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Introduction:

Let V be a finite set of integral vectors in
Euclidian N-space, and let a be an integral point
in the first orthant of N-space. The reachability
set R(a,V) is the set of integral points b in the
first orthant such that there is a polygonal path
Y from a to b satisfying (i) all of y lies in the
first orthant, and (ii) the edges of y are trans-
lates of the vectors in V. The reachability prob-
lem for the vector addition system (a,V) asks for
an algorithm to decide which integral points b are
in R(a,V). In this paper we give an algorithm to
solve this problem.

~ Vector addition systems (or equivalently,

~ Petri nets) have been considered by many authors

in the last decade. The reachability problem is
first stated in Karp and Miller [1969] but appears
to have been known to Rabin and to Hopcroft already
-in 1966 (see Holt [1971]). Thié problem has arisen
in several contexts: context-free matrix grammars
[Ginsburg, 1966], conjugacy problems for certain
infinite groups [Anshel, 1976], parallel program
schemata [Karp and Miller, 1969],'uniform recur-
rence equations [Karp, Miller, and Winograd, 1967].
An equivalent formulation of this problem is the
liveness problem for Petri nets [Holt, 1971; Hack,
‘1975A; Landweber and Robertson, 1975].

The following special cases have been solved
previously: (a) vector addition systems of dimen-
sion N<3 [van Leeuwen, 19741, (b) V is symmetric
about the origin [folklore], (c) conflict-free
Petri nets [Crespi-Reghizzi and Mandrioli, 1974].

The related problem of whether or not, given
a, V, a' and V', R(a,V) ¢ R(a',V') was shown un-
solvable by Rabin [1969, unpublished]. The ques-
tion of whether or not R(a,V) = R(a',V') has also
been shown unsolvable [Hack, 1975A].

~



There have been numerous complexity results,
which show that even special cases of this prob-
lem require exponential space [Hack, 1975B;
Cardoza, Lipton, and Meyer, 1975; Rackoff, 1976].

We solve the reachability problem by consid-
ering a somewhat more general problem. Let S be
a closed convex subset of EN such that (i) S is
bounded by a finite set Hl,...,HK of rational
(N-1)~dimensional hyperplanes, (ii) for each Hi’
there is a non-zero normal vector u, pointing
into S, (iii) the set {El""’EK} spans B, If
a and b are integral points in S and V is a finite
set of integral vectors, b ©s reachable from a
under motions in V while remaining in S,
V:a~~>b in S, if there is a polygonal path Yy
from a to b which is entirely contained in S,
whose edges are translates of vectors in V. The
generalized reachability problem asks for an algo-
rithm to decide which integral points are in the
" set R(a,V,S) of points b such that V: a ~> b
in S. Observe that the reachability problem is
the special case in which uy;,...,u, are the unit
vectors along the positive axes, and Hl,...,HN
are the (N-1)-dimensional hyperplanes normal to
these vectors. We assume that a, b, S, K, Hl""’
HK and Yyseeesly are fixed for the rest of this
paper.

The dimension of a vector addition system
(a,V) is the dimension of the subspace of B
spanned by V. Note that if V spans a space, S0
of dimension No‘:N, then R(a,V,S) is contained in
a translate S1 of SQ, and indeed, R(a,V,S) ¢
Sf\S1 which is a closed, convex set bounded by
rational (No-l)—dimensional hyperplanes H, n S1
(where this intersection is non-empty). Hence we
may replace the first vector addition problem by
one of dimension N. Henceforth we assume that

this reduction has taken place and N is the dimen-



sion of the vector addition problem. The algo-
rithm which we will provide will proceed by
recursion on the dimension of the vector addition
problem. One should note Eﬁat in the dimension
N=0 case, V contains only the zero vector or
else is empty, and V: a ~~> b in S if and

only if b = a.

In order to describe our algorithm we need
several further definitions. Let d be any point
of EN. The u-coordinates of d are the numbers
Qﬂﬂi; i=1,2,...,K. Since the_gi span EN, each
point d is uniquely determined by its u-coordi-

nates. Also, there exist numbers C .,C,. such

1% K
that S consists of those integral points d with
deu, 2C, for i=1,2,...,K.

= = i

Let A be any subset of {1,2,...,K}, and let

c and d be any points of EN. We write c < d if
csu, £ d+u, for all i, and ceu, < d-u, for those
=y T S —=f =

i in A (and only those). We write c <_d if

- W —

<, 4 for some A=(, and c <, d if

E-<{l,2,...,K}-é‘ We will prove that these or-

|0

derings are all well-founded on the integral
points of S, and that any infinite sequence of
distinct points of S contains an infinite sub-
sequence which is strictly increasing in the
ordering S

Throughout this paper we will consider V to
be a finite set of names for vectors, though in
general we will identify the names with the cor-
responding vectors; we explicitly allow V to con-
tain two names for the same vector. A proper sum
of the vectors in V is a positive integral linear
combination of the vectors in V. The positive
span of V is the set of integral vectors w, some
 p0sitive integral multiple of which is a proper
sum of vectors in V. These are simply the inte-
gral vectors in the same direction as ratiomal

convex combinations of vectors in V. We shall



prove that the positive span of V is convex and
closed under proper sum. In particular, if some
integral vector w is not in the positive span of
V, then all of V lies to one side of a rational
hyperplane H, whose defining equation may be
effectively calculated (lemma 1.5).

Finally, we note that beR(a,V,S) <=>
aeR(,-V,8) <=> R(a,V,S) n R(b,-V,S) = @.

