholds were not taken
into account. At higher intensities, where the effects of cell thresh-
olds are lost due to activation of all the cells, the two models yield

the same results.

The intensity effect illustrated here can be sculpted by changes

7 in the cell threshold density function, as shown in Figures 3.5, 3.6,

and 3.7. Figure 3.5 was generated using a cell thresbold density
function skewed toward higher thresholds, as indicated. Due to th;
predominance of higher thresholds, decrements are §omewhat'greater

in figure 3.5 than in Figure 3.4. The curves of Figure 1.6 were gen-
eratéd using a cell threshold density function skewed toward lower
thresholds, resulting in less relative decreﬁent at all stimulus 1u?
tensities. In Figure 3.7, a Gaussian threshold density function wvith
the indicated parameters was used. Relative decrément is greater at
low intensities due to the lack of low-threshold cells. At higher
intensities, h;wever, the cells are all activated, and relative habit-

uvation is approximately intensity-independent as before.

Case 2: I+ a function of stimulus intensity. In this case, syn-

aptic decrement depends directly on stimulus iqténsity. It might be
expected that the effect of an increasing synaptic decremént could
offset the threshold effect, to produce intensity-independent relative
habituation in some range of intensities. That is, at a low s-imulus

intensity the output depends strongly on the synaptic decrement, but
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the decrement is small; At a moderate intensity, the decrement is
greater but the output rate depends less strongly on the synaptic
level. At the highest intensity, the cells are all active, and the
threshold effects are absent. There, relative habituation should
actually i;crease with increasing stimulus intensity, since, as
above, output rate is linearly dependent on synaptic weight at high

intensities.

A clear example of this behavior is shown in Figure 3.8, gen-
erated by a system with flat fiber and cell threshold density func-
tions. At the lowest intensities, the threshold effect dominates,
and relative habituation decreases with increasing stimulus strength.
At moderate intensitles, hﬁvever, relative habituation is apgfoxi-
mately independent of intensity, as indicated by the fact that curves
marked 3, 4, and 5 (curves of moderate 1nteﬁsit1es) are covered by
the curves marked 6 and 7 (curves of higher intensities). At the
highest intensity (curve 7) the effect begins to reverse as all the

cells become active, and relative habituation becomes directly de-

pendent on stimulus intensity.

With increased synaptic modification gain, this overall effect
is less pronounced, and an inverse-intensity effect appears. In
Figure 3.9, a stronger synaptic modification drive leads to greater
sp}ead between curves. At higher 1ntens1£1es. all the cells are
activated, and the inverse—intensity effect ;everses. In systems
with intensity dependent synaptic modification approximately inten~

sity-indcpendent relative habituation can be produced 1f synaptic
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modification drive is low and low-threshold cells predominate. As
thresholds and synaptic drive increase, relative habituation becomes

intensity-dependent.

Discussion

Computer evaluation of equations characterizing the system of
Figure 3.1 operating with two types of synaptic modification shows
that, in each case, both an inverse-intensity effect and approxi-
mately intensity-independent relative habituation can be realized.
In the case of constant synaptic drive, relative habituation 1is in-
versely proportional to intensity at stimulus levels below which
all cells are activated. At higher levels, where all cells are
above threshold, relative habituation is independent of stimulus
intensity, as in earlier models that involved no cell thresholds.
When synaptic modification depends on stimulus intensity, system
parameters may be set to yield either approximately intensity-inde-
pendent relative habituation, or relative habituation that varies in-
versely with intensity. In these systems, however, relative habit-
uvation varies directly with stimulus intensity at levels that are

great enough to activate all the cells.

S.- I. Amari (unpublished results) has recast the system in a-
form amenable to methematical analysis under the assumption that the
variance of the number of afferents to each cell is zero. His ana-
lysis confirms the results given here for high intensity stimuli;
namely, that intensity independence occurs with constant synaptic

modification drive and that intensity-dependen. drive leads to in-
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tensity dependent habituation. Amari's énalysis and the computer
simulation give different results for low-intensity stimuli, however.
While the simulations show an inverse-intensity effect, analysis
indicates that no such effect should occur. This conflict points
to the.possibillty that the variance in the number of afferents--
taken iuto account in these simulations, but ignored in the analysis—-
is the cause of the inverse-intensity effect. In fact, if the num-
ber of afferents to each cell in the simylati;ns is made large enough
that their variance is a smaller factor in overall circuit operation,
thc inverse-intensity effect disappea?s, as Amari's analysis says it

should.

The two forms of behavior of relative habituation with 'respect
to intensity occur in a number of physiological systems. Fhat habit-
uvation is inversely dependent on stimulus intensity is a ;at: of the
generally accepted operational definition of habituation. Eariier
simulations illusirated the way this behavior could be gotten from
a system containing both decremental and incremental effects. The
system studied here shows how a simpler anatomy employing cell thres-
holds achieves the same result. In the light of Thompson's recent
elaboration of his two-process theory of habituation (Thompson, et.
al., 1973), it is especially interesting that approximatelﬁ intensity-
independent relative habituation can be achieved in a system employ-
ing a synapse vwhose value decreases with increasing stimulus inten-

\
sity. In my earlier model, intensity-independent habituation was

realized only through the use of synapses whose values decreascd in-

dependent of stimulus intensity. The model presented here is thus
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closer to current habituation theory.

The two cases of synaptic modification considered hére corres-
pond to two different physiological situations. Examination of these
two cases will help to show how the model can be applied to a given
physiological system. In this model, each synapse is affected only
by the signal on its own fiber. In order to determine the way a
synapse reacts to different stimulus 1ntensities, it is necessary to
see how intensity might be encoded on a single afferent fiver. If
it is assumed that a fiber propagates only standard action potentials,
then only interspike interval and burst duration are available for

coding stimulus intensity.

It may be that neither of these effects codes intensity on single
fibers, so that intensity information appears only in the number of
lines activated by the stimulus. Physiologically, this corresponds
to the situation in which an afferent bundle is directly stimulated
electrically. Regardless of stimulus intensity, only a single action
potential is generated on each activated 1line. The cor;ésponding
case in the model is that of intensity-independent synaptic modifi-

cation (I+-a constant).

An example of this situation is found in Zucker's exploration
of the mechanism of habituation of the crayfish escape response
(Zucker, 1972; Zucker, et. al., 1971; Krasne, 1973). Tactile stimu-
lation of hairs on the ‘abdomen of the crayfish elicits a powerful

tail flip that carries the animal away from the source of stimulation.
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The tail flip is mediated by the action of a pair of nerve fibers
activated by the abdominal sensory cells directly and through inter-
neurons. It has been shown that habituation of the escape response
1s due to decreased transmission between the interneurons and the
sensory fibers. The model presented here was based on this circuit
configuration. Zucker (1972) employed an electrical stimulus to
excite the afferent bundle directly, corresponding to the case dis-

cussed alove.

Intensity-dependent synaptic modification in the model corres-
ponds to the case that stimulus intensity is coded on each afferent
line in the form of burst frequency or duration. The afferent bun-
dle, then, must be composed of the axons of a set of cells that are
excited by the stimulus. This case is applicable to physiological
systems involving polysynaptic chain of cells. Longer burst discharges
induced by higher stimulus intensities yield more action potentials
per stimulus, and lead to greater synaptic decrements. Simulations
employing constant synaptic decrement and stimuli with durations that
increased with intensity show that stimulus duration may be balanced
against the thrashold effect to yield results similar to those ob--
tained with intensity-dependent syngptlc modification. The model's
intensity-dependent syn;;:T:-Egaification, then, may represent the

effect of intensity-dependent burst duration.

Synaptic decrement has been shown to be frequency dependent in

a number of preparations (Brune> and Kennedy, 1970; Groves, et. al.,

1973; Wickelgren, 1967). At low frequencies, decrement is a direct
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function of frequency. At higher rates, however, sensitization can
occur, and synaptic efficacies may increase rather than decrease.
Intensity-dependent synaptic decrement in the model can be considered
to correspond to the effect of increasing burst frequency with in-
creasing stimulus intensity only if it is assumed that burst fre-
quencies remain within the range of synaptic decrement. This case
can be applied, then, to systems in which the bursting properties
of . cells driving the decrementing synapses aré properly related to

the frequency sensitivities of those synapses.

A number of assumptions were made in deriving this model. Re-
laxation of these assumptions leads to extensions of the model to
handle more of the properties of habituation. For}the sake of sim~
plicity, the synapses vere modeled as a population of identical ele-
ments. This assumption allowed the use of a single differential
equation to simulate the entire set of synapses activated by a stimu-
lus. Exténsions may be made in two ways to deal with a population
of synapses having a range of parameters. First, the synapses could
have different resting values. This change le;da to a complication of
the equation for the probability of cell firing. Further compli-
cations might then involve correlations between fiber threshold and
synaptic weight. For example, it may be that low-threshold fibers
are more likely to end 1ﬁ more powerful synapses. In the case of
constant synaptic modification drive, this would lead to reduced
relative habituation at low stimulus intensities. The synapses may
also have different m;dification parameters and the parameter -—ralues

might be correlated with synaptic strength or fiber threshold. For
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example, if synapses on higher-threshold fibers were more difficult

" to modify, the inverse~vedesion of rclative habituation to stimulus

intensity would be augmented.

Two related circuit models of the below-zero effect can be
based on the current model using populations of synapses with dif-
ferent time constants. First, consider the case of a system whose
response falls tb zero upon sufficient stimulétion. An example of
such a system is the rat startle response (Prosser and Hunter, 1936).

Suppose that the model described above holds, so that a single dif-

ferential equation can represent the common value of a population of

identical synapses. If the synaptic modification gain is great enough,
the synaptic value will fall below the point that any cell can be
activated, and the systen response will go to zero. Cessation of
stimulation at the point that the response goes to zero will lead to
response recovery at a rate determined by the synaptic time constant.
Continued stimulation may drive the synaptic level lower, causing

the system response to remain zero for a time following cessation of
stimulation. Once the response becomes non-zero, it will recover
with a time course independent of the length of time it remained
zero; i.e., independent of the duration of the habituation session.
This simple model does not capture the property that systems that
exhibit the below-zero effect recover more slowly following prolonged

stimulation.

A modification of this nmodel is suggested by the mechanism added

to the process-level model to handle the BZE. Changing the time con-
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atant of synaptic recovery in that model can correspond in the popu-
jation model to a depletion of synapses with longer time constants.
Suppose then.thnt the population model involves a set Synapses w;th
a distribition of time constants, rather than the set of identical
synapses with a single time constant considered above. Cell thres-
holds may be set such that depletion of a significant portion of the
synapses sends the system response to zero. During initial habitua-
tion trials, the synapses with smaller time constants deplete gig-
nificantly, while those with long time constants change less. Re-
covery from that point in habituation training will follow essentially
the time course of the faster synapses. Habituation training con-
tinued aétet the response has fallen to zero will result in deple-
tion of the synapses with larger time c;nstahcs. Recovery follow-
ing prolonged habituation will follow the time course of the slower
synapses, since the immediate recovery of the fast synapses will not
be enough to activate the cells. In this case, then, in which sys-
tem response falls to zero, the below-zero effect may arise as a

result of a distribution of synaptic time constants.

In Farel and Thompson's (1972) work on frog spinal cord, an
example is glven of a system that displays the BZE with a non-zero
asymptote. &his behavior may most easily be modeled using the BZE
system considered above together with a set of nonplastic synapses,
as illustrated in Figure 3.10. The pathway to the cutput through
the interneurons behaves as above, displaying the BZE with an asymp-

totic response of zero. The direct pathway from imput to output estab-

1ishes a non-zero level towards which the response level falls as
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AFFERLNT BUNDLE

OUTPUT CELL

INTERNEURON RANK

Figure 3.10 Circuit showing below-zero effects. Afferent bundle makes

contact with interneuron rank as in Figure 3.1. Afferents
and interneuron outputs comtact output cell, R. Only syn-

apses from afferents to interneurons are plastic.



163
the interneurons cease firing. This system, then, exhibits the BZE
with a non-zero asymptotic response. It is interesting to note in
this regard that Farel and Thompson (1972) mention a nonplastic
monosynaptic component in the response they studied, though accord-
ing to Brookhart and co-workers (1960) this monosynaptic path is
very weak. In more complex systems, the monosynaptic pathway shown
in Figure 3.10 can be replaced with a nonplastic polysynaptic path-
way from stimulus to response, or with a set ;f nonplastic synépses
that make contact with the same interneurons served by the plastic

connections.

The populaticn model developed in this section, then, can serve
as the basis of an extension to plausible neural circuitry of the
process-level BZE model considered previously. This population model
of the BZE can be applied where the necessary circuitry exists to
support it. Thus the rat startie response (Prosser and Hunter, 1936)
and the electrical response of frog spinal cord ventral root to dor-
sal root stimulation (Farel and Thompson, 1972) may be modeled 1in
terms of the system considered here. Each involves polysynaptic

chains of cells in which the systems of Figures 3.1 and 3.10 can

easily be embedded. This population mcdel camnot be applied to mono-

synaptic responses that do not involve cell thresholds (Farel, et.
al., 1973). Nor can it be applied to systems that involve one or a
very few fibers and cells. In such cases, the BZE is likely to be
a purely synaptic affair, and more must be known about the biochem-
is.ry of habituatiow at a single synapse before a detailed explana-

tion of the BZE can be given.
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The population model can also be applied to a circuit-level
descfiptlon of the long-term effects, as mentioned in Chapter 1I.
The response of a system that displays the long-term habituation
effect falls to a lower asymptote with each habituation session.
The BZE model considered above can be modified to show this behavior
in a manner similar to that considered in Chapter II. If the syn-
apses of the nonplastic pathway are made plastic, and are governed
by one of the two LTE schemes considered in Cgapter 11, then the
output of the model considered above will display both the LTE and
BZE due to the different plastic properties og two separate sets of
synapses. The LTE, however, are realized in this model with a set
of synapses that are themselves assumed to display the LTE. While
such synapses appear to exist--for example, the monosynaptic gill-
withdrawal résponse in Aplysia (Carew, et. al., 1972) has been shown
to display long-term effects--it is interesting to consider a.pos-

sible circuit realization of the LTE using simpler synapses.

The two sets ofveffects——and the two separate pathways;-may be
integrated if the neurons are given saturation characteristics. 1In
the basic population model, the firing rate of an interneuron is
taken to be the positive difference between its total-synaptic drive
and its threshold. As synaptic drive increases, output rate also
increases without bound. Suppose now that the firing rate saturates
above some total synaptic drive, so that further increases in post-
synaptic potential lead to no further increases of firing rate.

Such a characteristic can be realized by a variety of functions (Wig-

”"
strom, 1975; Stein, et. al., 1974; Leibovic, 1972; Freeman, 1975).
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In the model with saturation, cells driven strongly enocugh will
be saturated, and synaptic decrements will have little or no effect
on their output rates. These saturated cells can correspond to the
nonplastic pathway in the BZE population model of Figure 3.10. A
cell that is less strongly driven (either due to a higher threshold,
fewer activae afferent fibers, or lower synaptic weights) will be
strongly affected by changes in synaptic values. The output rates
of such cells will decline, giving rise to thé desired response de-
crement. Those cells whose outputs fall to zero will serve as the
basis of :he_BZE. as in the previous model, due to changes in synap-
ses with long time constants. The outputs of cells that are neither
zero nor saturated ;111 continue to fall throughout the course of
habituation training. This model realizes the third form of BZE,
then, in which a slow decline in output is seen, rather than a rapid

fall to a steady asymptote.

