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ABSTRACT
STIMULUS ORGANIZING PROCESSES
IN STEREOPSIS AND MOTION PERCEPTION
(June 1976)

Peter J. Burt, B.A., Harvard University
M.S., Ph.D., University of Massachusetts

Directed by: Professor M. A. Arbib

The idea that stimulus organization plays an important
role in visual perception is now commonly accepted, princi-
pally due to the work of Julesz with random dot stereograms.
In order for one to perceive depth in such a stereogram, a
low level visual system mechanism must determine which of
the many possible matches between individual dots of one half
image with dots of the other are appropriate. Furthermore,
it must enforce these matches during subsequent image pro-
cessing. Stimulus organization plays a very similar role in
motion perception: some mechanism must match each stimulus
point seen at one moment in time with an appropriate point
seen at a later moment in order for these points to be per-
ceived as arising from a single moving object. But stimulus
organization is important in many perceptual tasks besides
stereopsis and motion perception, so in Chapter 1, its.func—

tion and nature are discussed in fairly general terms, while

later chapters focus on binocular vision and apparent motion.

The essential function of stimulus organization is to
seément the image or divide stimulus points into groups
which “behave like" objects, This segmentation function is
not only a useful but a necessary part of visual information
processing when the visual stimulus includes images of moré
than one object. Stimulus organization resolves local ambi-
guities in how stimulus points are associated with one
another, while it controls the association of individual
stimulus points  with perceived objects. It is argued that
the processes responsible for stimulus organization operate
at a low level of the visual system and require little or no
high level, semantic control. This point is of particular
relevance to computer vision as it indicates that appropriate
low level general purpose processes can accomplish important
image analysis without input from specialized programs which
relate to specific objects. ‘

The nature of binocular ri;alry and fusion are studied
in Chapter 2. Not only does rivalry provide one of the sim-
plest and most easily examined examples of low level stimulus
organization mechanisms, but it provides insight into the way
in which image information is coded at the level of the
visual system at which binocular inf&rmation is combined.

It is concluded that suppression is the result of inhibitory

interactions between two cell populations which code the
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visual input to the two eyes separately. A neural model is
developed in which monocular images are coded by activity in
cells with concentric center-surround receptive fields. Com-
puter simulations of this model show that it is consistent
with psychophysical suppression phenomena.

Chapter 3 begins with a comparison and criticisms of
existing fusion models for stereopsis. These models all are
based on a “projection field" concept. A new projection
field model could be developed by combining the good points
of these existing models and would account for a very large
range of stereopsis phenomena; One difficulty with projec-
tion field models is that they incorrectly imply that a
fixed relationship should exist between the perceived direc-
tion of a binocularly fused image and its binocular disparity.
To overcome this difficulty, a modified projection field
model is proposed in which there are separate but coupled
"half projection fields," one for each eye. Another advantage
‘of this structure is that the stereopsis model becomes a
natural extension of the rivalry model in which separate
image coding is also postulated. An interesting implication
of this model is that stereopsis depends on neural interac-
tions at an earliér stage of visual processing than has been
thought. The possible involvement of the lateral geniculate
body ih stereopsis is explored briefly in Appendix A.

Finally, in Chapter 4, temporal aspects of stimulus

organization are considered in the context of a model for

vii

apparent motion. This model is shown, in an informal way,
to be consistent with Korte's Laws, and it is discussed in
relation to a number of other psychophysical phenomena. A
possible combination of the stereopsis and apparent motion
models is proposed to account for certain phenomena dis-
covered by Ross which involve both depth and motion percep-

tion. Original psychophysical experiments are described in

. Chapters 2 through 4 which helped motivate the models pro-

posed in these chapters.
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CHAPTER I
STIMULUS ORGANIZING PROCESSES

Introduction

The visual world is a three dimensional space filled
with objects, and perception is concerned with the localiza-
tion and recognition of these objects. Information available
to the visual system is in the form of a two dimensional
pattern of 1light on the retina. This image is not structured,
as the world is structured, into objects. However, it is
reasonable to suppose that the visual system is predisposed
towards interpreting the image in terms of objects, and that

.even before specific objects are recognized, processes within
the system are attempting to organize the retinal stimulus
into regions which "behave like", and hence may correspond to,
individual objects.

These organizing processes may play a major role in many
perceptual tasks. The possible nature and function of such
processes will be examined in this dissertation from a number
of points of view., 1In the first chapter of the dissertation
I shall consider questions such as (1) what are the organizing
processes?, (2) how can neural activity organize stimulus
information?, (3) are organizing processes necessary?, and
(4) now do such processes relate to theories of form percep-

tion? Neural models are presented in the remaining chapters

for three specific perceptual phenomena, binocular rivalry,
stereopsis and motion perception. Processing in each of these
models may be viewed as organizing the visual stimulus.

One function of stimulus organization is image segmenta-
tion. The fact that the visual world is composed of objects,
and that objects are rigid, compact structures which move in
orderly ways according to physical laws, means that the image
can be usefully broken down into subregions which also are
rigid, compact structures which change in orderly ways over
time. One or a small number of these subregions, or image
segments, may correspond to single objects in space, so the
task of object perception is considerably reduced if the image
can be reasonably segmented.

The notion of an image segment is used here in a sense
somewhat extended from Dev's model (Dev, 1975). Here an image
segment is any area of the image which may be interpreted as
a surface in space. All image features within that area are
assumed to originate from object features which lie on that
surface. Thus segments, like surfaces, may be pieced together
to form more complex object representétions in space. Two
principal suggestions will be made: first, the segment repre-
sentations constrain and organize subsequent image processing,
and second, the segments themselves may be created and assem-
bled largely by processes at a iow level of the visual system,
in many cases with little or no "high level" guidance. If

thece sugegestions can be substantiated then the study of



organizing processes will be important, not only for under-
standing natural vision, but for developing computer vision
as well.

Figure 1:1 shows a schematic diagram of the visual system
with a separate box for stimulus organization. It is assumed
that this box corresponds to a layered neural structure, in
which each layer is retinotopically organized and different
types of information are represented by activity in different
layers. Thus, in some layers, patterns of activity represent
a segment in terms of the area it covers, while in other iayers.
activity represents the segmént boundaries, segment depth
(distance from observer) and segment motion. This pattern of
activity constrains the way in which information is processed
by the remainder of the visual system, which is represented by
the “brain" on the right in the figure. It is imagined that
the organization box is chiefly responsible for processing
and representing spatial information and that it includes a
representation of spatial attributes, such as depth and motion,
which are associated with individual features of perceived
objects. Semantic information relevant to particular objects
is processed in the remainder of the system. (It is not
assumed that the neural structures responsible for these two
functions are in anatomically distinct brain regions). The
motivation and details of this system will be given in the

remainder of this chapter.

7
§]
S < ,
£ S High
‘ & N7 Level
S Analysis
L(7)
O
"Brain"
Figure 1:1

This diagram shows the presumed relationship
between low level stimulus organizing processes
and.high level visual analysis. Spatial infor-
mation, including the area and boundaries of
segments, as well as segment depth and motion
values, are represented by patterns of neural
act}v1ty in the organization box, while infor-
mation associated with the recognition of partic-
ular objects in the visual field is represented
by activity in “labeled" cells in the “brain®
region.

v .




1.1. Why Segmentation?

The idéa of image segmentation has been introduced as an
effective means for reducing the problem of perception in a
complex visual worid into a number of simpler subproblems.
This type of problem reduction is invaluable in computer scene
analysis, where the strategy has been to begin analysis by
examining subregions of the scene which may contain the image
of a single, easily recognized object. Also, piece by piece
analysis is particularly appropriate for computers which pro-
cess information serially. But is this sort of problem reduc-
tion necessary in natural vision, where parallel processing is
the rule? Another kind of consideration indicates that it is.

The need for image segmentation, or to be more specific,
the need for a highly spatial, internal model 6f the visual
world which includes a representation of image segments, is
best demonstrated in the context of a feature detection theory
of perception. According to proponents of this popular type
of form perception theory, the first stage of image processing
involves a reduction of the image into elementary features,
such as edge segments,.line segments, corners, etc. This
collection of features becomes the input to the next stage
of processing, where groups of elementary features are recog-
nized as being components of particular complex features. At
later stages of processing objects are recognized on the basis

of appropriate complex or hypercomplex features. This system

is frequently imagined to consist of several arrays of feature
detectors, which are arranged in a hierarchy. Each element
of the lowest level arrays is "activated" when the specific
elementary feature for which it is a detector occurs within
its small receptive field. Elements in the next level of the
hierarchy are complex feature detectors, and respond when
appropriate collections of elementary feature detectors have
been activated within their somewhat larger receptive fields.
At the highest level, object detectors respond when all neces-
sary complex features have been detected which make up the
particular object which they code. An important part of the
hierarchy concept is that detectors respond to their specific
feature wherever it may occur within a receptive field. This
receptive field is small for detectors at the lowest level
but becomes progressively larger as one ascends the hierarchy.
Thus a "face detector" at a high level respon@s whenever a
face occurs within a receptive field which is large compared
to the dimensions of the face itself. In general, there is
a decrease in the location specificity of detectors as feature
specificity increases. This convergence idea is included in
the feature detection theory both to avoid a "combinatorial
explosion” and to account for the invariance of form percep-
tion with changes in image position on the retina.

The system may be summarized with the type of diagram
shown in Figure 1:2. Within the brain are distinct groups of

cells which act as detectors for particular objects. We may



draw a circle around those which respond to any object class
of interest, such as "face" detecting cells. The visual world
is represented as the area inside the large circle in the left
half of the figure. The face detector responds whenever a
face image occurs within its receptive field, which is the
area within the dashed circle in the figure. It.is assumed
that this face detector responds irrespective of the position,
size, and (within limits) the orientation of the face image
within the receptive field.

I will now describe several examples which will show that
the system as outlined above cénnot work. What is missing in
this system is a spatially precise, internal representation of
individual stimulus features and their association with indi-
vidual perceived objects. While the descriptions of these
examples will assume a feature detection system of form per-
ception, they illustrate some general problems for perception
theories.

First, suppose that an image is presented to the system
in which the features of the face are rearranged (Fig. 1:3a).
If the face detector responds whenever each of its required
features occurs somewhere in its receptive field, then this
image could be interpreted as a face. Clearly a theory
leading to that prediction is incorrect. The spatial arrange-
ment of the features is important and must be preserved through
each of the stages of image processing, even if the position

of the overall pattern is not. This provision appears to be

Visual Field Brain

Figure 1:2

The feature detection theory for form perception
postulates the existence of cells in the brain
which become active whenever the image of a partic-
ular object occurs within a subregion of the visual
field. This subregion, known as the receptive
field of the object detecting cells, is shown here
by the dashed line, and it is presumed to be much
larger than the object image.



lat odds with the assumption that spatial information relating
to individual features is lost as information indicating the
existence of these features is passed to the next level of

the feature detector ﬁierarchy. The simplest solution to the
problem is to assume that the general purpose face detector

of the present examﬁle has inputs from a great many specific
face detectors, one for each possible position, size and orien-
. tation of the face image. But this is not a satisfactéry solu-
tion to the problem as it implies a "combinatorial explosion”:
there must be specific detectors for every conceivable orien-
tation, position and size of every perceivable object.

Next, suppose the system is presented with the images
of two faces (Fig. 1:3b). 1If, as we suppose, the face detec-
tor responds whenever a face occurs anywhere within its recep-
tive field, so that it does not distinguish images by position,
can it possibly know that there are now two face images in
different positions? Again retention of spatial information
about each face image seems necessary.

The remaining examples will show that if the image pre-
sented to the system includes subimages of different objects,
then an internal, highly spatial representation of the image
;s needed to keep track of feature usage. This is essentially
a bookkeeping task. There are two types of image features in
these casesx'those features which belong to particular object
images, and those which arise from the coincidental spatial

relationship of one object to anothef. These features must

Figure 1:3a

The features of a face éppear within the receptive
field of a "face detector." How can the detector
detect that the features are disorganized?

Figure 1:3b

Two face images appear within the receptive field

of a "face detector.”
guish the two faces?

Can a single detector distin-

10
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be distinguished by the system. All features of the first
type must be associated with an object (a “completeness"'con-
dition), but no feature should be associated with morevthan
one object (a "consistency* condition), while features of the
second type should not be associated with any perceived
object.
Figure 1ila shows an ambiguous image within the visual

field which may be seen either as a duck, with its bill to

the left, or as a rabbit with its ears to the left.l Tne

Figure 1:4a

image is an adequate stimulus for both duck and rabbit detec-
This image may be seen either as a duck or a rabbit,

tors, as shown. The curious property of this figure (and but not both simultaneously. To account for the
mutual_exglusion property, we may postulate recip-
other ambiguous figures) is that, at any given moment, one go:al inhibition between the duck and rabbit
etectors.

may see either a rabbit or a duck, but not both at once.

Reciprocal inhibition might be postulated between duck and

. -
rabbit detectors to account for this mutual exclusion property, -~ -~
as shown. However, this supposition leads to an incorrect /, ‘:TZE::::::::;:ES
prediction in the case. shown in Figure 1:4b, where separaté / \
images of a duck and a rabbit occur within the receptive ! o - o e I -
fields of the detectors. Here as before only the duck or the \ ’ L / 4 =
rabbit should be perceived at a given time. To put this exam- \ Rabbit
ple in real life terms, direct mutual inhibition leads to the .

™S —_—— —

prediction that one should not be able to perceive both a

duck and a rabbit simultaneously, if they are standing close Figure 114
Direct inhibition between detectors leads to th

e
prediction that a duck and a rabbit cannot be simul-
taneously perceived if they stand close together!

1This image is adapted from Wittgenstein's (1953) version
of Jastrow's original duck-rabbit (Jastrow, 1899).
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together. This is clearly incorrect. The duck and rabbit
should be mutually inhibitory, not because their images fall
within the same receptive field, but because the detectors
are competing for the same stimulus features.

A related example is shown in Figure 1:5. This ambiguous
figure may be seen either as the numbers ‘4' and *'3*' or the
letters ‘L' and 'B', but again, it is not possible to obtain
both perceptions simultaneously. Here we might explain mutual
exclusion by saying that the detectors for ‘'4' and *'3' facil-
itate one another, as do the getectors for 'L' and *B*, while
other combinations are'mutually 1nhisitory. as indicated in
the figure. Direct inhibition and facilitation between detec-
tors is inappropriate here, as it was in the previous example,
and some kind of competition for image features is implied.

This example includes an additional complication, since
under either the ‘*4*-+3* or 'L'-'B' interpretations, the char-
acters partially overlap, so that there are extra features,
corners and crosses, which would be detected by elementary
featufe detectors, but which should not be associated with
the perceived characters. What features fall into this "to
be ignored” class depend on whether one sees the *4'-*3* or
‘L*-*B*. Again, a bookkeeping system is required so that no
feature is ignored unless it can be interpreted as resulting
from an overlap of object images. .

Another example which illustrates the dependence of high

level object perception on the allocation of image features

Figure 115

The image shown in the receptive field may be seen
either as a '4* and *'3* or as an 'L' and a 'B*. 1In
either case, the characters overlap, so there are
features which will be detected by elementary fea-
ture detectors, but which should be ignored by high
level detectors. Different image features fall
into this "to be ignored" category under the two

-perceptual interpretations of the image.
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is shown in Pigure 1:6a. Here the well-known ambiguous image
of a vase or two faces is presented to the system within the
receptive fields of the corresponding detectors. The fact
that one cannot see both the vase and the two faces at once
leads to the assumption that there is mutual inhibition be-
tween detectors. Again this should be interpreted as compe-
tition for image features. Thus when each contour of the
image is doubled, as in Figure 1:6b, there are enough image
features for both detectors, and the faces and vase can be
seen together, even though the dimensions and positions of
these images is almost identical to the previous case.

Finally, we should note the importance of a spatially
precise internal representation for analysis of image occlu-
sion. An object detector may be activated when not all of
its required features occur in the visual image if the missing
features are occluded by another objéct. However missing
features can be ignored only if the occluding object is in
the right spatial positiop to account for occlusion; it cannot
just be 'somewhere nearby.' Thus the dot pattern shown in
Figure 1:7a may be interpreted as vertices of a square, with
one dot oécluded by the black bar, or as a right triangle.
The'position of the bar differs slightly in Figure 1:7b and
the possibly occluded dot proves missing, so only the triangle
interpretation is possible.

To summarize the above discussion, it has been argued

that perception of a complex image must include analysis of

16
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Figire 1:€a

Direct inhibition between face and vase detectcrs
can be proposed to account for the fact that either
two faces or a vase, but not both, can be seen in
this familiar image.

Figure 1:6b

Doubling image contours makes the vase and faces
simultaneously visible.
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the image int?‘object related subregions, and éon§truction of
an internal representation of the image.. At léast part of
this representation must be highly spatial so that it can
serve td allocate image features to higher level object detec-
tors. This internal model may also be called a spatial short
term ‘memory, SSTM, or a spatial internal model, SIM. Image
segmentation is part of the SSTM (SIM).

1.2. Segmentation and Theories of Form Perception

It seems that the principal objective of theories.of
“form perception is to explain how the visual system can iden-
tify a particular image as being a member of a class of equi-
valent images. For example, all images of squares can be
said to belong to the equivalence class "square," and we may
ask how visual presentation of any member of this class can
evoke tﬁe‘same perceptual response: “square." Since members
of ah‘equivalence class, in this and other simple examples,
differ from one another in spatial respectsl such as location,
size and orientation, the strategy of many theorists has been
to pr;bose modél perceptual systems which discard these types
bf;information at an early stage of processing, while re-
taining space independent "universal® descriptors. However
as the examples in the previous section demonstrate,.this -
strategy has to be exercised with extreme caution, since
precise spatial information is critical for complex image

analysis.

. 4

®
a -
L
®
- ——
b
L4 L4

* Pigure 117

The three dots in Pigure a may be seen as vertices

of a square with the fourth dot occluded, but this

is not possible in Figure b. This demonstrates the
need to preserve spatial information during visual

processing so that the system will know if missing

features may be occluded.

18
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In feature detection theories, as outlined above, members
of an equivalence class are characterized by a collection of
elementary or higher level features, which uniquely define
the class. Thus all squares have four right angles and four
edges, while triangles have three angles and three edges.
These types of features are extracted at a low level of the
hierarchical system, and object detectors, or equivalence
class detectors, respond if the requisite features are found
anywhere within a receptive field, irrespective of their
spatial arrangement in that receptive field. This strategy
for disposing of 3pat1ai information is counterproductive when

. there are several object images within the field of view, as
we have seen. We may conclude from the discussion in the
last section that feature detection schemes for form percep-
‘tion can be made to work only if they incorporate a spatial
internal model of the visual world, which serves in part to
segment the input image into object related subregions.

According to another type of theory, which is now en-
joying' increasing popularity, the first stage of image pro-
cessing involves obtaining a spatial fourier transform of
the visual image. This idea is attractive (to some) since,
if one ignores phase relations, the transform of a given image
is independent of its position in the visual field. While
it is not independent of image size or orientation, position
independence is viewed as an important first step toward re-

ducing an image to a standard form, characteristic of its
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equivalence class. However conversion to a frequency domain
seems completely inappropriate in view of the need for image
segmentation which has been demonstrated here. Segments are
contiguous regions of space, so can be parsimoniously repre-
sented as areas in a spatial domain. Representation of seg-
ments in a frequency domain would be extremely awkward at
best, and operations which need information about the spatial
relations of two segments would generally have to obtain this
information by retransforming the segments back into the
spatial domain. _

Pitts and McCulloch (1947) have proposed another system
for associating an fmage with its equivalence class. Their
jdea is to generate all members of the class from the given
image, by subjecting it to a group of trapslation. rotation
and scaling transformations. “Universals" which characterize
the equivalehce class may then be obtained from the character-

istics which all class members have in common. This approach

" to form perception also seems inappropriate if the image is

complex and contains subimages of several objects. Unless the
image is segmented first, so ﬁhat each segment may be analyzed
separately by the above procedure, many »universals" will be
obtained which do not relate to any objects individually, but
only to the chance spatial relations of two or more objects.
It will be very difficult to sort out the universals which
belong to individual objects and those which should be ignored.

Even if segmentation is performed prior to transformation,
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there will be occlusion situations which will be impossible
to sort out in the transform domain.

I conclude from these considerations that the segmenta-
tion problem (or feature allocation problem) can only be re-
solved by a theory which postulates dynamic interactions be-
tween a low level highly spatial representation of the visual
world, and high level object detecting units. By means of
these interactions, the detectors compete for, and “lay claim
to* individual image features, so that features claimed by
bne detector are not accessible to another.

The "schema" theory now being developed by Arbibd (1975a)
should be mentioned here as it is an example of a theory of
form perception which can incorporate dynamic interactions
between high and low level processes to account for feature
allocation. While Arbib's objective is to develop a single,
unified theory which integrates information processing in
ﬁll sense modalities, as well as mofor functions, I shall
only mention some aspects of the theory which apply to vision.