We now can sketch the construction of our
algorithm. At several points in the algorithm,
we will make non-deterministic choices from among
a finite number of possibilities. The algorithm
is said to succeed if some sequence of choices
leads to a termination that reports success,
otherwise it fails. This could be made into a
deterministic algorithm in the usual fashion (i.e.
one that conducts a search through the finite tree
of possible choices).
(1) Test if b is representable as a plus a proper
sum of vectors in V. This may be done effectively
since this question is equivalent to the solvabil-
ity of a system of linear equations in the natural
numbers, a question of Presburger arithmetic. If
b is not so representable, b is not in the reach-
ability set, and no more need be done. An algo-
rithm is given in §1 to answer this question.
(2) Test if V positively spans ZN. If it does
not, then as noted above, there is a hyperplane H
such that V lies to one side of H. Let u be a
normal vector to H such that u*v 2 0 for veV.
Add two boundary hyperplanes, Ha and Hb, to Hl,
...,HK, where Ha is the hyperplane through a par-
allel to H and Hb is the hyperplane through b
parallel to H. . The normals u, and u, are chosen
. to be u and -u respectively. Clearly, it is im-
possible simultaneously to increase all u-ccordin-
ates in this new system, because any motion which

increases the u -coordinate must decrease the uy



coordinate. Henceforth we assume that {Hl,...,HK}
includes Ha and Hb if V does not positively span
Z'. An algorithm in §1 can be used to perform
this test. B

(3) Test if there exist a' and b' such that a' €
R(a,V,8), b' € R(b,-V,S), a <, a', and h_<s bY.
If so, b ¢ R(a,V,S), and the algorithm terminates
and reports success. This test could be done
using a very slight modification of the tree con-
struction in Karp and Miller [1969]. However, in
§4 we give a somewhat more complicated tree from
which we will derive this and further information.
(4) Again using the tree of step 3, it is possible
to determine all maximal subsets A ¢ {1,...,K} of
u-coordinates which can simultaneously be increased
unboundedly (the coordinates that are marked with
w in the tree of Karp and Miller). It is also
possible to determine a finite list of cones such
that all travel which increases the u-coordinates
in A is in directions within these cones. The
cone construction is given in §3 and is applied
repeatedly in sections 4-7.

(5) Non-deterministically choose such a A, and let
r = {1,...,K}-A. Note that while the u-coordin-
ates indexed by A are unbounded, the u-coordinates
indexed by I' are bounded. This gives rise to a

finite set & = {o ..,os] of spaces of dimension

5%
less than N, spacei which are indexed by the com-
ponents of u-coordinates indexed in T. Each of
these spaces is parallel to all the hyperplanes
indexed by T'. Partition V = VILJVJ, where

v, = {vev ‘| vru, = 0 for jer}, and V=V - V.
The vectors in VI cause motions within the spaces
in I, and the vectors in VJ cause motions among

the spaces in I; i.e. vectors in V_ are "jumps"

J
between the spaces.



(6) The set of possible paths between spaces is
infinite, but it is possible to classify these
into a finite number of types by analyzing loop
structure. Roughly speaking, two paths in the
same type differ from one another only in the
number of times that some looping subpaths are
traversed. The classification of these paths is
given in §5.

" (7) In §6 we use this classification to reduce the
case in which there do not exist points a' and b'
as in step (3) to a finite number of reachability
problems for generalized lower-dimensional vector
addition systems. In these lower-dimensional
problems, we will admit sums of paths from a space
back to itself as additional vectors, provided
that they can be used arbitrarily often without
destroying the possibility of reaching b. Those
which can be used at most finiteiy often we apply
as many times as possible. To determine which
sums of loops can only be used finitely often we
must make a careful analysis of the directions in
which it is possible to travel when increasing
components in A unboundedly. This analysis is
made in §6.4 using the cones of §3; the essential
test to make is whether it is possible from given
points a' ¢R(a,V,S) and b'eR(b,-V,S) to increase
a set of u-coordinates by moving a' to a point a"
and b' to a point b" with a" -a'= " - b'.
(Note that the moving of b' to b" effectively re-

verses the motion of a' to a".)

To prove that this algorithm works entails
two parts. First we show that if the algorithm
~ reports success, then b ¢ R(a,V,S). This follows
from the fact that at any point in the construc-
tion, any vector w that has been added to the
original set V of vectnrs is the sum of a se-
quence of vectors that it was possible to apply

arbitrarily often.at the time w was added to V.



- Consequently, we may take each use of such a
vector w in the path that we construct and replace
it at a suitable point in the path with the se-
quence that gave rise to that w. This gives rise
to the path from a2 to b in S using motions in V.
On the other hand, if there is some path ¥y
from a to b in S using motions in V, we must show
that the algorithm produces some path 8. If V
positively spans ZN, then the algorithm clearly
‘ produces a path. Assume that V doés not positive-
1y span ZN. Then, in §7, we show that y can be
effectively modified to a path y' which resembles
one of the paths § constructed by our algorithm.
Specifically, ¥' differs from § in that certain
‘motions are performed in a different order (which
does not change the end point) and certain motions
and their effective reversals (see step (7)) may
be added or deleted.

81. The Initial Tests

1.1 Theorem: There is an algorithm to decide

whether b can be expressed as a plus some proper
sum of vectors in V. Moreover, there is an algo-
rithm to decide whether kb may be so expressed for
some positive integer k.

Proof: We must show how to find non-negative in-

tegers k,,...,k_such that b = a + Ik,v.. This
m - = i—i

1’ )
vector equation decomposes into N scalar equations
for which we must decide the existence of natural

numbers k

1""’km such that
b1 = al + klv11 + .. F kmvml
b, =a_+ kv + kv ..

N T RN o T N
By transposing negative terms to the opposite side
of the equations, we may rewrite these equations

in the form



a01 + Zailki 801 + EBilki

O+ Ty = By T8y
where all of the aij and Bij are natural numbers.

The desired ki's exist if and only if

Jkl Hkm[/j\(aoj + zaijki = 80j + zsijki)]

is a theorem of Presburger arithmetic. This can
be decided effectively.

. For the second part of the theorem we must
find natural numbers k

koh_= a+ Ekizi.

0,k1,...,km such that

The above algorithm can be used to solve this

problem too. 0

Remark: One certainly does not use the full
strength of Presburger arithmetic in the preceding

-algorithm.

1.2 Note: For the remainder of this paper we
assume that the algorithm of Theorem 1.1 has been
applied and that b can be expressed as a plus a
proper sum of the veectors in V. 1f this condition
fails to hold, then b is certainly not reachable

from a.

Theorem 1.1 can also be used to study the

positive span of V.

1.3 Lemma: The positive span Q of V is convex in
the following sense: given Wi W, € Q and a ra-

tional number 0 < E—S 1, the integral vector
q[gw + (1 -2)w,]eq. (I.e.Qq is the
q—1 q’ =2

set of integer points in a cone generated by V.)
Proof: There exist positive integers kl and k2
such that klgl and RZEQ are proper sums of vectors
i e e P _P :

in V. Thus kl k2 q[aJJl + (1 .a) w2] is a

proper sum of vectors in V. 0



1.4 Lemma: There is an algorithm to decide
whether the positive span of V is ZN.

Proof: Apply Theorem 1.1 to test if the unit
vectors along the positive and negative axes are

in the positive span. 0

1.5 Lemma: If V does not positively span ZN,
then one can effectively construct an (N-1)-dimen-
sional rational hyperplane H and an integral vec-
tor u, normal to H, such that u-v 2 0 for each
veV; i.e. all of V lies to one side of H.