The long-term effect in this model system is in fact a sort of
"above maximum effect"” that employs a non-zero saturation in the
same way that the zero "saturation" gives rise to the below-zero
effect. If with each habituation session, synapses with very long
time constants on each saturated cell are decreased, such a cell
may eventually fall out of éaturation. Its output rate will fall,
possibly to zero, as the faster synapses connected to it decrease
in value. As this long-term process continues, the asymptotic out-
put of the overall system will decrease with successive habituation
sessions. If the long time cons:iant synapses act only to bias the

cells into saturation, then the responses of those cells will again
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be saturated when the fast synapses recover. The overall system
response will therefore recover between sessions, but fall to a
lower asymptote with each session, as desired. Note that full re-
covery requires that the cells that do not saturate have few slow

synapses, so this model may correspond more closely to the one of

Figure 4.10 in which LTE and BZE paths are separated.

The below-zero and long-term effects can be modeled on a level
closer to plausible neural circuitry, then, employing the popula-
tion model developed in this section. Two possible realizations of
the below-zero effects are given here to complement the classifica-
tion of the BZE on the process level given in Chapter 1I. Sinilarly,
the synapses of the population model may operate according to the
process-level equations of Chapter 1I, or a cell saturation effect
may be incorporated into the population BZE model to realize the

LTE with simpler synapses.

Generalization effects can be modeled in this system by relaxing
the assumption that each fiber makes contact with each cell with fixed
probability. This relaxation amounts to making a distributed system
of the current lumped model. In that case, a single differential
equation would be needed to represent the valuve of each model syn-
apse. . A given stimulus would excite a particular portion of the over-
all éyscam. fhe excited portion would behave like . the lumped popu-~
lation system presented here. Changing the stimulus would result in
activating a different set of afferents and synapses. A distributed

model would take such changes into account. Such a mwodel would allow
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the detailed investigation .of the common elements notion and its
expression in stimulus generalization (Thompson, 1965; Thompson, et.

al., 1973). The population model presented here forms the basis for

uﬂderstanding the operation of the more complex distributed system.

Finally, note that cell and fiber dynamics were not included in
this model. It was pointed out that the derivation of the equation
for the probability of cell firing assumed simple addition of post-
synaptic potentials and involved frequency- and intensity-independent
cell and sSynapse responses. Synapses may not be able to follow high
frequencies of stimulation, howev;r, leading to decreased potentials
at high frequencies. Similarly, since cell dendrites may be modeled
with first-order differential equations, potentials due to higﬁ fre—-
quency stimulation add to produce a greater total EPSP than ghat pro-
duced by low frequency stimulation. A more complicated model could
incorporate the synapse effects through the use of a frequemcy- or
intensity-dependent term in the U-function. Cell dynamics could also
be added through use of one of a number of single cell models (Stein,
et. al., 1974; Segundo, et. al., 1968). Non-linear summation of post-
synaptic potentials could also be included in a more complicated model
(Martin, 1955). These complications would help to show how more de-
tailed properties of cell and synaptic responses work to shape the

relative habituation curves.
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CHAPTER 1V

SUMMARY AND CONCLUSIONS

This work began with the desire to construct relevant model
habituation networks. These models were to embody the generally
recognized characteristics of habituation in simple networks that
employed physiologically reasonable mechanisms to realize habitua-
tion. The two-process theory of Thompson and his colleagues was
chosen as the basis of this modeling for a variety of reasons.
Among these reasons were that the two-process theory is complete
in its handling of habituation data, detailed in its statement of
the operation of its components, and satisfying in its close rela-
tion to physiological circuitry. A simplified model based on a
more complex circuit due to Groves and Thompson (1972) was formu-
lated and was explored through analysis and computer simulation.
It was shown Ehat this simple model could realize several of the
properties of habituation, as reviewed below. Other habituation
properties could be added to this network in straightforward ways

that involved complications of the synaptic modification rules.

A more detailed model of habituation in a single SR channel
involving a population of cells with thresholds was propused and
simulated. This model showed how the desired intensity properties
of habituation might arise as a result of interactions between
synaptic depletion and cell thresholds. This model also opened
the door to explanations of other habituation propertizs on a level
closer to physiological details than the previous model. More com-

plex models of those effects were discussed inr the chapter dealing
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with the population model.

This work has demonstrated that a simple two-process network
can realize the properties that seem central to the operation of
habituation; viz., the properties of decrement and recovery, and
the effects of stimulus intensity. The decrement and recovery prop-
erties vere imbedded in the model through the use of differential
equations to represent synaptic weights. Modification rules of this
form readily realize the properties of exponential decay of response
during habituation training, and gradual recovery following cessation

of stimulation.

The desired effects of stimulus intensity in the model are two-
fold, according to Thompson and co-workers (1973). The relative
decrement due only to central habituation should be independent of
stimulus intensity, as exemplified by habituation of one pathway
in the isolated frog spinal cord (Farel and Thompson, 1972). This
effect was realized in the initial model with a constant synaptic
decrement. It was pointed out that this modification rule lead to
a decrease in synaptic efficacy that was independent of ingensity,
and that further modeling required a synapse whose value decreased
more as intensity increased. The constant synaptic modification
rule was a stopgap measure, then, designed to allow easy exploration
of the two-process network at a level once-removed from more com—
plicated modeling considerations. In the population wmodel, the
required intensity-dependent synaptic modification could be uted to

realize the required intensity-independent habituation , properly
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sealing the gap that was at first more crudely stopped.

The two sets of simulations using the HABIT and UATION programs
showed that curves of reasonable fit to data taken from experiments
on the spinal cat (Thompson, et. al., 1973) could be génernted by
the simplified two-process network. Two stratégies were found where-
by the circuit generated :those curves, and mixtures of the strategies
wvere simulated and discussed. Parameter valﬁés were found so that
the desired curves could be generated, based on either of the two
operating strategies or their mixture. Within §he framework of the
simple circuit, a nonlinear weight modification function was inves-

tigated. and its contribution to the overall rgéponse was discussed.

As was mentioned in the introduction, the intensity curves of
Figure 2.2 are more complex than those the circuit of Figure 2.6
can generate. Investigations of the simple circuit verify the hypo-
thesis made in the introduction that a two component sensitizacion
process would be enough to generate curves with forms closer to
those of Figure 2.2. A fast component whose relative contribution
to the overall response decreases with increasing intensity and a
slower component with a value that increases with increasing inten-
sity could comtine with the decrementing component to generate curves
1ike those of Figure 2.2. The physiological basis of the switching
from one form of sensitization to the other might be inhibition that
reduces the output of the faster component at high stimulus inten-
sities. In any event, the simpler network of Figure 2.6 provides a

base from which more complex models can readily be constructed.
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The desired effects of stimulus frequency were also realized
through the use of weights that vary according to differential equa-
tions. Because of recovery between stimuli, habituation in the model
decreases with decreasing stimulus frequency. These are the results

required of central habituation in Thompson’s theory.

Two qualifications must be made to this sonclusion, however.
The first concerns the range of frequencies employed, and the second
deals with the effect of confounding the frequency and intensity
characteristics. Data from a number of preparationé (Farel and Thomp-
son, 1972; Groves, et. al., 1969; Farel, et. al., 1973; Thompson and
Spencer, 1966) indicate that as frequency of stimulation increases,
so does habituation, when stimulus frequency is low or moderate.
Low and moderate are defined here with reference to the recovery
éroperties of the response in question. Thus, 1n_the isolated frog
spinal cord, recovery 1s relatively rapid (a time-constant of one or
two minutes), and stimulus rates employed in the work cited above
are moderate with respect to the recovery time-constant (lléec. to
1/10 sec.). Groves and co-workers (Groves, et. al., 1969), however,
report increasing decrements of response in the flexion reflex of
the spinal cat up to ftgquencies of 16/sec., while the recovery time-
constant appears to be on the order of a few minutes (Spencer and
Thompson, 1966). Decrement of a s;ngle slow process cannot be the

cause of this variatiﬁn at high frequencies.

An explanation ‘for this frequency effect is that the cat flexion

reflex involves decremental processes with short and long time-con-
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stants., The faster process would recover between-single étimuli
delivered at low rates, and therefare contribute little or nothing
to habituation at low and moderate frequencies. At a higher stimu-
lus frequency, the fast process would be depleted,‘resulting in
greater habituation at low and moderate frequencies. This hypothe-
sis could be checked by observing the recovery from habituation at
high stirulus rates. Recovery should go rapidly for a short time,
then proceed more slowly. DNote that this is ;eminiscent of recovery
in Aplysia (Pinsker, et. al., 1970), where recovery consists of two
components. Recovery curves at this level of detail were not given
by Groves and his co-workers, so this hypothesis can be checked only
by further experimentation. A similar explanation of the frequency

effects has been put forth by Graham (1973).

The second qualification to the frequency effect in the model
concerns possible interactions between the frequency and intensity
effects. At a low stimulus intensity, only the effect of central
habituation appears in the response curves. At a higher intensity,
however, central sensitization becomes a factor in the response.
Sensitization is frequency dependent, as is decrement, and increases
with increasing frequency. At a moderate intensity, then, response
decrement may actually decrease with ircreasing stimulus frequency
due to :heAfact that gensitization incredses with frequency while
the effect of central habituation changes little. Such a result was
reported by Griffin (1970) in work on the flexion reflex of the spi-
nal cat. Griffin concluded thaf the decrement seen in habituation

must be due to some process that is triggered by repeated stimulation
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but that takes place during the interstimulus interval. With more
time to act between stimuli delivered at low rates, such a process

would result in greater habituation at those rates.

As indicated above, these results could also be due to the
properties of sensitization. In a preparation that displays strong
sensitization, sensitization will be pronounced at a moderate stimu-
lus intemtsity and frequency. As the frequenc§ is decreased, sensi-
tization will recover between stimuli, and habituation will appear
greater. This effect is related to the problem of recovery from
high intensity stimuli discussed below. To test this hypothesis as
to the origin of Griffin's data, a lower intensity stimulus should
be employed in any preparation that shows Griffin's effect. At
some intensity, the effect should reverse, and habituation should
appear to be directly related to stimulus frequency. In any given
‘preparation, then, care must be taken to tease out the effects of
these proceéses in order properly to interpret the experimental re-

sults.

The characteristics of long-term and below-zero habituation
were discussed only sketchily. It was shown that particular func-
tional forms of synaptic modification could be used to realize these
effects in the process-level model. Interpretation of these forms,
however, had to await the more detailed population-level model.

The real uses of the addition of these mechanisms to the process-
level model are the ability to test particﬁlar functional forme

that might generate these effects and the ability to investigate in

174
detail the ways the effects interact. Because the process-levél
model can say little about underlying mechanisms, the long-term and
below-zero effects were not actively pursued at that level. The
population model suggestsways that the effects can be realized in
more neural terms, but again, much of the model is couched in terms
of inferred synaptic action. More detailed and realistic circuit
modeling must be complemented By more detalled models of synaptic

action,

The models investigated here suggest one experiment beyond the
check discussed above with respect to the effect of stimulus frequency
on habituation. This experiment is based on the model's recovery
from habituation to high or moderate intensity stimulation. These
models have indicated that in order to generate curves of relative
habituation having pronounced peaks in early trials in response to
woderate or high intensity stimuli, sensitization must have a smaller
time conscant than central habituation. During recovery, then, sen-
sitization may decay more rapidly than habituation. 1In that case,
the recovery curve following habituation to stimuli intense enough
that sensitization is a factor in the response should show an initial
dip as sensitization recovers, then a rise as central habituation
recovers. Griffin's data, as discussed above, may represent such
an effect. 1 have not seen.detailed curves of recovery plotted
following habituation to high intensity stimuli, however. These
curves should be generated experimentally as a possible test of the

-

two-process theory.
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This work, then, has offered a first approach to relevant net-
work models of habituation. Simple circuits.and functional forms of
synaptic modification have been suggested that duplicate many of the
characteristics of habituation. As mentioned in Chapter I, one
characteristic of habituation that has not been properly treated by
either the TPT or the model theory is the ability to habituate to a
teguiarly repeated stimulus and to dishabituate when the stimulus is
given out of step or uithheld. This characteéistic is dealt with in
greater detail in Cﬁapter V with respect to a temporal sequence memory

model based on the structure of the dentate gyrus of the hippocampus.
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"CHAPTER VvV~
A TEMPORAL SEQUENCE MODEL BASED ON THE STRUCTURE

OF THE DENTATE GYRUS

One characteristic of habituation mentioned only briefly in
earlier chapters is the ability to habituate to a regularly-repeated
input and to dishabituate when the stimulu; is withheld or its period
1s altered. This 1s another of the weak characteristics of habitua-
tion that is demonstrated only in certain p:reparations. As was dis-
cussed in Chapter I, however, the hippocampus may be such a system.
The observation of time-locking phenomena 16 the hippocampus (Yinogra-
dova, 1975), together with HcLa;dy's (1959) .conjecture that the hip-
pocampus acts as a detector-coder AE tempofal stimulus properties,
prompted an effort to model this characteristic of habituvation em-

ploying the structure of the dentate gyrus.

The temporal phenomenon described above--called time-locking
here--has been studied only seldom. The main sources of data on
time-locking at the behavioral level are studies of habituation of
human arousal levels. Sokolov (1961) reported the classical time-
locking effect in studies on the orienting response. Following
habituation to a regularly-répeated, low intensity stimulus, the
orienting response returned if the stimulus was withheld. Graham
(1973) and Kimmel (1973) diacuss further experiments on time-locking
using the orienting response. Graham notes that experimental results
in this area conflict; some studies show clear differences in habitu-

ation when stimuli are presented at fixed rather -than variable inter-

vals, while other studies indicate no differences. Groves and Thomp-
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son (1970) discuss experiments on temporal conditioning, concluding
that if temporal conditioning does occur, it is most likely a “state"

phencmenon rather than a property of the stimulus-response system.

In a series of experiments on the characteristics of single
units in the hippocampus of rabbits, Vinogradova and her co-workers
(Vinogradova, i970; Vlnsgradova. 1975 a, b; Vinogradova, Semyonova,
Konovalov, 1970) found cells in CA3 and in CAi that formed extra-
polatory responses. In these experiments, unanesthetized rabbits
housed in small boxes were exposed to a variety of sensory stimuli.
Post-stimulus time histograms (PSTH) were used to check the responses
of single units. Cells were found that responded to stimuli of all
modalities with either inhibition or excitation. In éost cases,
responses declined as thé stimuli vwere repeated and were renewed

when any stimulus parameter was altered.

Of particular interest is the group of cells that Vinogradova
called "extrapolatory cells" (and which I am tempted to call “future
detectors"). Such a cell exhibits a bimodal PSTH with an initial
peak, followed by a quiet time and then another peak. The second
peak may occur three seconds or more after the first. - With repeated
stimulation, the duration between peaks becomes "locked” to the inter-
stimulus interval, such that the cell'’s firing rate begins to accel-
erate before the stimulus is presented. The increase occurs in the
absence of the stimulus, then. It should be noted, however, that
this result is reported to be weak and is often masked by background

activity (Vinogradova, 1975). Another class of cells sensitive to
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temporal parameters of the stimulus are those that become locked to
the stimulus duration (Vinogradova, 1970). These cells cease respond-
ing at the usual time of stimulus offset, even if the duration has

been shortened or lengthened.