The theory‘may be outlined in terms of the three compon-
ent structure shown in Figure 1:8. The lowest level compon-
ent is a retinotopically organized layer which contains the
image coded in terms of elementary features. The highest
level component is an amorphous structure containing
“schemas." These schemas correspond roughly to object detec-
tors in the feature detection theory. However not all schemas

represent objects and the schemas interact in complicated ways
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which need not be considered here. Also object related
schemas are not passive detectors, but active processes. To
account for feature allocation we may postulate that one op-
eration performed by an activated schema is to build an

"instantiation" of itself within the middle component of the

structure in Figure 1:8. This component is a retinotopically

organized, general purpose neural medium, in which informa-
tion is represented in terms of patterns of activity. The
instantiations are tailored to matqh input features, so
correspond to specific members of the object class which is
represented by the schema. If several examples of the object
occur within the input image, there will be several instan-
tiations of the same schema. Each instantiation will occupy
an area of the middle layer which corresponds to, or "covers"
the area of the bottom layer in which features of the object
occur. A region of the instantiation layer which is occupied
by one instantiation cannot be invaded by another. Thus
image features which are covered by an instantiation are
effectively captured by that instantiation and cannot be
accessed by others.

If at some time there are no instantiations covering
part or all of the instantiation layer, then the image fea-
tures within the unclaimed area are accessible to all high
level schemas. Individual schemas may be activated if one or
more appropriate trigger features occur in the set of unclaimed

input features. These schemas then attempt to build an
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instantiation around the trigger feature. This aftempt may
be unsucessful if other required features are not found in
the rﬁght places, or if other schemas capture these features
first. In this way schemas compete for specific stimulus
features in a way which is consistent with the examples
described in the previous section. We may note that there
are also interactions between schemas within the schema layer
and that there are inputs from.other sensory modalities.

These interactions relate to information which is not highly

spatial, and their function is to potentiate specific schemas .

if other related schemas have become active.

Clearly at least part of the information represented in
the instantiation layer constitutes a spatial internal model,
or spatial short term memory, although other, non-spatial
attributes may be associated with individual instantiations
as well. I would suggest that the spatial portion of this
information includes representations of image segments along
with depth and motion values for these segments. This infor-
mation may be contributed by the active schemas, or it may be
derived by processes which are intrinsic to the instantiation
layer. The latter processes organize and segment the input
in ways consistent with object perception in general, so pro-

vide a "syntax" for object perception, while active schemas

may modulate these processes in ways peculiar to the perceived

objects or the current visual context, so these provide a

“gsemantics" for object perception.
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Figure 1.8

This schematic drawing shows how feature allocation
mechanisms can be incorporated in the visual portion
of Arbib's Schema system. The various interactions
between high level schemas and input features by.way
of intermediate schema "instantiations" are indicated.
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1f we accept this model for visual perception and the
distinction I have proposed between semantic and syntactic
contributions to image segmentation, then we may ask what the
relative importance of these contributions might ve. Here
the term “segmentation" means not only dividing the input
area into subregions, but representing these regions as sur-
faces in space (which may be moving). As has been suggested,
stimulus organizing processes may be sufficiently powerful
in many cases to segment images, in the above sense, without
input from high level schemas. This suggestion is supported
by empirical data relating to binocular rivalry and stereopsis
which will be discussed in Chapters 2 and 3 and by more hypo-
thetical examples in which organizing processes may perform
sophisticated analysis. These will be discussed later in
this chapter.

Theories which attribute perception to mechanisms which
classify a stimulus but which do not involve instantiations
do not account for the subjective experience of perception.

One's conscious perception includes more than some kind of

designation of the equivalence classes to which images belong.

When the image of a square is viewed, one sees not just
»gquareness,” but a particular member of the class “square.”
One is aware of the stimulus itself, with the interpretation
»gquare" somehow superimposed as an additional, organizing
characteristic. In the case of the duck-rabbit, one is aware

of exactly the same stimulus points when he sees the rabbit
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as when he sees the ducks any little marks in the drawing

or irregularities in a contour can be examined equally well
when the pattern as a whole is a rabbit as when it is a duck.
Phus no "ideal form" of an object is evoked when a particular
example of the object is presented. Rather, the perception
is somehow a transparent interpretation laid over the stimu-
lus pattern, as with an instantiation. It is this non-visible
component which changes when one alternates between the per-
ception of a rabbit and a duck, and it is at that level that
competition between detectors takes place. The conclusion to
draw from subjective experience is that spatial information
is not discarded by the visual system, and the interpretation
of an image segment is somehow united with the stimulus
points it covers.

At this point it is appropriate to qualify the general
conclusion that no one feature can be part of two perceived
objects siﬁultaneously. and the observation that stimulus
organization and object perception do not alter the appearance
of individual stimulus features. There may also be evidence
that the interpretation of a stimulus image takes place in
a hierarchical structure, such as the one outlined in the
feature detection model. This is illustrated, for example,
when one looks at the image of a teddy bear, in Figure 1:9,
which has button eyes and stitched nose and mouth. It seems
to be possible to see the buttons both as buttons and eyes of

of the bear at the same time. If this is the case, the
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Pigure 1:9

In this image of a teddy bear, it seems to be pos-
sible to see the eyes as buttons and eyes simulta-
neously, suggesting that under some conditions,a
set of stimulus points can be interpreted in two
ways at once.
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implication is that the same stimulus points can be percep-
tually associated with two objects simultaneously, if one of
these objects can be interpreted as a part of the other.
Finally, we should note that perceptual interpretations
do seem to modify image features in some cases. In images
which show figure-ground separation, the figure region may
seem brighter than the ground region when the actual inten- -
sities of the two regions are the same. Anomalous contours
are another type of perceptual response around which there
are apparent changes in image brightness. In the case of
binocular vision stimulus points in the combined view may
appear displaced relative to their position in either monocu-
lar view, and with rivalrous images some points may be “sup-
pressed” in the binocular view. These last cases illustrate
fairly major changes in image appearance related to percep-
tual processing. They will be considered in greater detail

in subsequent chapters.

1.3. Time and Motion

In the discussion in the last two sections, I have
assumed that the visual system is presented with a single
image which it then analyzes. No consideration has been
given to perception of changing images. This is the point of
view taken in computer scene analysis. It has been argued

that perception requires the construction of an internal
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representation of the visual world, and at least part of this
representation is low level and highly spatial. The low
level portion of the internal model includes the representa-
tion of image segments and other types of spétial information.
A parsimonious assumption is that this information is repre-
sented by a pattern of neural activity in a retinotopically
organized layered neural structure.

This low level representation is necessary to perform an
organizing function in keeping track of feature allocation.
Segmentation has also been suggested as a means for reducing
the perceptual task, as it seems likely that analysis of a
complex scene will be possible only if subregions of the
scene can be cordoned off and separately recognized as images
of familiar objects.

The fact that the visual system must operate continuously
and in a changing environment adds an important dimension to
these considerations. It is clear that perception cannot
involve a "one way" flow of information, as processing of
some image features is always contingent upon the results of
processing of others. There must be feedback from high level
processes to low level processes, so that particular image
features may be claimed by activated object detectors. Pro-
cessing which relies on feedback necessarily takes time.

Thus if the visual system analyzed a continuously changing
image as a sequence of more or less independent picture .

frames, there would be a maximum rate at which analysis can
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be accomplished. This system would necessarily be very in-
efficient. Reanalysis of the scene would have to be suffi-
ciently frequent to detect small changes which may be of sur-
vival value, which meéns that, in most cgses. very little
would have changed in the scene from the time of one analysis
to the next, and processing is terribly redundanf.

A third function of the spatial internal representation
is to make image analysis efficient over time. Once the rep-
resentation has been developed, it may be compared to the
subsequent patterned input information, so that areas of
image change can be detected. Reprocessing is directed only
at these regions of the image.

We should think of segments as having a temporal dimen-
sion as well as a spatial dimenéion. In physiological terms,
the pattern of neural activity which repfesents a segment is
stable in time. All stimulus points falling within the area
covered by the segment, and within a period of time, are per-
ceptually integrated and associated with a sinzle object. It
is this temporal dimension of the spatial internal represen-
tation which accounts for perceptual stability: when one
views an object image for several moments, he perceives one
object which is continuously present over this time, rather
than one object which is suddenly replaced by another identi-
cal object. Perceptual stability is also made apparent by
ambiguous images, which are perceived in one or another of

their states for prolonged periods of time.
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The above considerations apply to moving images as well
as to stationary images. As long as motion is continuous and
predictable, it should not be necessary to regenerate the in-
ternal representation of the moving segment at every moment
in time. Since this representation is a retinotopically
arranged pattern of activity in a layered neural structure,
the representation can be maintained if the pattern moves
within the structure as images move on the retina. I have
shown elséwhere (Burt, 1974, 1975) that activity patterns can
move within neural structures without change in shape.

There are several types of orderly motion the system
should anticipate. These will be listed here because they
show the importance of representing various types of spatial
information with the image segments.

1) Image motion due to eye rotation. This is the sim-
plest type of motion, since all features of the image move
together at a ve;ocity which is equal to the velocity of eye
rotation. Information about eye rotation should be provided
to the visual system in the form of a "corollary discharge”
from the oculomotor system.

2) Image motion due to constant object motion should be
anticipated. Iﬁ this case, image segmentation is necessary
since different objects move at different velocities. A per-
ceivéd object velocity is associated with each segment.

3) The system should anticipate relative motion of
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object images due to the parallax effect as the observer moves
through his environment. Depth information must be associated
with image segments in this case, along with a complicated
corollary discharge from the motor system. (Actually this
corollary discharge may not be necessary, as the visual sys-
tem may deduce observer motion from perceived image parallax
motion).

L) The system should anticipate the orderly disappear-
ance of image features as one object moves in front of and
occludes another. This requires that depth values be associ-
ated with individual segments, so that the system can know
which segment will be occluded as two move towards each other.

Several types of empirical evidence may be cited in
support of the suggestion that the spatial internal repre-
sentation is updated in anticipation of image motion. First,
we should note that the perception of ambiguous images, such
as the Necker cube remains stable even when the image is
moving on the retina. Careful study might reveal that motion
changes the reversal rate somewhat.

This stability seems to occur also with ambiguous random
dot stereograms, even in cases where eye movements cause an
ambiguous region of the stereogram which is seen at one depth
to fall on a portion of the retina which prior to the eye
movement had been exposed to an area of the stereogram which
had been seen at a different depth.

The most interestin: type of motion mentioned above is
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parallax motion. That the visual system can anticipate this
type of motion is implied by the fact that parallax motion is
an effective depth cue. The same neural mechanisms which

interpret this cue can update the internal representation in

anticipation of changes due to parallax motion.

1.4, Stimulus Organization

Thus far, I have discussed the need for a low level,
highly spatial internal model, and have suggested that the
representation is in the form of a stable, possibly moving
pattern of activity within a retinotopically organized neural
structure. In this section, I consider how this pattern of
activity may "organize" the incoming information, and in a
later section, I consider processes which organize the activ-
ity patterns themﬁelves.

Again, one critical function of the spatial internal
model is to represent image segments, which may correspond to
individual objects. These dynamically defined regions must
be tied together by integrative processes, while being iso-
lated from one another by segregation processes. Dev's seg-
mentation model (Dev, 1975) gives us a way to begin to think
about the neural structures which might support these inte-
gratiqn and segregation processes as they apply to the spatial
dimension of the visual input. However, as has been said,

integration occurs in time as well as space, so that if an

v
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image falling on the retina at one time closely resembles an
image falling on the retina at a just previoué moment, these
are perceptually treated as images of a single object.

Since the spatial short term memory includes information
which has a high degree of spatial and temporal resolution,
it must be represented by activity at a low level of the
visual system, a level at which the requisite spatial and
temporal jnformation is still available. On the other hand,
we know from recent physiological studies that the very low
level neurons of the visual system tend to be differentiators
rather than integrators. Thus, there are cells in the retina
and striate cortex which respond maximally to stimulus inten-
sity variations in the spatial dimension, the edge detectors,
others which respond to temporal variations, the "on" and
woff* detectors, and still others which combine these tempor-
al and spatial differentiation properties and are moving
boundary detectors.

That the initial stage of visual processing should be
differentiation seems reasonable, since that process acts as
an initial information filter, drawing attention to changes
in the visual field. Thus sophisticated vision systems
should include populations of cells which act as differen-
tiators, and populations which act as integrators. These
populations are shown schematically in Figure 1:10, where for
simplicity, cells of the two types are separated into dis-

tinct neural structures. In an actual visual system, the two.
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types of cells might be physically mixed together, or both
types of functions might be performed, to some extent, by
individual neurons. The assumed function of the various
structures is as follows: v A

Retina: The obvious functions are assumed here; recep-
tors respond to optically formed images.

Dl' This is the first differentiation layer, and in-

cludes ganglion cells and cells of visual cortex which act as
edge detectors, on-off cells, and moving boundary detectors.

Il’ This is the first intggration structure, and it is
here ;;at patterns of neural activity represent the spatial‘
short term memory. This structure corresponds to the “"stim-
ulus organization" box of Figure 1:1. The various models
described in later chapters will be concerned with processing
within this structure. The structure is assumed %o include
gseveral interconnected layers which are retinotopically
organized, and different sorts of information are represented
by the activity in different layers, including image segments
and perceived distance and object motion associated with each
segment. These are integrated types of information, since
there is no direct image stimulus for them. Again it should
be stressed that these “layers” may be distinct cell popula-
tions retinotopically distributed within a single anatomical
layer.

Dz' The second differentiation layer is similar to the

first: it contains edge, change and motion sensitive elements.
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But now the stimulus for these elements is noi light on the
retina, but activity in the I1 structure. Thus, object edges
and object motion may be directly sensed at this level.
These types of features augment the retinal image, so that
subsequent processing centers “see" not only the image fea-
tures, but a (tentative) assignment of the features to sur-
faces in depth.

Egl This structure represents the rest of the brain, or
the high level processes of Figure 1:1. We suppose that
specialized object detectors and schemas (in Arbib's model)
are located here. I am not concerned, in the present dis-
cussion, with processing in I2. but communication between 11
and I, will be considered.

There are two ways in which activity in I1 can organize
the incoming stimulus information. One function is to con-
strain processing at higher visual centers in the ways which
have been described in earlier sections: for example, by con-
trol}ing the assignment of image features to object detectors.
A second is to constrain prdézggzzzkwithin the 11 structure
itself, With respect to the first function, we may ask how a
low level, highly spatial vision center can communicate with
specific high level non-spatial centef;. It might seem that
direct paths between the centers would have to be dynamically
established, which link the information about object kind
with object position. This type of directed communication is

difficult to envision, and I would suggest that it is not
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Processing of the visual system is depicted as al-
ternating stages of differentiation, in D, and D,,
and integration, in I, and 12. Layer I éorresp%nds
to the stimulus organfzationZbox of figlre 1:1.
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necessary. Any two processing centers of the system can com-
municate with each other via a common “data bus* if messages
are "tagged" in some way. To clarify this idea, suppose
initially that all image features are available to all object
detectors. Physiologically this means that all afferent
information projects to all the groups of cells which code
specific object types. The situation is shown schematically
in Figure 1:11 which is a reorganized rendition of Figure 1:1
showing 1ines of communication between the organizing box and
detectors within the high level visual region. As image
information passes through the organization box, certain per-
ceptual attributes become associated with individual features.
These include depth and motion values and perhaps an average
position value which characterizes all features within a seg-
ment. The feature information, augmented with perceptual
attributes, then passes to all object detectors via the data
bus. A given detector can respond if the appropriate fea-
tures occur in the common input, but only if the attributes
associated with these features all have nearly the same
values. The features which are organized into a single seg-
ment are all assigned nearly the same attribute values, while
features in different segments will generally differ signif-
jicantly in one or more attributes. Thus association of
attributes with features may be the principal mechanism for

constraining the use of features to single object detectors.
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The reverse communication, from object detectors to low
level representations, can also make use of a common bus.
This efferent projection cannot be spatially precisé and di-
rected at activity in a specific location of the organizing
box, since we assume detailed position information is not
used by the object detectors. Thus, an object detector must
communicate with the corresponding segments in the organizing
box via a diffuse projection. However, again we assume the
messages are “"tagged" so that they can be appropriately
gsorted out in the receiving area. Tagging in this case could
be with the same attribute values which characterized the
features which activated the detector. Harth (1976) proposes
a similar principle in his model for communication between
cortex and the lateral geniculate body.

A second mechanism by which patterns of activity in the
stimulus organizing box may organize stimulus information is
by modulating information processing within the box itself.
For example, the patterns of activity which represent segment
boundaries control intrinsic integrative processes, so that
integration over any spatial domain does not cross a per-
ceived object boundary. Thus, whatever stimulus attribute
is being integrated is associated with a single segment. In
addition, the boundary representations control association of
image .features which are detected at boundaries with the
appropriate neighboring region. (Note: boundary features,

such as motion or depth, should be associated with only one

P _|m
7 3
:mi : :8:
] . ] ]
L ; =g
Y : P
o :
b O
e e
QO L
[N

[} 8y
bt C
< !

Stimulus Organization Layer

| Retina |

Figure 1:11

This diagram is an elaboration of Figure 1:1 which
shows a possible means of communication between the
low level spatial information in the stimulus organ-
izing box and high level object detectors.
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of the two areas which the boundary separates). The nature
of these interactions will be discussed in more detalil later.

.

1.5. Examples

Several examples will now be described, both to illus-
trate the structure outlined above and to motivate a discus-
sion of organizing processes which will follow. The first
examples have to do with stereopsis and motion perception.

A global organization of the stimulus pattern in each of
these cases is proposed as a mechanism for resolving a local
stimulus matching ambiguity.

Stereopsis and motion perception involve very similar
computational tasks. In both cases, the desired information
is not contained in a single brief visual image, but must be
obtained through a comparison of two or more images. In
stereopsis, depth information is obtained by finding the dif-
ference in the positions of objects or features in the images
presented to the two eyes. This binocular disparity is
determined at a given moment in time. For motion perception,
the same disparity information must be obtained, but in this
case, the comparison is between images to the same eye, (or
to both eyes together - the "cyclopean eye") at slightly dif-
feren@ moments in time. This computational similarity sug-
gests that similar neural mechanisms may be responsible for

both stereopsis and motion perception, and that the respective
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computations may be performed at about the same stage of
visual processing.2

Not surprisingly, theories of stereopsis and motion per-
ception have had much the same history. In particular, in
both cdses, an old view, that disparity information is com-
puted at a late stage of visual processing has now ?een re-
placed by a conviction that computation must occur at the
initial stages of processing. According to the old view, each
image, i.e. the stimulus presented to a pafticular eye and at
a particular moment, is processed more or less -independently
to the stage at which objects are identified and localized.
Then objects are matched between images and the difference
in their positions computed. According to the new view, in-
dividual points or small features are matched between the two
images before image segmentation or object identification.

The old high level view was appealing on several
accounts. Since it is clear the the visual system can and
does reduce a visual image to a number of perceived objects
with associated directions in the visual field, it is a
simple matter to proceed from there to a direct comparison of

percei?ed directions for objects in two or more images.

zln fact there is evidence of a direct interaction
between processes. For example: 1) Random process stereo-
grams, in which there is time delay between stimulus presen-
tation to the two eyes, but no spatial disparity may yield
both depth and motion (Ross, 1973); 2) Motion parallax yields
a depth perception; 3) Interactions exist between apparent
motion and depth (Julesz, 1971; Kolers, 1972).



43

Furthermore, there is a significant computational difficulty
associated with the alternate idea that disparities are com-
puted at an early stage of visual processing between image
points or features. In a typical pair of images, a small
feature in'pne image can be matched with any one of a number
of similar features in the other image. How is a low level,
local feature matching mechanism going to decide which of
the possible matches is appropriate without bringing in more
global information about the overall pattern of features
within the images, as in fhe high level matching scheme?

This local matching ambiguity may be illustrated in a.
couple of ways. Suppose first that the two images consist of
a star-shaped dot patfern, Figufe 1:12a, and that a mechanism
exists which matches single dots in one image with single
dots in the other. Each image 1 dot should be matched with
one and only one image 2 dot. Notice that the star pattern
is shifted in one image relative to the other. but by hypo-
thesis our point matching mechanism cannot know this. The
matching mechanism can look only at local regions in the sam?
position of both images (as shown by dashed circles) and any
match within the window is permissible. The matching problem
in this example is like that which exists in a Julesz random
dot stereogram, or in an apparent motion display in which a
pattérn of stimulus points is straoboscopically. presented.

As a second example, suppose each image is an outliné

drawing of a geometric figure, Figure 1:12b. In this case

L

the elementary features which must be matched between images
might be short line segments, as are shown in the small
circles. The matching procedure can pair similar features
falling within a largef image region, as indicated by the
dashed lines. Again many matches are possible, and each one
implies a different image displacement, and hence, if these
are pictures taken at different moments in time, a different
velocity.

Despite these apparent difficulties in resolving local
matching ambiguities, the current conviction is that stere-
opsis and motion must be computed at a low level of the visual
system and without access to overall pattern information.
This shift in point of view was the result principally of
certain recently discovered psychophysical phenomena. In the
case of stereopsis, Julesz (1960) has elegantly demonstrated
with random dot stereograms that image points can be matched
and depth perceived without prior perception of objects.
Similarly experiments with apparent motion have shown the
existence of "objectless motion" (phi motion) in which motion
is sensed between two apparently stationary stimuli
(Wertheimer, 1912). Also, when the stimulus for apparent
motion is a periodic pattern, the pattern may not appear to
move as a whole (i.e., as a moving global pattern), but may
break down into regions of motion in different directjons.