Proof: Pick a maximal-dimensional subspace W
which is positively spanned by a subset of V.

Then pick an integral basis B for Wl, the orthog-

0
onal complement of W. Since the dimension of W is

maximal, it follows that for each xe¢B_, the dot

O’
products x*v 2 0 for veV, or else all x-v < 0.

0

v

Choose a new basis B for W such that x'v

_for all x'eB and veV. Let the required

u= I x' and let H be the hyperplane through
x'eB

the origin, orthogonal to u. O

1.6 Lemma: If V positively spans ZN then -v is a

proper sum of vectors in V.

Proof: Since -v is in the positive span of V,

there exist non-negative integers 1 PC PERR R

m
such that p(-v) = igl Qv Thus

v = (p-1)v + p(-v) = (p-Dv + I, qv,. [

1 i

§2. The Orderings <

A
In order to prove Theorem 2.6, we need some

basic facts about the orderings we use.

2.1 Lemma: he ovderings St g and <, are each

well-founded on S.

Proof: We give only the proof for <W; the others
are similar and easier. Assume % is not well-
founded. Let €15 Cos wee be an infinite sequence

i i z < . t
of points in S such that i1 S Clearly a



least one u~-coordinate, say the j'th, must be de-
creased infinitely often by this sequence. Thus

there must be an infinite subsequence gl,gz, ‘e

such that gi_'_l-_gj < 91'33" But since each _qie S,
{Qi'gj} is a sequence of integers bounded below by

some constant. 0

2.2 Lemma: An infinite sequence €438y

distinct points of S contains an infinite subse-

yense of

quence _<:_i ’ Ei R Ei s ««. such that
1 2 3

c < ¢, < c. < v .
—il w—i, w —13A \4

Proof (following [Karp and Miller, 1969]):

Extract an infinite subsequence ¢, , ¢, , ... for
_ =i.’ =i
1 2
. which the numbers u,+c, , u,*c. , ... are non-
—1 —i.’ =2 =i
1 2
decreasing. Then extract a sub-subsequence, and

so on, until one has all of the sequences

C. *U,, C. *Uyy vee
—11 1 —11

C. *U,, C. *U,,
—-il 2--12 2

C, *U, C. *U s oo
e T T

are all non~-decreasing. Since the initially

given points ‘are all distinct,

S WS WS, St ' o
~1 2 3

2.3 Corollary: Any set of points of S which are

pairwise incomparable under <w is finite.

2.4 Lemma: If there exists a point a' in the
reachability set R(a,V,S) with a A
A, then a" = a' + (a' - a) € R(a',V,S) and

a', for some

' "
a <, a.
= A=

Proof: Apply the sequence of vectors which

carries a to a', to a'. g



11

2.5 Lemma: If R(a,V,S) contains a point a' such

that for some point a"e¢R(a',V,S) a' < a", then
R(a,V,S) contains a points a* with a <_ a*,

Proof: Let c¢ = a" - a'. For some natural number

j,_a_1_<s_:1'+j_c;. Let a* = a' + jc. ]

2.6 Theorem: If V positively spans ZN, and if

R(a,V,S) contains a point a' with a <_a', and if

R(b,-V,S) contains a point b' with b is b', then
b is reachable from a.

Proof: By Note 1.2, there is a polygonal path P1
from a to b all of whose edges are in V, but which
need not remain within S. Choose an integer m, so
that the ball of radius m; about a contains P,.

Next find a point b' in R(b,-V,S) with b <_ b'.
By Lemma 1.6, there is a polygonal path P2 from b’
to b, all of whose edges are in V, but which need
not remain within S. Choose an integer m, such
that the ball of radius m, about b entirely con-
tains P2.

Similarly, we may find a point a' in R(a,V,S)
with a <_ a'. Let Pybea polygonal path in S
from a to a' all of whose edges are in V. We may
suppose that P3 is entirely contained within a
ball about a of some integral radius mg.

Find an integer n; such that if l)-l =
b+ nl(_b_' - b), U;(b;), the distance from b, to
the ith bounding hyperplane, is at least my, for
i=1,2,...,k. By Lemma 2.6, p_le R(b,-V,S8). Ob-

serve that the path P, can now be applied to 1_3_1 to

3

carry gl to b, + (a' - a); moreover
b

' )
by <g b + (@' - 2.

Next find an integer n, such that if 22 =
L. =
b, + nz(i a), then Ui(hz) 2 nm, fori 1,2,

1

...,k. Then the path P.2 may be applied ny times
. . - e

to 22’ giving a point h3 _112 + nl(h b'). Next

b
= L. =
observe that a; = a + nz(i 3_) and b,

b + nz(g' -a) so that b, and a, are in the same
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relative positions as b and a. Hence we may

travel from a, to b, along P, and remainin S. 0

1

§3. Coneé

Suppose we are given a point p in S and two
sets R and W of vectors such that ey, 2 0 for
all reR and i = 1,2,...,K; and weu, # 0 only
if there is an r eR with Iru, > 0 for weW and
i=1,2,...,K. In other words, if p'e R(p,R,S),
R <, p's and every vector in W is parallel to all
the bounding hyperplanes which are parallel to all
vectors in R. In the next few paragraphs we des-
cribe a procedure to find a finite set -P-l""’En
' of points, with p <w Rys i=1,2,...,n, and n
finite sets of vectors Rl""’Rn’ with -E.Ei 20
for all re uRj and i = 1,2,...,K, such that for
any point p', with p <w p', which is reachable
-from p using the vectors in RuW, p' is reachable
from one of the points p, and the direction of
p' - p; is the same as the direction of a proper
sum of vectors in Ri’ Informally, if p can be
moved (using RuW) arbitrarily far from some of
the bounding hyperplanes and parallel to the
others, then this motion, modulo a step from p to
one of the p_i's, is in the direction of a vector
in the cone generated by one of the Ri's.

