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ABSTRACT

SYMBOLS, a general purpose model-building tool, has been designed
and implemented in order to develop and test the semantic interpretation
portion of the VISIONS system. Following the criterion of modularity,
the data, processes and search concepts of model-building have been
decomposed into units which are natural for the understanding of digitized
outdoor scenes. Multiple-leveled structures are described for the
representation of the model and processes. The strategy‘surrounding the
control of processes in a huge search space is integrated into the system

via a hierarchy of modular substrategies of control.

This research was supported by the National Science Foundation under Grant
DCR75-16098.

%

Computer and Information Science Department
University of Massachusetts

Amherst, Massachusetts 01003



]

-

TABLE OF CONTENTS

I. Introduction . . . . ¢ « « ¢ ¢ o ¢ ¢ e e 0 e 0 e e s
I.1 SYMBOLS . ¢ ¢ ¢ ¢ ¢ + o o ¢ o o o o o o o o o« o
1.2 Modularity . . « ¢« ¢ o ¢« ¢ o ¢« ¢ o & o 4 e e o 0
I.3 Representation . . . . . « « ¢« + « ¢ ¢ o o . . .
I.4 PrOCESSES v v o o o o o o o o o o o o o o & o
1.5 Search Space e e e e e e e e e e e e e e e e

II. Declarative Knowledge: A Multi-Leveled Graph Structure

II.1
I1r1.2

I1.3
IT.4
I1.5

Levels of Abstraction . . « + ¢ ¢« « ¢ « ¢« o o .

Short-Term Model-Specific vs. Long-Term General
Visual Knowledge . . . . « « ¢« « ¢ & &« o & « o &

Model-Building and the Knowledge Framework . . .
The Data Structure for Declarative Knowledge . .
VISIONS' Utilization of SYMBOLS . . . . . . . .
II.5.1 The RSE Structure of VISIONS . . . . . .

III. Procedural Knowledge: A Loose Hierarchy of Model-Building
Processes as a Modular Control Strategy . . . . . . . .

III.1 Organization of Modular Control Strategy . . . .
III.2 The Highest-Level Strategy . . . . . « « + « =« =«
1TII.3 CONTRACTORS . « « o =« o o« o o o o o o o o =« =
III.4 CONTRACTORs in VISTONS . . . . « « « o « ¢ « = &
III.5 FOCUSers, GENERATORs, FILTERs, and VERIFIERs . .
III.6 VERIFIERs in VISIONS . . . . « « « « ¢ « « - =
IIT.7 TACTICAL ProcessSes . . « « o« o o s o o o o o =
IV. Model Search Space: A Tree of Partial Models . . . . .
Iv.1 Search ISSUES . .+ « ¢ « o « o = o o o o o o o =«
1v.2 Search Space Representation . . . . . . . . « »
IV.3 Strategy Related Data in the Search Space .
V. Implementation . . . . ¢ ¢ & ¢ ¢ o o e e e e e e e e
VI. SUMMATY « + « o o = o o o = o o s o o o o o o o = o ¢ ¢

References .

w NN = e e

12
16

25
25
28
28
29
29
32
32
33
34
35
18
43
47

48



7]

-h

ACKNOWLEDGMENTS

The work presented in this report has been the result of combined
efforts among the members of the VISIONS research team. The core of the
paper was presented as the first author's masters project, the continuing
efforts of both authors have created SYMBOLS. It could not have procceded
without the tireless persistent help of Ed Riseman and Al Hanson, as well
as interactions with Daniel Fishman, Richard Hudson, Kurt Konolige,

John Prager and Bryant York.



I. INTRODUCTION

I.1 SYMBOLS

SYMBOLS is a general purpose model-building system. This system
provides three structural areas for model-building. They are 1) a layered
graph structure for short-term and long-term data storage, 2) a loose
hierarchy of processing elements, and 3) a model search space. SYMBOLS
stands for StrategY Guided Model Building Operating on Multi-Leveled
Structures. It is a tool used for high level VISIONS research.

This report is a description of SYMBOLS and the first pass at imple-
menting the high level interpretation portion of the VISIONS system
[HAN75a,75b], a computer system for the segmentation and interpretation
of digitized images of natural scenes. SYMBOLS can be used in a varilety
of ways. However, the examples given concern only VISIONS. As research

continues, both SYMBOLS and VISIONS will undergo further refinement.

1.2 MODULARITY

The primary design criteria for SYMBOLS is that it should provide
a framework in which different model building strategies and techniques
can be easily embodied and understood in terms of their utility.

Visual perception necessitates the integration of many diverse forms
of knowledge in a nontrivial way. Because this complexity is inherent in
the problem, any model-building system being designed to solve the problem
must utilize some powerful methodological weapons to combat it. The

traditional methodological weapon against complexity has been decomposition,

or modularity [SIM69]}. However, to benefit from decomposition, it

is essential that both the resulting individual modules and their inter-



action can be understood. If an isolated module remains overly complex,
decomposition can be reapplied directly to that module. But if the
complexity remains in the coordination of several modules, furtﬁer de-
composition will not reduce the complexity.

The decomposition of knowledge into '"natural' units (i.e., those

concepts which a person discussing the domain might find helpful) is a
cue that modularity is probably being used in an effective way and that
artificial barriers limiting the flexibility of the system are not being
created. In addition, it reduces the system to a number of nicely de-

limited subproblems for independent attack.