This will be described in Chapter 4,



Ls

(a)

Image 1

@

(b)

Pigure 1112

Two examples are shown here of the local stimulus
matching ambiguity. It is assumed that any elemen-
tary feature within the local region encircled by
the dashed line in image 1 can be matched by the
system with any similar feature in the corresponding
local region of image 2. Each match implies a dif-
ferent depth or motion.
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The idea that stereopsis and motion are processed at a
low level of the visual system is appealing for other com-
pelling though not deciding reasons. For example, the recent
microelectrode recording from individual neurons in visual
cortex have shown that many of these cells, which must play a
role in the initial stages of processing, are sensitive to
motion and binocular disparity. Also, from a computational
point of view, low level extraction of motion and depth
information seems much more elegant than high level proces-
sing, provided the problems of matching ambiguity can be
resolved in a satisfactory way. It should not be necessary
to repeatedly go through the very complex processing required
to analyze images into‘objects in order to obtain the much
simpler disparity information for depth and motion perception.

The local matching ambiguity can be resolved at a low
level of the visual system by stimulus organizing processes.
The idea is simply that, in addition to local feature
matching processes, there should be local constraints on how
neigﬁboring features may be matched. The matching processes
are then restricted to local matches satisfying these neigh-
borhood constraints. The pattern of point to point matchings
between two images is said to be globally organized when
local constraints are satisfied over the entire image. Vhen
the local constraints are properly defined, the global
organizations should correspond fairly wéll with a matching

between images on the basis of high level pattern or object
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information.

Roughly speaking, the local constraint appropriate for
stereopsis and motion perception is that neighboring points
of one image should be matched to neighboring points of
another so that the disparity between point pairs is the same.
This constraint, when applied to images containing a random
dot stereogram, results in extended areas over which points
are matched at a single disparity. The corresponding percep-
tion is consistent with psychophysics - extended dense planes
seen in depth. The same constraints applied to motion com-
putation would result in extended areas of uniform motion,
moving objects. ’ '

The idea that local constraints may account for global
organization in stereopsis was first proposed and modeled
by Julesz (1971) and has since been incorporated in other
models, including the model which will be described in
Chapter 3. To my knowledge, no models of motion perception
have dealt with the problem of matching ambiguity, and none
make use of the ideas of local organizing processes and
constraints.

The relation of stimulus organization in stereopsis to
information processing in the structure shown in Figure 1:10
is this. Instead of one retina, there are two. Afferent
cell hctivity is projected from the retinae to layers in the

stimulus organizing structure, I1 There information from
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the two eyes is retinotopically organized, but local features .
seen by one eye may be matched with any features seen by the
other eye within a range of disparities. Details of this
matching procedure will be left for Chapter 3. Here we oniy
want to make several points of general relevance to stimulus
organization.'

The neural activity which codes afferent image informa-
tion resides in a separate population of cells from that
which todes image segmentation and controls feature matching.
This second type of activity has several components. ﬁpcal
activity in "segmentation layers® represents surfaces in
depth and controls feature matching in the corresponding
local regions of the image representation layers. Local aéf
tivity in anothef layer represents the location of segment
boundaries. As mentioned earlier, an edge is associated with
only one of the segments it separated, and this is the seg-
ment which is perceived as nearer to the observer. This fact
has several important consequences. First, integration pro-
cesses which respond to various surface features, such as
color, local depth and motion stimuli, etc., should not inte-
grate across segment boundaries, as this would lead to a con-
fusion of features of one object with features of another.
Thus, one function of the activity which represents segment
boundaries is to appropriately constrain these integration
processes., Second, many depth and motion stimuli are not

"area" stimuli, but occur only along the boundaries of object
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images. Since the activity in I1 which represents segment
boundaries is associated yith only one of the segments it
separates, this activity may also cause edge stimuli to be
integrated with the appropriate segment. Finally, when ad-
joining segments move relative to one another, the represen-
tation of the boundary between these segments will indicate
which surface is moving to occlude the other, and on which
side of the boundary features will disappear due to occlusion.

Now suppose that the input image is a random dot stereo-
gram, such as the one shown in Figure 1:13. This stereogram
is constructed so that, when binocularly viewed, all dots
within a central square shaped area appear at a second depth.
A curious fact about this effect is that individual dots are
not perceived as points suspended in space, but as points
lying on a surface. This surface seems smooth and continuous
over both the central square and the surrounding regions, but
there is a sharp boundary dividing the two regions. Since
there are no specific edge or surface stimuli in the random
dot images, these perceptions are anomalous. However, they
may be the psychophysical correlates of neural activity which
has been postulated in I, of Figure 1110 to represent segment
edges and segment areas respectively.

Our supposition that image features and image segments
are represented by activity in separate cell populations is
consistent with observations made by Ross (1976) with random

process stereograms. These stereograms are similar to the
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more familiar random dot stereograms of Julesz, but the dot
pattern is presented on a CRT screen and is continually
changing. The stereogram is constructed so that dots pre-
sented within the central square area always appear at one
depth, while thoselin the éurround appear at another. Again
binocular combination of this type of stereogram results in

' the perception of solid surfaces in depth which are separated
by a sharp boundary. These anomalous perceptions are stable
while the real stimulus pattern continually changes, like a
“snow storm.”

It is interesting to note that the amount of time needed

to clearly see surfaces in depth in a stereogram like that
shown in Figure 1113 is about 50 msec. (Julesz, 1964). We

may interpret this as the amount of time required for stimu-

lus organization to be achieved and for segment representations

to begin to emerge in Il' In a random process stereogram,
the stimulus pattern may be completely changed in a small
fraction of this time, and yet stereopsis-is easily achieved
and maintained. Again our interpretation is that once an
organization has been achieved and is represented by activity
within one population of cells, it can continue to match
points in the rapidly changing stimulus pattern which is
represented by activity within another population of cells.
’ﬁoss has also found that if there is a small time dglay.
say 50 msec., between the time each stimulus point of a ran-

dom process stereogram is presented to one eye and the time
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it is presented to the other, one may perceive both depth and
apparent motion. He reports that apparent motion never
causes dots to cross the boundary between the central and
surrouhding areas. This is consistent with the functional
significance attributed here to the boundary representations
in 1,.

The study'of stereopsis has revealed a number of phenom-
ena which are besf characterized in terms of stimulus organi-
zation. Other examples will be mentioned later in this chap-
ter and some of these phenomena will be studied in Chapter 3.
The above examples were described to illustrate the supposed
roles of the area and edge components of the segment repre-
séntations. It was also suggested that these representations
correspond to the anomalous surfaces and contours experienced
in stereopsis. A similar interpretation for anomalous con-
tours has been proposed by Frisby and Julesz (1975).

We now turn from the examples of stereopsis,»whére there
is much evidence for stimulus organization, to examples in-
volving other perceptual functions, where less evidence is
available, but where, for computational reasons, such pro-
cesses seem appropriate. Here we will consider the nature of
stimulus organization in a somewhat more abstract, but per-
haps more explicit way.

Suppose the visual system consists simply of two two-
dimensional arrays as in Figure 1:14., The first'array con-

tains the input stimulus, which might correspond t6 a

" 3
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digitized photograph, or might contain some other stimulus
type. such as local motion or depth cues. The second array

is an array of “processors.® All processors are identical,
and each may be in one of a number of possible internal states
at a given moment. In addition, there are a number of local

consistency constraints, which are rules indicating when

neighboring processors are in mutually consistent states, and
when the state of a given processor is consistent with the
value in the corresponding input array element. The state of
the system is simply the combined states of all the individual
processors, and the values of the stimulus array. The array
is globally organized if it is in a state such that all local
consistency constraints are satisfied over the entire array.
Depending on what local constraints are defined, there may be
many global organizations, only one, or none. The task of

organizing processes is to put the array into a globally

organized state by appropriately changing the states of indi-
vidual processors. Some examples will clarify these defini-
tions.

Pigure-ground. Suppose that the input image is an out-
line drawing of the face-vase figure, as in Figure 15a. Each
processor may be in one of two states, "on® or "off," and
initially states may be randomly assigned. There is only one
consistency constraint: for local consistency, two neighbor-
ing processors may be in different states if and only if fhey

are separated by a boundary line in the input image. It is

'S

Processor Array

Input Array

Figure 1:14

Here the visual system is modeled as a two array
system. The first array contains a representation
of a stimulus image in terms of elementary features.
The second array is made up of locally intercon-
nected processors. The internal state of each pro-
cessor represents the perceptual state associated
with a local region of the input image. The proces-
sor array is self-organizing.

54
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clear that there are only two global organizations consistent
with this local constraint, and these correspond to the two
perceptual states of two faces or vase. A process capable of
finding these global organizations might solve this rendition
of the figure-ground problem without semantic information or
intervention of face and vase détectors. Psychologists will
point out that nonsense figures such as Figure 1:15b will be
resolved into figure-ground relationships, which means seman-
tic inforﬁation cannot be critical to the resolution process.
0f course recognition of objects as faces or vase must involve
high level semantic information, but this may follow figure-
ground separation.

Necker cube. Suppose that the input image depicts a
Necker cube, Figure 1:15c. In this case, suppose the state
of each processor is given by five numbers, A, B, C, D and E,

where

0 (interpret as a ground point)
A may be {1 (interpret as a line segment)

B may have any positive value, but B = o0 if A = 0.
(interpret B as depth)

C, D, E is a vector of numbers, each having a value

between -1 and +1 (interpret this vector as the orien-

tation of a line segment in three-dimensional space).
Thus the state of a processor codes the depth and orientation
of a line segment in space. The local consistency constraints
arei

1. The state of a processor is consistent with the
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stimulus input when its value of A is 1 if a line segment is
projected to that processor, and 0 otherwise.

2. The states of neighboring processors in which A =1
are consistent if the line segment indicated by the state of
the first meets the line segment indicated by the other at an
angle of 90 or 180 degrees in three-dimensional space.

Again I think one can see that when these two local con- :
straints are applied to the Necker cube image, two global
organizations of the array will be allowed, organizations
which correspond to the two perceptually stable states of the
cube. And again, an organizing process capable of finding
these global organizations would "solve" the Necker cube
problem without reference to information contained in cube
detectors.

To make this example more realistic, we might relax con-
straint number 2 somewhat to say that neighboring line seg-
ments should meet at 180 or roughly 90 degrees in three-

dimensional space. This would reflect a tendency to see the

. angle between two lines as too large, if it is acute, or too

small if it is obtuse. These perceptual tendencies compen-
sate for distortions which naturally occur due to foreshort-
ening when the lines bound a surface which is tilted away
from the observer. Stimulus organization subject to this
modified constraint would still tend to induce depth into the
cube drawing, and drawinss of other crystal chapes. This

depth might not correspond exactly to a cube unless the
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Figure 1:15

Ima 3 " "
arrii? which can be “analyzed" by the processor
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observer is familiar with cubes and the organization repre-
sentation is "tuned" in accord with learned information.

In a similar way, one could define an array which inter-
prets line drawings as colid objects, rather than “wire"
figures as in the Necker cube example. This array could be
applied to figures such as Guzman's stack of blocks, Figure
1:15d. The organizational principles embodied in this array
would be very similar to those studied in detail by Waltz
(1975). Note that when the array is presented with a para-
doxical image, such as Figure 1:l5e, there would be two con-
flicting partial organizations, but no global organization.
(See Huffman, 1971, for a similar interpretation).’

The final example has to do with perception of object
motion. To introduce this example, consider what happens
when an outline drawing of a box is moved in front of an
observer whose visual perception of motion is based on the
output of oriented moving bar detectors, Figure 1:16a. Such
detectors respond when a properly oriented bar is moved
through their receptive field. Within any small area of the
visual field, there will be detectors for motion in all direc-
tions, but only those cells with motion specificity well
matched to the direction of motion of a local stimulus will
be activated. The receptive fields of two such detectors are
shown in the figure. Notice that if the ends of a straight
bar stimulus exteni outside the receptive field of a detector,

that detector cannot recpond to the component of bar motion
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wﬂich is parallel to the bar's orientation. Thus, the detec-
ted component of motion is that which is perpendicular to the
bar's orientation, as is indicated by the short arrows in the
drawing. In a natural visual system there might be detectors
with much larger receptive fields, but these would not con-
tribute significantly to perception of motion with this box
image, since the outline contours would be very small com-
pared to the size of the receptive fields. Also, if there
were other differently moving stimulus points outside the
box, this would interfere more frequently with large recep-
tive field detectors than with small receptive field detec-
tors. We may thus presume that the receptive fields of all
elements which respond well to this moving image and contri-
bute to the perception of a moving object, have receptive
fields which are small compared to the dimensions of the box.
It follows that the local motion stimulus will be for motion
in different directions along differently oriented edges of
the image, and neither of these detected motions matches the
motion of the box. On the other hand, the observer actually
perceives the box outline moving as a ridged unit, and he
sees the area within the box outline moving with the contours.
The question therefore is what neural mechanism integrates
disparate, locally sensed motions into a single, perceived
object motion?

We may restate this problem in the form of the previoﬁs'

examples. Referring again to the system composed of input
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and processor arrays, suppose the input is the array of
locally detected velocity vectors associated with small seg-
ments of the moving rectangle, as in Figure 1:16b. Now sup-
pose that the state of each processor is expressed as the
value of a two-dimensional vector V, to be interpreted as
velocity, and a binary number, A, which is *1* if the input
element corresponding to that processor contains a stimulus
vector, and '0' otherwise. The local consistency constraints
are that 1) neighboring elements with equal A values must
have equal V values, 2) the V value of each processor in
which A=1 must equal the V value of at least one of its
neighbors in which A=0, and 3) in processors in which A=1,
the component of V which is parallgl to the input velocity
vector in the corresponding input cell must equal that vector
in magnitude. :

Global organizations satisfying these constraints are
of three types: 1) All points within the rectangular region
bounded by the stimulus may be represented as moving together
to the right, while points in the exterior region are either
stationary or moving together at some other velocity. 2) All
points in the exterior region may be represented as moving

together to the right while points in the interior region are

- stationary or moving at some other velocity. (In this case,

the figure is seen as a hole in a moving surface). 3) All
points in the whole array move at the same velocity to the

right. (In this case, the figure is seen as surface features
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Figure 1:16a. A box-shaped image moves to the right
at the velocity indicated by the large arrow. This
generates local motion stimuli which are perpendic-
ular to boundary orientation, as is shown in the
dashed circles.

Figure 1:16b. This shows the patterns of local
motion stimuli associated with the moving box image.
‘ These stimuli must be integrated in some way in
order to obtain the perception of a single ridged
image moving to the right.

62

rather than boundaries of the moving object).

To make this system more completé. the stimulus organi-
zation processes described here should be embedded in a
structure which represents motion as a hierarchy of relative
motions rather than as absolute motion on the retina. The
hierarchical nature of motion perception has been studied
extensively by Gunnar Johansson (see for ex;mple Johansson,
1975), while a neural mechanism capable of two level hierar-
chical representation has been proposed by Burt (1975). The
latter representation sepﬁrates object from observer compo-
nents of retinal motion.

Any organizing process capable of finding these global
organizations could operate at a low level of the visual
system to segment the image on the basis of local motion
cues. Since the best operational definition of a segment is
an image area in which all stimulus points move together, as
if attached to a single object, segmentation on the basis of
motion should be a particularly valuable capacity for the
visual system. Nothing has been said in this section about
the organizing processes themselves, and that is the subject

of the next section.

1.6. Organizing Processes

The idea of an organization has now been proposed for

two visual system functions. In the first, a spatial
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component of the visual short term memory, or internal world
model, has served to organize stimulus features and control
their use by higher level object detectors. In the second
case, the spatial short term memory has itself been viewed as
a self-organizing pattern of neural activity, the organiza-
tion being modified by the stimulus input even as it organ-
jzes the stimulus. It has been suggested that the SSIM con-
trols the use of stimulus features by associating additional
features with them, such as the distance and orientation in
depth of the surface on which the stimulus features are
assumed to lie. These added, non-stimulus features may be
viewed as the state vector of local processors. But how do
these processors become organized?

A process may be viewed as a sequence of steps, or a
program, which a processor executes. The state of the pro-
cess at a given time is its stage in the execution of these
steps. A change of state or sequence of state changes may
be triggered by the arrival of a new stimulus, and the new
state which is entered is determined both by the previous
state and by the input stimulus. In this way a given input
may affect the process in different ways depending on the
current processor state. On the other hand, a new stimulus
frequently does not cause a change of state or alter a se-
quence of changes which is already in progress. This is the

case when the input is consistent with the current processor
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state. A processor state is to be interpreted as a percep-

tual state in some small region of the visual field. Stable
perceptual states, which occur when the input is everywhere

consistent with the perception, correspond to stable proces-
sor states. )

The problem to be considered now relates not to single
processes, which for the present purposes may be quite simple,
but to arrays of processors which are locally interconnected
and operate in parallel. It is assumed that all processors
are identical and that each receives an external stimulus
input as well as inputs from each of its neighboring proces-
sors. Following the definitions of the previous section, the
array is said to be globally organized when each processor is
in a stable state. The local consistency constraints used to
define global organization in the previous section are now
assumed to be built into the state change rules for each
processor. Also implicit 1in these rules is a strategy de-
signed to cause states to change from inconsistent to consis-
tent, stable states.

We would like to know if there is any state change
strategy which may be built into individual processors, so
is only locally followed, but which will lead the array as
a whole to a global organization. The difficulty in this
problem arises from the fact that processors are coupled.

When the array is in an unorganized state, some individual
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processors may not be able to enter any state which is con-
sistent with the current state of their neighbors, while
other processors may be in locally consistent states which
will not be consistent with any global organization.

Two strategies will be outlined here. The first of
these is guaranteed to find a global solutiop of any organi-
zation problem if such a solution exists. This strategy is
one which causes the array to cycle through all its states
in a prescribed order until a global organization is found.
The strategy may be built into the state change rules of
individual processors, so that no external control is re-
quired. However the solution is uninteresting on two
accounts. First, there are too many array states, so the
strategy will take prohibitively long to execute. For exam-
ple, if the array dimensions are N by N, and each processor
may be in one of M states, then the number of array states
is MNZ. The second problem is that once the array is in a
globally organized state, if there is a small change in the
input pattern which requires a small local change in the
array state, this strategy will cause the system to cycle
through all array states in order to find a new global organ-
ization.

A second strategy may be proposed which is more heuris-
tic in pature and which {in its present formulation) is not

guaranteed to find 2 global crganization. However, if it
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does find such an organizatidn; it is likely to find it much
more quickly than the exhaustive search strategy. The first
rule of this strategy (this rule will ve qualified shortly)
is that no processor should change states if it is in a state
which is locally consistent. This rule is intuitively rea-
sonable and is élearly appropriate when the array is in a
state which is almost globally organized. The second rule of
the strategy is that processors which are not in locally con-
sistent states should sometimes change states, but not too
frequently. This rule means that any processor which is not
in a locally consistent state will eventually change state.
However, a processor may enter a consistent state without
changing states, if its neighboring processors change states
appropriately. This is the reason why a processor should not
immediately change states when it is in a locally inconsis-
tent state: it first waits to see if the inconsistency is
resolved by the neighbors.

‘The above strategy will be illustrated in computer simu-
lations in the next section. There, individual processors
will correspond to model neurons. The timing mechanism which
regulates the rate of wtuate changes is based on tatigue of
active cells. Any state the processor (or cell) enters is
semi-stable, and tle: processor will stay in that state until
its faticue level reachec a threshold, at which time it

enters a new uniati-usd state. On the other hand, if a state
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is locally consistent, the threshold is higher and never
reached.

This strategy yields several interesting network proper-
ties which have psychophysical interpretations. If the
system is initialized in a completely disorganized state,
processors will begin to orgaﬁize themselves locally, so that
the array can be divided into mény small regions, each of
which is internally organized, while processors along the
boundaries between regions are in states wh;ch are inconsis-
tent with one region or the ;ther. Some of these regions will
then grow and spread over other regions as processors along
the boundaries change allegiance. In this way, the number of
subregions will gradually be decreased until only one remains
and this will represent a global organization of the array.
Thus one characteristic property of the system is that
regions of organization spread across the array by recruit-
ment along boundaries, just as crystals grow in a solution.
This type of organizing process is implied in psychophysical
phenomena where perceptual interpretations seem to spread
across the spatial dimension. This seems to be true of ster-
eopsis with complex stereograms: fusion is difficult to
achieve at first, but when it is achieved in one region of
the stereogram, it seems to spread gradually to ne?ghboring
regions. It also seems to be true of ambiguous images. 1In

the case of the Necker cube, for example. it frequently seems
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that a change of state is not abrupt but progressive, as part
of the cube changes state first, and then other pieces which
are neighbors of the part follow.