We begin with two examples in which we take
S to be the first orthant of El’. Let p, be
(4,3,1,1), R = {r = (1,2,1,5)} and W = {u =
(1,-1,3,0), v = (-1,1,2,0)}.  In this case it is
possible to move p, to a point 21' o P in the
direction of all rational convex combinations (a
rational convex combination of WyseeosMy is any

sum I w. where O <™ <1 and $™ = 1) of
ni -1 ni ni

the following vectors, each of which is w> 0:
r, r+u, r+2u, r+v, u+v. For if Py plus some
proper sum of r, u, and v were such a P—l" then

that proper sum could be decomposed as a proper



sum of the five vectors listed; specificaliy if
kr + mu + nv + 2 w> 2y then we can decompose the
left-hand sum:
kr + mu + oy = kr + (m-n)u + n(utv) if m2n

kr + (n-m)v + m(utv) if n<m .
In the first case, 2k 2 (m-n), since the second
components must add up to be non-negative. Here
if m-n is even, m-n = 2q, kr + mu + nv =

(k-q)r + q(r+2u) + n(utv), and if m-n is odd,
m-n=2q+1, kr+ mu+nv = (k-¢-1)r + q(zr+2u) +
(xr+u) +n(utv). A similar analysis applies in the

case m < n.

‘ For the second example, we take By =
(0,0,1,1), and the same R and W. Then the points
P—Z‘ @ B2 reachable from 2y using vectors in RuW
are those pairs reachable from p, using the vec-
tors r, r+u, r+2u, and r+yv, together with the
points reachable from 25 + r using the above vec-
tors together with u + v. This is just the sum of
. two cones with vertices at P, and Py + r. Two
cones are required here because while it is im-
possible to travel along u + v from p, and remain
within S, there is no violation of the restriction
to S if we first shift to p, + r.
The set of points p_l' reachable from p, with

p_l' v 2 (respectively p_z' and p,) in the previous
two examples are examples of positive cones, which
we describe below and give an algorithm to compute
their bases. Let p, R, and W be as in the first
paragraph of this section; 'wev suppose further that
W contains no vectors all of whose u-components
are non-negative, for we could put such a vector
:‘Lnt:R and delete it from W without changing the
situation. From p, R, and W, we will construct

a finite set of vertex points P = {p,,. ..,p_n}

and finite sets of vectors Rl"' "Rn’ all of whose

u-components are 2 0, such that (1) each p, v B

13
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(ii) the directions in which one can travel un-
boundedly from p, are rational convex combinations
of the vectors in Ri’ and (iii) if RUuUW:
p~>gq in S and B = then q €

U{CP_ IP—:T_ € P}, where C_ 1is the cone with vertex
i .

at p, of points given by

CRi= {q | R;: p; ~~> g in 8},

The construction goes by induction on the
number components i such that u,w < 0 for some
weW, If none, W is empty and then we obtain as
the only cone the one with vertex Py =P and we
let Rl = R. Otherwise, choose the least index i
such that u,w < 0 for some w € W, and partition
Winto W, = {weW | wu, <0} uW, = {weW |
weu, > 0}, For each welW_, let /\O(E) be the set
of minimal proper sums L of w and vectors in RUW,
such that (a) the coefficient kL of wis > 0 and_
(b) L-u, =0. Let /\l (w) = Ny (w) u {L-w,
L-2w, ..., Lokw | LeNy(w)}, and let
AN =u {/\I(E) | weW_}.

Next partition A into A, = {leA [
all v-components of A are = 0} v Ny = {xe A
some u-component of X < 0}. For all the cone
vertices p' constructed below, the set of vectors

WP_' (playing the role of W above) will be

W> U /\W; note that the number of indices i such

that wu, -w < 0 for some we WP_' has been reduced
by 1. ‘

For each element A ¢ /\R, test if it has a
decomposition as a sum of a sequence of the vec-
tors which make it up as a proper sum such that
each of the partial sums, when added to p, results
.in a point in S.. If yes, add A to R. RR is the
‘result of all these additions. If no, take each
decomposition of A and add to it all minimal pro-
per sums u of vectors in RD which will keep the p

plus all the partial sums in S. Then 2 new vertex
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point is u + p, and R receives all of R_ and
utp 2

the vector A. The construction of the paragraph

is repeated until /\R is exhausted.

3.1 Theorem: There is an algorithm to compute a

finite set of points P = {Rl""’En} and finite
sets of vectors Rl, ""Rn’ which enjoy properties
(1) to (iii) above.

Proof: To verify (i) to (iii) on the points and
vectors constructed above, proceed by induction on
the number of indices i such that u;*w < 0 for
some we W. The inductive step follows by a calcu-

lation analogous to that for the first example. [J

Let R be a finite set of integral vectors
" which spans N-space. An interior point of the
cone CR positively spanned by R is an integral
point p such that for some rational ¢ > 0, all

rational points p' with |p'-p| <€, €R.

l3.2 Lemma: Let Q and R be finite sets of inte-
gral vectors such that R spans N-space; then
either (i) or (ii) below:

(i) CRn CQ contains no interior points and we can
effectively compute an (N-1)-dimensional rational
hyperplane H containing this intersection and a
vector u normal to H such that either u-r <0
for all reR and u-s 2 0 for all seQ, or else
u's = 0 for all seQ. '

(ii) ¢ nCQ has an interior point p and for all

R
vectors veC_ uC, there is an integer n such that

R™"Q
v+np < CR-nCQ' .

Moreover, we can effectively determine which case

applies.

§4. Trees

Given an initial point a, a set V of vectors,
and a space S, we wish to describe the construc-

tion of a tree T(a,V,S) which will yield us much
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information about the reachability set. In par-
ticular, we will learn if the reachability set is
finite. If the reachability set is infinite,
T(a,V,S) will be used to determine whether or not
there is a point a'eR(a,V,8) with a s a's; if
there is no such a', T(a,V,S) will enable us to
decompose the reachability problem into finitely
many problems of lower dimension.

T(Q;V,Sj is a tree with nodes labelled by
points in Sband edges labelled by vectors in V.
This tree will be constructed by induction on the
dimension of the vector addition system (a,V,S).
For dimension zero, V contains at most the zero
vector. T(a,V,S) is simply a.

Suppose the construction has been given for
all vector addition systems of dimension less than
n. We give the construction for dimension n in
phases. .