I.3 REPRESENTATION

Model-building is a process whereby a system generates an internal
representation of a situation. The situations we are concerned with are
those presented by the visual environment. Our narrowed definition of
model-building then is focussed upon a perceptual system; and the definition
of a perceptual system seems to require several necessary parts. It must
have an internal representation of the environment, i.e., a model. Con-
tinuing a step further, the model must have a representation of the relevant
concepts so that elements of the model can be defined. For example, visual
models require the identification of objects (the model element) in terms
of the class of objects to which they belong (such as "Car'", "Tree'", etc.)
A facility is provided in SYMBOLS for these representations as a multi-

leveled graph structure.
I.4 PROCESSES

Another characteristic of model-building systems is that some pro-



cess(es) must decide what to add or change in the model. The general
paradigm for model-building in the VISIONS system is 'hypothesize-test-
build'. A number of hypothesize-test-build processes are expressed and
a strategy guides their application.

SYMBOLS divides these processes into categories. At the highest
level strategic decisions result in changes to the model, while at the
lowest levels tactical processing manipulates complex knowledge structures
with relative ease. Several levels of processes between the two extremes
form a loose hierarchy which is helpful to the researcher in clearly
defining the responsibility of various model-building processes in a

complex system.
I.5 SEARCH SPACE

The last major structural area that SYMBOLS deals with is the search
space. Model-building systems have a wide degree of variation in this
respect. For instance, the HEARSAY [ERM75] system does not
keep a trace of model-building history. This may be the correct approach
in a sequential, time-dependent domain such as speech understanding, but
it demands that interpretation follow directly from model-building with no
backtracking. VISIONS' initial formulation is a response to the
problem of constructing a complex system where the strategies for control of
the search are not yet understood. This has led us to the design of the
SYMBOLS system where the entire search history is available to the search
strategy. This allows the system (and the human user during developmental
phases) to examine at any point in the analysis the history of the utilization '

of processes during model construction.



1t. DECLARATIVE KNOWLEDGE: A Multi-Leveled Graph Structure

11.1 Levels of Abstraction

Natural concepts of visual knowledge would seem to include the P -
idea that knowledge relevant to a single scene includes information at
many different levels of abstraction [ERM75,HAN76c,TAN75,UHR72]. The
grossest division can be made between the 2D information within the image
and the 3D information about the world it implies.

Finer levels of abstraction can be found at both the world and image
levels. The world can be described in terms of frames of stereotypic
scenes [MIN75,HAN76c], the objects involved in those scenes, or the
surfaces which delimit those objects. A digitized photographic image
can be described by the individual pixel points making up the image or
in terms of the more abstract entities resulting from its segmentation
(i.e., regions, edges, etc.) [OHL75,R0S71,TEN76]. The world and image
meet where visible portions of surfaces are manifest as regions and
edges. This is not to say that these are necessarily the correct, best,
or complete set of abstraction levels, but only that such levels seem
natural and useful.

Once such levels are defined, they naturally constrain the components
of visual knowledge and the relationships that can exist between them.
Interlevel relationships constrain the levels in a linear'fashion resulting
in a hierarchy of visual knowledge (see Figure 1). Points collect into
regions and edges, region and edges into surfaces, surfaces into objects,
and objects into frames. In addition, the components at each level have
their own characteristic features and relationships. For example, at

the region and edge level these might include 2D shape, 2D size, visual texture



[BAJ73,HAN75b,R0S76], image color, absolute image location, relative image
location, and others. While at the object level they might include 3D shape, 3D
size, 3D physical texture, color (normalized over lighting conditions),
semantic identity (e.g., house, tree, bush, road), absolute 3D location,

relative 3D location, and others.

3D World

Frames 2D Image
Objects
Surfaces

Regions and Edges

Points

VISUAL KNOWLEDGE

Figure 1 Levels of Abstraction in Visual Knowledge

I1.2 Short-Term Model-Specific vs. Long-Term General Visual Knowledge

A model can be viewed as a set of short-term instantiations of long-
term general concepts relative to the current environment. This suggests
that, in addition to dividing visual knowledge into hierarchically related
levels of abstractioh, each level should also be subdivided into short-

term model-specific and long-term general knowledge sections. Model-




building thus becomes the process by which the short-term model-specific
side of the hierarchy is filled out and related to the long-term general

knowledge side of the hierarchy based on the environment (see Figure 2).

Short-Term  Long-Term
Model-Specific General
Knowledge Knowledge

| ? 3D World

2D Image
Frames
Objects
Surfaces

Regions and Edges

Points

Figure 2 Visual Knowledge Framework

The nature of this framework affords a number of advantages. One
is that comprehension of visual knowledge is facilitated since any con-
fusion of a concept at one level might be eliminated by examining the
lower and higher level concepts to which the problem concept is related.
Another advantage is that incomplete areas of a specific model are readily
apparent. Regions not explained as surfaces, surfaces not explained as
objects, and surfaces not yet explained as regions and edges are all ex-

amples that point to incomplete portions of a model.



I1.3 Model-Building and the Knowledge Framework

Model-building techniques can be roughly divided into those which
are generative (i.e., top-down) and those which are predictive (i.e.,
bottom~up) [ERM75]. A generative process makes an addition to a level
in the hierarchy based on some model-specific information from a lower
level while a predictive process bases its new addition on model-specific
information from a higher level. Of course, with either method, general
knowledge at those levels plays a role in selecting likely hypotheses.