The existence of a time-locking phenomenon associated with habit-
uvation, and the establishment of the existence of time-sensitive cells
in the hippocampus lead me to seek a model of'the dentate gyrus that
might be used as part of an habituation ayséem with time-locking char-
acteristics. A variety of temporal memory models exist that may be
drawn on to guide the search. First, it oust be goced that the time-
locking seen in thevhippocampus may not be due to processes intrimsic
to the hippocampus at all, but may come from activity in other brain
regions. The work reported here focuses on the way that temporal
conditioning might arise within the dentate gyrus, in order to inves-
tigate the possibilities inherent in the circuitry of the hippocampus.
That the time-locking property might arise in another part of the

brain is freely acknowledged.

Groves and Thompson (1970) and Sokolov (1975) espouse two dif-
ferent views as to the basis of temporal conditioning. As mentiored
above, Groves snd Thompson relegate temporal conditioning to the
state sy;tem. saying that this system becomes entrained to regularly-
repeated stimuli. This implies that the state system contains long-
period endogenous oscillators that canm fix on the period of the stimu-
lus. Such oscillators were not discussed by Groves and Thompson

(1970). Long-period oscillators can be constructed using plausible
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neural mechanisms (Feldman and Cowan, 1975), and ar; suggested by
the form of the PSTH of Vinogradova's extrapolatory cells. Sokolov
(1975), following his stimulus-comparator paradigm, gives circuits
using time delays and coincidence detectors to achieve time-locking.
This approach is similar to the model presented below, in which a
time-delay element 18 in effect set up that corresponds to the inter-

stimulus interval. Sokolov does not say, however, where long time

delays are to come from.

Other temporal sequencé memory models exist that seem best
suited to time-~locking of signals with relatively short interstimu-
lus intervals. In a model due to Grossberg (1969), snapshots of the
gstates of a set of afferents are taken by cells activated at succes-
sive instants by a pulse traveling along a cqmgand fiber. This sys-
tem is capable of recording and replaying arbitrary space-time se-
quences. For long interstimulus iﬁtervals, however, a very long or
very slow conductor 1s required to carry the activating impulse.
Fukushim# (1973) has detailed a model in which successive snapshots
of input activity are stored in a neural shift register and combingd
continuously to form the system's output. This model has the attrac-
tive property that each output 1s generated by the entire input se-
quence that precedes it. The model 1s also able to infer from par-
tial information which of a number of stored sequences is to be re-
called. Marr (1970) notes that his inferential model for neocortex
can hgndle sequences of inputs by a process of chaining in which an
evoked output acts to trigger recall of the output expected next.

The model detailed here is similar to Marr's model in some respects,
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but Marr's does not have a structure directly applicable to the den-
tate gyrus. Marr's model would also not be able to handle sequences
with long interstimulus intervals. Finally, Spinelli's GCCAM model
(1970) 1s well suited for handling short inputs, again by a snapshot
mechanism that examines the afferents at successive moments and stores
each moment's signal in a different circuit element. However, Spinelli's
model could not directly handle discrete inputs. spaced by time inter-

vals that must also be recalled.

This look at available models of temporal sequence memories re-
veals two common elements. First i{s the snapshot method that changes
a continuous input into a stream of discrete events, however rapid
the shutter. Tne second is the propagation of snapshots to turn
time into space. These two fechniques can be traced at least to
Culbertson (1956) who sketched models similar to those of Fukushima,
an& to Beurle (1954) who suggested that traveling waves could be
used as computational elements. One problem with the propagation
methods is that a moving trace must eventually come to the limics
of the medium through which it travels. Long input sequences--or
long interstimulus intervals--lead to the necessity of unrealistic-
ally long chains of cells or impossibly slow propagation. The model
detailed below is recurrent, and so needs no long chains of cells
for its operation. This model is designed to store and recall dis-
crete inpufs separated by relatively long time intervals that are
also to be recalled. The model therefore illustrates one way that
teuporal conditioning of the sort observed by Vinogradova could be

realized in the dentate gyrus.
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The temporal sequence memory presented here is so designed that
once it has been sufficiently exposed to a sequence of inputs sepa-
rated by particular time intervals, it can reproduce the sequence
with proper timing if cued by an initial portion of the sequence.
The system thus learns by rote the interstimulus intervals involved
in a given repetitive sequence. Predictions generated by the memory
may be used as the basis of temporal conditioning, as will be dis-
cussed following presentation of the model 1t;elf. In the following
sections, I first discuss the physiology of the hippocampus to mo-
tivate the model's structure. I then detall the operation of the

model and present results of its simulation.

Hippocampal Anatomy, Physiology, and Possible Functicn

As mentioned above, the hippocampus has been studied in detail
at the anatomical, physiological, and behaviorial levels. I will
be brief in this description of the hippocampus, since a number of
excellent revie;s and collections.of the relevant literature exist
to which the reader can refer for more detail. These works include
especially the books of Ihaacsog (1974), and Isaacson and Pribram
(1975), the thesis by Segal (1973), and reviews by Kilmer (1975) and
by Douglas (1967). These books and papers summarize particularly
well the broad spectrum of research and points of view on the hippo-

campus.

Anatomically, hippocampus is a region of phylogentically old

cerebral cortex called archicertex (Chronister and White, 1975).
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1t is distinguished from the rest of the cortex by differences in
cell types and in its layering structure. The hippocampus consists
roughly of two U-shaped sheets of cells folded into one another to
fotm separate reglons called Ammon's horn and the dentate gyrus.
Each of these regions contains major projection cells--called pyra-

midal cells and granule cells, respectively--as well as a variety of

interneurons.

Fibers that enter and that originate within the hippocampus
generally remain within parallel slices arranged perpendicular to
the long axis of the hippocampus (Andersen, Bliss and Skrede, 1971).
Each such slice is called a lamella. Functionally, then, the hippo-
campus may be considered to be composed of a number of parallel slices.
The anatomy of the lamella is shoﬁn in Figure 5.1, adapted from the
work 6f Andersen (1964 a). The layers of granule cells and pyramidal
cells are indicated with U-shaped bands. The axons of the gfanule
cells form a bundle of fibers, called mossy fibers, that :ike exci~
tatory contact with the dendrites of pyramidal cells.in a region of
Ammon's horn called CA3 (Andersen, Blackstad, and Lg¢mo, 1966). These
cells in turn excite pyramidal cells in the CAl region by way of
axon collaterals called the Schaeffer collaterals (Andersen, et. al.,
1966). Not shown on the figure is a set of fibers arising from the
cells of a part of the CAJ region and terminating in the dentate
gyrus . (Zimmer, 1973; Gottlieb and Cowan, 1973). These fibers spread
to make contact with cells in other lamellae. Each region of the
higpocampus also contains a power ful vecurrant inhibition mediated

by interneurons (Andersen, Eccles and Lgying, 1964; Andersen, Bruland,



183 184

Figure 5.1 Anatomy of hippocawpal slice after Andersen, et. al.,
1971. A = Ammon's horn, DG = dentate gyrus, En = ento-
rhinal cortex, G = granule cell layer, P = pyramidal cell

layer, F = fornix, MF = mossy fiber tract, pp = perforant

path, Sch = Schaeffer collateral fiber tract.

Figure 5.1
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and Kaade, 1961). A recurrent excitation system has also been dem-

onstrated in CA3 (Lebovitz, Dichter and Spencer, 1971).

The hippocampus has at least three sources of inputs. The near-
by entorhinal cortex gives rise to a pathway called the perforant
path (Hjorth-Simonsen and Jeune, 1972; Hjorth-Simonsen, 1972) that
excites granule cells and pyramidal cells (Andersen, Holmquist and
Voorhoeve, 1966; Segal, 1972; Vinogradova, 19%5). This input brings
pre—pfocessed sensory information into the hippocampus from cortical
association areas (Van Hoesen, Pandya and Butters, 1972). The sep-
tum is a second source of input.. Axons originating in the septum
travel over the fimbria-formix fiber system to excite cells im all
regions of the hippocampus (Andersen, et. al., 1961; Vinogradova,

1975; Mosko, Lynch and Cotman, 1973). This input path may carry

information into the hippocampus concerning reinforcement (Olds, 1969),

arousal level (Segal, 1973), and bodily state (Covian, 1967). Finally,

a number of regions in the brain stem give rise to fibers that make
contact with pyramidal cells in Ammon's horn, and granule cells and
possibly interneurons in the dentate gyrus (Conrad, Leonard and Pfaff,
1974; Segal, 1975; Moore and Hularis, 1975). This set of inputs may

be involved in reinforcement (Claviea and Routtenberg, 1974).

The axons of pyramidal cells in CAl and CA3 constitute the out-
put of the hippocampus. The CA3 pyramidal cells project to the sep-
tum (Raisman, Cowan and Powell, 1966). These cells may also project
to the anterior thalamu; (Raisman, ft‘ al., 1966) and to other regions

of the forebrain and brainstem (Siegel and Tassoni, 1971; Raisman, et.
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al., 1966). The pyramidal cells in CAl may projéht to the septum
(Raisman, et. al., 1966; De Frénce. Kitai and Shimono, 1973) or may

- ———
send axons exclusively to the subiculum (Andersen, Bland and Dudar,
1973). The ventral CA3 region may also project to the entorhinal
cortex (Hjorth-Simonsen, 1971). It should be noted that the results
concerning the output of the hippocampus are open to controversy,
probably due in part to species differences and to differences be-

tween dorsal and ventral regions. These pathways are the subjects of

continuing study.

Many behavioral studies have been done aimed at elucidating the
function of the hippocampus. One group of studies has involved the
recording of hippocampal slow waves and the determination of their
relations to behavior (Vanderwolf, Kramis, Gillespie and Bland, 1975;
Grastyan, Lissak, Madardsy, and Donhoffer, 1959; Elazar and Adey,

1967). Another approach involves the placing of lesions in the hip-

pocampus and subsequently testing to find deficits in behavior (see
Isaacson, 1974, for a discussion of lesion experiments in the hippo-
campus). In a third group of studies, recordings of hippocampal unit
activity were taken in a variety of circumstances to determine what
single cells might be signalling (Olds, Mink, and Best, 1969; Segal,
1973; Ranck, 1973; Vinogradova, 1975). Interpretations of results

of these three types of investigations have lead researchers to posit
that the hippocampus is involved in a varlety of functions, among
which are attention (Grastyﬁn. et. al., 1959), learning and memory

(sre Izquierdo, 1975, and refercnces therein), hypothesis formation

and testing (Isaacson, 1974), and the organization of a cognitive
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map of the environment (0'Keefe and Dostrovsky, 1971). Clearly, : . ' Model System Structure

then, there is little agreement as to what the hippocampus does in
The possibility that hippocampus is involved in learning and
overall brain operation.
memory and in the direction of behavior at cognitive levels has

. attracted a number of modelers to this brain region. Models exist
Two courses of experiments have indicated, however, that the

that treat the hippocampus (or hippocampus-like circuits) as a tem—
hippocampus is a reglon that displays plasticity. Studies of the
porary memory system (Marr, 1971; Olds, 1969), as a pattern trans-
activity of single cells in intact animals have shown that the hip-
: former (Mittenthal, 1974; Grossberg, 1973), and as a trainable de-
pocampal responses to external inputs change during conditioning
cisionary system (Mclardy and Kilmer, 1970; Kilmer and Olinski, 1974;
and extinction (0lds, et. al., 1969; Segal, 1973). Though such “
Wigstrom, 1974, 1975). Models of hippocampus have also been pro-
changes occur throughout the brain (Hiramo, Best, and Olds, 1970),
posed that deal with its circuit properties, independent of learning
Vinogradova (1975) hps indicated that certain regions of the hippo-
(Horowitz, Freeman and Stoll, 1973; Dichter and Spencer, 1969). None
campus itself must contain plastic elements. This conclusion is

of these models deals directly with the possibilities of temporal
supported by the results of physiological experiments with intact

sequence processing in the hippocampus. As discussed previously,
animals and with isolated hippocampal slices. As mentioned above,

none of the available temporal sequence models can be readily
divect electrical stimulation of the perforant path results in ex- .

applied to the structure of the hippocampus.
citation of granule cells in the dentate gyrus. It has been shown

(Bliss and Lgmo, 1973; Teyler and Alger, 1976) that following tetanic
The model presented here 1s designed around the structure of

stimulation of the perforant path its effectiveness in activating -,
the dentate gyrus. I assume here that a granule cell in the dentate
granule cells is increased for periods of days or weeks. Lower- ’ : R A
gyrus that is excited by a system input spreads excitation to neigh-
intensity and lower-frequency stimulation lead to decreased effect-

bors in its lamella, causing a wave of activity to travel down the
iveness (Alger and Teyler, 1976). The mossy fiber and Schaeffer )
} lamella. Details of the cell coupling and dynamic properties used
collateral fiber systems also appéar to show post-tetanic potentia-

- to produce waves are discussed in the next section following pre-
tion (Teyler and Alger, 1976). Though these results were obtained

gsentation of the model's overall structure in this section.
under non-physiological conditions, they do indicate that the hip-

pocaopus does have a potential for plasticity in physiological situ-
. Like the hippocampus, the model is made up of a number of arrays
ations. .
of cells called lamellae. Each model lamella consists of four lines

of neuromimes as indicated in Figure 5.2. G-neuromimes receive the
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Figure 5.2 Patterns of interconnections between G and B neuromimes
and E and U intemeuromimes within a lamella. Arrows
indicate excitatory influence, dots indicate inhibitory

"influence.
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system inputs and their oﬁtputs constitute the outputs of the lamel-
lae. The G-neuromimes are coupled to one another ;nd to B-neuromimes
and E-neuromimes in their lamellae. B-neuromimes are excited by the
G's and in turn inhibit them. Pattemrns of comnection and connection
strengths between G-neuromimes and B-neuromimes are fixed and iden-
tical for all G's and B's. Details of these connections are discussed
in the following section on wave generation. Coupling between E's
and U's is similar to that between G's and B's, with the exception
that E's are not coupled to one another. These connections are also

fixed and identical for all E- and U-neuromiwmes.