Another consequence of the local interactions postulated
in the array is that an organization in one part of the array
can affect organization in another only if the organization
extends over the space in between. Thus, apparently long
range interactions between distant processors are possible,
but depend on the construction of a "bridge" of organization
between the processors. This also has psychophysical inter-
pretations. Suppose one views an image composed of several
ambiguous figures, as in Figure 1:17. If locally connected
organizing processes are responsible for the perceptual state
of individual images, the state of one may be expected to
determine the state of another if they are touching, as in
Figure 1:17c, but not if they are separated by an “unbridge-
able"space, as in Figure 1:17a. My subjective experience is
consistent with these predictions.

.knother interesting property of the array results from
the proposed timing mechanism. States which are not locally
consistent have been described as semi-stable: they exist for
awhile, but then change in accord with a fatigue process.
States which are locally consistent may also be semi-stable,
rather than stable, if parameters of the system are appropri-

ately chosen, or if the stimulus input is "weak." Then proc-
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Figure 1:17

This figure illustrates spatial interactions between
two Necker cubes. The strength of the interaction
depends on the separation of the cubes, and is of
little importance in Figure a, but is sufficiently
strong to always cause both cubes to be in the same
state in Figure c.
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essors which are in locally consistent states may also change
state due to fatigue, but the time required for this is much
longer than for states which are not locally consistent.
When a processor which is in a consistent state does change
state, the change of states spreads rapidly to neighboring
processors, since these are also in fatigued states. Psycho-
physically, this leads to the phenomenon of spontaneous
reversal of ambiguous figures. It should be noted that
fatigue is postulated here not to explain such phenomena, but
because it is a necessary part of the strategy for finding
global organizations on the basis of strictly local inter-
actions.

Finally, from a computational point of view, it is
important to note that when information is represented in
the form of an organized pattern of activity within a general
purpose neural structure, rather than by unpatterned activity

in specialized neural structures, the competition between

altepnative organizéf?3ﬁ!‘ﬂas an inherenﬁly serial nature.

Because any region of the array can be organized in only one
way at a time, the existence of one organization completely
excludes competitors within the region. Several competing
organizations may coexist within the array,. but these must be
in spatially separate subregions. Within each region, the
existing organization may match the input and satisfy local
consistency constraints, while these constraints are violated

along boundaries between regions. Competition will take
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place along region boundaries as individual proceésors change
allegiance from one organization to the other. (Consensus,
of course, is reflected in the satisfaction of constraints
within the boundaries). Each organized region will try to
spread and overrun the others. If it happens that an estab-
lished organization is inconsistent with the stimulus input
at some point, the organization will break down at that point
and another will begin to form. A point of mismatch between
one organization and the stimulus becomes a "seed" for the
formation of another organization.

On the other hand, before regions of organization become
established in the array, processing in the array as a whole
is parallel. 1In this condition, there are many small groups
of processors which are independently trying to match the

stimulus within corresponding small areas of the array (or

visual field). Of course, each of these processor groups can-

be in only one local state at a time. Thus we may say that
initial processing is locally serial but globally parallel.
Stimulus organization has been formulated here as a
problem in constraint satisfaction. Procedures for obtaining
solutions to such problems have been proposed by Waltz (1975)
and Rosenfeld, et al. (1976) and have been discussed by Arbib
(1975b). Several similarities and differences between these
procedures and the procedure I have outlined should be noted.

In the present terminology, Rosenfeld's relaxation procedure
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finds a set of candidate states for each processor such that
each candidate state of one processor is consistent with its
stimulus input and at least one candidate state of each neigh-
boring processor. On the basis of a pairwise examination of
consistent processor states, the procedure eliminates many
states which cannot possibly be part of a global array organ-
ization. However, the procedure does not actually find global
organizations. For this, a systematic search through combin-
ations of candidate states is proposed, which is based on a
tree search procedure of Waltz.

The array self organization procedure which has been
described here perfofms the same function as Waltz's tree
search, but follows a rather different strategy. 1In initial
stages of the search for a global organization the present
scheme is parallel: processors become locally organized in
many small regions of the array, then regions of organization
compete and spread. The tree search scheme is essentially
sequential, although many branches emanating from each node
can be trimmed using the parallel relaxation procedure. The
ti@ing mechanism which controls the rate at which individual
processors change states in the present procedure causes
groups of processors to cycle through possible local organi-
zations in a way which is roughly equivalent to following
different branches in Waltz's tree. iowever, the present

scheme does not have the degree of control that tree search



- aee e — 3 R

73

has, so while it may find a global solution faster in some
cases due to its parallel nature, it is not guaranteed to
find such a solution.

The importance of the relaxation procedure in reducing
subsequent tree search depends on the nature of the con-
straints and the stimulus pattern. 1In examples such as the
figure-ground separation (which will be simulated in the next
section) relaxation would have no value since all processor
states are candidate states. In other more complex cases,
the procedure is quite effective. 1In any event, the proce-
dure is essentially embodied in the present scheme if whenever
a processor changes state, it changes to a state which is con-

sistent with the current state of neighboring processors.

1.7. Computer Simulations

In this section, computer simulations of two systems
are described which illustrate some of the ideas about organ-
izing processes which were expressed in previous sections.
The first example is a simple two element bistable system,
which is of interest for two reasons. First, it constitutes
a minimal model of rivalry and alternation between two com-
peting perceptions, and can be used to demonstrate several
interesting phenomena. For example, the dependence of the
rates of alternation on stimulus strength with this model is

in qualitative a_recment with smpirical datua obtaincd by

7h

Levelt (1965) for binocular rivalry. Second, this two ele-
ment cyztem will become the bacic processing unit in a two-
dimencsional array of processors. The procescor array cyctem
js also simulated to illustrate the transition from an iritial
unorganized ctate to 2lobal organizaticn ard cpontaneous
alternation and may be interpreted as an ;rganization model
for figure-zround ceparation and figure-zround reversal.

The two element cystem is shovn in Figure 1:16.3 Vie
may suppose that activity in these cells reprezents itwe zom-
peting interpretations, Py and Py, of an image. These inter-
pretations might be the alternative interpretations of an
ambiguous image. or the twe imagecs of a rivalrous stereccran.
Each cell receives ar external input, x, which iz propor-
tional to the stimuluc strencth for its interpretation.

These inpute are acsumed to be constant in time in the
present analysis. The cutputs of the cellc, ¥ and Y, 2ive
the "activitj level"” of each interpretation and this ~orre-
sponds to the ctrength, or vividness of the perzeption. The

values of y may vary in time, but are always positive. An

o, cimple ter clement network with reciprocal inhiti-
tion and fati_uc, wnich is dezeribed here, har been studied
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interpretation is not perceived when the corresponding y is
zero.

The two cells inhipit each other reciprocally, as shown.
The cell output is a function of the difference between‘its

stimulus input and inhibition from the other cell:

(Eq. 1)  y;(t) = {(Xi-yj(t)).aﬂ(t)' %f RN s
. 0, if xi<yj(t). i#d.
Here the gain factor G is a constant and the same for
both cells, while the fatigue of the cells is given by the
variables Fl(t) and Fz(t). It is assumed that F(t) decreases
at a rate which is proportional to the activity level, y(t),
and that it sipultaneously recovers at a rate which is propor-
tional to the difference between the present state of fatigue
and an unfatigued state where F=1. Thus the fatigue values

are described by the differential equation:
aF, (t)
(Eq- 2) T = ﬁ(l - Fi(t)) ""yi(t)-

Depending on the values of Xy and Xa» this system will
show one of three behaviors: stable dominance, alternating
dominance, or no dominance. Given appropriate x values, one

cell will be dominant when its output, Y is greater than the

o+
_+

Figure 1:18

This two cell system may be used to illustrate three
types of behavior: stable dominance, alternation and
no dominance (see Figure 1:19). The output of each

cell is equal to the sum of the inputs times a gain

factor and a fatigue factor. The cells reciprocally
inhibit one another.
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input of the other, Xj. as thic will mean the output of the
non-dominant cell is zero. Once a cell is dominant, it will
remain dominant until its y value drops below the other
cell's input, due to éradual fatigue. When this happens,
dominance quickly switches to the other cell, since it is
less fatigued. The same sequence of events will lead to re-

~peated alternation. For other values of x; and Xx,, dominance
may not occur at all, and in still other cases, dominance
will occur but will not alternate between cells.

In order to determine the conditions necessary for each
of these three types of behavior, we may consider several
special cases. First, suppose X, = 0, and at time t = 0,
Fl(o) = 1, Then y1(0) = x,G. However ¥, will decrease
rapidly from this initial value due to decreases in Fl. The
rate at which ¥y decreases will itself decrease as ¥y, assym-
totically approaches d minimal value 91. which is the level
of cell activity at which fatigue and recovery from fatigue

balance, so dF/dt = 0:

(Eq. 3) §, = Al XS
et x,6

If we now suppose that X, is not zero but that 91> Xps
then it is clear that if cell 1 ever becomes dominant, it

will remain dominant. Of course, it may be the case that

.3
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92:>x1 as well, in which case once either cell becomes domi-
nant, its dominancé will be stable.

Now suppose %Xy = %3 = X. The condition for stable domi-
nance is that x(?l.y'z. Let ® be the largest value of x for

which this is true, then R = § and from equation 3 we find:
(Eq. 4) 2= L1 -1

Thus when the two stimulus strengths are equal to x, and
0€x <R, the system will exhibit stable dominance behavior.

Now we want to determine the conditions under which
alternation may occur. In an alternation situation, one cell
will be dominant, and then the other, in a regular repeating
cycle. Also, there will be transition periods during which
neither cell is dominant. These periods will generally be
very short compared to time either cell is dominant during a
cycle, and it will be convenient to ignore the transition
periods in the following derivation.

A necessary condition for alternation is that a cell
recover fro; fatigue during the time the other cell is domi-
nant to the same level of excitability as it reached during
the previous cycle. If we suppose that Xy = X, = X, then the
lengths of time each cell is dominant during a cycle will be

equal. The average rate of recovery from fatigue during the
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time a cell is suppressed must then equal the average rate at
which it became fatigued while it was dominant. If the rate
of recovery is less than the rate of fatigue, the length of
time a cell is dominaht each cycle will decrease qntil these
rates become equal. If with arbitrarily short dominance
periods the rate of recovery still is less than the rate of
fatigue, then the cell will never become dominant. The
limiting case for alternation is therefore a case in which
the cycle time is very short. Under these conditions, the y
value of the dominant cell never differs significantly from
the threshold value, and y £ x. We may then compute the rate
of fatigue during dominance, FD. and the rate of recovery from
fatigue, Fs, when the other celi is dominant, from equations
1 and 2:

When cell i 1s dominant:

e}
o
1]
Y
[N
1
A
|
R
"

When cell i is suppressed:
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Fg2p(l-d)

Let & be the limiting value for alternation. Then x = 2
when %D = -?S. and

§=2201-p.

This value for ® is approximate since it ignores the trans-
ition periods during which neither cell is dominant. However
it is a useful approximation, as has been borne out in comput-
er simulations. We coﬁclude from the above derivation that
when Xy = X5 = X, the dependence of system behavior on the

value of x is as follows:

stable dominance when 0<x<%
alternation when 2 <x <%

no dominance when §<x.

°

These three behaviors are shown in Figures 1:19a, b and c.

in relating these results to the perception of rivalrous
or ambiguous images, it is interesting to note that alterna-
tion occurs in an intermediate range of stimulus values. When
the stimulus is weak, one or the other perceptual interpreta-
tions remains dominant, when the stimulus is strong. both are
perceived together. I know of no evidence for stable domi-

nance with weak stimuli, but this is an interesting possibility.
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Of course, the strength of a stimulus in the case of an ambig-
uous image is not equivalent to image contrast, but depends
on figural qualities of the image itself which are impossible
to decipher. It may be possible to test this prediction with
binocular rivalry where stimulus strength is related to image
contrast.

I also gnow of no examples of ambiguous images where two
different interpretations can be seen at once, as is pre-

dicted when the stimulus strengths are sufficiently large.

5=0)

Again it is difficult to judge which ambiguous images have

y

large stimulus values. On the other hand, it is possible to

(

N

make the stimulus strengths of the two imagés of a rivalrous ~>

stereogram very large by using high contrast and rapidly
repeated presentation. When Kaufman (1963) presented a ster-
eogram composed of orthogonal grids stroboscopically, both
images were seen at once. Under normal viewing conditions,
this type of stereogram is very rivalrous; there is a strong

tendency for one image to dominate and for dominance to alter-

nate between eyes.
L 2

L

time —

Cell outputs are shown as a function of time for four

Levelt (1965) has observed that the rate of alternation
with rivalrous images increases as the stimulus strength of
both images is increased. Levelt also found that if the gg gg
stimulus strength of only one image is increased, then the
length of time that image is dominant each alternation cycle

remains unchanged, while the length of time the other image

eXe

N~ O N — 0O N — O «

— O

O o

Here #/x =0.8,

yq is solid line, Yo is dashed line.

input values.
=6.0.

Figure 1119
and G
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is dominant decreaaeé. Both of these observations may also
be made of the present system. Within the range of x values
where alternation occurs, the rate‘of alternation increases
with increased x. Figure 1:19d shows a simulation in which
x1=1 and x2=.9. When this is compared to Figure 1:19b, in
which x1=x2=1.. we see that the effect of decreasing x, is to
increase the time cell i is dominant.

We may now construct a system, made up of cells like
those described above, which will be self-organizing. The
cells are arranged into two two-dimensional arrays, as shown
(in one dimension) in Figure 1:120. Every cell has an exter-
nal stimulus input, xi.j.k where 1 and ] are the coordinates
of the cell in an array and k designates the array (1 or 2).
In addition, corresponding cells of the two arrays recipro-
cally inhibit one another. Thus, pairs of corresponding
colls form a subsystem which is similar to the two cell
system studied above, except that there is spread of inhibi-
tion to neighboring cells, These inhibitory inputs are equal

to the output, ¥1,5.k of the inhibiting cell times a weighting

factor, which is w for the neighbors of the corresponding

cell, and 1-4w for the corresponding cell itself, 0&w<1/5.
Thus the total weight given to the five inhibitory inputs of
any cell is 1. The outputs and fatigue factors of each cell

are given by

e
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Figure 1120

This figure shows the two array system of cells
which may be used to illustrate self organizing proc-
esses. All inputs are shown for cell i,j of array 1.
The same pattern of inputs is repeated for all cells
in the system.
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Vi gk = (X g (10D eyy g w3 5 94y e

*Wio1,5,1%5,5-1,10 @ Fy 5
ar
1,0,k _
at = =AUl - Fy g a) ¥y g

where it is understood that y and F are time dependent vari-
ables and that if k = 1,2, thenl = 2,1,

It follows from these définitions that if at some point
in time all the inputs to one array of cells equal Xy, and
all inputs to the other equal x5, and if the fatigue factors
are the same within each array of cells, then the behavior
of this array system is exactly the same as the behavior of
the two cell system of Pigure 1:18, so that the analysis of
that system will serve as a lumped analysis of the present
system,

'Following definitions given in the last section, when a
cell is in the same dominance state as its four neighbors, it
is in a locally consistent state, and when all the cells in
one array are dominant at the same time, then the array sys-
tem is globally organized. Now it should be noticed that if
a dominant cell is in a locally consistent state, the inhibi-
tion from cells of the other array will be zero, but if it is

not in a locally consistent state inhibition will be non-zero.

pre— e . ok ) P— ] PO ST ] R |

86

Thus when a cell changes state, it will remain in the new
state for a length of time which depends on the number of
neighbors which are in the same state, so that cells in con-
sistent states will remain in those states for a long time
compared to cells in non-consistent states. With appro-
priately chosen values for x; and X, cells in consistent
states may be completely stable, so they only change states
if one of their neighbors changes states first. These cell
properties are the same as those described as appropriate for
arrays of self-organizing processors in the previous section.
Two of these coupled array systems can be incorporated
into a model for figure-ground separation in the following
way. Suppose that dominant cells in one array, Al of Figure
1:21, represent figure points, while dominant cells in a
second array, Az,represent ground points. The stimulus input
to all these cells is the same. Cell states in the other two
arrays code the relationship of boundary elements to neigh-
boriqg area segments. These cells have zero stimulus input
unless they occur in array positions which correspond to the
positions of line elements in an input image. For simplicity,
it is assumed that these line elements are all vertically
oriented. (An additional array pair would be needed to code
horizontally oriented line elements). A cell in array B1 is
dominant if it has a stimulus input when the boundary element

it codes is perceptually associated with the region to its



Figure 1:21

Two two-array systems like that which is shown in
Figure 1:20, are coupled here to illustrate figure-
ground separation and reversal.
interconnections between cells within the two array
pairs shown in Figure 1:20, there are interconnections
-between cells of different pairs.

here for one B1 cell.

~ 7

7 N\J

ij2

In addition to the

These are shown
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right. A cell in B2 is dominant when the boundary element is
perceptually associated with the region to the left. In
either case, the boundary should be associated with the figure
area, i.e. dominant regions in array Al. In order to estab-
lish this association, the edge and area coding arrays must
be coupled. The pattern of these interconnections is shown
for several cells in the figure. A cell of layer B1 is recip-
rocally inhibited by the corresponding cell of B2 as well as
by a cell to its right in layer Az and a cell to its left in
Al. In return, the B1 layer cell excites a cell to its left
in A, and right in A;. The weights on these excitatory pro-
jections are 2w, Now suppdée'the A, cells to the right of a
dominant By cell are also dominant, while A, cells are domin-
ant to its left. Study of thessinterconnections will chow
that this is a locally stable state. The inhibition between
cells in opposite states along a boundary is balanced by the
facilitation of the boundary representing cell.

Now suppose the input stimulus for this system consiste
of two vertical lines, as in Figure 1:22a. The system will
be globally organized when all A1 array cells within the cen-
tral region defined by tﬁe input stimulus are in one state,
either representing figure or ground,while all A1 cells in
the remainder of the array are in the opposite state.

Figures 2:22b to f show a computer simulation of this

system. The dimensions of the arrays are ten by ten. The
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activity levels of A1 cells is shown as intensity in arrays
of 1ight spots at several moments in time. We should inter-
pret array elements as representing figure points when the
corresponding spot is fairly bright.

Figure 1:22b shows the randomly assigned states of these
cells at an initial point in time. The remaining figures
show array states at a sequence of later times. The number
below each figure is the number of computer iterations and is
proportional - to elapsed time, which we may assume is in arbi-
trary units. We see that as time progresses, the array
begins to become orgahized. Figure 1:22c shows the array com-
pletely organized with the central region represented as
ground. The remainihg figures show a sequence of states in a
spontaneous figure-ground reversal. Thus several cells in
Figure 1:22d are changing states, and these cells serve as
the "seed” for a reorganization which can be ‘seen spreading
over the net in figures d to f. The reversal is nearly complete
in Figure f. In this simulation, an additional 180 steps passed
before there was another figure-ground reversal.

It should be mentioned that this system does not always
converge on a global organization. In some cases, two com-
peting regions of organization will continually spread over
each other along different portions of their common boundary.
Thus it is clear that the present strategy for obtaining

global organization from strictly local interactions is not
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guaranteed to find the global organization. Thic should not

be considered a flaw in the system as proposed, since if

these organizing processes were embedded in an actual visual

system, they would be further constrained by interactions
with many other perceptual processes, which could prevent

unproductive, cyclic competition between organizations.
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a) input image b) initial states c) 450 iterations
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d) 525 iterations e) 5u45 iterations f) 565 iterations

Figure 1:22

This is a simulation of net self organization and
figure-ground separation and reversal. Figure a
shows the input image, which is a simplified lace-
vase imagewhere the two contours are vertical lines.
Figure b shows array elements in their initial,
randomly assigned, states. Figure c shows the array
after 450 computer iterations when the image is
first resolved into figure areas on the sides and
ground in the middle. Figures d to f show Tigure-
ground reversal. Bright areas correspond to
figure.
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CHAPTER I1I
A MODEL FOR
BINOCULAR FUSION AND RIVALRY

Introduction

When different images are presented to the two eyes,
one's conscious experience is not of two distinct and separate
images, but of a single image which may be identical to one
of the monocular “half images," or may be a montage pieced
together from parts of the two half images. Frequently,
parts of the monocular images do not aépear in the consciously
perceived "combined image," and are said to be "suppressed."
Phencomena associated with binocular combination and suppres-
sion have several interesting aspects. For example, what
happens to visual information which is suppressed? 1Is that
information lost or ignored by the visual system, or is it
excluded from conscious perception, whatever that may be, but
not from subconscious perception? What neural mechanisms
mediate suppression, and what stimulus or visual system fac-
tors determine the stimulus points which will be suppressed?

These questions will be examined carefully in the first
half of this chapter. However, my principal interest is not

to study the suppression aspect of binocular combination for
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its own sake, but to learn about neural structures and pro-
cesses which are involved in another aspect of binocular
vision, namely stereopsis. Stereopsis and suppression phe-
nomena seem to be tightly coupled, and indeed, these phenom-
ena may best be regarded as two aspects of a single percep-
tual process: suppression occurring when images presented to
the two eyes are different, stereopsis, when they are nearly
the same. Partial suppression also seems to play a role in
stereopsis, but discussion of that close association of what
otherwise seems to be complementary phenomena will be post-
poned until the next chapter.