Notice that hybrid techniques can be just as easily understood in

terms of these concepts. For example, a process might hypothesize the
existence of an object only if it both covers the features of some
instantiated surfaces and is predicted by an instantiated frame.

Further, it can be seen that these levels break up the model-building
process into subprocesses that can be carried out independently by a

number of different knowledge sources [ERM75]. For example, a purely

generative surface builder would only use information at the region and
edge level to construct surfaces at the surface level. Similarly, a
predictive object builder would use information at the frame level to
construct objects at the object level. Such process independence allows
knowledge sources to be easily exchanged and their results compared with-
out having to restructure the system. Thus, the assumptions made con-
cerning the structure of the problem space help clarify and delimit the

component parts of the model-building process.



I1.4 The Data Structure for Declarative Knowledge

These considerations and assumptions have led us to adopt extended
hypergraphs as the primitive data structure for declarative knowledge
in SYMBOLS. A hypergraph [FRI69,PRA71] is a collection of directed

graphs, each residing on a different labelled plane. A directed graph

consists of labelled directed arcs between labelled nodes. An extended
hypergraph differs from a standard hypergraph by allowing arcs between
noces residing on different planes. Although the arcs are directed, this
does not imply that they can only be traversed in a single direction. The
directionality of arcs is for increased semantic power and is not meant
to imply a one-way pointer structure.

The desired knowledge framework is easily manifest in this structure.
Each level of abstraction can be realized as two planes; one for the
short-term model-specific knowledge and the other for the long-term
general knowledge. Each node on the short-term model-specific side
corresponds to one of the primitive elements (i.e., concept) characteristic
of that level. Thus, a node on the short-term surface plane corresponds
to a surface, a node on the short-term frame plane to a frame, etc.

Nodes on the long-term planes correspond to primitive symbolic
classes of characteristic elements at that level. Object class nodes
might include classes for trees, bushes, hoﬁses, red things, leafy
things, etc., whereas region class nodes might include classes for elon-
gated regions, circular regions, smooth textured regions, polygonal regions,
etc. Each such class corresponds to some subset of all possible entities

that could exist at that level. The particular subset of entities that



the class denotes is specified by associated properties that a member
of the class must possess. Although an arbitrary number of classes can
be defined at each level, in practice only classes which provide useful
subsets are utilized. For example, if surfaces which are large, smooth,
green spheres are important, a class node corresponding to such surfaces
would be placed on the surface level. This node would then provide an
immediate means for accessing the information concerning such surfaces
including any current instantiations of them, the classes of objects in
which such surfaces can participate, the type of regions produced by
their projections, and superclasses and subclasses which provide classes
to be considered for further information. The utility of a class is
proportional to the amount of guidance that its associated information
provides the model builder.

Relations between the primitive concepts within the framework can
be represented by arcs between the nodes in classic semantic network

style [QU168, SIM73,FAH75,W0075,RUM75]. Arcs between levels relate

concepts at a given level to the concepts residing on planes in the
neighboring higher and lower levels. Thus, from an object node, arcs
leading up can be followed to nodes at the frame level representing
those frames in which the object participates, and arcs leading down
can be followed to surface nodes indicating those surfaces which define
the object; the same is true for nodes on the object class plane. Arcs

between planes at the same level (i.e., those going between nodes on the

model-specific and general knowledge planes of a single level) indicate

which general classes each model-specific element is an instantiation of.
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For example, an instantiation of a green car could be represented by
a model-specific node connected by arcs to the green object class

node and the car class node. Intraplanar arcs can be used to express

additional relationships, including part/whole, subclass/superclass,

and other relationships peculiar to particular planes (see Figure 3).
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Two other features of our implementation of extended hypergraphs
lend additional flexibility and power. The first is the ability to
attach properties to each node, arc, or plane in traditional property-
value form [McC62]. This feature provides a convenient means for
assoclating numeric values with all entities indicating the frequency
or likelihood of their existence. The second is that arbitrary sub-
graphs, partitions, can be defined within the extended hypergraph
corresponding to different contexts that might occur. We expect these
to be useful in limiting the relevant world knowledge that will be
used at any particular moment. For example, if the information concerning
the context of the image includes that it was a winter day and 12 noon,
all information not included in both the WINTER and MIDDAY partitions

can be ignored.
I1.5 VISIONS' Utilization of SYMBOLS

Although SYMBOLS could be used to model visual perception through
all of the hypothesized levels (from points to frames), VISIONS is
only utilizing it at the higher levels. The transformation from the
level of points to the level of regions and edges is being handled by
another system especially tailored to the needs of this low level

segmentation process. This system, the processing cone [HAN74,HAN76b], isa

simulation of a hierarchical parallel array computer. It is better adapted
to handling the large volume of numeric data entering the system as a
two-dimensional array and the application of segmentation algorithms like
those historically utilized in scene analysis [OHL75,R0S76].