Connections between G's and E's are assigned with some random-
ness in the model. Each E is connect;d to a fixed number of G's in
its lamella. These neuromimes are chosen at random from a raﬂge of
G's centered around the E, as indicated in Figure 5.3a. The éérengths
of these connections are fixed and identical for all connections.
Each E in turn gives rise to two lines, called Z-lines, that run
perpendicular to the lamellae, making contact with G's as indicated
in Figure 5.3b. These lines represent the fibers of Zimmer (1973$
that run from CA3 back to the dentate gyrus. The length of each Z-
line 1s chosen according to a specified probability distribution, Fz'
G'q in each lamella the Z-line passes through are chosen for conmtact
with fixed probability to a maximum range on either side of the Z-
line. These longitudinal lines are the only connections between la-
mellae, and have the only variable strengths used in the model, as

diccussed in section four.
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191 Generation and Propagation of Waves in the Model
— Tronsversa—> | . The wave-supporting substrate of the model has a configuration
6 \\\ > suggested by hippocampal physiology. As discussed earlier, pyrami-
£ R\Y/d4 dal cells in CA3 and granule cells iq the dentate gyrus receive ex-
6 1o £ coupling within o Lomella citatory influences from the hippocampal input pathways (Andersen,
(a) Bliss, and Skrede, 1971). These cells in turn excite a.variety of
«——Trarisverse—> interneurons whose axons play back onto other.pyramidal and granule
Lamella 1 ; cells. In both regions, a type of interneuron called a basket cell
: ——W 15 assumed to have a profound inhibitory effect on pyramidal and
4 + Lo _1 de ‘ granule cells (A.ndersen, Eccles, and loyning, 1964). Basket cells
5‘ l , have widely branching axonal arborizations, so excitation of a bas-
6 %& ’ ket cell by one pyramid or granule cell will depress the activity of
7 £ t 6 coupling between Lamelloe . others nearby. In CA3, it has been shown that pyramidal cells also
()] ) Vexcite neighboring pyramids (Lebovitz, Dichter, and ‘Spencer, 1971).

We assume here that granule-to-granule excitation also exists in the
dentate gyrus, leading us to the circuit configuration for G's and

B's shown in Figure 5.2.
Figure 5.3 Patterns of interconnection between G and E neuromimes.

(a) Connections from G to E within a lamella. Dashed
. The generation of single impulses in nerve cells is a highly
1lines indicate range of possible contact. (b) Connections
nonlinear process involving a buildup of excitatory potentials in
from E to G in other lamellae.
dendritic membranes and the subsequent triggering of a propagating

action potential (Shepherd, 1974). However, the rate of firing of
a single g:ell and the average firing level of a homogenous popula-
tion of cells may reasonably be modeled in terms of simple dynamic
equations (Amari, 1972; Stein, et. al., 1974; Wilson and Cowan, 1973).
Accordingly, each of my model cells obeys a first-order differential

equation, the value of which may represent the firing rate of a sin-
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gle neuron, or the number of active cells in a population of neurons.
1 refer to the model cells below in terms of output pulse rates of

single cells.

I assume that the output pulse rAte of a cell is given by the
difference between the total excitatory influence on the cell and
some function of the total inhibitory influence on the cell. An
initial set of equations for the operation of the G and B cells urnder

these assumptions 1is:

dG
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where

Gj represents the total excitatory influence on the G-cell,
Bj represents the B-cell output,

Tg and.'rB represent membrane time constants,

em and Pk are connection thresholds,

LA and vy are connection weights,

Ij is the external input to the G-cell,

GO

7 i3 the output pulse rate of the G-cell,
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M M x> H
‘[; = x; m<x<HM
lm m; x < m,
for m < 0 < M, and

[x]+ ig x 1f x > 0 and is zero othervise.

Note that the output rate of the G-cell is constrained to lie between
a maximun value greater than zero and a oinimum less than zero. The
maximum reflects the fact that nerve cells cannot fire more rapidly
than some maximum rate. The minimum is set to a value less than zero
under the assumption that the zero level in the model represents a
non-zero spontaneous firing rate in the actual nerve cells. Then the
minimum value in the model corresponds to a firing rate of zero in

the actual cells.

Each G and B cell is driven through weighted threshold connec-
tions by the output rates of neighboring cells. That is, neither is
influenced by any neighbor to which it is connected until that neigh-
bor begins to fire above a specified rate. The influence of neighbor
is weighted by a constant associated with the ponnection. Note that
neighbors firing below threshold rates and at rates below the spon-
taneous level do not lead to depression of the firing of the cell.
Hence cells that are firing below the spontaneous rate are effectively
uncoupled from the system. 1 assume then that information processing
and maintenance of a background spontaneous firlné rate (the system

equilibrium state) are two separable factors in the system dynamics.
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A simulation of this system of equation has been carried out
using an integration routine written in FORTRAN. The propagating
wvaves illustrated in Figure 5.5 were generated with the connection
template shown in Figure 5.2 and the associated weight and threshold
profiles of Figure 5.4. All cell values were set initially to zero,
representing an undisturbed system displaying spontaneous firing.
Following external stimulation at the center of the system, each
sufficiently excited G-neuromime stimulated neighboring G's according
to the G-G weight and threshold profiles and inhibited a wider range
of G's accordiné to the G-B profiles. The indicated weight and thres-
hold settings allow'the excitation of each G to build to a high enough
level to excite further G's before being countered by a heavy long-
lasting inhibition arising from the central weight and threshold of
the G-B profile. This central connection corresponds to a strong

self-inhibition activated when the cell fires enough.

A wave may travel to the ends of the lamella and die there, or

may die before reaching the ends. In the first case, the wave pro-

pagates with a constant shape until the end of the lamella is reached. '

At that point, there are no further G cells to excite and the wave
dies. Because of the connection thresholds, the zero level of ac-
tivity is stable, so no.further activity arises in the lamella until
a new input is presented. In the second case, inhibition builds that
eventually stops the wave. Here, the wave's_amplitude decays as it
travels until further propagation is impossible. The distance tra-
veled depends on the strength oi inhibition and on the relative B

time constant. The full memory model to be described below uses

waves that die after going a short distance rather than those that
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Figure 5.4 Initial weight and threshold profiles. Ordinates indicate
nuzber of neighbor relative to cell. (a) G to G weights.
(b) G to B weights. (c) G to G threshold. (d) G to B

thresholds.
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_Cell level

Cell position

Figure 5.5 Wave produced with profiles of Figure 5.4.

indicate progression of wave.

Dashed lines
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propagate unchanged.

The strong self-inhibition employed above results in a circuit
that for long periods after passage of a wave is unable to support
another wave. Too long a period of dépression decreases the chance
that new inputs can enter the lamella, as will be degcribed in sec-
tion four, so means of shortening the depression time were sought.
Two ways to shorten the depression time are to decrease the level
of inhibition needed to produce waves and to decrease the inhibition
time constant. In order to decrease inhibition levels, an amplitude-
dependent nonlinearity is used to allow low levels of inhibition to
have a greater effect on the circuit. The amplitude-dependent gain
appears in the computation of the imput rate as follows:

° M
€ = F:j - (P+W .r(sj)) .ng

where

G;. Gj' and Bj are as before,

P is a bias term set close to unity,

W is a weight set greater than one, and
F is the logistic function given by

1
-d(x-xo)

F(x) =
1+ ce

and 1llustrated in Figure 5.6.

For small values of inhibition, G's output rate is approximately

the difference between excitation and inhibition as before. As the
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level of inhibition rises, however, its weighting in the output rate
calculation increases from unity to 1 + $. In this way low levels

of inhibition may have a great effect on the system.” The lower values
of inhibition decay to zero sooner, 1ea§ing the system depressed for

a shorter period of time.

A smaller inhibition time constant may be used if different
weight and threshold profiles are employed corresponding t§ a dif-
ferent way of producing waves. With the modified weiéht profiles,
self-inhibition begins to build when the G—cell reaches lower levels
of firing, due to the smaller self-inhibitory connection threshold,

but builds more slowly than before due to the decreased weight in-

volved. In the previous scheme, waves were produéed by allowing

cells to build to large firing rates and then depressing them with
strong inhibition. In order to produce waves, this 1qhib1tion had
to last long enough for the excitatory lévels to decay below the
thresholds necessary for coupling to other cells. Shor;er—lasting
or weaker inhibition allowed the cells to remain for long p;riods
Figure 5.6 Logistic function. of time at a level just above the self—inhibitipﬁ threshold. In

' order to produce the wave profiles of Figure 5.5, in whicg each cell
fires for a short time and then is silenced, the inhibition time
constant had to be great enough to keep the cell depressed until the
wave passed out of its neighborhood and its excitatory level decayed
considerably. In the new scheme, however, inhibition is applied
more slowly, and instead of depressing the cell immediately, pulls
the output rate down gradually. Hence inhibitory levels need not

remain large for too long, and the inhibition time constant may be
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shortened. Figure 5.7 shows waves generated by this scheme. These
waves leave the circuit depressed for shorter periods of time, and
so are better suited for use in the overall model. Again, these
waves may travel to the ends of the lamellae, or may die due to in-

hibitory buildup before reaching the ends.

The equations employed here are simiiar to those used by Rat~-
1iff (Ratliff, 1965) to investigate the dynamics of lateral inhibition
and by Grossberg (Groasberg, 1969) to explore learning and memory in
a number of circuit anatomies. In neither case were these equations
employed to produce traveling waves of activity, however. The wave
generating mechanism in this one-dimensional system is similar to
the ones studied by Beurle (Beurle, 1956) and by Wilson and Cowan
(Cowan and Wilson, 1973), and Ellias and Grossberg (1975). In each
case, the wave peak arises and propagates due to positive feedback
between excitatory elements. 1In Beurle's (1956) studies this feed-
back is controlled by the.refractory properties of the model cells,
vhile in the models of Wilson and Cowan (1973) and Ellias and Gross-
berg (1975), as in the one presented here, inhibitory buildup stops
runavay positive feedback. As stated abo%e. the activity level of
a given cell in this model may represent the average firing rate of
a nerve cell or the number of cells in a coupled population that are

firing at a given moment. The nonlinear inhibition used here may

represent a nonlinearity in the way single cells react to inhibitionm,

or the action of a population of inhibitory cells with a distribu-

ticn of thresholds. ‘

G-cell level

. Cell position

Figure 5.7 Waves produced with modified profiles.
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Memory Storage and Recall in the Model

The model is designed to learn and recall both the sets of cells
stimulated by system inputs and the time intervals between inputs.
It pe;forms this recall by a process of association chaining, in
which each input or evoked memory of an input stimulates (after the
proper time interval) the set of G's normally stimulated by the next
input of the sequence. This set of G's then stimulates the set asso-

ciated with the next input, continuing the process of recall.

This process is indicated in Figure 5.8 for the case in which
vthe second input i;mediately follows the first. The model must form
associations such that future presentation of the first input will
cause immediate stimulation of the second input's G's. This associ-
ation is hahdled via the longitudinal lines arising from the E's.
The strength of each longitudinal connection is modeled as a first-

order differential equation as

-
4z
T '3%1 - —z:? + |2°:m (e) - ec’_|+ ’ FE:j ®) - op] ¥

h h

where ZE? connects the jth E-cell in the 1t lamella with the at" G-

cell in the kth lamella,
T, is the connection time constant,
c:m 15 the firing rate of the G-cell,
B:j is the firing of the E-cell, and

,[x1+ is equal to x if x > 0, and is zero otherwvise.
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Figure 5.8 Simple association of inputs. Open circles represent G
' neuromimes excited by present input; hatched circles

represent E neuromimes excited by last input's Gs.
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Connections are modified according to a form of Hebb modifica-
tioh rule (Hebb, 1949). A connection is strengthened if the E and
G it links are simultaneously active above the thresholds GG and OE.
while an unused connection decays to zero at a rate determined by
Tg* Strengths of the longitudinal lines are initially zero, with
some exceptions discussed below. A similar connection modification

rule was used by Grossberg (1969) in his studies of learning systems.

The thresholds in the modification rule allow the system to dis-
criminate inputs that are to be learned from the waves and from the
effects of noise. A system input is assumed to excite a G-cell to
a firing level much greater than the maximum reached during passage
of a wave. The value of OG is set just below this input excitatiom
level to prevent associations from forming between G's excited by
waves. Similarly, °£ is set just below the level of excitation
reached by an E-cell when a wave passes by it, so that inputs are

associated only with a few E's recently excited by waves.

Thus if an E excited by one of the first input's G's gives rise
to a longitudinal line that makes contact with one of the G's excited
by the second input, that connection is strengthened according to the
learning rule above. Later presentation of the first input will
again excite that E, in turn tending to activate the second input's
G via the strengthened connection. If the system is properly con-
structed, as discussed below, each of the second input's G's will
with high probability bé connectad in this way to at least one of

the first input's G's. Repeated presentation of the sequence will

S
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result in connections strong enough to excite the G's to the input
level of excitation. Presentation of the first input will then cause
{mmediate sctivation of the second input's G's, effecting recall of
the sequence. This chaining process may then continue with the asso-

ciation between the second and third inputs, and so oﬁ.

1f the next input does not occur immediately, a trace of the
first input must be held in the system long enough to forre associa-
tions as described above, and to code the interval between inputs.
Input storage and interval coding are accomplished through -the wave
action of the G's. Each overall input excites a few G's throughout
the system, giving rise to waves moving in the associated lamellae.
These waves excite E's as they go, so that an input's G's may be
associated with waves generated by the previous input, effecting

both storage and interval coding.

This process is illustrated in Figure 5.9. A wave generated by
the first input at time TO in lamella 4 moves along the lamella, as
indicated by the cross-hatched rectangle. Before dieing, the wave
will move a distance deternined by the inhibitory parameters. In
order to handle time intervals longer than those obtainable with a
wave moving along a single lamella, some of the longitudinal connec-
tions are permanently strengthened initially so that a wave activat-
ing such a connection may generate a wave in another lamella. The
second wave may continue after the first has died, and may generate

more waves. A series of such wave generations 1is indicated by the

dotted lines in Figure 5.9 while arrows show the directions of wave
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motion along lamellae. At time To + D a wave generated in this
way 1s at the position shown in lamella 1 when a new input excites
a G-neuromime in lamella 2, as indicated by the cross-hatched square.

If a longitudinal connection exists between an E excited by the wave

h+0 at that time and the G excited by the new input, that connection is

Lome!lo |

T

strengthened according to the system's learning rule. Such a con-

r

nection is indicated by the dashed line in Figure 5.9.

#——
4%>7 : g . Now if at some later time the firat input is again presented to

the system, a wave will be generated at the same place in lamella 4.
: ) !
Y If this wave causes the same sequence of waves to be generated as

before, after an interval of length D, the expected time between the

~ O 0 b w

two inputs, a wave will activate the learned longitudinal connection,
exciting one of the second input's G's. If each of the second input's
G's is associated in this way with at least one wave stemniné from
the first input, presentatioﬁ of the first input will cause the ac-
Figure 5.9 Association of inputs and waves. - tivation of the second input's G's after about D seconds. This pro-

cess may then continue, effecting recall of the sequence. ’

System Design Constraints

The association system described above can fail in five main
ways. The first set of problems concerns the representation of in-
puts using patterns of moving waves. If the waves all die, or the
pattern falls into a cycle, information is lost and proper associa-
tion becomes impossible. Interference between the wave pattern and

the inputs to the network is the second prohlém. Cells that lie ia
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the troughs of waves are inhibited, so inputs cannot excite them
enough for associations to form. A third difficulty concerns the
probability of association. If the system is not properly designed,
the probability that a wave can become associated with a given input
will be too small fqr reliable operation. The fourth class of prob-
lems concerns interference between wave patterns generated by suc-
cessive Inputs. Finally, the fifth problem arises from the effects
of changes in the system's structure brought ;bout by learning.

Each of these problems is treated below. In some cases, proper
setting of system parameters can alleviate the difficulty. Other

problems require that further mechanisms be added to the model.