Phase I. The first phase is done by stages. At
stage zero, the root of T(E,V,S) is constructed
and labelled a. At any later stage we consider
the nodes constructed at the immediately preceding
stage. For each such node, labelled e.g. p, we ask
if S_SA:Q for some ancestor q of p in the tree
and some (possibly empty) A. If yes, p is a
‘"repeating point" and will be dealt with in Phase
II. 1If no, p + w is calculated for each we V. For
each of these that lies in S, a node labelled

p + w is attached to p by an edge labelled w. Let
TI be the tree constructed by Phase I.

Phase II. This phase deals with the repeating
points discovered in Phase I. Consider all permu-
tations of all repeating nodes. For each such

~ permutation, we extend TI in the manner described
below; and at the end, we join all those trees at
their roots (which are identical, since they are
all extensions of TI) and merge them as far as

possible.



Fix some permutation of the repeating nodes.
Assume that the extension of TI has been formed
for the first i repeating nodes, ordered by the per-
mutation. Let g be the (i+l)-st node, and let q'
be its earliest ancestor such that (' £ To g
attach the subtree T , rooted at gq', labelling the
edges as in T , and gﬁjusting the node labels by
adding (q-g') to each. Note that each of the
adjusted nodes is a point in S, since adding
(g-g') does not decrease any u-coordinate. Each
point in the subtree is a repeating point, and
must have repeating vectors calculated for it.
This calculation will be described in the next
paragraph.

Let TII be the finite tree obtained by join-
ing all the extensions obtained for all the per-
mutations at their root. Consider any repeating

point q in T.. and assume that repeating vectors

11
have been calculated for the ancestors of g. The

repeating vectors of g are those of its ancestors

as well as the following. For each ancestor g' of
q such that g' <, g, (g-g') is a repeating

vector for g.

Phase III. Let g be any repeating point in TII’
for which the set A, of indices of u-coordinates
that can be increased using the set R of repeating
vectors associated with g, is not empty, and let

P = {1,555k} — A T indexes the hyperplanes
which g parallels under motions by its repeating
vectors, and thus determines a vector space C the
dimension of which is lower than the dimension of
the space spanned by the vectors in V (since A=0).
Let W be the set of vectors in V which are paral-
lel to all of the hyperplanes in I'. Compute the
finite list of cones and vertices given by apply-
ing Theorem 3.1 to g, R, and W. We may extend the

tree o far constiucted co that it reaches each of

these vertices, and assuwe that we are now at one

17



18
of them, say q', with corresponding set R , of
basis vectors for its cone. Let w be thésbrojec-
tion of w into C, and let V = {# | veV}. Note
that the dimension of the space spanned by the
vectors in V is less than the dimension of the
space spanned by the vectors in V. Let § be the
space obtained by translating C to q' and inter-
secting the resultant space with S. The space S
is bounded by some hyperplanes ﬁl""’ﬁK' Note
that with a suitable change of basis, % and q may
be considered to be integral. Now construct the
tree T(Q',V,é), and its 1lift T* (which as an un-
labelled tree is the same as T(gf,ﬁ,§)) whose root
is q', whose edge labels are w for each edge label
@ in T (§',V,8), and whose label at any node is g'
plus the sum of the vectors between q' and that
node. Note that some node labels in T* will not
be in S, for they may be labels of points to nega-
five sides of the hyperplanes indexed in A. We

* %%
use T to define a new tree T (g'), all of whose

labels will be in S. TIII = T(q',V,8) will be
obtained from TII by adjoining to each repeating
point of T ., T*%(q').

The root of T**(g') is q'. This is in S, and
needs no further attention; the corresponding set
of repeating vectors has already been calculated
in Phase II. Suppose that q* is a node in T* and
we have already dealt with all the ancestors in T*
of q*. If g* is not a repeating point of T we
considef all minimal proﬁer sums y of vectors in
R , (minimal in the sense that no coefficient can
be decreased) such that y + g* ¢ S. Let p* be
the predecessor g* in T*, and let p** be the lift
~of p* to T**. We attach to p** branches whose
. edges are labelled by all permutations of all such

minimal proper sums y, whose end nodes are label-

led p + y and whose intermediate nodes are label-

led in the obvious way. At the ends of these



branches we attach the lift g** of g* by adjoining
an edge labelled w to the node p + y, where

B

= g* - p*, and labelling its endpoint p + y + w.
The repeating vectors associated to all these
nodes are the same as those associated to q'.

_ If q* is a repeating point of T*, and the
edge leading to g* is labelled by w, consider all
minimal proper sums y of the repeating vectors in
R_q' such that g* + y i: in S, and for each pre-
decessor p* of g*¥ in T su;:;r: that p* <w g*, if
p** is an image of p* in T , p** < g*+y.
Attach branches to the images of the immediate
predecessor 6f g* in T** whose edges are labelled
by the successive edges in all permutations of all
“such y u {w}, such that all node labels (calcu-
lated in the usual fashion) are in S. Note in
each case the end node is labelled g* + y. The
repeating vectors ass'ociated to any of these
.points, e.g. q'", are calculated as follows:
First compute the basis R for the positive' cone
at q (the repeating point selected at the begin-
ning of Phase II). Second, compute the set W of

1" ANt

- q", ‘where g <A q

"

vectors q for some A, and

" e *% 2
q" prededes ¢" in T . The repeating vectors

associated with g"' then are a basis for the posi-

tive cone at g'"' computed using R and W.
By induction on dimension, one can prove that

T(a,V,S) is finite.

4.1 Theorem: R(a,V,S) is finite if and only if
T(a,V,S) has nc; repeating point with a non-zero
associated repeating vector.

Proof: If g is such a repeating point and w # 0
is an associated repeating vector, then all the

poins q + kw (for k = 0,1,2,...) are in R(a,V,5).

4.2 Theorem: There is an algorithm to determine
if R(a,V,S) or R(_Q,—V',S) is finite, and if so to
decide if b eR(a,V,S).
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Proof: 1If R(E,V,S) is finite then all points in
this set are node labels in T(a,V,S). Note that
in this case the tree construction terminates at
the end of Phase I, and case (3) is never encoun-
tered. The dual argument applies if R(b,-V,S) is

finite.