This divides VISIONS into two major subsystems with corresponding
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subprocesses; the low-level system respansible for segmenting the

image utilizing the processing cone and the high-level system respon-~

sible for interpreting the segmented image utilizing SYMBOLS. Although
these two subsystems must eventually be integrated, they are currently
being developed independently. We are assured that integration will

eventually be possible by using the region and edge level as an inter-

facing structure. The low-level system is concerned with combining the

results of various segmentation algorithms to form a consistent structure
at the region and edge level. The high-level system is cohcerned with
the interpretation of the resulting structure. This does not preclude
the eventual use of feedback between the two subsystems.

A number of factors suggest that the 2D syntactic information
" characteristic of the region and edge level should have its own hier-
archical structure. A great deal of information about a region is
directly related to the edges defining its boundary. In fact, such
information is often related to only a portion of the entire boundary;
part of a boundary may be straight and another part crooked, different
portions of a boundary divide the associated region from particular
other regions, etc. This suggests that it should be possible to directly
associate such information with these segments (i.e., portions of
boundaries). Similar arguments support the need to be able to directly
associate properties with the endpoints of these segments. It can be
seen that there is a natural hierarchy to these elements; regions map
down to segments and segments to endpoints. This suggests that the 2D

syntactic information should be represented as a three level hierarchical
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structure with levels for regions, segments and endpoints; and that
each level should consist of two planes, one for model-specific know-
ledge and another for general knowledge. Such a structure has been
adopted and is referred to as RSE (Regions, Segments, and Endpoints).
Its structure parallels the structure of the rest of declarative know-
ledge.

The relationship between the described framework for visual

knowledge and VISIONS is shown in figure 4.
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I11.5.1 The RSE Structure of VISIONS

The RSE structure is designed so that key two-dimensional relation-
ships and features can be easily determined without having to continually
reference the vast amounts of data in the low-level systems. It is par-
ticularly important that adjacent regions and connected segments be
immediately available.

Each region is connected to all the segments participating in its
boundary plus any segments which lie in its interior. By definition a
segment bounding a region sepérates it from exactly one other region.
During the construction of RSE, if a portion of a boundary separates more
than two regions, it is subdivided into segments such that each separates
exactly two regions (see Figure 5). A segment may be further subdivided
if portions of it have different characteristic properties (e.g., portiomns
are straight and others curved). Nonbounding segments in the interior of
a region are distinguishable from bounding segments since they are linked
to only a single region. Adjacent regions are available through a region's
bounding segments (see Figure 6a).

Endpoints linked to a segment serve to both define those segments to
which it is connected and anchor it in two-space. Connected segments have
a common endpoint. This allows any connected sequence of segments to be
extracted. Associated two-dimensional coordinates of enydpoints locate
segments in space. Segments which close on themselves are given an arbi-
trary endpoint so that they too will be fixed in two-space (see Figure 6b).

Additional relationships can Be represented as explicitly labelled
arcs between primitive visual entities. For example, containment is represen-
ted by "C" arcs from the containing region to the contained regions (see

Figure 6a).
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Figure 6a Collapsed Region and Segment Planes of RSE for Figure 5
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Figure 6b Collapsed Segment and Endpoint Planes of RSE for Figure 5

61



20

Examples of features assoclated with the entities in RSE include
the following:

regions -- hue, saturation, intensity, texture, location,
size, shape, orientation, etc.;

1 location, quality (straight,curvilinear, or
various characteristics of irregularity),width
of gradient, orientation, etc.; and

line segments

endpoints —— location, type of vertex such as the polyhedral
fork, arrow, T, etc.

See [ HAN76¢c ] for examples of operations that access information

stored in the RSE structure.
11.5.2 The Semantic Levels of VISIONS

The concept of a frame used in VISIONS is similar to that of Minsky
[MIN75], although aspects are simplified and tailored particularly
to vision. In VISIONS a frame defines stereotypic grouping of objects.
It focusses upon the expected relationships between objects, particularly
their relative position in three-space. A road scene frame would describe
relationships between the road, cars, guard rails, telephone poles, etc.
Another key characteristic of a frame in VISIONS is the rough specifi-
cation of the importance of the presence of each object to the frame, and

vice versa. Frames are expected to provide top-down information predicting

1 The chain encoding [FRE61] of a line segment on a rectangular grid might be
stored so that further extraction of properties can be carried out later.
This can be done at different resolution levels so that a jagged line which
globally is straight would have the local and global properties consistent
and accessible. Of course the chain encoding at a coarser resolution can
be obtained directly from the chain encoding at a fine resolution.
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and confirming the existence of other objects, and possibly, further
features based on objects and features already identified.

The relative importance of particular objects and their relation-
ships to a frame are captured to a first approximation as weights. Weights
from objects to frames rate the likelihood that the presence of an object
implies the presence of a frame, while weights from frames to objects
store the likelihood that the presence of a frame implies the presence of
an object. The presence of a guard rail strong)}y implies the road scene
frame, while the inverse implication is much weaker since the absence of
a guard rall in a road scene is to be expected in many cases.

Of course, this is a crude approximation to the dependencies between
objects in a frame. However, it is clear that the accurate estimation of
the joint probability distribution of all the subsets of the objects in
a road scene is not feasible. Thus, this problem will be approached
heuristically with intuitively selected weights. This leads to the prob-
lem of tuning the weights; but since these weights are only intended as
rough estimates, this problem should remain tractable.

Objects appearing in a frame may also have their own frame specifi-
cations. A tree may be part of a road scene frame and be treated as an
object with attributes. On the other hand, a more detailed description
of the parts of a tree require spatial definition and relationships.
Thus, the TREE class node can be treated as an object or a frame during
model-building.