Pattern persistance and cycling. The first problem arises be-

cause all the waves generated by a given input may die out before

the next input arrives. This will happen if there are too few oppor-
tunities for waves to generate others in other lamellae. Simulations
indicate that waves generally persist indefinitely in systems with
more than a few prestrengthened connections from each lamella to

the others. Second, a given set of waves may fall into a cyclic
pattern of movement through the network, thus losing the ability to
present the exact interval between inputs. Simulation again shows
that in systems with more than a few strong connecticns between la-
mellae, wave interactions are complex enough to preclude this pos-
sibility. These difficulties, then, will seldom arise in systems

with enough prestrengthened connections between lamellae.
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Trough interference and association. The second set of problems

concerns the interference between a wave pattern and an input, and
the probability that all of an input's G's become associated with
waves. These two problems are linked through their dependence on
the number of waves in the system. First, the input may stimulate

a cell tﬁat 1ies in the trough of a wave. Such a cell is inhibited
and cannot reach a firing level that allows it to become associated
with other waves or to generate a wave itself. That part of the
input, then, cannot enter the system and is unavailable for associa-
tion with other inputs. Second, a stimulated cell may not become
associated with any wave in the system. This will occur 1if there
are too few waves or if there are too few longitudinal connections
available for association. Formulas dealing with these two sources
of failure are derived in Appendix C. There, Table C.2 shows the
result of applying the formulas to a system with parameters given in
Table C.1l, in which waves and stimulated cells are distributed at
random. It may be seen that full input entry and full association
in such a system are possible only when the numbers of waves and
stimulated cells are kept quite low with respect to the total num-
ber of cells. The number of waves present im the system depends on
the number of cells initially stipulated and on the number of pre-
streﬁgthened longitudinal connections between lamellae. With too
many such connections, too many waves are spawned and input entry
becomes a problem. With too few connections, ho&ever. the wave pat~
tern may die or fall intP a cycle, as discussed previously. Simula-
tioa shows that systems with enough prestrengthened connections to

avold cycling and pattern extinction generate far too many waves to
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ensure that none of an input's G's is inhibited. Further, the num-
ber of waves exhibits oscillations, as shown in Figure 5.10, making.
the system at times able to accept inputs and unable at other times.
Acgording;y, means were sought to hold the number of waves at a con-

stant low level, while still avoiding pattern extinction and cycling.

The overall number of waves in the network can be controlled
through regulation of wave death. Recall that waves are assumed to
travel a certain distance (called the propagation distance), then
die due to inhibitory buildup. A feedback mechanism was added to
control the number of waves by changing this distance. The propa-
gation distance may be the same at all points in the system, corres-
ponding to an overall setting of inhibitory parameters, or may vary
locally, corresponding to local parameter setting. In either:.case,
when the number of waves in the system is small, the propagation
distance is made latée. This insures that waves will travel far
enough to generate other waves before dieing, thus keeping the over-
all wave pattern from dieing. As the number of waves grows, the
propagation distance’'is decreased to keep waves from generating too
many others. In the case of global propagation distance variation,
the propagation distance at each point is adjusted according to the
total number of waves in the system. With locpl variation, the dis-
tance is set at each point according to the number of waves preseant

in an area about that point.

Figure 5.11 illustrates the result of applying global propaga-

tion distance variation to a system with the same parameters as those
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Figure 5.10

Plot number of waves produced in uncontrolled system

as a function of time.
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Figure 5.11

-
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Plot of number of waves produced in controlled system as

a function of time.

214
used in Figure 5.10. The number of waves is considerably reduced
and is more constant than before. Similar results are obtained
using local variation. Llocal variation has the added advantage that
waves are able to spread more evenly through the network, leading
to increased local probabilities of association. This method of
propagation distance variation thus allows the number of waves to
be controlled to satisfy the input entry and gssociation constraints
and to keep the wave pattern from dieing entirely or falling into a

short cycle.

Inter-sequence interierence. Another cause of difficulty is the

interference between wave patterns generated by different inputé or
by successive presentations of the same input. As an example, con-
sider the sequence formed by regular repetition of a single input,
and suppose that there are already uaveé in the system when this
1npu£ is first presented. These waves will interact with those gener-
ated by the new input, so that the pattern that exists when the input
i presented the second time may not be the same as the initial wave
pattern. Because of this difference, the third presentation of the
input is likely to become associated with still another pattern, and
g0 on. This difficulty stems from the instability of the wave pat-
terns, which is such that two patterns that differ only slightly
give rise over time to patterns that are more and more different.
Because of this instability, it is possible that a repeated input
will not generate the same wave pattern twice over very many repe-
titions, and hence that no strong connections will form in a ghort

time. The network would thus have stored a large number of memories
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of this input and would take a prohibitively long time to train.
Even if a short sequence of patterns were formed, if the input was
presented with a different initial pattern Juring recall, the learned
sequence of patterns might not arise again, leading to a recall fail-

ure.

The first mechanism added to combat this interference problem is
one that inhibits all waves when a peak of maximum activity is detected
anywhere in the system. This corresponds to a strong blanket inhibi-
tion applied when an input 1s presented or when a strong association
is recalled. It's assumed that the strong peaks of activity are able
to survive this inhibition and to generate new waves of activity.

With the wave-killing mechanism in operation, interference effects
are limited ko two forms. First are the effects of inhibitory troughs
left behind by waves killed when the input was presented. Second is

the effect of lingering longitudinal comnnection inhibition.

Wave troughs give rise to the input entry problem, as discussed
earlier. Troughs left after waves are killed also block the propa-
gation of waves generated by new peaks of activity. The effects of
these forms of interference may be minimized by use of the proper
nunbers of waves. Longitudinal connection 1nhibigion left after the
wave pattern is killed can affect the development of the new pattern
by blocking wave generation. As above, the instability of the wave
patterns is such that further patterns generated without the waves
whose generation 1s Blocked will differ from patterns generateu with

those waves. Because of the differences, associations will not read-
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ily form and recall may'be impossible. A way to obviate thls dif-
ficultly is to assume that E's have a maximal inhibitory level, and
to set all E's to this level when the wave killing mechanism is ac-~
tivated. This corresponds to a saturating inhibitory input applied
at that time to all E's. This input effectively eradicates all
traces of the E-inhibition due to the previous.pattern, allowing the
new pattern to develop with 1nterferen?e due only to the wave troughs.
The two mechanisms of wave killing and E-inhibition input and satu-
ration can be used to minimize the effects of interference between

wave patterns due to successive inputs.

Interference effects of learning. The final difficulty lies in

the effects of changes in the system's structure brought about by

 learning. Because waves travel throughout the system between input

presentations, a longitudinal line that has been strengthened through
learning is likely to be activated at times when it should not be.
Activation of a strong enough connection at the wrong.time will cause
a wave to arise in the system at a point in the developmentbof the
wave pattern where none had been before. Such extra waves will al-
ter the development of the pattern, making proper association and

recall impossible.

A way to ensure that longitudinal lines strengthened through
learning are activated only at the proper times is to allow E acti-
vation only when a particular pattern of waves exists in the network.
In this scheme, an E that gives rise to no strengtheﬁed connections,

that is, one that has never taken part in association or that has
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forgotten any associations ever made, may be activated by a single
wave that goes by its position, as before. When an E takes part in
association, however, that E learns the pattern of waves in an area
around its position in the network. Thereafter, the E can be acti-
vated only when the wave pattern in the network matches its stored
pattern. If the stored pattern is composed of enough waves, it is

unlikely to occur at any but the correct time.

This mechanism requires a change in the way the E's are acti-
vated. Each E must have strong connections from G's 1n‘1ts lamella,
and weak connections from G's in other lamellae. All of these con-
nections must be trainable, such that when 2 longitudinal line stem-
ring from the E is strengthened, any connection to the E from a G
active at or above the wave propagation level is also made strong.
At the same time, the E's threshold of activation must increase, so
that the entire set of strengthened connections must be excited to
activate the E. - In this way, a particular wave pattern is stored in

the connections to the E from G's in its own and neighboring lamellae.

These mechanisms added to the basic model, then, minimize the
effects of the problems arising from fluctuations in the number of
waves in the network and from the instability of the wave patterns.
The number of waves must be kept small enough to allow inputs to
enter the system freely, but large enough to allow proper association
and to keep the wave pattern from dieing or cycling. The number of
waves is controlled through feedback that decreases the wave propa-

gation distance as the number of waves increases. Pattern instabil-
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ity gives rise to problems of interference between patterns generated
by successive inputs and to disturbances due to learning 1tse1£. In-
terference problems are minimized using a wave inhibition mechanism
and a strong longitudinal line inhibitionm, both of which operate when
an input is presented to the network. Pattern disruption due to im-
proper activation of longitudinal lines strengthened through learning
15 prevented by allowing longitudinal lines to be activated only when
specific patterns of waves are present in the'system. These mecha-
nisms are related to changes in the operation of the basic model, and
may be interpreted in terms of the action of particular excitatory
and inhibitory mechanisms in the hippocampal system. The means of

gimulating this system, and results of simulation, are discussed below.

System Simulation

The differential equation formulation of the model, described
in section 2, has the dis;dvantages of being difficult to control
and expensive to simulate. It is difficult to know in advance what
detailed characteristics the wave generating mechanism must have so
that the overall system can function properly. Much work would be
needed to find ways to realize a given set of desired characteristics

in turns of the dynamic equations. Furthermore, a large system of

. such equations can be simulated only at considerable expense. In

order to simplify the simulation and to make the system easier to
control, simulation of the full model was carried out using cells

modeled as pairs of finite-state automata, rather than as differential

equations.
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Each simulated cell consists of a wave-generation portion, re-

presenting the action of the G and B cells, and a longitudinal line

E $ -
activation portion that represents the E and U cells. The operation '
of each cell's wave-generation automaton reflects the generation of 1
=
wave activity in the differential equation form of the model. These 5< o
e T

automata are much more easily controlled than the differential equa- 1

tions, however, and may easily be designed to have desired wave pro- P

4

pagation characteristics. In this formulation, the entire wave peak

is represented by a single cell in a specified state. Each cell

action of input applied to non-

therefore represents a number of cells in the differential equation
}

formulation, making this simulation more economical. Similarly, all

Multiple arrows indicate that state entered depends on size of input.

of the E's activated by a wave peak at a given position in the system :<". : o l 5
n "
are now modeled in the single longitudinal-activation automaton asso- o l é
o . 50
ciated with the cell at that position. The structures of these auto- = 1 l E
<t ol ! e
mata are described below. ”n | 8
L]
o~
| 3
: &
The wave-generating automaton. The wave-generating automaton of %iz: o - -l
o
each cell is shown in Figure 5.12. Each state is numbered, and larger T ;) §
numbers represent higher levels of firing in the differential equation Y s d
Y e g g
=
formulation. State Q is the resting state, in which a cell remains W x h :
[?]
. 8§
1f undisturbed and to which it returns following perturbation. The %_ | §
. |
* o Y | Ei

highest state, I, represents the level of activation reached when a

system input excites a quiescent cell. States W and T are the wave

propagation and maximal trough states, respectively, representing ' 1
) 2

w
—— | —t .
Figure 5.12 Structure of wave-generating automaton. —f—f—}— indicates action with no imput,

the level reached as a wave peak passes the cell and the level of
maximal inhibition féllowing the peak. States between the trough

state and the quiescent state are trough recovery states, through
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which a cell goes to quieacénce following passage of a wave. The
states between the quiescent state and the wave state are states of
gubactivation to which a cell is sent by small inputs. Finally, the
states between the wave state and state of maximal activation are
superactivation states representing lévels great enough to generate
waves but smaller than the state to which a celi is sent by a systemx

input.

Each cell has three sources of input. These inputs are wave-
activation inputs from neighboring cells in the same lamella, system
inputs, and longitudinal-activation inputs from cells in other lamel-
lae. 1f a cell is quiescent, tﬁat 18, if the cell's wave=generating
automaton 18 in state Q, a system input to the cell moves it to state
1. Prom I, the cell goes in one time-step to cell W, the wave state.
From state W the cell goes to the maximal trough state, T, at the
next time-step, regardless of further inputs. This corresponds to
a strong inhibition triggered by the cell's recent activity. If the
cell receives no further inputs it moves one state at a time from T -
to the quiescent state. Any input to the cell while it is in one of

the trough states causes it to go back to T again, representing the

effect of further inhibition.

In order to propagate waves, each cell receives inputs from the
two nearest neighbors in its lamella. A quiescent cell enters the wave
state at a given time when one of its neighbors was in the wave state

or greater at the time before. The cell next enters the lowest trough
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state, as above. In this way, a wave moves through a quiescent re-
glon represented by a cell in the wave state followed by cells in
the trough states. The single cell in the wave state represents the
entire wave peak in the diffefential equation form of the model. A
cell in any trough state is sent to tke lowest.:rough state at the
next time-step if one of its neighbors is in the wave state or greater.
Thus when two waves collide they annihilate one another, leaving be-
hind only an inhibited region that recovers tb quiescence. This ac-
tion reflects the behavior of colliding waves in the dynamic formu-

lation of the model.

The third source of inputs to a cell 1s-aétivity communicated
over the longitudinal lines from cells in other lamellae. The ac-
tivity level of a given longitudinal 1line is‘anlinteger calculated
in a manner described below. The activity levéls of all longitudinal
lines to a given cell are summed at each time-siep, together with the
external input to the cell, to arrive at the total extrinsic input
to the cell at that time. If a cell is in any state other fhan the
quiescent state or a subactivation state vhen it receives a nonzero
extrinsic input, it is sent to the lowest trough state at the next
time-step. This corresponds to a strong inhibition activated by the
cell's recent activity and reinforced by further inputs to the cell.
A small input to a quiescent cell will set the cell to a subactiva-
tion state, from which it goes to quiescence if it receives no fur-
ther inputs. Larger inputs set the cell to the wave state or to a
superactivation state. The superactivation states decay to the wave

state in one step with no further inputs. An input to a cell in a
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superactivated state sends it to the lowest trough state at the next
time. A strong enocugh total input can send a quiescent cell to the
maximal activation state. In this way, the activation of longitudi-
nal lines can result in the generation of new waves and strong peaks

of activity in the system.

The longitudinal-activation automaton. A longitudinal line is

activated as a result of the action of both portions of the cell that
gives rise to the line. The structure of the longitudinal-activation

automaton, denoted LA, is shown in Figure 5.13. The LA automaton has.

a quiescent state, Q, an activated state, A, and a set of trough states,

Ti.' Each EA automaton receives an activating input from the wave-
generating automaton in its own cell, and inhibiting inputs from the
1A automata associated with neighboring cells in its.own lamella.
Like the E's in the dynamic form of the model, an LA automaton with
no preferred wave pattern can be activated by a wave that passes by
its position in the lamella. The LA automaton is inhibited follow-

ing its own firing or the firing of neighboring LA automata.

To illustrate LA activation, first consider a cell that has no
preferred activation patternm, that is, one that has not recently taken
part in an asgociation. 1f the wave-generating portion of that cell
1s at or above the wave state, and the cell's LA automaton is not in
an inhibited state, then the LA automaton is semt to the activated
state and the longitudinal lines stemming from the cell are activated.
At the same time, the LA automati of neighboring cells receive inhibi-

tory inputs depending on their distances from the cell whose lines
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Figure 5.13 Structure of the longitudinal-activation automaton.
——}—} indicates action with no input, — — — acticn

of inhibitory input from neighbors, ———— action of
self-inhipition. Multiple arrows indicate state entered

depends on size of input.