A neural model for suppression phenomena will be de-
veloped in the second half of this chapter. Again my ulti-
mate objective, in this and the next chapter, is to propose
and motivate a neural model for stereopsis, but for several
reasons it is appropriate to begin by developing a suppression
model. First, the model for suppression is simpler; we do
not need to be concerned yet about how the visual system
handlés small disparities between like image features pre-
sented to the two eyes, and the suppression model will become
part of the stereopsis model. But it is also appropriate to
study suppression before stereopsis because this study
affords better insight into certain aspects of binocular
image combination, such as the neural coding of image infor-

mation at the level of the visual system where combination
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occurs, and the interocular mechanisms which control the com-
bination processes.

Binocular suppression may also be studied as a compe-~
tition-cooperation phenomenon. When two unlike features
appear in the same region of the visual field but in differ-
ent eyes, they compete for dominance in the combined image,
the non-dominant image being suppressed. Depending on the
nature of the competing stimuli, dominance may be stable or
it may alternate between eyes over time. In the latter case,
the stimuli are said to be “rivalrous."1 The copperative
nature of these phenomena is shown by the fact that regions
of dominance (or, conversely, regions of suppression) tend
to grow and spread in the visual field.

Processes responsible for binocular combination may
be said to "organize" the stimulus pattern. In the case of
stereopsis, these processes determine how individual stimulus
points will be paired with points of the other eye. In the
case of suppression, the processes do not so much determine
how particular stimulus points will be perceptually inter-

preted, as what points will be available for interpretation,

1Properly used, the term "binocular rivalry" refers to
continually changing patterns of ocular dominance. However,
I shall frequently uce this term more loosely: a rivalrous
stereogram will be any which results in partial supprescion
of either half image when binocularly viewed, whether sup-
pression is stable or unstable.
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and what points will be suppressed.2

This chapter is divided into nine sections. In the
first seven sections, I review psychophysical data relating
to the suppression phénomena. including results of a number
of original experiments. A set of hypotheses is proposed
to characterize suppression phenomena, and each hypothesis
is supported by psychophysical evidence. These hypotheses,
which are summarized in Section 7, form the basis of the
neural model for suppression which is developed in the re-
maining sections of the chapter. There, computer simulations
of the model are described which show it to be in substantial
agreement with the psychophysical data. Physiological data
relevant to this and the subsequent stereopsis model are

examined in Appendix A.

2.1. Introductory Examples

A few examples will be described in this section which
will serve to introduce binocular suppression phenomena to

the reader. The simplest example of the binocular combination

2The binocular combination system offers an ideal system
for studying competition between alternative stimulus organ-
izations. In other systems, competing organizations corres-
pond to alternative perceptual interpretations of a single
ambiguous image. It is difficult to study systematically the
effects of changes in the stimulus pattern because such
changes tend to affect all interpretations. In the case of
binocular dominance and suppression, the competing images are
separate and are presented to different eyes. One image can
easily be changed independently of the other.
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of dissimilar images is shown in Figure 2:1a. A contour
image is presented to one eye, while a uniform field is pre-
sented to the other. The contour invariably appears in the
combined image, as shown. If contours appear in both half

‘images, but in separated regions of the visual field, then

‘all contours appear in the combined image, as in Figure 2:1b.

When dissimilar contours are presented in the same
region of the two half images, the combined image may be
assembled from the half images in two ways. The first possi-
bility is illustrated in Figure 2:lc, which is based on an
example of Helmholz (Helmholz; 1962; Sperling, 1970). Here
black, orthogonally oriented bars are presented to either
eye. A cross is perceived in the combined image which has
a curious pattern of gray levelAshading. The ends of the
bars appear black, but towards the central square area where
the bars cross, the biack changes gradually to lighter shades
of gray, so that the central square, which is black, is sur-
rounded by a halo of white. Thus all contours which outlined
the bars in the half images appear in the combined image as
transitions between appropriate black and white regions.
However, the contrast of these contours may decrease near the
central square,

These examples, and particularly the stereogram of
Figure 2:1c, suggest a couple of types of mechanisms which

may underlie binocular combination. The first of these is a
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two component system proposed by Levelt (1965). One component
of Levelt's system performs a weighted gray level averaging of
the two half images to obtain the apparent gray level of the
combined image. Thus for a particular point, 8, in the

visual field, at which the image brightnesses of the left and
right half images are, respectively, BL(B) and BR(B), the

brightness of the combined image is
Bo(8) = wy (8)B (8) + wp(8)Eg(e).

The second component of Levelt's system is contour
dependent and contreols the values of the weights, wL(B).
wp(8), by the following rule: Suppose & is a point of the
visual field which does not fall on a contour in either half
image, and let dL(B} and dR{B) be the dicstances from the
point 8 to the nearest contour in the left and right half
images. Then the values given to the weights are such that
wL(B) + wR(e} = 1, and the ratio wL(B)/wR(B) is monotonically
decreasing with d; (8)/dz(€). When & is equidistant from
contours in each half image, wL(B) = wR(G) = .5, and when &
falls on a contour in one half image, but not the other, the
corresponding weight reaches its maximum value of one. Thus
all contours from both half images will appear in the combined
image, and points which fall near a contour in either half

image will have about the same gray level in the combined
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image. Combined images generated by this system aré clearly
consistent with the examples of Figure 2:1.

Levelt's theory implies that the two half images are
coded in terms of point by point image intensity within the
visual system. Intensity might be coded as neural épike
frequency, in which case the gray level averaging component
of the system actually averages spike frequency. 1In addition;
there must be a seaparte system component which detects con-
tours'in the monocﬁlar images and controls the averaging
processes.

As an alternative to Levelt's theory, suppose half
images are coded in terms of the location, orientation and
contrast of contours, rather than in terms of point by point
image 1ntenéity. Here the image gray level within a uniform
region is not coded, and the perceived gray level is based
entirely on ‘contrast across contours which surround the
region. Binocular combination might simply consist of adding
the two monocular codes together. Again, all contours would
appear in the combined image. The gray levels within regions
of the combincd image which are bounded by contours from both
half images might appear different from gray 1evéls at cor-
responding points of either half image. The perceived gray

level in these cases is based upon contrast over a different

set of contours in the combined image than the monocular images.

This second theory provides a somewhat simpler explan-
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ation of binocular combination and gray level averaging than
does the first, However, according to this theory., none of
the examples in Figure 211 involve binocular suppression:
binocular combination is simply a matter of summing the mono-
cular codes. Several stereograms will now be considered in
which suppression clearly does occur. Neither of the
theories as stated above can account for combined images
obtained with these examples.

Several stereograms are shown in Figure 2:2 in which
image contours are suppressed. _Pigure 2:2a, which is based
on stereograms by Dodwell (1970), demonstrates that a single
contour in the left half image can suppress a. textured fegion
in the right'half image. This texture is itself composed of
many contours. The stereogram of Figure 2:2b is similar to
that of Figure 2:1c, except that the bars are narrower.

This stereogram produces binocular rivalry: one®s perception
alternates between the two combined images shown. In each
case, a portion of one or the other monocular bars is sup-
pressed in the region where they overlap in the binocular
view,

The stereogram of Figure 2:2c consists of two identical
but orthogénally oriented grid patterns. When this stereo-
gram is binocularly viewed, one may just see one half image,
or he may see any combination of regions of one half image
with non-overlapping regions of the other. Several examples

are shown. The combined image is very unstable, so the
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dominance pattern continually changes to produce an inter-

esting and dynamic visual experience.

2.2. The Fusion Controversy

In the last section, I considered several examples of
stereograms in which differences between images presented to
the two eyes resulted in suppression of some image information
in the combined view. The questions are these: how different
must the half images be for suppression to occur, or must
they be different at all?

When identical images are presented to the two eyes,
only a single image is perceived. Single vision is also
obtained when the monocular images are identical except for
some slight disparities which may lead to a perception of
depth. The binocular image has very nearly the samé "bright-
ness® as either half image in these cases. This means that
doubling the stimulus energy by presenting it to two eyes
rather than one, does not result in a noticeable change in
the brightness or contrast of the single combined image.

Two opposing theories have been proposed to account for
binocular "single vision® in an historically impbrtant debate
which remains unresolved today. The first of these is the
so-called "fusion" theory (Boring, 1933; Dodwell and Engle,
1963; Sperling, 1970; Julesz, 1971 and others). According

to this theory, when very similar image features occur in
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nearly the came positions of the two half images, the corres-
ponding feature codes"fuse" somehow in the visual system to
form a single binocular code. This state of “sensory fusion®
is distinct from states of rivalry and suppression in that
the two half images contribute in the same way to the binocu-
larly combined image.

According to the alternative “suppression” theory
(Asher, 1953; Hochberg, 1964; Levelt, 1965 and others), the
visual proéessing of similar imeges is the same as processing
of dissimilar images: suppression occurs in both cases and
it is suppression which accounts for singleness of vision
when images are alike. One is not aware of suppression when
the images are alike, since the dominant information is
exactly equivalent to the suppressed information.

Needless to say, fusion and suppression theories explain
binocular combination, and particularly stereopsis, in dif-
ferent ways. In this section I shall review the principal
arguments which have been advanced in favor of both theories
and propose a new, and I think quite strong, argument in
support of the fusion theory.

According to the suppression theory, any stimulus pre-
sented to one eye causes inhibition of all stimuli falling
on corresponding and nearby points in the other eye. The
strength of the inhibition depends on the character of the

stimulus. For example, a contour causes stronger inhibitien
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than a uniform field, and a long, high-contrast contour
causes stronger inhibition than a short, low-contrast con-
tour (Wilde, 1938, sumyarized in Levelt, 1965; Crovitz and
Lockhead, 1967). Of two images falling on corresponding
points of the two eyes, the one generating greater inhibi-
tion will dominate, while the other will be suppressed. When
the images generate roughly equal inhibition, one will still
gain an upper hand and dominate, but dominance will tend to
alternate between the two, over time.

The suppression theory is attractive for several
reasons. First, from a theoretical point of view, the neural
mechanisms required for binocular combination, aqcording to
this view, are far simpler than those implied by the fusion
theory. The fusion theory requires that the two monocular
images be partially analyzed in the visual system prior to
binocular combination so a decision can be made.aé to whether
particular image points should be fused or suppressed. 1In
the suppression theory, dominance depends only on relative
stimulus strength: no comparison need be made between stimu-
lus patterns themselves.

Experimental evidence in favor of suppression is also
much easier to obtain than is evidence for fusion. - Suppres-
sion may be readily and unequivocally demonstrated with ster-
ecgrams made of rivalrous half images. .Fusion. on. the other

hand, can not be directly demonstrated. Fusion is presumed
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to occur only with identical im;ges. and, as noted previously,
it is not possible to determine frum direct observation
whether a single combined image is composed of one or both of
two identical half images. Any argument in favor of either
suppression or fusion of identical half images must be based
on indirect evidence. Three types of evidence will be con-
sidered here.

Consider first an argument in favor of the suppression
theory of single vision. It has been observed that if dif-
ferent stimuli are presented to the two eyes, the strength of
mutual inhibition is greatest when the images are presented
to corresponding points of the two eyes, and the strength
decreases rapidly as the stimuli are moved apart. (This in-
verse relationship between strength of inhibition and dis-
tance is implied, for example, by the experiment of Kaufman,
which will be described below). Furthermore, even similarly
oriented contours presented in slightly different positions
of the two half images may partially suppress one another.
(See below for Hochberg's evidence). If slightly disparate
but similar features tend to suppress one another, just as
do non-similar features, should we not expect that tendency
to increase as the disparity is decreased between similar
images as it does with non-similar images? Complete sup-
pression and single vision should be anticipated when similar

features are sufficiently close together. According to
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suppression theory, there is a eritical range within which
complete suppression occurs even with similar features. This
critical range corresponds to the so-called Panum's “fusional®
area. »

Levelt (1965) and Kaufman (1974) have pointed out that
support for this interpretation of Panum's fusional area comes
from an experiment by Kaufman (1963), in which he measured
the spread of suppression around a line contour. Kaufman
presented subjects with the stereogram shown in Figure 2:3a,
so that one eye saw two vertical lines while the other saw a
single, horizontal line. When binocularly viewed, the lines
bisect one another, and if the separation of the vertical
lines is sufficiently small, the section of horizontal line
which falls between the vertical lines in the combined view
will tend to be suppressed. Thus by varying the separation
of these lines, a maximum range of suppression could be de-
termined. This was found to be about 14 minutes of arc.

When the experiment was repeated with two horizontal lines
and one vertical, the estimate obtained for maximum vertical
separation was about half this value or 7 minutes of arc.
Pwo contours contribute to the suppression effect in this
experiment. If we suppose each contour accounts for half
the suppression at maximum separation, then the range of
suppression associated with a single contour becomes 7° hor-

izontally and 3}' vertically. The interesting observation
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is that these ranges are the same as the dimensions of
Panum's fusional area (Ogle, 1950).

The above argument must be re-evaluated in the light of
the recent discovery by Fender and Julesz (1967) that the
dimensions of the fusional area depend on the nature of the
stimulus pattern, and for appropriately presented random dot
patterns, "fusion" can be maintained with up to two degrees
disparity. The range of suppression around a contour also
depends on factors such as contrast (Crovitz & Lockhead,
1967) and bar width. I have found that I can get complete
suppression of one grid by another, orthogonal grid (as in.
Figure 2:12c), even when the width of the bars is 2 degrees.
In vieQ of this variability of range of fusion and suppres-
sion, it seems that it may only be fortuitous that suppres-
sion ranges obtained by Kaufman match the classical dimen-
sions of Panum's fusional area. 1In any event, it has yet to
be shown that stimulus factors which affect the spread of
suppression also affect the size of the fusional area in the
same way, or vice versa.

One other point should be made with respect to the above
argument in favor of the suppression theory. The argument
was based, in part, on an observation by Hochberg that non-
intersecting. similarly oriented contours, which are presented
with 'slight displacement to the two eyes, partially suppress

one another. The stereozram he used to demonstrate this
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point is shown in Figure 2:3b. Each half image is composed
of three horizontal bars which are arranged so that the lower
two superimpose in the binocular view, while the upper bars
from each half image appear separately, one above the other.
The upper bars tend to sSuppress one another, as indicated.
While this shows mutual inhibition of non-intersecting con-
tours, i.e. inhibition at a distance, it is not clear that it
illustrates mutual inhibition of similar features. 1In fact,
the suppressed zones occur along edges, suggesting that it

is the edges which are antagonistic. While these edges are
alike in orientation anq nearby in position, they are very
different features, since they represent transitions from
black to white which occur in opposite directions.

Arguments in favor of the fusion theory frequently make

use of the phenomenon of stereopsis. Supporters of this

theory argue that stereoscopic depth could not be computed

by the visual system if one or the other monocular images

has been suppressed. On the other hand, suppression theorists
suggest that stereopsis and suppression take place in separate
visual channels, so that information which appears lost in

the consciously experienced binocular image is not, in fact,
lost in the channel which computes depth. Proponents of both
views have tried to prove their points by devising sterecgrams
which' show the presence or absence of stereopsis in rivalrous.

stereograms.
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Stereoprams used in experiments by Kaufman and

Hochberg .,

A very interesting example of a stereogram combining
rivalry and depth was devised by Helmholz (1962). Starting
with an ordinary stereogram, which depicted an outline
drawing of a geometrié figure in depth, he replaced one half
image with its negative (white points are made black and
black, white). Such a stereogram seems to be rivalrous every-
where, and yet depth is perceived. A simple example of this
type of stereogram is shown in Figure 2:ika.

Kaufman alsc has constructed a stereogram (similar to
the one shown in Figure 2:4b), in which a central square-
shaped region may be seen in depth, despite the fact that
both this region and its surround are represented by ortho-
gonal, rivalrous grid patterns. Again, rivalry does not pre-
vent stereopsis.

On the other hand, Sperling (1970) describes a stereo-
gram (which was originated by Kaufman and Pitblado) "in which
suppression of one half image does prevent the perception of
depth. (See Hochberg, 1964b for other examples). Sperling's
stereogram (similar to Figure 2:4c) consists of two concen-
tric circles in each half image, superimposed on a grid
pattern. One circle is slightly displaced in one half image
relative to the other so that when the circles are binocularly
combined, they appear at different depths. The grid pattern
in one half image is orthogonal to that of the other, so that

the stereogram is rivalrous. The binocularly combined image
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is usually composed of subregions of either half image, but
the pattern of dominance continually changes. The circles
appear in depth as long as the combined image is composed

of parts of both half images. However, occasionally one half
image will be entirely dominant, while the other is completely
suppressed. When this occurs, stereopsis is lost.

It is my opinion that failure of stereopsis in stereo-
gram 2:1hc is strong evidence in support of the fusion theory,
while the co-existence of rivalry and stereopsis irn the other
two examples is less compelling evidence against thai thecry.
In fact, I think the perception of depth in these examples
can be explained by'the'fusion theory in the following ways.

First we consider the possibility of iusion in lhe nega-

tive correlation stereogram of Figure 2:4a. Helmholsz suggested

that this stereogram supports the hypothesis that images are
coded by boundaries and it is these boundaries that are asso-
ciated with one another when one perceives depth. This
explanation will work for Figure 2ilta, if we assume what the
boundary code does not include information aboui the divec-
tion of intensily change across the boundary. However, the
explanation does not account for failure o1 stereousis in two
related stereograms. II one half imzge ;f = randor. dot ster-
eogram is replaced by its negative, stereopsis is now poussible
(Julesz, 1960). If the disparity of the sterecgral is repre-
sented by displaced regions of uniform intensity, as in Fig-

ure 2i14d, rather—than by displaced contours of an cutline

drawing, as in Figure 2:4a, then stereopsis again is impos-
sible. (This stereogram is based on examples by Treisman,
1962).

There is a better explanation of depth perception in
negatively correlatced sierecgzrams. The above examples suggest
that siereopsis results only when the stereo image iz rapre
sented by an outiine drawing. "hus a brack 1ine an a whiie
ground must be perceptually anrociatzd with = correspona’n:
whit iine on z vlachk grounc, i the oiier eyve. Conuided o
case in which thesc linen are veruically oriintec and o L
displazed horinontslly with respz. t to ke other., Fuch ling
2y he aralyzed icle two e@dse conuwours which reprosent the
bounderies betwsen white and bluck refjons.  Suppese now ihut
the line in the 1ei{ half iasze i oisch azainst u wnite
ground. Thus it: left cdee ic a bowndary between o white
region. an its lcoft, and a black vegion o its righi. The

same is true Yoo the right edpe of the corresponding whie

Yine an the right haly imaec. Thus these twe coitovrs ara

identicu® and may jfusc in the nomanl wey. previded the dios
paritly boiwcen thuiw 1 90l %o sveat, Phis is khe casae in
rigure Z:4%a, Lot rot 1n Preasr 2004 Hy sunlective experionce
with tie stereogram ia Figu-e 20t o thut depth is perceived,
net when correspondiag LLESE arG wilie lines appeul super-
iwposed, but whar they appead side by zide, consistent wiilh

this erxulanetiorn
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Thu?e ctereosram: incorporate rivalrous and stuore-
Depth and rivalry seem lo coexi:t
but notl in ¢
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An explanation of depth perception with the stercogram
of Figure 2:4b in terms of a fusion theory will follow from
an extention of what we mean by the term "fusion." This ex-
tended concept of fusicn will be briefly described here, and
more carefully defined in Section 6 of this chapter and in
the next chapter on stereopsis.

Let us suppose that images are coded in terms of local
features (which need not be defined here) and that many of
these code elements differ only in scale: some will be small
(high resolution) and others will represent the same image
feature, but at a larger scale (low resolution). A given
image pattern will be coded by features of zll sizes. We
may say that total fusion occurs when the codes for two
images are identical and corresponding elements of each code
become somehow associated. On the other hand, partial fusion
occurs when someé, but not all, code elements match and are
associated with one another, It now follows that two types
of partial fusion may occur: one in which total fusion occurs
over subregions of the two images, and the other in which
one group of features fuse within a given image region but
not another group. The second type of partial fusion occurs,
for example, when large scale features fuse while small scale
features do not. We assume that partial fusion is sufficient
for stereopsis.

Partial fusion may eccur in the stereogram of Figure 2:4b
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because the inner square region is drawn with darker lines
than is the surround. Thus large scale features which res-
pond to average intensity over extended regions, but which do
not resolve individual lines, may fuse, while small scale
features are unfused and rivalrous. This expanded definition
of fusion will allow us to explain stereopsis in several other
examples where fusion (according to the usual definition)
does not occur. For example, stereopsis may occur with dis-
parate non-identical images, and with identical images which
are so disparate that they appear double (diplopia). These
and several other examples will be discussed in the next
chapter.

We turn now to a third suppression related phenomenon
which provides, I think, convincing evidence in favor of the
fusion theory. I refer to a "cooperative" property ol sup-
pression, which has not previously been considered in the
literature.

-It was observed, in discussing the orthogonzl grid ster-
eogram of Figure 2:2c, that the combined image tended tu be:

made up of extended regions of either half image. and on

occasion, one or the other half image would dowinat2 compiei:ly.