Long-term general knowledge at the frame and object levels may then

be treated as a network of frame and object classes in which many entities
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may be dealt with in either way by the system. The primary structure

of the network is maintained through part/whole relationships. A tree
is designated through specially labelled arcs as a possible part of a
road scene and, in turn, as having a trunk and crown as parts of it.
Thus, the parts of a frame are specified in the same way as the parts of
an object. A sufficiently flexible spatial processor is being developed
which will manipulate the spatial properties of both frames and objects
in a consistent way [YOR76].

Subclass/superclass structural relationships are also utilized in
the network. These can be used for the implicit storage of information
[FAH75, QUI68]. For example, if trees have trunks as a part and elms
are a subclass of trees, then it can be inferred that elms have trunks.
Alternatively, this infﬁrmation could have been explicitly (but redundantly)
stored off the class of elms. In addition, the subclass/superclass
structure can be used as a decision tree for recognition [MAR75]. Initial
identifications can be refined by stepping through more specific subclasses
of the initial class; thus an object identified as a tree might be reiden-
tified as an elm.

As of yet, we still do not have a solid understanding of the details
of the surface level in our framework. Work on this level is currently
being conducted in conjunction with the development of general shape and
spacé processors.

Examples of features associated with entities at these levels include

the following:
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frames - relative shape, size, location and orientation of
each part in the frame, and the size, location,
orientation, and number of each subframe, etc.;

objects - shape, size, location, orientation, color, texture,
etc.;

surfaces - shape, size, location, orientation, color, texture,
etc.

Figure 7 shows a complete model indicating the connections between
the semantic planes and the region level of RSE. This does not include

many of the particulars just discussed in the interest of clarity.
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III. PROCEDURAL KNOWLEDGE: A Loose Hierarchy of Model-Building Processes
as a Modular Control Strategy

Procedural knowledge in SYMBOLS is multileveled. Each level contains
a model building process, each having a strategic component. Together
these strategic components form the strategy or control structure for

model-building [HAN76a].
III.1 Organization of Modular Control Strategy

The strategy is divided into levels of abstraction (see Figure 8)
according to the type of manipulations required in model-building.
SYMBOLS allows an arbitrary description of the strategy hierarchy;
however, for the sake of clarity, only the major levels of the organiza-
tion being used for VISIONS will be given here.

The level #1 strategy is also called the H-L-STRATEGY for Highest
Level. This level of strategy is linked (see Figure 9) to the model
search space, and therefore is at the highest level of search (for the
most satisfactory model). The next major level of strategy, level #2,
has components responsible for making some change in a partial modcl.
The discussion about the level of strategy is directed to its principal
component, CONTRACTORS. These strategy elements are then divided into
level #3 strategy components. These are the processes responsible for
hypothesis formation, hypothesis testing, and instantiation following
the model-building paradigm of hypothesis-test-build. The instantiation

of a hypothesis is equivalent to the generation of a new partial model.
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The actual VISIONS high-level research is being conducted with a finer

resolution of levels.

being changed.

This example serves to capture the main organiza-
tion which has remained constant in a system where details are often
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LT1.2 The Highest-Level Strategy

Tn VISIONS, this level is composed of the elements of level #2 of
Figure 8. The two primary elements are FOCUS and CONTRACTOR. To some
extent the decision of which CONTRACTOR to use should be based on the
state of the model search space. Thus, tradeoffs and compromises of
ef[iciency, accuracy, timé, computational resources, the bushiness of
the search tree, and other related issues are handled by the HL-STRATEGY
(see Figure 9). Tt is at this highest level that access is available to
the entire search space. The CONTRACTORs are applied to a particular
partial model in that space, and are affected by information local to
that partial model. The HL-STRATEGY must specify the procedure by which
the CONTRACTOR is selected, much as problem solving A.I. systems select

operators to reduce the complexity of a problem [HAY76,KUI75,NEW73].

T1T.3 CONTRACTORs

The hiéhest level strategy is concerned with applying hypothesize-
test-build processes which will produce some improvement in the state of
the model, eventually bringing it to a defined satisfactory state of
completion. These hypothesize-test-build processes are called gggzgéggggg.
Their responsibility is to make some incremental change to the model. This
change consists of adding nodes and arcs in the appropriate planes to
assert the instantiation of an object, surface, frame or relationship.

This modularization of strategy into the HL-STRATEGY and that of the
CONTRACTORs simplifies and clarifies the highest levels of model-building
control. Whereas the HL-STRATEGY is a group of commands which is inherently tied
to the model search space, the commands themselves are interpreted as contracts,
much as a house builder would call upon a number of contractors in a
specific order, perhaps changing the order as needed. As long as the
contractors are successfuliand not too costly, the house continues to be

built. Because there may be many types of houses to be built to different



29

specifications, and because there are a wide class of scenes to be inter-

preted by VISIONS, SYMBOLS allows an arbitrary number of CONTRACTORs

to be defined.
III.4 CONTRACTORs in VISIONS

It is the CONTRACTOR level of process which specializes in a model-
building technique resulting in a new partial model. Each CONTRACTOR is
identified by the levels between which it operates in the layered graph
structure (Sec. II.3). For instance, a CONTRACTOR which instantiates anobject,
based on characteristics of a given set of regions would be called an
R-to-O0 CONTRACTOR. This name characterizes it as a bottom-up process
(Region-to-Object is 'up' in the layered graph, R-to-0 corresponds to
bottom-up, O-to-R corresponds to top-down processing).