225
became active. Inhibitory inputs are additive, and the greater the
total inhibitory input at a given time, the lower the inhibition
state to which the LA automaton is sent at the next time. If left
unperturbed, the LA automaton recovers one state at a time to qui-
escence. Note that an inhibited LA automaton can't activage its
longitudinal lines or produce inhibition in other LA automata. In
this way, a wave of activity alternately activates and inhibits LA
automata as it travels along its lamella. This sequence of events
is the same for cells with preferred wave patterns, except that ac-
tivation can occur only if the automaton is quiescent and if the

proper wave pattern exists in the network.

The level of activity transmitted from one wave-generating auto-
maton to another through an activated longitudinal line depends on
the state of the activating wave-generating automaton and on a ﬁeisht
value associated with the connection between the two automata. In
the dynamic form of the model, these weights conform to differential
equations. Here, they are modeled as difference equations with values
that are increased according to the learning rule presented in sec-
tion 2, and that fall to zero otherwise. Note, however, that the
prestrengthened connections that allow a wave in one lamella to gener-
ate waves in others have non-zero values that are fixed for the life
of the network. The input to a cell in another lamella due to an
activated longitudinal connection is simply the connection weight
wmultiplied by the level above quiescence of the activating wave-gen-
erating automaton. Recdll that all such inputs are summed at the

receiving cell to determine its state at the next time-step. So a
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wave in one lamella that activates a strong-enough longitudinal con-~
nection can send a cell in another lamella to its highest state,
while somewhat weaker connections allow waves to gemerate other waves

in different parts of the system.

This formulation of the model in terms of automata 1s an abstrac-
tion from the dynamic form that is designed to be easier to control
and less costly to simulate. Enough of the operation of the differ-
ential equations has been embodied in the functioning of the automata,
however, that the results obtained with this form of the model can also
be achieved using the dynamic system form. ‘Results of simulating the

automaton form of the full wmodel are described below.

Simulation Results

A simulation of the system in the automaton form described above
was carried out to investigate the effects of interference and to
determine the network's memory capacity. Two networks were created
that differed in the details of their structure and in their wave
control parameters. In order to emsure that associations were made
properly and that recall errors were minimized, two further constraints
were imposed on the operation of these networks. First, when an input
entered the qystem. the network was searched to find at least two cells
active at or above the wave propagation level at the time before that
did not already give rise to strengthened connections. These cells

were then connected to the cell excited by the input, and the coa-

nections were given non-zero values. At the same time, the wave pat-
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tern about each of the cells chosen for connection was searched un-

til more than a fixed minimum number of waves were found. The posi-

tions of these waves were then recorded to act as the activating con-

figurations for the cells chosen for association.

The first condition ensured that if there were any free cells
activated by waves when an input entered the system, then the input
would be associated with at least one wave in.the network. This
corresponds to 8 network in which each E gives rise to a large num-
ber of longitudinal lines ready for association. The second condi-
tion ensured that the gctivating wave configurations were large
enough to be unique in the course of development of a wave pattern.
Simulations showed that if the number of elements in an activating
configuration was more than five or six, the activating pattern was
unique to only one overall wave configuration. The first condition
may be relaxed to allow associations to form only with some proba-
bilicty. Likewise, the second condition may'be changed by allowing
a fixed-area search for waves to use in forming the activating con-
figurations. Under the relaxed conditions, however, asgociation
failure is ﬁossible. and activating configurations too small to be
unique may be formed. These sources of error were eliminated here
in order to investigate memory capacity and the effects of errors

due to interference.

Table 5.1 1lists the parameters of the two simulated networks.
In each case prestrenigthened longitudinal connections were chozen

according to an exponential probability distribution. In these simu-

228
TABLE 5.1
Parameters Used in Simulations of Memory Networks
Network
Numbers NL Nc R L Dnax Dmin 3 2 Pz 'Pzw
A 9 59 20 4 25 2 12 4 .4 .0045
B 9 59 20 6 25 & 6 2 .4 .0045
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ulations, the values of these and all other strengthened longitudinal
connections did not decay, 8o that memory capacity could be evaluated.
Connection strengthening parameters were chosen such that four occur-
rences of strengthening were required to make a connection strong
enough to be able to generate a peak of maximal activity. Each sys-
tem input consisted of two cells chosen from all cells of the network
according to a uniform distribution. Input sequences were composed
of two inputs repeated at fixed intervals chos;n with uniform proba-

bility from a range of between thirty and fifty time-steps.
Wave propagation distance was set according to the equation below:
D = max [Dmin' Dmax -a . Nla2 ]

where D is wave propagation distance at a given point in the network,

Dmin

distances,

and Dmax are the minimum and maximum allowable propagation

N is the number of waves in a rectangular region éentered about
the point in question, R cells wide and L lamellae deep, as
indicated in Table 5.1,

a,, a, are constants, and

n denotes the largest integer less than or equal to m.

With this rule, the wave propagation distance decreased in steps of
size a, for each increase in N of size a,. In network A, wave con-~
trol was established on the basis of the number of waves in a region
about each cell that is smaller than the region used in network B.

In B, the distance was decreased gradually as the number of waves
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increased, while in A the decrease was more abrupt due to the larger
vajles pf a, and a8y Wave control was better in A than in B, leading
to a more nearly constant number of waves in A. This difference in
the wave control effects is reflected in the network's storage and

recall success rates, as described heiow.

Both networks were trained as follows. At the start of each
training segsion. four inputs were chosen to present to the network.
Two of the inputs were to form the sequence to be learned and two
were to act as "temporal context" during learning and recall. The
first context input was presented to the network, and the wave pat-
tern due to that input was allowed to develop. After a time, the
first input of the sequence to be learned was presented, followed
at the appropriate time by the second input, and Fhen again by the
girst. This sequence was repeated several times to allow strong
associations to form. To test the network's ability to recall the
sequence, all vaves were then erased from the system and the second
context input was presented. As before, the pattern due to this in-
put was allowed to develop for a time and then the newly-learned se-
quence was presented twice. 1f the network had learned the new se-
quence properly, and if interference problems did not occur, the net-
work would continue to regenerate the sequence following cueing.
After a complete training session, successful or not, the network
was saved to be used in furthgr training. In this way, the effects

of storing many sequences in é single network could be evaluated.
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Network training was stopped when errors occurred in three
successive sequences. These errors could be failures of association

or interference from previously stored sequences. After the networks

TABLE 5.2

Results of Memory Network Simulations
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No. No. No. No. No.
were trained to capacity according to this criterion, each was tested . Network Jump Assoc. Seq. Interference Assoc, Success
Number Conn. Conn. Stored Failures Failures Rate
for recall of its stored sequences in order to test for interference -
A 110 262 23 5 2 70%
between stored sequences. In this testing, the context input was
B 130 235 24 5 4 62%

presented as in learning, and the sequence to be recalled was pre-
sented twice. As before, successful recall m;ant that the network
would continue to regenerate the éequence after cueing was stopped.
As in training, recall could fail due to lack of proper associations

or to interference effects.

Results of these simulations are ghown in Table 5.2. Approxi-
mately the same number of sequences were stored in each of the two
networké, and each formed about the same aumber of strong associa-
tions and wave-jump connectioné. In most cases, recall was estab;
1ished after one or two presentations of the inputs, that is, after
about one presentation of the entire sequence. In each netﬁork,
failures occurred due to contéxt interference (interference from the
pattern of waves generated by the previous input), stemming in each
case from a context failure during learning. S$imilarly, association

failures during training gave rise to récall failures.

Interference between stored sequences also occurred in each
network. In network A, three sequences composed of similar inputs
tnterferred with each other, leading to a recall composed of parts

of all three when any was used as a cue. Two other traces in net-
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work A interferred with one another. 7Two pairs of sequences in net-
‘work B interferred with one another. In one case, a sequence dis-
rupted the recall of another, but was not itself disturbed. In the
second case, a sequence that was not fully stored due to an associ-

ation failure disrupted recall of another sequence.

In no case did the wave pattern cycle between input presentations.
The wave pattern died entirely in only one case. The cause of death
was blockage of the new input's waves by the troughs left behind by

the previous pattern.

Counting all fo;ms of failure, network A had a success rate of
702, while B's success rate was 62%. Success rate is measured as
the percentage, among all sequences presented to the network before
the final three failures, in which there was proper storage and re-
call. Network A was more successful than B because wave control was
better in A, Failures in B often occurred because there were too
few or too many waves in the system. The control in A was such that
there was more often the proper number of waves to allow association

without blocking the inputs.

1f failures due to interference from stored sequences are not
included, the success rates are 85% and 682, respectively. Mecha-
nisms may be added that diminish the effects of stored-trace inter-
ference by actively erasing the older squ;nce'a connections when
interference occurs. Such mechcenisms would then increase the suc-

cess rate of the network, at the expense of the loss of older memories.
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Association failures oécur when an input enters the system at
a time when all waves are at é;sitions that already give rise to
strengthened longitudinal conmections. This source of error can be
minimized by changes in system architecture or by allowing the net-
work to store only up to about half its expected capacity. Passive
forgetting due to decsy of connection weights and spontanecus loss
of stored activation patterns may be employed to erase old memories,
keeping the network always at about half capacity. Again, the chance

of error is minimized at the expense of the loss of old memories.

Discussion of Results and Applications to

Habituation and Conditioning

A temporal sequence memory model based on the structure of the
dentate gyrus region of the mammalian hippocampus was proposed in
section 2. This memory uses nonlinear propagating waves to gemerate
a representation of its input to effect memorization of a sequence
of inputs together with the time intervals between them. Mechanisms
were added to this memory model to overcome sources of interference
and instability, and the full system was sizulated to test the effects
of errors and to determine the memory's capacity. Although several
types of errors occur in the operation of the network, .success rates
of 70% can be achlgved using proper control of the number of waves
in the network. Elimination of interference through active memory

erasure yields an 85X success rate.

These error rates are based on only one network, but are sup-

ported as approximate error rate figures by similar results from the
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other network. txtensive sinulation of the wave generating mechanism
ghows that most networks with_a given set of parameters have similar
wave generation properties. Since the sources of error are intimately
linked with the wave pattern dynamics, most networks having proper
control of the numbers of waves will show 60% to 90% success rates.
Success rates can be increased through the use of mechanisms that
erase old or conflicting memories to decrease Fhe chances of failure

due to lack of associations and to interference from stored sequences.

Success rates will aleo be changed if the forced association
rule used in simulation is altered. Under this rule, two or more
associations were forced to form between each input cell and the
cells activated by waves at the time the input entered the system.
However, each activated cell was allowed to associate with only omne
of the two input cells. As training continued and memory capacity
was used up, the chance decreased that there were enough waves in
the system to associate with the inputs according to this rule.

The forced association rule could be modified to allow each ﬁctivated
cell to form connections to both input cells, and to make connections
with some probability. This modified rule corresponds more closely
to the learning rule in the original description of the wmodel. Under
the modified rule, the chance of association failure is decreased,
since any activated cell that does not already have an association
connection can contact either or both of the cells actfvated by the
input. At the same time, however, failure may cccur under this rule,
since associations a;e formed with some probability. The balance

between these two effects could be explored in further simulations.
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Note that the modified association rule also extends the memory's
effective capacity, since fewer cells are likely to associate with

a given input.

As mentioned earlier, this model.bears some resemblance to those
of Marr i1970) and Grossberg (1969). 1In Marr's (1970) model, feature-
detection cells called codons are used to sigqal the presence of par-
ticular patterns of activity in the overall input. The E-cells here
are similar in that they fire in response to particular wave patterns
in the network. The outputs of Marr's codons are combined at pattern
classification cells through coupling weights. The magnitude of each
weigbt reflects the probability of occurrence of the codon's feature
as a part of the clas§ of inputs the classifier cell is to signal.
The E's in the current model simply trigger the G's to which they
are coupled, rather than activating them to some level depending on
the probability that an association should be made. A probabilistic
structure such as Marr's would have made training--and simulating--
my model more difficult, but might have done away with some.of the

instability that is this model's major drawback.

That instability would, however, have made Marr's inferential
scheme difficult to apply here. Since small differences between
wave patterns are rapidly turned into larger ones, the model does
not preserve a property of pattern "closeness™ for very long. The
chance is quite small that an input that is similar to a stored in-
put (for example, a familiar system input that is slightly perturbed

by noise or by a cell failure) is able to generate a scquence of
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patterns that are at all like those generated by the stored input.
When the next input is due, an inferential mechanism would have
little to go on to decide whether a stored association is to be

recalled or not.

A way around this difficulty is to set particular sequences of
wave patterns into the system by making the wave-jump cells themselves
inferential. Then, if a pattern of waves is ;ufficiently like a
stored pattern, the next set of waves generated can be more like
those generated by the stored pattern itself. This scheme amounts
to making error corrections as the wave jumps are produced through-
out the interstimulus interval, rather than trying to correct for
all the errors that occur between inputs at the time the next input
is due. Since pattern closeness is preserved for short times in the
model, this sort of running error correction by inference may succeed.
Some variety is lost, however, since sequences of wave patterns that
come sufficiently close to stored traces will be captured by the
stored patterns and will become identical with them. The interesting
questions of the meaning of "closeness" in such a system, and of sys-

tem memory capacity could be explored in further simulations.

The coupled G- and E-cells in this model are also similar to

Grossberg's "outstars" (1969). An ‘outstar is a set of cells activated

by a single command cell to yield outputs that are records of past in-.

puts. As mentioned earlier, a string of outstars whose command cells
are activated sequentially can rucord and replay arbitrary space-time

sequences. In the model presented here, the E-cell acts as coumand
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cell and the G-cell (or célls) to which it connects acts as an out-
put cell. Inputs here do not have arbitrary levels, but take on
only the values 'high' and 'low'. The main difference, then, between
this model and Grossberg's is the recurrence of the pulses that ac-
tivate the command cells, as mentlone& earlier. ~This property, to-
gether with the pattern-reggenition properties of the E-cells, allowa

a smaller structure to generate properly-timed command cell activa-

tions involving long interstimulus intervals.

The memory network discussed here can be used in twn ways as
part of a system that displays temporal conditioning. According to .
Groves and Thompson, (1970), the state system can become “entrained”
to a regularly repeated stimulus. This entrainment results in greater
sensitization to a regular stimulus than to one that is not regular;
a result that has been reported by iendergrass and Kimmel (1968).
A regular input to the network presented here allows a strong con-
ditioned response to form in the granule cells excited by the stimulus.
Their firing rates in response to the conditioned stimulus are bol-
stered by the action of the stored memory trace. Such enhanced firing
levels could lead to increased levels of sensitization, as requiréd
by Groves and Thompson (1970). Thus this network can represent one
realization of entrainment of the state system to the period of a

regular input.