4.3 Remark: From T(a,V,S) we may compute those
maximal A such that there exist points a'eR(a,V,S)
and a" in R(a2',V,S) with a' <y &". If one of
these sets A is {1,2,...,K} and one of the corres-
ponding sets A for R(b,-V,S) is also {1,2,...,K},
then we are done by Theorem 2.6 and Remark 2.7,
since if V does not positively span zN, we add two
new parallel bounding hyperplanes, and it is im-
possible to move away from both of them simulta-
neously. One should note that the distance
between these hyperplanes is not critical, so

"sufficiently large'. By examin-

.long as it is
ing the occurrences of all such a' together with
- their ancestors in T(a,V,S), we can determine a
bound B(A) on the values of u-components indexed
in T = {1,2,...,K} - A of points a" reachable
from a from which such points a' are reachable.
For each boundary hyperplane Hi for ieT, we
may construct a parallel boundary hyperplane, Hi*,
B(A) units away from Hi’ on the positive side of

H (Note: Any hyperplane at least B(A) units

io

away from H, will do.) The positive side of this -

new hyperplane Hi* is toward Hi’ and thus its
normal vector u is -u,. Let S(8) = {seS |

s lies between the new hyperplanes}. If there is
a path from b to a using vectors in -V, such a
path must in fact remain within some S(A) we have

just constructed.

2n



- §5, t1-Simple Paths

As we have already seen (Remark 4.3), we may
restrict our attention to the case in which either
a cannot be moved to a point a', lglgs a' under V
or b cannot be moved to a point b', §_<s b' under
-V. Without loss of generality, we assume the
former case. Then the set of maxiﬁal, non-empty A
such that V: a ~~> a' ~~> a" in§, a' <, a",
can be computed from T(a,V,S). The important
point for us is that all of these A are proper
subsets of {1,2,...,K}. For each of these maximal
A's the possible values of u-coordinates indexed
in T ={1,2,...,K} = A of points reachable from
a are bounded, and these bounds can be computed
from T(a,V,S). Thus, for any path from a to b
this path must satisfy the bounds on u-coordinates
of intermediate points imposed by some one of
‘these A's. That is, this path'consists of a se-

) queﬁce of motions among and within a finite set of
lower—-dimensional subspaces indexed by the permis-
sible values of u-components indexed in T =

{1,2,...,K} - A.

Let I = {dl;...,os} be the finite list of
spaces corresponding to a fixed maximal A. Parti-
tion V into VJUVI where VI consists of the vec-
tors V parallel to the spaces 95 and VJ =V - VI
consists of the vectors which can be used to jump
among them. Let 1t < I. We define the t-simple
paths among those spaces as. follows: fhe t-simple

paths from o, to oj of rank 0 consist of (i) a

i
finite set of vertices, labelled o, =o0_,, 0, ,
i, i’ iy
— = ' ¥
oo Gin Gj, where all o;'s exggpt possibly oio
" and o, are distinct members of 1; and (ii) edges
“n T

connecting successive vertices are labelled by

elements of V_ in such a way that if v is the

J
label on the edge connecting o, and o then
k k+1

21



for any point p in og s pt Ve cJi . Now sup-
k k+1

pose that the t1-simple maps of rank < m have been
defined. A 1-simple map of rank m from ci to cj

consists of (i) a t-simple rank O path oi geses
0
g, from g, to g, such that at vertex ¢, a
i i 3j ik
T
finite ordered set of distinct (T - {oi seees0y H-
0. k
simple, rank < m, paths from ¢, to o, are ad-
: “k e
joined. By a straightforward induction, there

are only finitely many I-simple maps from any
space in I to any other, and one can effectively‘

compute a list of them.
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§6. The Reduction To Lower Dimension

We continue the algorithm for the case in
which V: a ~~> a' ~~> a" in S where a' <, a"
for some nondeterministic choice of a maximal A,
¢$=4A={1,2,...,K}, and we assume that bounds on
the components in T = {1,2,...,K} = A have been
computed, that additional (N-1)-dimensional boun-
ding hyperplanes have been erected, and that the
finite set I of lower-dimensional subspaces has

been determined.

6.1 Compute T = T(a,V,Snv {c]oez}). If b is
a node label on this tree the algorithm reports
success. Otherwise any possible path V: a ~~~> b
in S must pass through one of the repeating points
p of the given tree. Non-deterministically choose
one of these repeating points p and a t-simple
‘path a from o(p) €L to o(b) (the spaces containing
p and b respectively). We will now describe a
procedure to travel from p to o(b) using o to pro-
duce a family of lower-dimensional vector addition
systems in o(b) (6.2, 6.3). As we travel along o,
we will produce some auxiliary vector addition
systems. We will alternate this routine with one
which checks to make sure that the vector addition

systems so constructed are legitimate.

6.2 The initial auxiliary vector addition systems
at p have the vertices {p'} of the positive cones
at p (constructed using as initial point p, as R
the set of repeating vectors at p, and as W the
set of vectors in Vl‘which affect only those com-
ponents in which some vector r e¢R has a positive
value). The vector sets for these initial vector
‘_ addition systems will consist of VI u V* where V*
is a basis for the positive cone with the given
vertex. Given an auxiliary vector addition system

(_al',Va.), let U be the set of sums of t-simple

loops from c(a') to o(a') already traversed in .



Form the tree T(gf,Va,lJU, Sno(a')). . Beginning

at the root a' of this tree examine all points a" : -
at which vectors ueU are applied; delete all

branches which extend a" in whichboth (i) q = a" +

some partial sum of u is not in S, and (ii) gf;an

not be made to lie in § by adding a proper sum of

basis vectors for the positive cone at a". 1If a

proper sum of basis vectors for the positive cone

at a" needs to be added (as in ii), actually add

all minimal proper sums which keep the path from

a" to a" + u within S.

6.2.1 Remark: The reader should note that if the

path from a" to a" + u can be made to lie in S

- only by interleaving vectors in the set X of those
vectors which affect components other than those
which can be increased using the vectors in the
cone at a", then a subsequence u in which some of
'tﬁe 7-simple loops are omitted, with the relevant
vectors from X, will appear in a branch of the
tree Ta which extends from the point p. The omit-
ted logbs will then be picked up in making the
construction of 6.2 from a repeating point on this

branch. In §7 we shall return to this issue.

6.3 Let w be the next vector along a. For any
non-repeating point 2 of the tree cogstructed in
6.2, if p; tw e S, By + w is the origin of a new
auxiliary vector addition system, whose vectors
are Va" For each repeating point Py» if 21f+ w+
X e S where.E£ is a vertex of a positive comne
constructed for p; (from 3.1) and x is some mini-
mal proper sum of the basis vectors Rp ¢ at pf s
then 21' + w + x is the origin of a vector addi-

tion system whose vectors comsist of Va' U 32 yo

The cones (from 3.1) are constructed by taking as
R the repeating vectors at p,, and as W the vec-
tors in Va, u U where non-zero u-components are

among the u-components which can be improved using
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vectors in R. (In the algorithm of that theorem,
when proper sums of vectors are decomposed as sums
of sequences, one must be sure also to decompose
the vectors ueU.) i

The points in o(b) obtained from the end of
the construction of 6.1-6.3 will be the initial
points of the lower-dimensional vector addition
systems in o(b) which we have promised.