There may be an arbitrary number of CONTRACTORs of any type, for
instance R-to-0#1, R-to-0#2, etc., each with its own special characteris-
tics. One R-to-0 CONTRACTOR might generate a hypothesis based on color
alone for a high speed crude instantiation, while another R-to-0 CONTRACTOR
might use all available features including time-costly shape analysis to

generate its hypotheses.
III.5 FOCUSers, GENERATORs, FILTERs, and VERIFIERs

CONTRACTORs are not atomic in the taxonomy of model-building procedural
knowledge. Four major types of strategical processes and two types of
tacticall processes are available in SYMBOLS. The four major divisions of

a CONTRACTOR are FOCUS, GENERATOR, FILTER, and VERIFIER.

FOCUSers are the process types which select an area to examine on

a particular level of the partial model. Its results are given to a

1 Tactical processes have no decision making elements, hence the dis-
tinction between tactical and strategical processes.
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GENERATOR. The particular FOCUSer chosen depends on the goal of

the CONTRACTOR. For instance, an R-to-0 CONTRACTOR might have a FOCUS
process which selects according to brightness or hue a region or group
of regions to use as a basis for hypotheses.

FOCUS is not restricted to the third level of strategy. It might
be applied at any point in a strategy where selection is required. For
example, the HL-STRATEGY useé a FOCUSer to select the next partial model
to expand.

GENERATORs are used to generate new hypotheses based upon a set
of instantiations selected by a FOCUSer. An R-to-0 GENERATOR could
produce a list of objects which might be obtained by indexing into
the Long Term Knowledge based on the attributes of a set of regions.
This 1list of objects could be large, and hence would need to be FTLTERed.

FILTERs are designed to weigh the relative merit of a number of
hypotheses or tested hypotheses. FILTERs might be applied at any point
in a strategy where the number of items in a set need to be reduced. A
simple filter might threshold a set of hypotheses according to some
visual (syntactic) feature. A more sophisticated filter might select
those hypotheses which are of distinct 'classes' of 'types' so that
subsequent verification will yield the most valuable information. Tor
instance, the four hypotheses for objects describing some set of regions
might be '"HOUSE', 'CAR', 'BUILDING', and 'FACTORY'. This set could be
FILTERed to 'CAR' and 'BUILDING'. Eventual verification would then
discriminate between widely different classes, giving a greater chance

of a near hit with minimum effort.
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The process of verification can be viewed simply as pattern recognition
where a VERIFIER is a specialized classifier. However, VERIFIERs are
expected to be somewhat more powerful than a typical linear pattern
classifier because they will have available the entire graph structure,
both the model under construction and the a priori knowledge about the

domain.

If an Object VERIFIER (previously referred to in VISIONS [HAN75a] as
"yision routines') is called upon to determine the validity of the hypothesis
that a region R2 is a "TREE", the VERIFIER has at its disposal not only the
features of R2 and surrounding regions, but also a definition of "TREE". This
definition includes variations of shape, color, and organization of the parts
of "TREE". The VERIFIER may inspect the FRAME level of the graph to discover
any settings which imply "TREE"., It might request a new segmentation from
the low-level VISIONS system, or during development stages, we might specify
a request for guidance from the user.

The result of applying an OBJECT VERIFIER is the rough probability that
the particular object exists, and the naming of regions or surflaces which
it identifies. This information will be very important in the computation
of the confidence of any given partial model, which in turn can be used by
the HL-STRATEGY when deciding which partial model to expand next. Other
regions or surfaces than those specified in the request might be necessary for
the identification of the object. If so, the VERIFIER reports them. Additionally
it could discover that if some feature were different, the result would be

significantly altered. Such a report could aid the CONTRACTOR.
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As with CONTRACTORs, any number of VERIFIERs, FILTERs, FOCUSers, and

| GENERATORs may be defined in SYMBOLS. The choice of which particular ones
to apply rests within the CONTRACTOR. There are many types of VERIFIER,
FILTER, FOCUS, and GENERATOR strategles which could be specified. Some will

be more time-efficient, others more accurate in the analysis and value returned.

ITL.6 VERIFIERs in VISIONS

VISIONS requires a number of VERIFIERs to carry out the various CONTRACTOR
functions. At present these include verification of Frames, Objects, and
Surfaces. There will be categories under the heading of surface VERIFIERs
for shadow, occlusion, and perspective which will aid a CONTRACTOR in deter-
mining the three-dimensional relationships of regions.

Similarly, there will be a number of object VERIFIER types. For instance,
a syntactic feature matcher might take a simple logical match between the
stored attributes for an object and the features characterizing a region.