Vinogradova (1975) showed that cells of the dentate gyrus dis-
play reactions to stimuli that change form as the stimulation pro-

ceeds, but that do not habituate. The reactions of units in CA3, to
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which the dentate sénds its axons, do habituate, however. Following
Sokolov's model theory of habituation, Vinogradova (1975) concluded
that incoming stimuli are matched in CAe with stimulus images stored
in the dentate gyrus. As the stimulus model is formed in the demntate,
the responses in CA3 gradually drop out. Mismatch caused by a change
in the stimulus causes CA3 units to dishabituate. Thus the memory ‘
neéwork presented here can be used as part of a plausible match/mis-
match habituation system in hippocampus that is sensitive to the
temporal properties of a stimulus. The units in CA3 can operate accord-
ing to the match/mismatch schemes of Horn (1967) to produce the desired

habituation.
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APPENDIX A

THE HABIT EQUATIONS

In this appendix I derive the equation describing the way the
output of the circuit of Figure 2.6 changes with repeated stimula-
tion. This circuit is illustrated again in Figure A.l for conven-

ience. The assumpticns under which the circuit operates are:

1. Cell dynamics do not enter into the circuit's operation. Hence,

the circuit equations are:

D=1
S e "1 D

0= “2 D+ H3 S

2. Synapses vary according to first-order linear differential

equations:

Ty W =Wy - -ab W (0) = W

Ty Wy =Wy =Wy =3, D H0) = Wy
W, oW, - W -

S H3(0) = “3

T3 "3 " ¥30 " M3 7 % 0

3. The ionput is a constant.

Under these assumptions the differential equations for the syn-
apses can easily be solved. The equations for “1 and “2 may be in-

tegrated by inspection to give

"l(t) "‘"10"' (“1(0, - "10) e-t,Tl - 61 p(1 - e‘t/Tl)

Wy(£) = Wy + (Wy(0) = Wpp) etT2 - a, D1 - e t/12)
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Figure A.1 Lumped model presented in terms of cells and coupling

weights. Synapse modification properties are as indi-

cated on the figure.
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The form for H3 is

- - t .
Wy(t) = Wyg + (Hy(0) - Wy0) e t/ty a;De t /1y fo 5(1)9.'/'3 dr

From the equations for S and “1' this integral can be evaluated to

give

-t/t -t/t
ﬂ3(t) = Q.+ (H3(0) - "30) e 3+ ay D(Hlo -a D){1 - e 3]

30

+ a

T
1 _ . -t/ty _ -t
3 D ;——:ﬁF; (wl(O) wlo + a D) (e l-e 3)

1
Using the facts that D is identical with I, and that all synapses are

initially set to their resting levels gives finally

- - a - -t/t
wl(t) wlo a, I(1 -e 1)
Vz(t) - "20 ~a, I(1 - e—th) .
-w.. - - etht 2__1
Wa(t) "30 a, I(w10 a, I[l-e 3) + a, a, 1 -1,
[e-t:l'c1 _ e-tl’ral]

.

In the case considered in Chapter III, the decreasing weights

varied independent of stimulus intensity. The equations above then

reduce to-
a - - eth
wl(:) "10 al(l e 1)
- - - e tlt
Hz(t) "20 az(l e 2) X
: - - -t/t 1
"3(t) - H30 + ay I(w10 al)[1 e 3] + a) a, 1 1-Ts

le—tl‘l’ 1 - e‘t’T 3]

These were the equations employed in the HABIT program.

One interesting.featute of these synaptic equations is the way

the peak value of the resulting equation for the overall output varies
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as a function of stimulus intensity. I consider here the case for
vhich Hl is fixed. Then ay is zero and the equation for "3 simpli-
fies to

- -t
Wale) = W0 +a, W, 10 - e 3)
The full equation for the output then is

o(e) = Wz(t) D+ "a(t) ]
- - _ ot _ Tt
["20 az(l e )] 1+ [w30 + a, "10 I(l-e 3)) .
“10 1
2 .2 -t/t -t/t
+ "10 “30] I+ ay "10 I'(1-e 3) - 32(1 - e 1) 1

M50

The initial, or control, value for the output is expressed by the first '
term in the equation above. The output relative to the control level
is

33 "10 I a

W, +W

4 a - ety
20 * Y10 ¥30

a-ety -3

0.(t) = 1+
R 20 * Y10 Y30

This function has a maximum (or a minimum) depending on the last two

terms. These terms are of the form
F=al-etT - 3a- e
which has a maxioum depending on the terms

Bet/T2 -4ty

This form has a singular point (found by taking the derivative

and solving for the time when the derivative is zero) at

* T,T T
T, 1 T

-
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At that point the second derivative is

NS W I
Ty = T Ty =
c-B_(f2ar 2 t_a Tza, 2\
2 T, B T2 'y B
T2 1

In the equation for the circuit output,

2
Ao —3%M0 )
o * Y10 %30 Wao * Vo W3 ©

and T corresponds to T3 Recast in these terms, the equations above

are
1,1 1, a, W 2
*
a2 (2%
271 T3 8
and
2 Ty =T 2
ca— 1 e TP B o T i T U
ot YoV 2 T3 3 x,2
2 3
Ty 2 Ta = T
: IZ a3 "10 ) 2 3]
T3 82

For a maximum of relative output, G must be negative. After

some algebra, this condition is fulfilled if

3T,

This was the condition under which the simulations of Chapter IIl

*
were run. In that case, the value of t is positive and represents
the point of maximum relative output. Note that this point shifts

to later times with the logarithm of stimulus intensity. Thus some
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peak shifting occurs in this simple model without the benefit of a

second sensitization term with a different time constant.

These results were derived under the condition of constant in-
put. The output due only to the decreasing weight can also be de-
rived for the case of a pulsed input. This corresponds more closely
to the way physiological systems are tested. Consideration of only
the decremental term corresponds to testing the system at a low stimu-
1us intensity. In order to get an idea of the way a weight governed
by a first-order differential equation changes with time in this case,

consider the equation
ye=-y+al y(0) = 0

This is a simplification of the synaptic equations dealt with pre-
viously. Information gained from studying this case easily transfers

to those cases, however.

The analysis of this equation is based on the behavior illus-
trated in Figure A.2. There, a pulsed input of height A, period
Tl + TZ’ and duration '1‘1 excites the equation started from zero. The

value of y at the beginning and the end of each pulse may be expressed

as
Yy = Y5 e_TélT 1i=2,4,6, ...
-y e'71’1+aA(1-e'T1") i=1,3,4
Yy % ¥4 R
and yo = y(0) = 0
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uation). The decrease is usually a negative exponential function

of the number of stimulus presentations.

2. If the stimulus is withheld, the response tends to recover over

time.

3. The weaker the stimulus, the more rapid and/or pronounced is the
habituation, measured as a percent of control (unhabituated) re-

sponse.

4. Presentation of another (usually strong) stimulus results in re-

covery of the habituated response (dishatituation).

S. Habituation and dishabituation of the response to a given stimu-

lus exhibit genefalization to other stimuli.

On the basis of work done in spinal preparations, Thompson de-
vised a theory of habituation based on the interaction of two processes.
In the two-process theory, the waning of response to a particuiat stiou-
1us is produced by a transmission decrement in the path from stimulus
to response. The recovery of response following presentation of another
stimulus 1is the result of a superimposed, transitory gensitization pro-
duced by the new stimulus. The simple circuit below illustrates the

two-process theory.
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Cells are indicated here by circles. Each cell's output is a
function of the sum of its inputs, each weighted by the value of the

associated synapse. So:

H= FH(I)
Se= FS(W1 « H)

0= FO(" « H+W

y - S)

2
Synapses themselves vary with use to model the processes of dec-
rement and increment. Synapses marked as squares have values that
decrease as they are used, so that with successive presentations of
an input, the transmission in the direct path from H to O decreases.
The synapse marked with an arrow increases with use, simulating the
process of sensitization. The values of all synapses return to rest-
ing levels if unstimulated, simulating the spontaneous recovery of

habituation and sensitization.

To realize Thompson's theory, synaptic decrement is made inde-
pendent of stimulus intensity for sufficiently intense stimuli, while
increment depends directly on intensity. Hence, small inputs will

yield only habituation through the H-0 decrement. Larger inputs will
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generate both decrement in the H-O0 path and increment in the H-S-0
path, leading to the generation of habituation curves illustrated

below, redrawn from the work of Thompson and his colleagues.

A
2
CONTROL
LeveL 100
OF
RESPONSE

\

# STIMULI PRESENTED

With the proper choices of synapse parameters, similar curves

may be generated by the UATION program.

In order to simulate the generalization of habituation, the sim-
ple unit illustrated above may be used as the basis of a network of

units illustrated below.

In the basic unit, the synapse values were altered by activity
in the channels with uhich they were associated. Here, the value of

a synapse is changed by activity in its own channel and also by ac-
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tivity in nearby channels of the same type. Thus synapse 1 above
may be decreased by activity coming through synapses 2 and 3, but
will be unaffected by activity at synapse 4. Input A, then, will
decrease synapse 1 through activity in synapse 2, causing a decreased
response to later presentation of input B. The sensitizing synapses
behave in a similar way to simulate éeneralization of dishabituation,

through these connections are not shown here.

Thompson's two-process theory of habituation, then, may be simu-
lated by the networks shown above using the UATION program. With pro-
per choice of network parameters habituation curves such as the ones
shown on page 270 may be generated. The program is designed to enable
the user to generate these curves and to perform.simple habituation

experiments.

Part 1I: Program use and operation. The network simulated by
UATION 1s composed of a number of layers of cells. Each cell may be

connected with any cell in any other layer (including its own) but
all cells in a given layer have identical connections. The connec-
tions from one layer to another are specified in terms of a template.
The template gives the value of the connection to a given cell in

one layer from its neighbors in another. We are interested in homo-
genous networks, so the templates are symmetrical left-to-right. The
input to a cell in a given layer is siwmply the weighted sum of the
outputs of the cells to which it is connected, according to the tem-
plates for that cell's layer. Tie output of each cell in the network

is a simple function of its input. The template is illustrated be-
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low. The layer feeding into a connection is called the “output layer®
for that connection, while the layer receiving the connection is

called the “input layer."
CELL NUMBERING

HOXONOS;0<CNCXO.
O TOOOV O

Connections between cells may be fixed or variable. Fixed con-
nections are entirely accounted for by the template mechanism des-
cribed above, since fixed connections are identical for all cells in
a given layer and for all time. Variable connections between cells
in two layers are specified identically initially, but mﬁst be kept
track of individually thereafter. Templates are again used to set
up variable connections. As above, such connections between.two layers
are set up symmetrically. That is, the connections from a cell in a
given layer from its leftward neighbors in another layer initially
have the same values as the corresponding connections from its right-
ward neighbors in that layer. These pairs of connections have iden-

tical modification parameters, as described below.

Each variable connection obeys a first-order differential equa-
tion with a resting value equal to the value in the template that

specifies the connection. So each variable connection satisfies:

W= "0 -W+ i a, F“ (Ci)
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Here T is the time constant associated with the pair of connec-
tions, and wo is the resting level. The drivihg term is a weighted
sum of a function of the outputs of the cells whose activities modify
the connection value. Each pair of variable connections has an asso-
ciated template telling which cells in the output layer may modify
these connections. A cell in the output layer of a connection may
modify that connection's value only if it make? contact with that
connection's cell in the 1nyut layer, however. This is illustrated
below for a system with two elements in the template from layer 2 to
layer 1, and with two elements in the template of.each paif of variable

connections.

- OO

LAYER 2

A variety of functions are available for driving the variable
weights. Each set of variable connections is given a function that
is then used with all of the weights in that set. Further, each left-
right pair of a given set of variable weights is given upper and
1imits. If a weight value moves beyond these limits it is allowed
to continue, but the value used in calculation of the input to the

associated cell remains equal to the limit crossed by the weight.

This scheme of variable connections was designed as the simplest
bay to model heterosynaptic facilitation and depression, or a common

elements effect. Note that activity in one of a set of connections
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can alter the values of connections only in the same set and only -
those connections on the same cell. This network could be extended;
to allow activity in any set of connections to alter the values of
any other set, on any other cell. Simulation of dendro-dendritic or

axo-axonic synapses would then be possible.

Using the program. The program is designed to allow the user

to see curves of relative habituation generated by the network he

has specified. The network is specified in the parameter input sec-
tion of the program. This section 18 set up such that single para-
meters may easily be altered during a run. The calculation and out-
put sections run che network and display the result. In this section
1 describe the way networks are set up and rum, and the way the out-

put is specified.

A. Template specification. The connection template for each

layer is specified in two steps. First a number is given for the
total spread of connections in both directions between each pair of
layers. If this number is zero, there are no connections between the
layers. If it is one, each cell in the output layer connects to the
cell with the same number in the input layer, and so on. This is

i1llustrated below.

3 2 1 2 3
- QOO G
LAYER 2 ‘II'
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Numbers on cells in layer 1 give numbering relative to the cell
in layer 2. Numbers above the layer 1 cells are the numbers of the

assocliated connections in the template.

At the point in the program where these numbers are to be given,

the message
INPUT NUMBER. OF CONNECTIONS TO LAYER i FROM EACH LAYER

is printed. The numbers of connections to layer i from all other

layers are typed in integer form, for each layer 1.

Next the program asks for the weight values associated with each
set of connections specified in the tewmplates for each layer, with

the message:

INPUT WEIGHT REST VALUES:

FROM LAYER i TO LAYER j

Real numbers are to be typed in for each set of connections. These
are the values of the fixed weights and the resting values of the

variable weights.

B. Modifiable weights. Each set of weights must be specified

as fixed or variable, and the modification parameters of variable
weights must be given. Variable weights are referred to using a

rather complicated set of conventions described more or less opaquely’

below.



275

The program first prints:
INPUT NO. VARIABLE WIS. FOR TYPE SPECIFICATION

1f no weights are to vary, a zero is entered. Othervise, the

number of variable weights 1s given. ' In that case the message
INPUT WT. LAYERS, TYPE

is printed. Integers of the form I, J, K are to be given, where I

is the input layer of the corinection, J is its output layer. K gives

the type of the synapse, and refers to the number of the function
used in varying the connection (see equation on p. 271). The avail-

able functions are:

TYPE FUNCTION FORM
1 1.0
2 ~ 1.0/(1.0 + C *EXP(~D *F))
3 WA
4 1.0 - Allw
5
6 F
7 FA(W - A)

Here F is MAX(0.0, presynaptic cell value-weight modification threshold)

G is postsynaptic cell firing level
W is current synapse value

A are the weight lower and upper asymptotes

A1’ u

C, D are the weight sigmoid parameters
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Fixed connections are given Type O.

Note that if the firing level of the presyhaptic cell falls be-
low the modification threshold of the synapse, no modification is

made.

From the types of the synapses a Type Matrix is constructed.

The Type Matrix looks 1like:

T T2 T3
To1 T2 T3
T3 Ta2 Tyy
Entry i, j in this matrix gives the type of connections from
layer j to layer i. Each varying connection is also given an Index
according to its place in this matrix. The Index of a given set of
connections is found by counting the number of nonzero entries in
the Type Matrix, beginning at the upper left and proceeding across

columns and down rows until the entry corresponding to the set of

connections in question is reached. For example, in the matrix

1 2 0
0 4 0
1 03

the set of connections from layer 2 to layer 1 has type 2 and index
2, and the connections from layer 2 to itself have type 4 and index
3. Variable connections are referred to in terms of their indices

in the rest of tl.e program.
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Modificaticn parameters for each set of variable weights must

be specified. Weight time constants are given following the measage

INPUT WEIGHT TIME CONSTANTS:

FROM LAYER 1 TO LAYER j

Each set of variable weights has an associated set of upper and
lower limits, upper and lower asymptotes, and wodification thresholds
used in the modification functions described earlier. These are put

in following the message
!
INPUT WEIGHT LOWER AND UPPER LIMITS, ASYMS., THRS.