At b comstruct T, = T(b,~V, Snu{o|oeI})
and consider the set of points B = {b'eo(b) |
b'eT }. 'If one of the initial points is in B,
then b € R(a,V,S), and our algorithm reports suc-
cess. Non-deterministically choose a point b in
B, and an initial point a' as produced by §6.1 -
6.3. These are used in the checking procedure of

the next section.

6.4 Next we need a checking routine to determine
which vectors included among the vectors in the
auxiliary vector addition system at a' can be used
arbitrarily often. Consider the bases (pogssibly
empty) Ry and R, for the comes at a' and b'.
(Ra' is constructed taking for R (of Theorem 3.1)
the set of auxiliary vectors at a' which have non-
negative u-coordinates and for W the set of auxil-
iary vectors which are non-zero in some u-compo-
nent only if some vector in R is non-zero in this
component.) Translate these two sets of vectors
to the origin, and use them as the vector sets R
and Q of Lemma 3.2. The dimension of the space
mentioned in that lemma will simply be the maximum
of the dimensions of the spaces spanned by R and
Q. If the intersection of the cones contains an
interior point p, then any motion from a' using
the vectors in 'Ra, = R can be effectively re-

- versed by a motion from b' using Rb‘ = Q by
simply translating a' to a' + np, and b' to

b' + np for a suitable n as well as making the
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desired motion. In this case we take as vector
set Va' at a', {auxiliary vectors at a'} v
{-r|re R .}

Now suppose the inter;ection of the cones
does not contain an interior point p. If R is
contained in a hyperplane HO of dimension less
than o(b), we take as vector set at a'
{auxiliary vectors at a'} u {-r | r is a basis
vector for the cone QRb nHO}.

If Q is contained in such a hyperplane HO’
then we distinguish two cases: In the first HO
cannot be taken parallel to any Hi’ ie A, and

in the second, H, can be so taken. In the first

‘case motions in 8 can move b' to points which are
farther from all the Hi’ ie A, simultaneously.
Then we take as vector set Vyoat a', {auxiliary
vectors v at a' I v is a summand of a proper sum r
in R, reHy} v {-r | reR ,}. Note that the vec-
tors which we put into Va' can be effectively
reversed, by suitably translating a' and b', as
above. The remaining auxiliary vectors v which
are not in Va' can onl§ be used finitely often;
the bound on the number of applications of v can
be computed by finding the length LV of the pro-
jection of v onto the unit normal of the hyper-
plane HO. Specifically, v cannot be applied more
than |[b' - a' I/Lv times beyond the uses already
made of v in constructing a’.

Consequently, we can find a pair of parallel
(N-1)-dimensional hyperplanes MO and Ml which are
parallel to HO, whose positive sides face each
other, such that all points in all of the trees
constructed so far in the spaces o€ I are at least
sup {|p'-a' I/I;v l for all omitted auxiliary
- vectors v} units from each of them, as new boun-
ding hyperplanes.

In the case that Q is contained in a hyper-

plane H_ parallel to one of the Hi’ i e A, then

0
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motions from.hf using Q are all parallel to Hi'
We will take as vector set V.1 the set {auxiliary
vectors v at a' which are summands of some proper
sum ¥ ¢ R such that reB }u {“£|£€va}- As the
bounding hyperplane M

s, we take Hi’ and as M, we

take a hyperplane pargllel to and on the positive
side of H,, which is "sufficiently far away". To
determine how far Ml must be from M0 we must first
note that the values oflgi—coordinates of points
reachable from a' using the vector set Vv, must
differ from the u~coordinate of u' by a multiple
of the greatest common divisor of the set

D=1{m |m is a non-zero u,-component of a vector

in Va,}. Moreover, the value m, of thelgi—compo-

nent of b' can be achieved by agplying the vectors
in V_, no more than (I|m|, for m € D) times each.
We certainly want MO and M1 sufficiently far apart
~so that each vector in Va' can‘be used this often
from any point in the trees which were used to
construct a'. Moreover, since it may be necessary
to repeat this construction for all of the boun-
ding hyperplanes Hi’ i € A, we had better allow
enough space between MO and Ml to apply the'vec—
tors Hlel times, where e ranges over non-zero gj-
components, j € A, of vectors in Va"

In the case that CR and C. can be separated

by hyperplane HO, then all auxgliary vectors not
actually in HO can only be used finitely often,
and we take as the set of vectors Va" those aux-
iliary vectors in H; together with {-r | r is a
basis vector for the cone CRb n»HO}. We then pro-
ceed to construct an additional pair of bounding
hyperplanes, as in the last paragraph.

After we add a new pair of (N-1)-dimensional
bounding hyperplanes,'it may be possible to extend
the trees constructed in 6.1 (since the new boun-

ding hyperplanes further restrict the notion <W,

certain points will no longer be repeating points,



and further computations will be possible in
Phase I of the construction of §4). The exten-
sions of this tree will lead to new initial
points a' (by use of 6.1 and 6.2) and new asso-
ciated vector sets, from which we may make non-
deterministic choices. However, none of the new
branches of the tree can have a repeating point
whose positive cone has a basis vector which in-
volves 6ne or more of the omitted auxiliary
vectors. Since all proper sums of vectors which
involve such a v non-trivially, point toward ome

of the new bounding hyperplanes MO and M,, such

’
proper sums cannot be in any positive coie.
6.5 Remark: The number of times that one intro-
duces new boundary hyperplanes with the checking
routine 6.4 is finite. One should note that for
auxiliary vectors v not in V_, and all i ¢ T,
"Yeu, = 0, and if u is a unit vector normal to
My (or M;), v-u# 0. Moreover, it is impossible
to move any point p to a point p' which is simul-
taneously further from both My and M, than p.
Consequently, if we then use the tree construction
of §4, replacing S by the set S, =8n {integral