These patterns of dominance are curious in view of the dowmiv-
ance pattern described for the crossed bar cterecgram of
Figure 2.:1c. The crossed grid stimulus is %ike » C2peated

pattern of crossed bar stimuli, so one might engect that tho

3
[y
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resulting combined image would be like that for the crossed

bars, but repeated, as shown in Figure 2:5. Local patches of

. dominance are not observed around each contour as suggested

here. Instead, palches of dominance extiend over much largsr
regions. This observatiocn suggests that dominance over cne
region of the visval rield tends tc spread to nearby regions
by way of some sort of lateral anzaractions. Thin clieni can
cause dominance by cna eyt Lo soread over regiont where Ui
stimulus would otherwise faver dominance by the opposit: u}e.

A possible ncural mechanism for suppression whicn would ac-
Pl

ure Zit.,

count for the region growine behavier 1o shown in ¥

image informaticn is sepresentad by activiiy in separac? sots

"of cells for the iwc uzyet. Each cell inhibits activity in

the correspording vell for the opponits eye. This inhiticion

is recurrent and sprecds javerailly lo nezrby cells.  Thus

when one cell ceromz2s comivant, it peducss the ourput of the
correspondang coli in he oppouiie sy Lo wevo. Thia in Lurn

means a yelease of iab triian to bie dominaal c2l) and Lo

cells which neighors tpat Chor a0l ehbers will then aave
& greater chonte oF Lavoming dowdin.ni an well.
e 2rithest poiib to e omade bare i3 that, 37 siale-

AehL LT viston oo owe Yoo wwpisuned by oouonression, Thap fhio

phensnaan ol sovead oo tom: s Saodrd oscus wnep Lne e

Raspan 5ioa Ciaen el et e el jute ol ve tedunn
OOy oo Voo sl el T e e N 34 I GVRRIES SIONY R

linnatolty.
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Figure 2:5

The combined image with orthogonal gridc which would
be anticipated from the combined image with orthogonal
bars, as in figure 2:2c.

Binocular Cells

Figure 2:6

Spreading recurrent inhibition between monocular
cells may account for spread of ocular dominance.
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Consider the stereogram of FPigure 2i7a, in which the
half images are different (uncorrelated) random dot patterns
with a dot density of about .5. When uncorrelated random dot
patterns such as these are binocularly superimposed, the
resulting combined image seems to have the same dot dénsity
as the half images (Tyler, 1975). If we accept a fusion
hypothesis, about half the dots would be expected to fuse,
and of the rest, 50% must be suppressed. According to the
suppression hypothesis, half the total number of dots must be
suppressed. Now suppose an extra dot is added to both half
jimages so that these dots are smaller than the dots of the
random patterns, and are positioned so that they should
apﬁear near one another, but not superimposed in the combined
image. Thése marks provide easily discriminated “monocular
flags™ and may be used fo detect regions of suppression. When
the stereogram is binocularly viewed, there is a strong ten-
ﬁency for one or the other monocular flag not to appear in
the combined image. Furthermore, if several such flags are
added to each half imaéB. theré.will be a strong tendency for
all flags from one eye to be suﬁﬁressed while all flags from
the other remain visible in the combined image. These facts
are consistent with the observation that eye dominance tends
to spread over extended regions of the visual field. Where
the principal dots ﬁhich make up the random dot pattern are

suppressed, the monocular flag points are suppressed as well.
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Now suppose we repeat this experiment with identical
(correlated) random dot patterns, Figure 2:7b. Again, if
suppression occurs, we expect it will occur in extended
patches and monocular flag points will be suppressed as well.
However, I observe that whenever the two images appear to be
»fused," all monocular flags from both half images are clearly
visible. It follows that binocular combination of correlated
images is qualitatively quite different from the binocular
combination of uncorrelated images and this difference cor-
responds to the occurence of fusion in the first case and
suppression in the second.

The weight of the evidence in the above examples is in
favor of the fusion, rather than suppressioh theory of binoc-
ular single vision, and I shall assume for the remainder of
the ‘discussion that fusion does occur as a distinct percep-
tual state. It remains for us to characterize this fused
state, and to suggest neural mechanisms which might be respon-
sible for determining which stimuli should be fused and which

should be rivalrous.

2.3. The Architecture of
Binocular Interaction and Suppression
I shall be concerned, in the next several sections, with
neural structures and pathways which may mediate binocular

interactions and suppression. That is, I shall try to deter-
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Fusion and rivalry are chown to be distinct percep-
tual states in the uncorrelated and correlated ran-
dom dot stercograms a and b, In ¢ the o-ular domi-
nance it chown to depend on context. Arrow: uhow
the positions of monocular flag:.
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mine whether the processing responsible for these functions
resides in the lateral geniculate body, the visual cortex, or
some structure involved in later stages of visual processing.
And I shall try to determine whether control of this processing
is afferent, efferent, or intrinsic to the neural structure.
In order that this study may seem reasonably organized and
systematic, I begin in this section by presenting a very
schematic flow diagram for binocular information processing
within the visual system, and identify the various stages at
which the binocular interactions of interest might take
place. Then, in subsequent sections, I will consider each of
these possible stages in turn, in order to eliminate those
which seem inconsistent with available psychophysical data.
Related physiological are considered in Appendix A.

Figure 2:8 shows a flow diagram for processing within
the visual system. Processing is divided into three stages:
A)monocular, B) low level binocular, and C) high level binoc-
ular. Principal projection (afferent) pathways are shown by
solid arrows, while possible efferent and intrinsic control
pathways are shown as dashed lines. h

It is assumed that in box A all information from the two
eyes is represented and prodessed separately. Anatomical
structures of the geniculo-striate visual system which are
subsumed by this box include the LGB and monocular cells of

visual cortex. It is further assﬁmed that these cells have
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center-surround receptive fields as in the LGB. The inter-
ocular control pathway, P1, might be mediated by interneurons
which cross laminar boundaries in the LGB, while the monocular
control pathways, P2, are mediated by interneurons within
single LGB lamina.

Binocular combination of afferent information from the
two eyes takes place in box B. I include in this box those
cells of the visual system which receive afferent stimulation
from both eyes, i.e. the binocular cells of visual cortex.

To make this idea precise, assume: 1. individual cells in box
B code the same type of information for both eyes, so that
information indicating the eye of origin of a stimulus is

lost at this stage, and 2. cells in this box have "simple" or
"complex” receptive fields, as defined by Hubel and Wiesel
(1962), so may be said to code the image in terms of "elemen-
tary” line shaped features. Interneurons in visual cortex
which modulate activity of the box B principal cells are repre-
sented by control pathway P4.

Box C represents the remainder of the visual system, or
all visual processing after binocular combination. This box
is relevant to the present investigation of mechanisms of
binocular combination principally because there is a possi-
bility that combination is under efferent control, via PS5.
Thus, semantic information may play a role in determining
regions of dominance and suppression by way of this pathway.

Similarly, binocular combination may be controlled by Box B

- Combination] \<’ P4

Monocular ! Processing !

lP2 2, g::__‘: /?‘ P2)

P3\ \ / JE
Binocular \\ l//

/
PS/

*High Level \

\V c
Processing

Figure 2:8

In this flow diagram for binocular combination,
projection (afferent) pathways are shown as solid
lines and control (efferent and intrinsic) pathways
as dashed lines.

» 0e
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jindirectly through Box A by way of efferent pathway P3.

With each control path, we may associate a possible
model system or "architecture® for binocular suppression.
There are two places where suppression might occur - in boxes
A or B, and for each of these, there are two possible control
paths, one intrinsic and one efferent. In the subsequent d;s-
cussion, I will evaluate these four possible architectures
in the 1ight of experimental evidence. Here I will mention
the principal functional differences between architectures
and formulate the critical questions which may guide evalua-
tion of each model.

1f suppression takes place in box A under intrinsic
control (P1,P2), then suppression must correspond to the
inhibition of monocular afferent activity from one eye by
afferent activity from the opposite eye. A possible neural
structure for this interaction has already been proposed,
Figure 2:6. The critical question with this architecture is:
can it account for both fusion and suppression? If monocular
codes are center-surround, as assumed, is it possible to
determine which image features in the two eyes are suffi-
ciently alike to warrant fusion or sufficiently different to
warrant suppression?

Phis difficulty is avoided in architecture 2: suppression
in box A under efferent control via P3. Here it iB'Supposed

that imagze comparison is accomplished in box B on the basis
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of low level feature analysis of the images. However there
is a potential difficulty with a system in which information
suppression occurs a stage prior to image comparison: once

a rivairous stimulus is detected and suppression is accom-
plished via an efferent signal, information getting to box

B will no longer be rivalrous - and mismatch information
needed fqr directing suppression will be lost. The efferent
control scheme could work if there exist two processing chan-
nels which operate in parallel. One of these channels would
be the primary projection pathway to higher visual centers,
while the second channel would control binocular combination
in the first. Both channels initially carry the same afferent
information. But when a mismatch is detected in the control
channel, at the level of box B, then the suppression may
occur in the primary channel, at the level of box A, under
efferent control. Thus, the mismatched information, which

is needed to maintain suppression, is retained in the control
channel. (These two channels might correspond, for example,
to the X and Y projection systems described by Enroth-Cugell
and Robson, 1966).

In the third architecture for binocular combination,
suppression occurs in box B, under intrinsic control via
pathway P4. Since it is assumed that information about the
eye from which a ttimulus orizinates i lost at this stage

of processin:;, the inhibition regponsible for suppression
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must be directed between rivalrous features after binocular
combination. A potential difficulty here will be to explain
why extended regions of suppreséién should occur in which
only features seen by one eye are suppressed.

In the fourth architecture, suppresssion occurs in box B
under efferent control from higher visual processes, via path-
way P5. The decision about which features will dominate, and
which will be suppressed will depend upon semantic factors in
this case: a feature will be suppressed if it does not make
sense in the context of other features, and does not contri-
bute to the recognition of objects in the c&frent visual
scene. Again, there is the problem associated with efferent
control mentioned wiéh respect to architecture 2, so it must
be assumed that separate primary information and control
channels exist. In this case, we might suppose that informa-
tion in the primary channel corresponds to that information
which is consciously perceived. Thus, information which is
suppressed in terms of conscious perception (this is how sup-
pression is defined in the first place) still exists in the
visual system and is accessible to other "subconscious"
visual processes, including those which control binocular
combination. To evaluate this architecture, we need to deter-
mine whether suppressed information is actually lost and
unavailable to all high level visual processes, or whether

it is only inaccessible to conscious inspection.
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2.4, Is Information Lost?

Helmholz believed that afferent information from the two
eyes is never “organically" fused in the visual-System: that
is, projection neurons of the two eyes never converge onto
common binocular neurons, such as we hypothesize in box B of
Figure 2:8. 1Instead, associations between features coded in
the two pathways may be set up at a "psychic” level; associ-
ated features are perceived as single because the observer

has learned that they are images of a single object in space.

When image features presented fo the two eyes are different
and rivalrous, the system "attends" to one image or the other,
and while the attended features are consciously perceived,
the unattended features seem to be suppressed.

In some respects, Helmholz's theory is clearly wrohg.
For example, it is now known, from physiological studies, that
at least some binocular information is organically fused. On
the other hand, attention may still play a critical role in
binocular combination as he suggested. This is the case with
“architecture 4" outlined in the previous section. Presumably
the mechanisms which direct one's attentiun must exist at aﬁ
unconscious level, and must have access to the information
which seems suppressed at the conscious level. The function
served by these mechanisms is to direct attention to a subset
of image features, some taken from either half image, which

is semantically meaninzful. According to this view, suppressed
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information is not lost, and differs from dominant, unsup-
pressed information only in its status with respect to con-
sclious perception.3

I will consider two experimental paradigms for inves-
tigating unconscious control of suppression. In the first,
complex rivalrous patterns are presented to either eye and
we determine whether the consciously perceived, combined view
is pieced together from the two half images in a way which
results in a semantically meaningful pattern or a nonsensical
pattern. Again, one would expect the former to occur if sup-
pression is controlled by high level object detection pro-
cesses. The second paradigm involves visual search: one
attempts to locate and "make visible® particular stimulus
points which are initially suppressed. Again, on the assump-
tion that both suppressed and unsuppressed stimulus infor-

mation is available to the attention and other subconscious

?This question, "is suppressed information lost," has
relevance to perceptual processes other than those responsible
for binocular combination. For example, in Arbib's (1975b)
model for perception, a stimulus pattern activates a number of
internal "schema.* A subset of the active schema becomes
dominant, and it is this array which determines conscious per-
ception. Other schema remain active but not sufficiently
active to gain the status of conscious perception. Associated
with each object-related schema is an array of stimulus
points, an image segment, as described in the previous chap-
ter. We may ask, therefore, whether individual schema can
influence the dominance-suppression status of points within
their segments, and whether schema have access to suppressed
points. If the answers to these questions are "no," then
suppression mechanisms impose considerable constraints on sub-
sequent visual processing.
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mechanisme, one would expect that suppression should not make
a stimulus inaccessible to visual search.

As an example of the first paradigm, consider what
happens when one attempts to double his reading rate by
reading two books simultaneously, one with each eye. A num-
ber of problems are encountered, both mechanical (can one
train his eyes to move independently) and attentional (can
one comprehend two word streams simultaneously). But there
is also a problem of rivalry and suppression. As one reads
the word fixated by one eye, the word which is simul@aneously
fixated by the other eye tends to disappear. If type fonts
are similar, as with two pages from the same book, one en-
counters an additional difficulty: the “words" one fixates
may be made up of letters seen by both eyes, while other
letters from both eyes are suppressed. Such words will gen-
erally not make sense. In some cases, letters will be com-
bined from pieces of letters from both eyes‘and will also be
nonsense. It may be concluded that semantic information
processing routines, such as may be involved in word compre-
hension as well as character recognition, do not control the
rivalry and suppression mechanisms.

Another example of this paradigm which is perhaps more
adapted to visual thinking is shown in Figure 2:9. The two
half images contain different features of a face, along with

a non-face feature, a short vertical line in the right half
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image which is rivalrous with the "eye* feature in the left
half image. The combined view may be a completed face, in
which features from either half image are assembled into a
new semantic unit with the vertical bar suppressed, or the
combined view may be of a face with one eye replaced by a
vertical bar. My experience is that both configurations
occur with roughly equal probability, and that one sees re-
peated alternation between the two with continued viewing.
Again, the conclusion is that semantic, efferent control is
not critical in suppreséion pﬁenomena.

One argument advanced by Helmholz in support of the high
level suppression control hypothesis makes use of the second
paradigm: search for a suppressed feature. Helmholz reports
that when one views the orthogonal grid stereogram (FPig. 2:2c)
he may willfully cause one or the other grid to become domi-
nant by appropriately directing his attention. However, this
demonstration is not convincing because eye movements may
play a critical role. A moving stimulus on one retina will
tend to dominate and suppress a stationary stimulus on the line.
other retina. Thus, motion is a factor affecting the afferent
control of suppression. If, when one views an orthogonal
grid stereogram he moves his eyes parallel to one grid and
perpendicular to the second, the latter will be a far stronger
stimulus and will tend to become dominant. Thus, an alter-

native explanation of one's ability to purposefully alternate

Binocular combination of this
stereogram resul
ig eigher a face, with the vertical %ine sup;r::sed
a face with one eye replaced by the vertical '
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betﬁeen grids is that he has, perﬁaps "unconsciouély”.learned
to move his eye in one direction to.éee one grid and in an
orthogonal direction to see the other grid. In this case,
control of ocular dominance is indirect and dependent on
changes in the afferent stimulus. Strong support for this
second explanation of Helmholz's example is obtained when
grids are replaced by uncorrelated random dot stereograms
(Fig. 2:7a). In this case, direction of eye movements does
not differentially enhance stimulus strength of the two half
images. In my experience, it is very difficult to willfully
change ocular dominance with this type of stereogram. If one
adds small monocular "flags* to either half image and gives
himself the task of locating the suppressed flags, the search
may take several seconds. Even then the dots seem to become
visible only after an uncontrolled change in ocular dominance.
Since search for flags in the dominant half image takes a
small fraction of this time, we may conclude that suppressed
information is not available at an unconscious level for .
examination by attention directing and search mechanisms. A
more parsimonious assumption is that suppressed information
is actually lost.

To summarize this section, evidence is given to show
that suppression during binocular combination is not under
high level efferent control. 1In terms of the flow diagram

in Figure 2:5, it may be concluded that control pathway 5,
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and hence information processed in box C, does not play a

major role in control of suppression.

2.5. Information Coding -

How is visual information coded at the level of the
visual system at which rivalry and suppression are mediated?
In view of the fact that the minimal rivalrous stimuli are
contours of different orientationsu. it is tempting to suppose
that this coding is largely in terms of elementary contour
segments. These elementary featﬁres of the. human visual
system may correspond to the “simple cells” found in the
visual cortex of cats and monkeys by Hubel and Wiesel (19¢&2,
1968). The code might also include some compound features,
composed of several contours, as in Hubel and Wiesel‘'s com-
plex and hypercomplex cells. If image coding of this kind
does exist, we might account for rivalry and suppression by
postulating reciprocal inhibition between cells which code
different features in roughly the same visual direction.

It is interesting to note that suppression is subjec-
tively similar to the fading of retinally stablized images
(Riggs et al., 1953; Pritchard, 1961): in both cases indi-

vidual stimulus points seem to completely disappear and groups

I
We arec not interested here in unc i i
. . ontoured stimuli
:2t§h may be rivalrous due to a difference in color or inten-
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of points gisaépear together. fn the case of stablized
'images. it has been'suggested that these groups of stimulus
points which fade together actually represent single, elemen-
tary features in the image code. The group fading phenomenon
is cited as evidence of feature coding in human vision.

(This interpretation is suggested, for example, by Kaufman,
1974) . For exam;le. if a triangle image is stablized on the
retina, corners or edges may disappear as unifs. If these
units actually correspond to elementary features in human
vision, and if reciprocal inhibition between detectors for
these features is responsible for suppression of rivalrous
stimuli, then a careful systematic examination of rivalrous
stimuli may allow us to discover the elementary features of
human vision by psychophysical means.

So far in this section, I have discussed what may be
called a feature detection theory of rivalry. 1Its principal
postulates are, again: 1) images are coded by activity in
feature-specific neurons, and 2) suppression is due to inhi-
bition between neurons which code different features. Since
the feature-specific neurons found by Hubel and Wiesel are
principally binocular, we shall assume the feature detectors
of this model are also binocular, .so that the proposed
rivalry mechanism resides in box B of Figure 2:18. Thus the
feature detection theory corresponds to architecture 3, in

which suppréssion is mediated by pathway P4.
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The feature detection theory has difficulties both on
theoretical and empirical grounds. For example we must
account for the fact that inhibition between rivalrous fea-
tures occurs vhen the features are presented to opposite
eyes, but not when they are presented to the same eye. Sup-
pose that a short vertical bar is presented to the left eye, -
and a short horizontal bar to the corresponding region of
the right eye. These features activate horizontal and ver-
tical bar &etectors in cortex (box B, Figure 2:8) as shown
in Figure 2:10a. The detectors are binocular, so will be
activated when the appropriate features is presented to
either eye. Therefore the same detectors are activated by
the "plus" sign presented only to the right eye in Figure
2:10b. In the first case, rivalry occurs, so we postulate
reciprocal inhibition between the detectors. Inhibition
*suppresses® activity in one or the other detector. However,
if this inhibition between binocular feature detectors actu-
ally exists, rivalry and suppression should also occur in
case b. That is, when one views a "plus sign" with one eye,
he should tend to see either a vertical line segment with
the horizontal suppressed, or vice versa. In fact, entire
plus signs are easy to see even with monocular viewing:

both line segments seem to have equal brightness and there



137

is no rivalry sensation.5 As this example makes clear,
suppressive inhibition should occur between detectors for
dissimilar features only when the detectors are activated by
stimuli which are presented to different eyes. This is a
dilemma for the feature detection theory of rivalry, since
we have assumed that feature detectors are binocular. The
simplest solution to the problem is to abandon this assumption.
We might suppose instead that stimuli presented to the two
eyes are coded separately, but still in terms of elementary
features, Each monocular feature detector will inhibit only
detectors for other features in the other eye. A model based
on these interé%tions between monocular codes corresponds to
architecture 1, as described in section 3 of this chapter.
Merits of this type of model will be considered shortly.