Shape analysis for objects would perform geometric manipulations for a best
fit (rotation and scaling). Other types of VERIFIERs are planned. Because
they are independent (except as viewed by a CONTRACTOR) they may be written
and developed independently from each other, but in concert with the require-

ments of the CONTRACTORs in which they are to be used.
III.7 TACTICAL Processes

There are two more process types which complete the model-building
process specification. They are called CONSTRUCTORs, and INSPECTORs.
These tactical processes change and retrieve information from visual know-

ledge respectively. They contain no decision making elements, but rather
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serve other processes, making the complexity of the structure transparent.
Because they contain no decision making components, they are considered
tactical rather than strategical in nature. A typical INSPECTOR might
find the ordered list of segments which constitute a region's boundary;

a typical CONSTRUCTOR might instantiate an object which a CONTRACTOR has
determined exists. The application of a CONSTRUCTOR has the effect of
adding a hypothesis to the model, and hence a new model to the model
search space. Thus, CONSTRUCTOR application signifies the completion of

a CONTRACT and indicates return of control to the High-Level STRATECY.

IV. MODEL SEARCH SPACE: A Tree of Partial Models

Search is a basic issue confronting any model-building system. In
particular one must decide how best to represent the search space and
control the search. First, let us consider alternative ways in which
related partial models can be represented. At one extreme there could
be an entire structure for each partial model generated during the search.
This is not space efficient, considering that each partial model varies
only by some small amount from its parent. At the other extreme is the
collapsed model where any change replaces old data, thus no partial models
are saved and only one updated model exists [SUS72,ERM75]. Another
approach to model-building search spaces is that of saving at each node

in the search tree only those data which have changed [McD74].
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IV.1 Search Issues

Error recovery and backtracking are two important problems in a
search. Several issues arise from these problems. A) TIs the process
of backtracking easy and efficient? This is related to the implementation
of the search space representation; in some cases [ERM74 ,WAL75,TEN76]
search proceeds without backtracking. B) Is the error correctable without
backtracking? If provision is made to store the interdependenciés of
‘strategic decisions in the search space, then it would be possible to
tell by inspection if a previous erroneous instantiation propagated
other instantiations. If it did not, then such an error could be corrected
by 'un-doing' the error rather than going back and regenerating the
search tree from the error point down. C) When returning to the state
where an error occurred, how much computation is going to be redundant?

If the first hypothesis a CONTRACTOR made was incorrect, but the second
one was correct, is it possible to select the next hypothesis or must
the HL-STRATEGY evoke the proper CONTRACTOR and redundantly regenerate
the 1list of hypotheses?

The problems of backtracking have led to a sequence of Al languages.
Gross search inefficiency resulted when automatic backtracking was em-
ployed [SUS72]; and user control of backtracking has turned out to be a
nontrivial task [FAH74]. We address this problem by storing the history
of the search process. At any point (partial model) in the model search
space, the H-L STRATEGY will be able to access the history of the decisions

(what, when, and why) leading to that partial model (refer to Figure 9).
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IV.2 Search Space Representation

The search for an acceptable model is conducted as a tree search in
SYMBOLS. In this representation each node in the search tree is a partial
model, and therefore implicitly is an entire multi-leveled graph (Sec. V.). The
complete tree of partial models represents the state of the entire search
for a satisfactory model (see Figure 10). The user is permitted the flexi-
bility of controlling the bushiness of the search. For instance, by giving
the same value of confidence (explained below) to each partial model, the
search will proceed depth-first. If the user demands that all hypotheses be
tried at each step of the search it will proceed breadth-first. If the user
wishes he may collapse the search tree to a single node, thereby retaining
no search history. This degenerate configuration has certain advantages,
such as allowing the system to observe the relationship between conflicting
hypotheses (of different paths of the search tree), as is evident in
HEARSAY's Blackboard [LES75b].

Among other data (see Figure 11), a heuristic value of importance is associated with
the partial model at each node. This value is meant to represent four

characteristics of the model: 1) Confidences of dach instantiation, 2) The
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Figure 10 The State of the Search for the Best
Model is Available to the HL STRATEGY

This allows arbitrary control of bushiness and backtracking for
error recovery.
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Figure 11 Information Related to a Partial
Model Node in Model Search Space

The information shown here is stored explicitly in the search
space representation.
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consistency of the model, 3) The completeness of the model, and 4) The
likelihood that the model can be completed. These values are generated
after a CONTRACTOR has successfully completed its task.

This value can act as a heuristic to bilas the model-builder toward
the more profitable portions of the seafch. In our initial efforts, nodes
will be investigated in order of heuristic value. In the case where more
than one node has the greatest value, the most recently generated one will
be chosenl. This technique gives the default of biasing the strategy to
perform a more depth-first search, particularly when the heuristics are
conservatively employed in differentiating between partial models. Although
it is likely that some model heuristics will, in general, produce
bushier trees, it is intended that VISIONS should produce final models with-

out exploring a large number of paths,
IV.3 Strategy Related Data in the Search Space

SYMBOLS provides a storage facility in the search space for information
related to the strateglc processing which was attempted and performed in
the generation of each partial model. These data should be useful both to
give the strategy a history and to improve error correction/recovery (see
Figures 10 and 11). The history is useful to 1) dvnamically control the bushiness
of the search, 2) relate inter-dependent instantiations, and 3) decide what
level of process to invoke when returning to a partial model.