FROM LAYER {1 TO LAYER j

Sequences of numbers with the form LL, UL, LA, UA, THR for each weight

from layer 1 to layer j, where

LL 1is the weight lower limit,

UL is the weight upper limit,

UA 18 the weight upper asyuptote,

LA 1is the weight lower asyﬁptote, and

THR 18 the weight modification threshold.

All of these parameters for the weights of a given set of connections

must be put on a single line.

Type 2 weights have sigmoidal modification functions that are
specified for each Type 2 weight in terms of its value at two points

selected by the user. °‘The message

INPUT TYPE 2 WEIGHT SIGMOID POINTS, VALUEZ.
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is printed, and the lower point and the sigmoid value there are given,
followed by the upper point and its associated value. The sigmoid

parameters are then calculated and displayed by the program.

Finally, the modification template and modification gains are
put in for each variable set of connections. For each index, the

message
INPUT NUMBER OF MODIFICATION GAINS FOR INDEX i (FROM j TO 1)

is printed. The letters j and 1 refer to the layers associated with
the set of connections with index i. A number is to be given, follow-

ing the convention for template specification. Then the message

INPUT MODIFICATION GAINS FOR EACH WEIGHT WITH INDEX i, ONE AT

A TIME.

is printed, and the modification gains for eéch weight are put in by
the user. Note each modification gain is numfgred according to the
index of the set of connections being specif@éd, the number in the
connection template of the weight ‘to which itlbelongs and its number

in the modification template for that weight.

At this point in the program, the weights have béen fully speci-

fied.

C. Cell specification. The cell's output functions are specified

here. The functions are sigmoids, and are specified in the sa..e way

the Type 2 weight sigmoids are specified. The message
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INPUT CELL SIGHOID ?OINTS, VALVUES

is printed, and upper and lover points and their associated values °
between zero and one are given, following which the sigmoid parameters

are printed out. The program then prints
INPUT CELL SIGMOID GAIN, THR., ZERO (CR)

The cell gain is a multiplier of the sigmwoid, which is itself
normalized to one. The threshold and zero of the sigmoid are best

explained in terms of the sigmoid equation:

1 _ 1
e-d(x - xO) 1+c e"d(z - x0)

S(x) = G[ ]-= G(sl(x) - B)

l1+c

This looks like:

¢ 1
pra 4 -
N _,/’/i x
— g

The threshold, Xqe is used to shift the sigmoid along the x-axis, and
the “zero,” z, fixes the point at which the sigmoid crosses the axis.

The cell outputs are calculated as
0(x) = MAX (S(x), 0.0)

so the zero point given above fixes the point at which the cell out-
put becomes zero. The value of the bias, B, 1is displayed by the

program, for each layer of cells.
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At this point the network is completely specified and may be

run. 1t remains to specify inputs and outputs.

D. Stimulus specification. Each stimulus periocdically excites

a number of cells in the network for a particular duration of time.
The cells excited by an input, and the input's duration and period

are specified by the user at this point. The program prints
INPUT NO. INPUTS, NO. CELLS PER INPUT, THEN CELLS.

" The user first gives the total'number of sets of cells to be
stirulated, then the number of cells in each set. Following that,
the numbers of the cells stimulated in each set of cells are given
on separate lines. Note that only the cells in layer 1 may be stimu-

lated from outside the network.

For example, if there are to be two inputs, where input 1 excites

cells 1 and 2, and input 2 excites cell 3, the user types

Next, the program asks for the duration and period of each input,
which are given in terms of numbers of iterations of the program's
calculation section. These numbers are to be given on a single line.

Stimulus intensity is put in following the message

INPUT STIMULUS INTENSITY (CR), 1} TO RESTCRE.
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"] TO RESTORE" refers to initialization of the network, and
will be explained later (see section H, below). During the initial

period of parameter specification this feature is inoperative.

E. Output specification. The program outputs in graphical
form the time-courses of selected variable synapses, sampled period-
ically. The number of weights to be graphed, and the numbers that

specify them are input here. The program prints
INPUT NO. WEIGHTS FOR TIME, WEIGHT INDEX, CELL, NUMBER.

The total number of ‘weights to be output is given, then each
weight's index, the number of the cell with which it is associated
in 1its 1npht layer, and its absolute number are given. The absolute
nunber of a variable weight refers to its place in the associated
weight template, counting from left to right. This is illustrated
below, where numbers on and above cells are as in the figure on p.
273, while numbers on the connections are the connection absolute

numbers.

Recall that each left-right pair of connections in a template
has the same set of modification parameters and resting value, but
that each may vary as 4n individual. The absolute and cell nunbers

are the way the program keeps track of the individual connections.
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Cells are elected for habituvation curve output following the

message

INPUT NO. CELLS FOR HABITUATION CURVES, CELL LAYER, NUMBER.

These numbers are all entered on a single line. The‘:otal out-

put of each of these cells in response to each stimulus presentation

18 stored for further display.

Now the network form and its inputs and outputs are fully speci-
fied. All that remains is to give a set of program control parameters
and to initfalize the network.

F. Program control mcdes amd initialization. The message

INPUT NTIMES, 1 FOR FREEZE, 1 FOR PROD. MODE., 1 FOR FROZEN

CONTROL.

is printed. NTIMES is the period at which weight values are recorded
for later graphical output. The program stores the last 40 values

of the weights, sampled at this pericd.

1f- the next parameter is 1, all variable weights are held at
their current values (the network is frozen). A zero here allows

the weights to change.

If "Prod. Mode" is set to 1, the program will run until a num-
ber of stimuli specified below have been presented to the network,

at which time the habituation curves are automatically plotted. 1If
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this parameter is zero, the program runs for a specified number of

iterations.

“Frozen Control" refers to two ways of plotting the habituation
curves. The first stimulus presentation is used as the control level

stimulus. The network response to this stimulus is used in comparison

with the responses to the other stimulus presentations to plot the
curves of relative habituation. If the "Frozen Control"” parameter
is set to 1, the network is frozen during the first stimulus presen-
tation, simulating an entirely unhabituated network. If this para-
meter is zero, the control level includes the effect of the first

habituating stimulus.

Note all of these parameters are integers, and are put in on a
single line. The network is now inicialized, and the message
SYSTEM RESTORED
is p;inted. followed by
RUN NUMBER 1
The run number is updated each time the system is restored, and

is used for purposes of reference.

The network is now ready to roll.

G. _The main céntrol point (MCP). The program 1s now at the

@main control point, from which all things are possible. From here
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single parameters wmay be altered, the network may be reset or rum,

and outputs may be called for. The message printed here is

INPUT NUMBER OF ITERATIONS DESIRED, STIMULUS NUMBER,

NUMBER OF STIMULUS PRESENTATIONS DESIRED.

The number of iterations given controls the pqogtam's action.
1f this number is greater than zero, the.network is run for the
specified amount of time when the “Prod. ﬁoded paranmeter is set to
zero. If “Prod. Mode" is 1, the network is run until the desired
nunber of presentations of the given stimulus have been given. If
the number of iterations given is zero, a complete new set of para-
meters is called for by the program. Numbers less than zero are
used to select single parameters or sets of parameters for change,

according to the following directory:

NUMBER OF ITERATIONS PARAMETER
-1 . Weight and Habituation Curve Outputs
-2 System Initialization
-3 NTIMES, PROD. MODE, FREEZE, FROZEN
CONTROL
-4 Cells for Habituation Curves
-5 Weights for Time Qutput
-6 Stimulus Intensity
-7 Stimulus Cells, Periods, Duratioms
-8 Full Cell Sigmoids
-9 Partial Cell Sigmoids
-10 Full Weight Modification Gains
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-11 Partial Weight Modification Gains

-12 Type 2 Weight Sigmoid Parameters (Full)

-13 Partial Type 2 Sigmoid Parameters

=14 Full Weight Limits, Asymptotes, Thres-
holds

-15 Partial Weight Limits, Asymptotes,
Thresholds

-16 Full Weight Time Constants

-17 Partial Weight Time Constants

-18 Type Matrix Enttieé'

-19 ‘ Full Weight Values

-20 Parcial Weight Values

=21 Template Size Specification

=22 Number of Layers, Cells Per Layer,
Time Step .

Here "partial" refers to the ability to change single values in
a set of parameters, rather than having to input a full set of para-
meters. Messages printed out at these points are generally self-

explanatory (hopefully).

H. Secondary control points. In order to make certain sequences

of operations easier, secondary control points exist throughout the
program. These points generally involve the ability to alter a para-
meter or set of parameters, then automatically initialize the system.

The message

1 TO RESTORE
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is printed at such points. A one put in at that time will cause the
network to be initialized after the parameter value is altered. A

zero returns the control directly to the main control point.

A special control point exists at the end of the habituation
curve output section. A control parameter is asked for at that point,

taking the following values:

CONTROL PARAMETER ACTION TAKEN
0 Return to MCP.
1 Go to Specify Input Intensity.
2 Initialize Network, then go to MCP.
3 Go to MCP; next stimulus is treated

as new control stimulus for further

stimulus presentations.

4 Go to MCP, clear graph of habituation
curves.
5 Print "RESET NO. STIf. TO DATE."

Input a number less than the total
number to date at which to continue
plotting habituation curves. This is
used to erase points from the habitu-
ation graphs, and is useful in gene-
rating clean graphs of dishabituation

experiments.
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A number is printed following the initial message. This number
i8 the size of the habituation graph being displayed, and may not
exceed 701. 1If it nears 701, a 4 should be given here to clear the

graph.

1. System filing. To make using the program somewhat easier,
the user may store all the parameters necessary to run the program and
read them in to the program at an; time. In this way the full set of
parameters need not be entered'by the user every time the program is

started.

When first started, or after a zero is put in for number of ite-

rations at the main control point, the program primts
INPUT 1 TO READ STORED PARAMETERS.

A 1 then will read the parameters and initialize the system. A

zero allows the user to put in fresh parameters.

In the Output section of the program, the user may write the
current parameter values onto the disc over the values stored there.
Unfortunately, the program stops there, due to the way the FORTRAN on
this machine is set up. However, the program may easily be restarted

and run with the parameters just stored.

J. Network calculation. Once a network's inputs and outputs

have been specified, calculation may proceed. At each iteration the

input to each cell is computed using cell outputs and weight values
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from the previous 1teration. The outputs of the selected célls and
values of selected weights are stored for later graphical output.

The values of the variable weights are updaced according to the cell
firing levels from the previous iteration. Updates are handled
according to an Eueler integration formula with a time step specified
by the user. The calculation continues for a specified amount of
time, or until a specified number of inputs have been pr;sen:ed to

the network.

Part 11I: An example. Below is an example of an actual run of

the program showing how inputs are put in, and displaying the form of
the output. A set of habituation curves is generated, then a dis-
habituation experiment is performed. The network involved is the

simple three-cell system shown in the figure on p. 269.
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APPENDIX C

PROBABILITIES OF INPUT ENTRY AND ASSOCIATION

I calculate here the probability that an input stimulates no
cell that lies in the trough of a wave, and the probability that a
given cell stimulated by an input becomes associated with at least

one wave in the system. The following parameters are used:

N, = number of lamellae,
N. = number of cells/lamela,
N, = number of cells stimulated by an input,
N, = number of waves in the system,
Hw = total number of cells/wave,
HT = number of cells in a wave trough,
MR = number of cells in another lamella that a cell in a given
lamella is able to form connection to,
Fz(i.j) = probability that a longitudinal line from lamella i reaches
lamella j,
P, = probability that a longitudinal line makes contact.with a
given cell (out of a toEal of HR) in a lamella it reaches,
P_. = probability that a wave can activate a given longitudinal

line.

To find the probability that an input will stimulate a cell in
the trough of a wave, note that each wave trough uses HT cells, 8o

that the total number of depressed cells is N“ . HT. So

p(a given stimulated cell lies in a wave trough) =
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N“ . “T

ST NLNC

P

If waves and stimulated cells are distributed at random through

the systen,

"p(k stimulated cells fall in wave troughs) =

Nk n,.-k
Lﬁ} Pgp (1 - Pgp) H

So the probability\fhat all stimulated cells fall outside wave

troughs is
N
Ppg = (1~ Pgp B

To find the probability that a given stimulated cell is connected
with at least one wave in the system, we assume first that an input is

equally likely to stimulate a cell in any of the NL lamellae. Then

p(a stimulated cell is connected to at least one wave when there
are Nw waves in the system) =
N

L
L g
i=

P(N)n— P (1) )l
AL L By

where

Pc (1, N") e p(a stimulated cell in lamella 1 is connected to

at least one wave, given N“ in the system).

The waves may be distributed through the network in many ways. Each
such distribution will be called a configuration, and configurations

will be denoted cj. =1, ...y Hc, where Hc is the tctal number of

configurations of NH waves distributed in NL lamellae. Assoclated
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with each C, is a set of = .
3 numbers Kj (kji’ cees ijL) giving the
number of waves in each lamella for that configuration.

Hence
M

C
Ptk W = E Pl Nile) B e,

where

P(Cj) = probability that configuration Cj occurs,

Now

P, “ulcj) = p(a stimulated cell in lamella i is comnected
with at least one wave in the system given NH

waves in configuration CJ)

= 1 - p(a stimulated cell in lamella is connected

with no wave, given N, waves in configuration C,)

W 3

= 1- R, Ncy),

where
N
L X
Putte NylCp) = T [1 - Py(m, )} gm
and

PA(m, 1) = p(a given wave in lamella m makes contact with a given

stimulated cell in lamella 1),
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PA(m, 1) = p(the wave i8 at a cell in lamella m that sends a z-
line to the stimulated cell in lamella i) ° p(the E-

cell associated with the z-iine can be aFtivated).

’:B"Pz(mo j)‘P

c E

The first two terms in the final expression give the provability
of horizontal and vertical connection from a cell in lamelld m to one
in lamella j, assuming that each G-cell is connected to exactly ome

E-cell in its lamella.

These expressions are evaluated for a system with parameters

"given in Table C.1, with the results shown in Table C.2.
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TABLE C.1

Parameters Used in Evaluation of Association

and Input Entry

NL -

Probabilities

6

60

30

3

.9

.66

1.0; 0 < |1-3] < 3

0.0; otherwise
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TABLE C.2
| e 7 8 9 10 " 12
L e 076 079 082 085 087 089
095 094 093 092 osl 09| ~0%0
050 057 063 068 073 076 079
2 090 088 087 085 084 oezl o8l
5 |03 043 050 057 0-62 067 o7l
086 083 o8 079 077 075 o73
025 033 040 0-4a7_~|053 059 063
4 o8l 078 076 073 o7 o 065

Entries are of the form:

Agsoclation and Input Entry Probabilt;ies

probability of association/probability of entry