On the other hand, it may not be necessary to abandon
the idea of binocular feature detectors if we suppose inter-
actions between detectors are properly dynamic. Note that

in the above example there are more features present when the

S5Campbell and Howell (1972) have observed *monocular
rivalry.* When two sinusoidal gratings which differ in color
and orientation are superimposed and monocularly viewed, one
or the other may seem to dominate at a given moment, and
dominance alternates between grids over time. Monocular
rivalry seems to be peculiar to sinusoidal grids. The effect
is reduced if the grids are made the same color or if square
wave grids are used. Monocular rivalry certainly does not
occur frequently under normal viewing conditions, while bin-
o§¥1a£ rivalry is common. Eye movements may help explain the
effect.

el
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Left Right

Stimulus:
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+

Binocular
Feature Detectors -

Left Right
Stimulus: , +

(b)

Binocular
Feature Detectors =

Figure 2:10

Binocular feature detectors for vertical and hori-
zontal bars are shown stimulated by features pre-
sented to opposite eyes in ‘'a', and a single eye in

'b'. If inhibition between detectors causes sup-
pression in ‘'a', then it should cause suppression in
‘b* as well.
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two barz are presentcd to one eye, as a “"plus sign," than
when they are presented separately to the two eyes. In
pérticular, there are features which describe the spatial
relation oi the two line features, i.e. elementary features
which record the fact that the two line segments bisect each
other and form four right angles. The various features which
are excited when the two lines are presented to a single eye
form a consistent zet of features. On the other hand, if
only the horizontal and vertical line segment detectors are
excited, as in binocular presentation, the set of excited
features is incomplete or inconsistent. The binocular fea-
ture detection thecry of rivalry may work if there exist pro-
cesses which organize or "assemble" elementary features:

when the features are an inconsistent set, they cannot be
fully assembled and the system d;sregards. or ;suppresses"
extra, inconsistent features. Thus by a dynamic consistency
checking process at a binocular ‘level, we may explain what
suﬁjeptively appears to be eye specific suppression.

There is, however, another difficulty with a binocular
feature detection theory of rivalry. When suppression occurs
it is not specific to the rivalrous features but extends to
all features occurring within a local region of the same eye.
Thus when a particular feature is suppressed, nearby features
which are not rivalrous may also be suppressed. This effect
was clearly demonstrateq in the case of uncorrelated random

dot stereograms, Figure 2:7a. While it may be possible to
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account for this area suppression phenomena in terms of dy-
namic feature organizing processes, within the context of a
binocular feature detection theory, that theory must be very
complex indeed. 1 shéll not consider the theory in any
greater detail, becauce there are much zimpler theoriex which
follow from the alternative aszumption that supprecsion takes
place at a monocular level (box A).

The observation that suppression spreads over regions of
a monocular image suggests not only that suppression occurs
at a monocular level, but that inhibition responsible for
suppression is directed at ali-;;;Ezafeatures. or stimulus
points, within the region, rather than just at the specific
features which are rivalrous with features seen by the other
eye. An "area theory" for suppression follows from these
observations. According to this theory, suppressive inhi-
bition is not feature-specific, but directed at all stimulus
points within a "target area" of one monocular image.

The area theory corresponds to a model architecture in
which suppression occurs in box A of the flow diagram in
Figure 2:8. In addition, the control pathway must be intrin-
sic, P1. Efferent control, via P3, cannot work for the
following reasons. Information concerning the eye of origin
of particular stimulus features is not retained in box B, so
the proposed efferent suppression signals must be the same

for both eyes. Since the inhibition is not feature-specific,
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all features should be suppressed in the same target area of
both visuél fields.

Within box A, image information may be coded in terms of
activity in neurons with concentric and antagonistic center-
surround receptive fields. This type of code is known %o
exist in cats and monkeys in the monocular cells of the lat-
eral geniculate body, so is reasonable on anatomical and
physiological grounds. It is also attractive for more theo-
retical reaaons.6 Pirst, the level of activity in neurons of
this type is roughly equal to the second spatial derivative
of the stimulus intensity function within the receptive field.
Thus image contours are particularly good stimuli for center-
surround neurons, so these neurons respond well to just the
type of stimulus which tends to dominate in rivalry situa-
tions. Furthermore, when the interocular interactions include
spread of inhibition and hence the possibility of recurrent
disinhibition (as in Figure 2:16), there will be a tendency
for a number of center-surround cells which are stimulated by
a contou} in one eye, to becdme dominant together, while
another group of cells which are stimulated by a differeht
contsar in the other eye may be suppressed together. This
cooperative behavior can account for the apparent feature-

zpecific nature of suppression.

6Sperling (1970) has also assumed center-surround
coding in his model for rivalry and suppression.
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In this section, several arguments have been advanced to
discredit feature detection theories of rivalry and sup-
pression, and an alternative area theory has been introduced.
All suppression architectures defined in Section 3 have been
eliminated, except the one which places suppression at a mon-
ocular level under intrinsic control. It has been suggested
that image coding in this system is in terms of activity in
cells with center-surround receptive fields. This code is
further déveloped in the next section, while the credibility
of the area theory as a whole will be established in later

sections in which the model is simulated.

2.6. Scale Factors

Here, and in all subsequent discussion, we shall assume
that information is coded in terms of activity in monocular
cells with antagonistic center-surround receptive fields.
Suppose that the stimulus image at a given moment in time is
described by the intensity function F(E,9), where & is direc-
tion in the visual field, and E designates the eye (E = Left
or Right). The stimulus excitation S(E,9) of a given neuron
which has a receptive field centered at 8 is given by the

convolution:

S(E,e) = jF(E.ﬂ) g(g-0) d ¢
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where g is a weighting function which characterizes an antag-
onistic center-surround receptive field;'see Figure 2:11a.
It is not important to define g quantitatively, but we assume
it is symmetric about zero, triphasic, and jé(w)d¢ = 0. In
the absence of inhibition from other cells, the activity
level of a cell, A(E,8), is proportional to the stimulus
S(A,0). However, we assume that activity in any cell which
codes information for one eye (E) has an inhibitory influence
on cells cbding information in the corresponding region of
the other eye, (E). The strength of the inhibition directed
at the cell with location a. is proportional to the activity
level A(E,8), and is maximal when & = @, but decreases mono-
tonically as Ia - el is increased. In particular suppose
that there is a weighting function w(g) associated with inter-
ocular inhibition, which is symmetric about ¢ = 0, and which
decreases monotonically to w(#) = 0 for large @. For example,
w(@) may resemble a gaussian distribution, as in Figure 2:11b,
but again the quantitative description of w is not important.
The inhibition at point 8 of eye E is due to activity in

a cell centered at 8 in eye E is:
1(£.8) = A(E,8) w(f - o)

This inhibition may cause "suppression" of activity A(ﬁ,a)

(that is, it may reduce A(ﬁ.a) to zero) if it exceeds some

~
.
e
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g

0]

Pigure 2:11

Weighting functions used to compute neuron responses

and inhibitory interactions.
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critical value. Note that the range over which this sup-
pression may occur increases with A(E,8), and decreases with
increases in A(E,8).

If it is assumed that the receptive fields of all cells
are characterized by the same weighting function, g, and that
all interocular interactions are characterized by the same
weighting function, w, then the model is a "single channel"
model of rivalry. Alternatively, we may consider a "multi-
channel" model in which all cells have a center-surround
receptive field organization, but the dimensions of this
receptive field may vary from cell to cell.7 Suppose that
receptive fields differ only in scale. Then a scale para-

meter, s, may be associated with the stimulus convolution:

S(E.8.s) = é]F(E.m-g(Je—;—ﬂ) ag

Furthermore, suppose (for reasons which will be clarified
later) that inhibition between cells of different eyes is

strongest for cells with the same value of s, and decreases

7The *“channels" described here should not be confused
with the principal and control channels discussed in Section
3. Other evidence based on the visibility of sinusoid
gratings and supporting a multi-channel model, in the present
sense, has been obtained by Graham, 1974.
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monotonically as the difference in s values increases.
Therefore, if we let G represent this monotonic decreasing,
symmetric relationship, we have the following description of

interocular inhibition:

I(E,68.8) = A(E,0,5) w(d - 8) G(S - s)

The weighting function G may have the csame shape as w,
Figure 2:11b. The scale parameters vary from the limit of
resolution to several degrees.

The various functions used here to define the multi-
channel model will be made explicit in laterisections of this
chapter. In the remainder of this section, I will consider
experimental evidence which suggests a multi-channel rather
than a single channel model.

Two elements from opposite eyes which have receptive
fields centered on the same point, and which are characterized
by the same receptive field scale, are said to "fuse" if re-
ciprocal inhibition of one by the other is not sufficiently
strong to suppress activity in either element. (The possi-
bility of “fusion" of elements centered in slightly different
visual field positions, i.e. disparate elements, will be
considered in the next chapter). According to this definition
of fusion, elements with receptive field scales within one

range of values may fuse, while other elements in the same
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area of the visual fieid but with larger or smaller receptive
fields may be unfused and rivalrous. As was noted in Section
2, it is this possibility of .partial fusion in the multi-
channeled model which will allow us to explain co-existence
of rivalry and stereopsis in stereograms of Kaufman and
Julesz, as well as stereopsis with dissimilar and diplopic
images.

Two predictions which can be made with the model are
that the range of suppression associated with a given monocu-
lar feature should depend on contrast, which determines
s(E,e.s), and feature size, which determines the scale of
cptimally stimulated cells. These predictions are consistent
with the observation of Crovitz and Lockhead (1967) that line
contrast in the stereograms of Figure 2:3a affects the range
of suppression, and my own observation that complete suppres-
sion of a grid by another orthogonal grid can occur even if

the bar widths of the grid are greater than two degrees.8

8Another prediction of the model is that a grid pre-

sented to one eye will suppress another orthogonal grid of
the same spatial frequency presented to the other eye about
50% of the time. It may be more or less effective in sup-
pressing grids of other spatial frequencies. We may expect
to find a balance where grids of different frequencies are
equally likely to suppress one another, by varying the con-
trast of one of the grids. It may be_possible to obtain an
estimate of the weighting function G(§ - s) by systematically
measuring these balance points for many combinations of

grid frequencies.
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Evidence in favor of a multi-channel model also comes
from the stereograms in Figure 2:7: It was observed in
Section 2.2 that a random dot pattern of about 50% density
is very effective in suppressing anotﬁer uncorrelated pattern
of the same density. Areas of suppression could be identi-
fied by adding small, isolated pencil marks, or "monocular
flags,” to either half image - the flags were suppressed
along with nearby dots in the random pattern. Now suppose
we construct a stereogram in which a random dot pattern is
presented to the left eye while a uniform, uncontoured field
is presented to the right. If a small pencil mark is made

in the uniform image, this mark becomes dominant and suppresses

nearby random dots in the other image! Thus when the pencil
mark is isolated in the uniform field (Fig. 2:7c), it is a
far stronger stimulus for suppression than are dots of the
random dot pattern. But when the same pencil mark occurs in
one random dot pattern (Fig. 2:7b), it is relatively uneffec-
tive in suppressing dots in another random dot pattern.

This behavior is contrary to what should be expected
from the single channel model. According to that m&del.
suppressive strength should increase monotonically with
amount of contour or with number of dots per unit area. On
the other hand, these results appear to be consistent with
the multiple channel hypothesis. A random dot pattern is a
good stimulus for units in which the receptive field center

is about the same size as stimulus dots. Units with much
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larger receptive fields are poorly stimulated since both the
center and surround subregions will be exposed to large num-
bers of dots. A single isolated pencil mark will be a fairly
good stimulus, even for units with large receptive fields,
since when it stimulates one subfield of these units, its
effect is not balanced by other dots in the antagonistic sub-
field. It is these channels in which elements have large
receptive fields that control dominance in Figure 2i17c.

A final example of scaling is demonstrated by the stereo-
grams of Figure 2:12. These stereograms are constructed of
pairs of different sized blaclk disks, which appear concentric
when binocularly viewed. In the combined image, the smaller
disk appears entirely black and there is a white region just
outside its boundary. The larger disk appears black just
inside its boundary, but this grades gradually to gray and
then white as one follows a radial path from the outer disk
boundary to the inner disk boundary. We are interested now
in the apparent intensity profile of this gray region. I
have drawn a rough estimate of the radial intensity profiles
for each of the stereograms in Figure 2:12. These profiles
reflect the horizontal spread of inhibition associated with
each contour. If the sizes of both disks are doubled or
qQuadrupled {compare Figures 2:112a,b,c), the profile does not
change significantly except in scale along the radial axis.

Thus it seems that the range of contour interactions increases
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proportionally with size of the stimuli (disks). On the
- ——
other hand, if only one disk is varied in size (Figures 2:12c,

d), there are qualitative changes in the intensity profile.

2.7. Summary

Many aspects of the binocular rivalry and suppression
phenomena have been considered and specific hypotheses about
the neural‘circuits which underlie thesg phenomena have been
proposed. These hypotheses will become the defining assump-
tions of the neural network model which is described in the
next section. Computer simulations of the model will also
be described and these are in substantial agreement with all
empirical data discussed thus far. Specific hypotheses may

be summarized as follows:

1. The apparent disappearance of regions or features
of a visual image in binocular suppression is due to the
elimination of the neural activity which codes this visual

information by means of neural inhibition.

When a stimulus is not consciously perceived, we say
that it is suppressed. The above conclusion states that
supprgssed information is also not available for subconsciou'”
information processing. Evidence for this conclusion is of

two sorts. According to the present interpretation of data.
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Figure 2:12

In each of these stereograms the center dots are
superimposed so the smaller disk appears concentric
with the larger disk. The small disk “carries with
it" a "halo" of white. The extent of the halo is
indicated roughly by the apparent intensity profiles
to the right.

152

stereopsis is impossible if all image information from either
eye is suppressed. Also it was concluded that one cannot
control ocular dominance by appropriateiy directing his
wfocus of attention" and suppresced information is not avail-

able to visual search tasks.

2. Dominance and suppression are under afferent/

intrinsic control.

Certain stimulus qualities, such as contrast and feature
size, seem to determine ocular dominance. The alternative
hypothesis, %hat dominance and suppression are under efferent
control is discredited by the same arguments as were men-
tioned above in support of hypothesis 1. In addition, it has
been shown that with complex rivalrous stereograms, the com-
bined image is not necessarily pieced together from subregions
of the two half images in a way that yields a semantically
meaningful or familiar perception. This was true with the

face stereogram, Figure 2:9.

3. Suppressive inhibition is directed not at individual
elementary features, but at monocular afferent activity which
codes all stimulus points falling within a local region of

the monocular visual field.

Support for this hypothesis comes from the observation
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that when a particular feature is suppressed, nearby stimulus
points are also suppressed, even if they are not rivalrous
with stimuli in the other eye. The uncorrelated random dot
stereozram of Figure 2:7 provides a good jllustration of this

effect.

4, Suppressive inhibition is recurrent and spatially

diffuse.

If a stimulus presented to one eye is dominant, it will
inhibit stimuli presented to the corresponding point and
neighboring points of the other eye. On the other hand, if
the stimulus is not &ominant but suppressed, it will not
inhibit stimuli to the other eye. This type of recurrent,
spreading inhibition is postulated to account for the obser-
vation that regions of dominance by one eye tend to spread
over the visual field and may include subregions which, on
the pasis of strictly local stimuli, would normally be domi-
nated by the other eye. Dominance at one point results in
disinhibition of neighboring points of the same eye, thus
increasing the probability that these points will be dominant

as well.

5. There is a distinct state of binocular, sensory

fusion.
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Fusion rather than supprescion may account for binocular
single vision when the stimuli to the two eyes are not too
different. This conclusion.follows from two types of psycho-
physical evidence. Again we note that stereopsis fails when
one or the other half images is completely suppresced due to
rivalry. This implies that stereopsis mechanisms rely on
unsuppressed information from both eyes. Singleness of
vision Qith normal correlated stereograms is best attributed
to sensory fusion. Suppression, if it were to occur with
correlated stereograms, should show the same tendency to
spread over extended regions of the visual field, as it does
with uncorrelated, clearly rivalrous, random dot stereograms.
This was shown not to occur.

It was necessary to modify the notion of fusion to
account for a number of stereopsis and rivalry phenomena.

In a "multi-channel" code, it is possible for fusion to occur
in some channels but not necessarily in all channelc for a

given visual direction. (See hypothesis 7).

6. At the level of the visual systbém at which binocular
suppression occurs, visual information is coded by activity
in neurons with (monocular), antazonistic center-surround

receptive fields.

No specific experimental support it offered for this

hypothesis. However, ac will be made clear in the model
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simulation in the next section, this type of code is adequate
to account for the various phenomena which have been dis-
cussed here. Neurons with this type of receptive field res-
pond well to image contours, and when this fact is coupled
with hypothesis (4) of recurrent spreading inhibition, we may
account for the apparent feature-specific rivalry which
occurs between differently oriented line elements.

The alternative hypothesis, that coding is in. terms of
elementarf features (Hubel and Wiesel‘'s simple and complex
cells) could be incorporated in the model>and result in
essentially the same predicted behavior. The center-surround
code is preferred here because it is simpler to model and
because this will be more consistent with subsequent discus-
sion of the lateral geniculate body as a possible locus of

rivalry interactions.
7. The code is "multi-channeled.”

All neurons which code image information at the level
of binocular rivalry interactions are assumed to have the
same center-surround receptive field organization. However,
the size or scale of the receptive fields varies from neuron
to neuron. Neurons which have receptive field sizes falling
within a narrow range may be called an "information channel.*

The entire image is coded by each channel, but the scale of
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imaze details which predominate differs between channels.
Phis multi-channel assumption is critical to the explanation
given here of a number of phenomena such as the “paradoxical®
co-existence of fusion and rivalry within the same area of
the visual field, and the observation that the range of

suppression increases with stimulus size.

This concludes the list of hypotheses. It ;s inter-
esting to'note that the neural structure for binocular com-
bination described by these hypotheses is about the simplest
of any considered here. While one will generally favor a
simple model to a more complex model wher both account for
empirical data, it was not this consideration which guided
formulation of the present structure. Rather, the simple
structure proved more consistent with the psychophysical data
than did alternative structures.

The fundamental conclusion of this study is ‘that binocu-
jar combination seems to occur at an early stage of visual

processing and seems to be mediated by rather unsophisticated

_neural processes. In suppressing image features, the system

effectively throws out visual information. One may presume
that there is a reason for disposing of information: for exam-
ple, the visual system has limited computing resources so it
may not be able to simultaneously process two d;fferent
images precented to different eyes. But it is most inter-

esting that decisions about what information to suppress can
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be made so early in processing without reference to semantic
or other high level information.

This observation has important implications for computer
vision: it should be possible to implement binocular combina-

: s - . e :
tion in computer vision with low level, non-semantic, and

relatively unsophisticated image processing.

2.8. The Model, Part I: Image Code

To simulate binocular combination of rivalrous stereo-
grams,Awe must 1) code the haif images, 2) combine the two
half image codes into a single binocular code, and 3) decode
the binocular code in order to determine if the combined
image generated by the model matches empirical data. In this
section I shall be concerned with image coding and decoding,
and in the next section I shall described the procedures for
combining codes and describe several simulations.

The coding (and code combining) procedures are based on
the seven hypotheses formulated in previous sections of this
chapter. These procedures are implemented in a way which
facilitates computer simulation. Thus each input image for
the model is digitized and expressed as a two-dimensional
array of numbers such that each number represents the image
intensity at a corresponding point in the real image. The
image code is expressed as several arrays of numbers, one

array for each code "channel.” We may imagine that every
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code element corresponds to a neuron in the visual system
with a concentric center-surround receptive field. The ele-
ments within one channel all have receptive fields of the
same size, While elements of different channels have different
size receptive fields.

The numerical value of each code element is obtained
by convolving an appropriate weighting function with the
input image. These convolutions are performed very rapidly
by a recursive algorithm. This rapid coding is possible
because the receptive field scales which characterize various
channels differ by powers of 2, and the elements of each code
array are positioned so that the inhibitory surround of an
element in one array may be obtained from the excitatory cen-
ter of an element in another array. The code may be repre-
sented as a hierarchy of arrays., as shown (for one dimension)
in Figure 2:13, and I shall refer to particular arrays by the
level they occupy in the hierarchy. Thus a level 1 array has'
elements with the smallest receptive fields, and the size of
the receptive field of an element in level n is twice that
of an element in level n - 1. Note that the level ﬁ array
has half the number of code elements as level n - 1. (Actu-
ally, in a 2 dimensional code, the number of elements differs
by a factor of 4). However the reduced number of elements
still "covers" the image because their receptive fields are

larger.
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Image Code

Figure 2:13

The “image array” is the function F(i,J) which specifies image
intensity at a regular array of points. Circles represent code
elements. These are arranged in arrays and each array is ref-
erenced by its level in a hierarchy of arrays. The hoizontal
position of an element within the array corresponds to the po-
sition of its receptive field center with respect to the image
aﬁray.h Only one dgmension of the two dimensional array is
shown here. :

LY
.
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The weighting function which defines the receptive field
of each element may be divided into iwo parts. g, and g,
which determine the contributions of the center and surround
respectively. Both -3 and g  are bell shaped curves which
are normalized so that the area under the curves it equal to
1 (in appropriate units). However, the width of g  is approx-
imatély twice that of 8s+ @s shown in Figure 2:1la. If we
let S(i,j,1) be the code value of the element in position
i,j of.level 1, then this also may be expressed as the dif-

ference between the center and surround contributions:
S(1,3,1) = 8,(4.3.1) - Sg(1,§.1)

The Sc and S8 contributions are determined by the following

recursive procedure.9

Let F(i,j) be the input image array, and L be the number
of code levels.