Although the initial VISIONS system has not made use of these power-

ful recovery facilities, we expect that eventually it will., This will be

1 This can be relaxed to "approximately" the greatest node, where approxi-
mately means within some constant A of the max so that recent strong
models will tend to be expanded.
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achieved by defining a special FOCUSer which will be allowed to visit
(if necessary) all nodes in the search space and return to the STRATEGY
an information packet which informs the HL-STRATEGY of its new situation.
These techniques have not been tested and we will only sketch their
operation as we envision it to work. Dynamic control of the bushiness of
the search is not examined further since this control involves interactions
of all strategic process elements and is related to the number of errors
made.
Error recovery in a space with propagated errors is examined in the
following (see Figure 12). Assume that node #2 is an error, that this
node represents the identification of a region as 'ROAD' when it really
is the trunk of a tree. Let us also assume that this error is indirectly
implied by the low evaluation at node #6 where the 'CROWN' is identified
correctly. The low evaluation resulted from the conflict between 'ROAD'
and the parts/whole relation "CROWN', 'TRUNK'/'TREE'. 1In this case there
were no instantiations based on the error generated at node #2. The HL-
STRATEGY could FOCUS on #2 through #6 and return to the HL-STRATEGY the
two suggestions: a) to flag node #2 as an error, and b) to undo the effects

of the error (shown as #2-1) at node #6.
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Figure 13 shows a different situation, in this case sufficiently many
nodes have dependencies to the mode in error, so it would not be efficient
to 'un-do' the error. The STRATEGY is presented with the old partial model
at node #10. It is not sufficient to place the model-builder at that node
because the STRATEGY is likely to do exactly what it did before. Obviously
it must have access to the previously generated alternatives of the node at
which it is placed. Additionally, it would be helpful to know which
CONTRACTOR was applied, and what its hypotheses were. It is the HL-STRATEGY
which must decide whether to apply a different CONTRACTOR or merely select
a different hypothesis for instantiation.

The initial VISIONS implementation will use the default mechanism of
first exhausting the hypotheses before trying a different CONTRACTOR. To
this end a packet of data is left at each node in the search space. This
data consists of the name of the CONTRACTOR applied, a list of the first N
hypotheses, and the name of the item instantiated. Eventually we expect to
develop the necessary FOCUSers to provide a packet telling the STRATEGY if

it should proceed with the previously generated hypotheses or seek new ones.
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V. IMPLEMENTATION

The processes of SYMBOLS deal with symbolic data which is best under-
stood as a layered graph when viewed from any node in model search spacc.
These three related structures (processes, layered graphs, and a search
space) are implemented in a language developed specifically for SYMBOLS.
This language combines characteristics of several AI languages built upon
LISP. The interactive nature of LISP puts the user in a situation con-
ducive to experimentation, while the power of SYMBOLS' primitives allows
him-to alter strategies easily.

SYMBOLS combines GRASPE and portions of CONNIVER making available the
data types most convenient for the implementation. GRASPE [FRI69,PRA71],

a graph processing language, has been implemented with some additions to
support interconnected levels. CONNIVER [McD74] provides a data structure
in which the model search space is efficiently implemented. Any node in
the search tree (other than the root node which contains the initial state)
explicitly contains only those items which differ between it and its parent
(Figures 11 and 14) and the strategy-related information. Each node
implicitly contains the initial state with all changes along the path from
the root.

The tactical commands available to VISIONS through this language are
quite powerful. This allows research effort to be concentrated on important
strategic problems in scene understanding rather than requiring continuous
programming overheads to deal with the complex data structure (see Figure

15).
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The entire partial model is stored implicitly at the partial model node.
The path from a node to the root explicitly contains the partial model.
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Because the high-level system is implemented in an interactive

environment, it is possible to develop the model-building components

through the technique of incremental simulation [WO073]. This allows

the user to assume the role of any component whose input/output rela-

tionships have been specified. Thus, during development, the user

can employ arbitrarily complex procedures limited only by the interface

constraints imposed by the system design (criterion of modularity I.2).

As the system evolves over time, it will rely less on user-interaction

and more on internal computational processes.

SYMBOLS is implemented on a CDC-6600/CYBER 74. As of this writing

it includes:

D

2)

3)

4)

5)

a system for the manipulation of the extended hypergraph
structure described;

an efficient model search tree;

a control mechanism for tree searching;

a number of CONTRACTORs, FOCUSers, GENERATORs, FILTERs, VERIFIERSs,
INSPECTORs and CONSTRUCTORs with facility for easily defining
more;

an oversimplified default model-building HL-STRATEGY in which

a user can experiment by augmenting the model-building components.
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VI. SUMMARY

SYMBOLS was designed to offer the VISIONS system wide lattitude of
expression as a model building tool, while maintaining clear responsibilities
of control and process components. The criterion of modularity was
applied throughout the initial implementation of VISTONS resulting in
the representation of data and processes as multi-leveled structurcs.

Visual world knowledge is expressed in levels representing visual
syntax (2D primitives of endpoints, line segments, and regions), surfaces,
objects, and frames. Image-specific information extracted from a
particular scene is stored in the same multi-level representation.

Arcs between nodes on planes of the world knowledge and image specific
knowledge indicate instantiations of stored concepts as elements of
the model which has been constructed.

The model building processes are divided according to strategic
levels. At the highest level decisions are made to select which partial
model (from the search space of all partial models) to expand next.

At lower levels of strategy, hypotheses are generated and tested,
eventually making some incremental change resulting in a new partial
model.

The search space contains information used by the highest level of
strategy to aid in the selection of the best partial model to expand.

It also should facilitate the use of intelligent backtracking techniques
which can be sensitive to the dependencies that one decision might have

on others.
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