Forl =1,

9The value obtained for S by this procedure may be
positive or negative. One interpretation of a code element
is that it corresponds to a neuron with a center-surround
receptive field, and the level of activity, or spike fre-
quency, of the neuron is S. To accomodate both positive and
negative S values, we may suppose that each code element is
actually a pair of neurons, both of which have the same
receptive field but in one, the center is excitatory (this
codes positive S) and in the other, the surround is excita-
tory (this codes negative S). Alternatively we may suppose
that S is a departure from a non-zero resting rrequency.
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S.(i,3.1) = F(i.)

For 1>1 and 1<€L,

% ﬁ w(n,m) Sc(n+21.m+2j.1—1)

=-2 m=-2

S(i.3.1)
Forl =1

ss(irjrl) =

[}
o

For 121, 1<L,

i+n j+m
Sg(ij.,1) = 4 ﬁ § w(n.m) s (FF1FA%Y)
=-2 m=-2 c
L_W—‘
i+n even,
j+m even

Thus the central contribution, Sc’ to S at level 1 is simply

the intensity value F at the corresponding image point.10

. 1?The code as described here represents a linear sum of
image intensity over the receptive field. However, if F(i,j)
is the log_of the image intensity plus one (so the F(i,j) is
always p081t1ye). then the same coding algorithm may be used,
but with a slightly different interpretation. A code element
represents tpe log of a kind of integrated product of image
intensities in the central receptive field region, divided by
a similar integral over the surrounding receptive field
region. The code in this case represents image contrast
independent of background illumination.
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The central contributions to S at other levels is obtained
recursively by a weighted sum over a S by 5 window of the
values obtainéd at the next lower level. The surround con-
tribution, Ss. at the highest level, L, is assumed to be zero,
while the surround contributions at other levels iz deter-
mined recursively from values obtained for S, at the next
higher level. The same weighting function appliés for both
domputations. but in computing Sy, only about one out of
every four terms indexed in the § by 5 window is actually
included in the sum. This reflects the fact that each code
element has one quarter as many parent elements as daughter

elements in the hierarchy.11

Note that in computing Ss. only
those values of n and m are used which when added to i and

j respectively result in an even number. (The reader inter-
ested in details of indexing should refer to Figure 2:13).
The weighting function is designed in such a way that the
total of the weights of terms used in this double sum is
always 4, regardless of the values of i and j. (see below).
This is why the sum is multiplied by 4.

The choice of weights w(n,m) is subject to these con-

straints. First, the total weight within the 5 x § window

11‘I‘he exact number of parents an element has dependr on
its position in the hierarchy of elements. The averacge< iz
about 6. However, weights are such that each parent contri-
butes effectively four times as much to S. as each dauzhter
contributes to S_,. The reader interested ir details of this
relationship is adviced to study Figure 2:13 and work through
several examples.
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should equal 1:

2 2
2 2wnm=1
n=-2 m=-2
Second, the weighting pattern is symmetric about n = 0,

m= 0, so for each n,m
w(n,m) = w(n,-m) = w(-n,m) = w(-n,-m).

And third, the weights are distributed so that all
stimulus points F(i,j), contribute equally to the code at
each level of the code hierarchy. This condition is satis-

fied when for i = 1,2 and J = 1,2

2 2
> Ezw(n.m) =3

n=‘2 = -

i+n odd,
Jj+m odd

For example, the following weighting pattern satisfies
these constraints: (the i,j entry in this array is equal to

w(i,j) times 48).
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j= -2 -t 0 1 2
i==2 | 0 1 2 1 o0
S I T S S R |
o]l 2 6 8 6 2
1|1 ¥ 6 4 1
2]l o 1t 2 1 o

The image code is now fully defined. Still there are
several interesting features of the code which should be
pointed out. First we may note that the actual receptive
fields of elements at various levels of the code hierarchy
have the desired triphasic symmetric pattern. Example
receptive fields are shown in one dimension in Figure 2:14

12 In each cace, a

for the first 4 levels of the hierarchy.
dashed line shows the receptive field of the neighboring
elements at the same level. It is apparent that the density
of elements is such that the central portions of neighboring
elements partially overlap while ﬁon-neighbors do not. This
provides full coverage of the image without undue redundancy.
It is worth observing that each code element approximates
a local second derivative. If the locak second derivative of

an image is sampled at frequent enough intervals, and if in

addition, the absolute intensity and gradient of the image

12The weight used here and in other one dimencional
examples are 1/12, 3/12, 4/12, 3/12, 1/12.
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2.9. Model, Part II: Binocular Combination

In this section, I shall describe several procedures for
deriving a single binocular code from two codes for the
monocular images. I begin with the basic combining procedure,
then show how this procedure can be refined.

- Suppose the left and right half images of a stereogram
have been coded in the way prescribed in the previous section.
Each code element has an address, given ﬁy its level, 1, and
its i,j position within that level, and a value, S(1,i.3).
»Corresponding elements” of the two half image codes are
pairs of elements, one from each code, which have the same
address. In the basic procedure forlgenerating a binocular
code, the value of each binocular element, SB(l.i.j). is ob-
tained from the values of the two corresponding elements of

the monocular codes, SL(l.i.j) and SR(l.i,j) by the following

rule:
Let A= [s(1i.3) - Sp.i. )]

Then 4 . . 2
sL(1.1.J)+SR(1.1.a)

2

it A&

Sp(1.1.4)=4

SL(l.i.j) or SR(l.i.j). whichever
Lhas the larger absolute value if A > & .

~—

172

Thus we distinguish two stafes.' Fusion occurs when .the values
of the left and right.code elements do not differ by more

than o. In this case, the value of the binocular element

is simply the average of the valdes of the monocular elgmeﬁts.
On the other hand, suppression occurs when the difference in
these values exceeds o¢. In suppresedan- the value of the
binocular element is set equal to the monocular element with
the largest absqlute value. No provision is made here for
partial suppression or spread of suppression.

A network of formal neurons which could approximately
mediate this simple type of binocular combination is shown in
Figure 2:17. The output of each neuron is equal to the sum
of its excitatory inputs minus the suﬁ of its inhibitory in-
puts times the coefficients C and 1/C indicated inside each
neuron symbol. If inhibition exceeds excitation, the output
is zero. A cpuple of examples will illustrate how this net-
work functions. Suppose C is just slightly less than 1.'and
suppose SL = 0. Then the output.to the right monocular cell
will be CSp, and the output of the binocular cell will be
S

Suppose, next, that S; = Sp = S. Then the output

B = SR'
of each monocular neuron is CS/(1+C) & S/2, and the output of
the binocular neuron is 25/(1+C) £ S, Note that C must be
less than 1 for this solution to be stable. Also C less than
1 implies SB will be slightly larger when both S; and Sg

equal S than when one monocular input is S and the other is
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. C(S,-Sy) if S >S5
3 0 if 5 < s;!

, {c(sR-sl") if Sp25)
s
0

S R” if Sp< SI:

Sg= & (Sp+Sg)

Figure 2117

This three neuron net combines two monocular inputs,
S; and Sp, into one binocular output, Sg. If S; and

S, are about the same they both contribute to S
(gusion). but if one is greater than the other "by a
factor of 1/C or more, only the larger input contri-
"butes to S, (suppression). Note that this net is

like that ~ shown in figure 1:18 except that here there
is no fatigue factor and C is only slightly greater
than 1.
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zero. This implies a slight iﬁcrease in brightness when one
views an image with both eyes open over viewing with one eye
closed. Such an effect has in fact been observed in psycho-
physics experiments (De Silva and Bartley, 1930).

Now suppose S, and Sp are both non-zero, and that they
are unequal. If either input exceeds the other by a factor
of 1/C or more, that input will dominate while the other is
completely suppressed.

A simulation of binocular combination of orthogonal bars
(see stereogram ¢ in Figure 2:1) is shown in Figure 2:18.
Figures a and b show the monocular images. These were coded
and combined, then the combined code was decoded to yield the
binocular image shown in Figure c¢. This result is in sub-
stantial agreement with the psychophysical result: every con-
tour of the monocular images appears in the combined image
and there is a gray level gradient around the inner squares.

There is however one point of disagreement between model
and psychophysical results. While the infensity change
across the contours around the central square has the right
magnitude and direction, the absolute value of the intensity
itself is not right: the image intensity should appear white
just outside these contours in Figure 2:18c. Instead, this
intensity is a gray. This problem is peculiar to cases where
regions of dominance by one eye are immediafely surrounded by

regions of dominance by the other eye. It is due to the fact

“w
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Figure 2:18

These computer generated CRT displays show the in-
tensity patterns of the left and right input images,
a and b, and the resultant combined image,c. This
simulation shows substantial agreement with psycho-
physical results with the stereogram in figure 2:lc.
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that center-surround coding apﬁroximates a second derivative
of the image intensity function, so that changes in intensity
are directly represented, while absolute intensity levels are
not. The problem may not be real: we have not specified the
later stages of visual processing which will interpret the
binocular code. Also, there are a number of modifications to
the code and decoding procedure which could correct the prob-
lem, but which I have not yet implemented. For example,
absolute image intensity levels could be carried by a separate
population of projection neurons. This information may be
incorporated with the binocular center-surround code during
decoding to re-establish absolute background intensity when-
ever dominance changes eyes.

The above procedure for binocular combination may be
refined to include spread of inhibition. Ideally, this would
be achieved by directing inhibition from one element in one
code at the corresponding element in the other code and at
immediate neighbors of that element. However, a slightly
different strategy was used in the present computer model in
order to cut down on time-consuming iterative processing. A
weight W(1,i,j) was associated with each code element of the
monocular codes. Initially this weight was set equal to the
code value S(1,i,j), but in the process of combining the

monocular codes, the values of individual weights might be

.modified. In particular, it is the weight rather than the



177

S value which determines the dominant element of each pair
of corresponding elements, and whenever an element in one code
is suppressed, the weights of neighboring elements in that
code are reduced. High level elements are combined first,
and within each level, the elements with the largest weights
are combined first.

I have simulated Kaufman's experiment (Fig. 2:3a) using
this weight modifying procedure, with results shown in
Figure 2:19. Again, figures a and b show the left and right
monocular images while figure c shows the image obtained by
decoding the binocular combined code. Note that the section
of the horizontal bar which falls between the two vertical
bars has been suppressed. If the simulation is repeated with
these bars farther apart, the horizontal bar section will not
be completely suppressed. I have simulated a number of other
stereograms with similar qualitative agreement with experi-

mental results.

Figure 2119
Tkiv: i: a computer simulation ol binocular combination
of the stercosram chown in fifure 2:3a. The input
imape: are chown in a and b, and the combined image

in .
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CHAPTER II1
A MODEL FOR STEREOPSIS

Introduction

In this chapter I shall consider two questions relating
to stereoscopic depth perception: how dﬁes the brain combine
bits of information from the two eyes in sensory fusion, and
how does it resolve the local stimulus matching ambiguities
described in Chapter 1? That these processes may result in
perception of depth is of secondary importance in this study.
Sensory fusion occurs when a feature presented to one eye
combines perceptually with a similgr feature presented to the
other eye, so that only one copy of the feature appears in

theé perceived visual field. The curious property of sensory

fusion is that a feature presented to a given locus in one eye

may fuse with a feature presented at any point within a
region of the other eye, at different moments in time, while
it cannot fuse with two features at different positions with-
in that region simultaneously. It is this "plasticity" of
retinal correspondence which needs to be explained.

The stimulus matching ambiguity arises when a feature
in one eye could fuse with any one of several features in

the other eye. When the ambiguity is properly resolved, the

way in which points are matched locally fits into an overall
pattern of fusion and contributes to global perception.

Both the fusion and ambiguity problems have been solved,
in principle at least, in projection field models of stere-
opsis. Several of thése models have been proposed in recent
years, and these will be critically reviewed in the first
section of this chapter. On the other hand, there are sever-
al details of stereopéis phenomena which seem to be inconsis-
tent with the projection field structure. A "double projec-
tion field® model will be proposed in the following sections
to account for these phenomena.

There are other theories of stereopsis which do not
postulate projection fields, and do not assume that sensory
fusion occurs in binocular vision. A number of these
theories have been reviewed by Kaufman (1974). (Kaufman also
points out a number of difficulties with projection field
models, and these will be considered later in this chapter).
As was discussed in the last chapter, suppression is the
principal alternative to fusion as an explanation of binocular
single vision. There several arguments were given in favor
of the fusion mechanism, so pure suppression theories of
stereopsis will not be reviewed here. However, suppression
does play a role in stereopsis, so both fusion and suppres-

sion will be incorporated in the model proposed here.
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3.1. Projection Field Models for Stereopsis

Stereopsis models have recently been proposed by Julesz
(1971), Dodwell (1970), Sperling (1970), Dev (1975), Nelson
(1975) and Marr (1974). My objective in this section is to
briefly outline these models and to identify specific strong
and weak points of each. For the most part, these models may
be discussed as a group, for they represent variations on a
basic projection field model proposed earlier by Boring
(1933) and others. The dipole model of Julesz was the first
to address the local stimulus matching ambiguity problem, but
since it fits least well into the projection field format, it
will be discussed last.

The basic neural architecture of the projection field
model is shown in Figure 3:1. Image information from each
eye is projected into a layered, retinotopically organized,
neural network, the "projection field,” in such a w;y that
at each layer, the coded half images from either eye come
together with a/inghtly different disparity. The image
information is coded in terms of elementary features, which
are represented by neural activity in "labeled lines.* These
labeled 1lines are the axons of projection cells with feature
specific receptive fields. The axons pass through the pro-
jection field at an angle, making contact with many "match
cells" along the way. Match cells have an input from each

eye and are excited when the two inputs code the same image
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Pigure 3:1

Basic projection field architecture.
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feature, or "match.* When a match cell is stimulated binocu-
larly by a single object in space, the horizontal position

of the match cell in the projection field codes the direction
of the object, while.its vertical position codes depth.

There is also an array of output lines from the projec-
tion field. Once active, a match cell will “enable" informa-
tion flow from an input line to an output line. In this way
the projection field is essentially a switching network.
Sensory fusion occers when an active match cell causes input
signals on its two input lines to pass onto a single output
line. Plasticity of retinal correspondencelis simply accoun-
ted for by changes in match cell activity in the projection
field. It is freqqéntly assumed that the output lines are
the axons of the match cells, so that these are also labeled
lines coding featufe. binocular direction and depth. There
are, however, important variations on the match cell concept
in the individual models.

" One difficulty with the projection field concept is the
possibility of multiple fusion. This is illustrated in Fig-
ure 312, where pairs of simllar features presented close
together in the two eyes activate four match cells. There
are two extra matches, or "ghost images’ in this case, and
the number increases rapidly as more features of the same
kind are added to each stimulus image. The solution which is
generally proposed to the ghost problem is that there is
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Figure 312

When seveal copies of a given feature are presented
to each eye, multiple fusion of each can occur, so
that extra "ghost* images should be perceived.
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mutual inhibition between match cells which code a given fea-
ture in roughly the same direction but at different depths.
The inhibition is reciprocal and once one cell becomes
active, the cells which it inhibits cannot become active,
This depth-domain inhibition, though frequently postulated in
the models, is usually not well defined.

The local stimulus matching ambiguity may also be re-
solved by interactions between match cells. This problem is
particularly apparent when the stimulus is a random dot ster-
eogram, Of the many possible matches which occur in the pro-
jection field when viewing such a stereogram, only those which
correspond to dense surfaces in depth should actually be
activated, while others are suppressed by depth domain inhi-
bition. The local matching constraint which leads to a dense
surface is that matches of neighboring features in the input
images should be made at the same disparity. It is therefore
generally proposed that nearby match cells in the same depth
plang facilitate one another. When one image feature is
fused, the activated match cell stimulates its neighbors,
which code the same depth, but slightly different directions,
thus increasing the probability that they also will become
active.

To summarize, in the basic projection field structure,
there are three populations of cells. Two of these code the

monocular stimulus images and provide the input to the pro-
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jection field. The third population, the match cells within
fhe projection field, code the binocular, or “cyclopean”
image. It is proposed that depth domain inhibition ﬁetween
match cells which codé the same binocular direction eliminates
ghost images, while space domain facilitation between match
cells which code the same depth resolves the matching amkbi-
guity.

The recent stereopsis models are variations on this
theme. Each is strong in accounting for some aspects of
stereopsis, but weak in others., Dodwell seems not to have
considered either the ghbst image or matching ambiguity prob-
lems, and his mechanism for sensory fusion is unclear. For
these reasons, the model will not be considered here. SEill
it should be pointed out that the model has several strong
features: the model can respond to monocular as well as
binocular stimulation, depth and image feature information
are coded in separate cell populations (we shall see that this
has advantages), and it is possible for a given binocular
input to have variable apparent direction when fused. There
is empirical evidence for this variability, and it cannot be
accounted for in the other projection field models.

Sperling also does not address the matching ambiguity
problem in his model, but his is the only model to include
both stereopsis and binocular rivalry. However, the space-

domain inhibition in his model which accounts for the spread
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of ocular dominance with rivalrous stimuli, has the effect
of discouraging the formation of extended regions of match
cells activity in one depth plane when the stimulus is not
rivalrous. Marr is more precisé than the others in speci-
fying appropriate inhibitory interactions in the projection
field, but he does not account for sensory fusion. Dev and
Nelson emphasize the matching ambiguity problem, and their
models can account for stereopsis with a random dot stereo-
gram. However, their approach is to detect a signal in noise
by means of averaging in the .space domain and differentiation
in the depth domain, and it is not sufficiently precise in
45 treatment of individual features.

These four modéls will now be outlined along with the
dipole model of Julesz. The various authors use rather
different terms to identify cell classes within their models,
and to identify the stfucture as a whole. To avoid confusion,
all models will be described in the projection field termin-
ology introduced above.

Nelgon. Of the models to be considered here, Nelson's
most nearly conforms to the basic projection field scheme.
only a few points need to be added to the above description.
The input lines to the projection fleld céde simple line
shaped features, or, for convenience in describing model
response to random dot stereograms, small white and black

squares. The depth domain inhibition is directed vertically
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through the projection field along lines of constant binocular
direction, and the strength of inhibition between two cells
decreases with the vertical separation of the cells. Space
domain facilitation decreases with horizontal separation in a
similar way. Each cell facilitates and inhibits itself, but
these recurrent inputs balaﬁce and cancel one another. Also
the numbers of cells coding different disparities is maximum
for zero disparity, which is represented by the middle layer
of the projection field, and decreases monotonically with
increased disparities. This means that monocular stimuli
will usually activate match cells in the zero_disbarity plane
because the greater cell density means there is}more lateral
facilitation. '

Dev. This model is almost identical to Nelson's, but
is of greater interest because it has been defined quantita-
tively and has been simulated on the computer. The principal
difference between the models is that Dev introduces a fourth
class of cells. These are inhibitory and intrinsic to the
projection field, and mediate the depth domain inhibition.
Active match cells facilitate their neighbors in the hori-
zontal direction, but do not directly inhibit néighbors in
the vertical direction. Instead, each active match cell
which codes a particular binocular direction stimulates a
single inhibitory cell, which then recurrently inhibits all

match cells coding that direction. This means that different
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cell populations are responsible for the excitatory and
inhibitory interactions, consistent with “Dale‘'s Law." But
it also means that the strength of inhibition between match
cells does not decrease with their vertical separation, as in
Nelson's model. It is not clear that this is a disadvantage.
for Dev's model, but decreasing inhibition is a feature Nel-
son uses to explain several psychophysical phenomena.

Since Dev's model is defined quantitatively, it can be
analyzed mathematically. For example, it can be shown that
once the projection field is in a stable equilibrium state,
only one match cell will be active per visual direction.

Also system response tO_changes in the input stimuli will
show hysteresis effects like those associated with ambiguous
stereograms. This analysis is given in Appendix B, where it
is also shown that the failure of Dev's simulations to demon-
strate these properties %as due to an incorrect choice of
network parameters.

Sperling. Sperling‘'s model differs from the other
models in several major respects. His model incorporates two
projection fields. The first, or primary projection field
serves the depth and fusion functions of projection fields in
the other models, while the secondary projection field only
compuies depth, and is responsible for stereopsis with large
disparities. Here I shall describe only the primary projec-
tion field.
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There are three classes of cells within the projection
field, and examples of these cells are shown in Figure 3:3.
Match cells in Sperlipg's model are intrinsic to the projec-
tion field. Their function is to (somehow) “enable" passage
of signals from input cell axons to output cell dendrites.

As in other models, match cells coding the same binocular
direction reciprocally inhibit one another. However cells
coding the same depth do not facilitate one another. There
are two types of output cells: one class codes image feature
and direction information, while in the other, depth is coded
by the magnitude of cell activity. This separate represen-
tation of depth and feature information means that the number
of output cells is roughly equal to the number of input
cells, since relatively few cells are required to code depth.
By contrast, the models of Dev and Nelson have many times as
mgny output cells as input cells.

Match cells mediate rivalry as well as fusion. Each
match cell is associated with an output cell and is excited
by an input from only e@amaye, which codes the same feature
as the output cell. In addition, the match cell receives
inhibitory inputs from the other eye which codes complemen-
tary, or rivalrous features. An active match cell enables
information flow only from its excitatory input onto the out-
put cell. Thus the output can be stimulated ﬁinocularly only

when features in the two eyes match. Each match cell which
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