points between M, and Ml}’ to compute a finite set

L' of spaces o' 8hich contain all the reachable
points, the resulting spaces o' have lower dimen-
sion than the spaces ¢ with which we have been
computing in this section. (The space simulta-
neously parallel to the bounding hyperplanes from
which we can move only boundedly far is the solution
space of a system of linear equations containing a
new independent equation; the new equation asserts
x°u = 0 where u is a unit normal to MO). Hence,
after a finite number of cycles, the construction
of this section must stop. In the worst case, it
continues, until 2il the lower-dimensional spaces
have dimension 0, in which case we simply have a

finite set of dimension zero vector addition

systems.
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6.6 Remark: If a path from a to b is constructed
by our procedure (i.e. some run of our algorithm
reports success), then V: a ~~> b in S. This
follows from the fact that at any point in the
construction, any vector that has been added to
the original set V of vectors is the sum of a se-
quence of vectors that it was possible to apply
arbitrarily often at some time. Consequently, we
may take each use of such a vector w in the path
that we construct and replace it at a suitable
point in the path with the sequence that gave rise
to that w. The checking routine, 6.4, guarantees
that if cone vectors are needed to apply a sum of
a t-simple loop, then these vectors can be effec-
tively reversed. The result of this reordering is
the required path V: a ~~~>b in S. The con-

verse to Remark 6.6 is verified in §7.

§7. Verification of the Algorithm

7.1 Theorem: If V: a ~~>b in §, then the

algorithm halts and reports success.

Proof: Assume V: a ~> b 1in S, and assume that

the path y actually followed consists of the

points €283y where a =¢y and b =c,

and uses the motions Wiseeen ¥ (i.e., i1 ~ & <
).

For the case in which the dimension is zero,

¥i+1

the theorem is trivial: a must equal b. Assuming
the result for all dimensions below N, we show the
result for dimension N.

Clearly the test in step one must show that b
can be expressed as a plus a proper sum of vectors
in“ﬁ; otherwise the path Y could not exist.

Next note that if the test in step three
shows that there exist a'eR(a,V,S) and b'e
R(b,-V,S) with a < a' and b < b', then the
algorithm terminates and reports success. So we

consider the case in which this test fails.
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The information in the tree constructed in

step three offers several choices of sets A of u-
coordinates that are simultaneously unbounded, and
corresponding to each A, a set T = {1,...,K} - A
of u-coordinates that are bounded and for which
maximum values can be determined by examining the
tree. We select any A which is compatible with Yy
in the sense that for any Ej in Y, no u-coordinate
which is indexed in r exceeds the maximum given
for that coordinate in the tree. Such must exist.

. For the chosen A, the algorithm gives a set X
of spaces of dimension less than N. Each of these
spaces is parallel to all the hyperplanes H, for
jeT. V is partitioned into V; = {vev| vouy = 0
for jeT'} and V;=V-V,. Note that the dimen-
" sion of the space spanned by VI is less than or
equal to the dimension of any space 0 ¢ I which is
strictly smaller than N.
. The algorithm proceeds by constructing addi-
tional hyperplanes corresponding to the bounds on
the components indexed in T', thus further restric-

ting S to a space S Using the resultant space,

the algorithm calcuiates T = T(E,V,Sl). If beT,
the algorithm terminates and reports success, SO
we must consider the case in which b ¢ T. Note
that T must contain repeating points, for other-
wise the set R(a,V,S) would be finite and b € T.
Follow Y for as long as it remains in T. The
last point <4 of‘Y which is in T must be a repeat-

ing point (otherwise c =¢; tw, €T, since

i+l i+l

c. is assumed to be in Sl)' We assume that Y

W::lchosen in such a way that i is maximal; i.e.
we assume that no path Y' from a to b in S remains
in T longer than Y does. A similar tree is con-
structed at hﬁ'using V. Let Y be e wde 1 o---
(-yl)go. Note that (y) =Y. Let ?2 be the
longest subpath of Yy starting at b that remains

in the tree constructed at b and ends in G(b).
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Let Ej be the endpoint of ?2. Break Yy into three
parts YO = 90

see C .
—1

ces €y Yp T Cy "'Ej and
Y, = Sj
At this point the algorithm non-deterministi-
cally chooses a T-simple path a from O(Si), the
subspace in I in which [ lies, to o(b). We may
assume that the O chosen corresponds to Yys where
the correspondence comes from systematically de-

leting motions in V_ and repetitions of T-simple

loops, and replacin; points g by the space dg(q).
Then the computations of sections 6.2 and 6.3
are performed using a. In 86.4 an attempt is made
to calculate new bounding hyperplanes for each
initial point. At least one of these is compat-
ible with Y. If this results in adding new hyper-
planes, then the algorithm goes back to step 4 and
this process is carried out again. As remarked in
§6.5, this process ultimately terminates in a
.finite number of iterations, and when it does so,
any basis vector in a cone can be effectiﬁely re-

versed using the cone at Ej' We thus assume that

this process has terminated.

7.2 Lemma: From the assumption that y was chosen
to maximize the number of motions that remain in
the tree, we can show that any loop in Yy from a
space 0 back to itself must have the property that
any VI—motion in the loop can be movgd out of the
loop (either before the loop or after it), perhaps
requiring the use of a proper sum of basis vectors
for the cone based at gi‘to do so.

Proof: Let w e V, be the first such embedded
motion, and assume that moving w to follow the
loop would cause some part of the resultant path
to 1ea§e S. If w affects only those u-coordinates
that can be increased using vectors in the cone at
Ei’ then by using such vectors before the loop,

the result can be made to liz in S. Note that the
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extra vectors caa ve effectively reversed, thus we
can build the required patin. On the other hand,
if w affects u-coordinates that cannot be in-
creased using vectors in the cone at (PP then
either w appears explicitly in the subtree of T
rooted at g, or affects only u-coordinates that
can be increased using cone vectors at some node

. W' in this subtree. To see this, note that the
projection of w which will be used at <5 cannot be
0, nor can the projections of the vectors in VJ.
Take any path in T through <, that leads to w or
to such a w' which includes only vectors in the
cone at_gi and motions in LATERLAFDYRREIN. 8
fically, this path can be chosen to be the path Yo

Speci-~

. to (PP followed by disjoint subpaths B of

C.W,, ,C.,. ... Wy consisting only of co cutive
ST & onty nse
motions in V. and with possible uses of vectors

J
in the come at ¢, made between the B subpaths (to

‘force the result to remain in S). (Cf. Remark
6.2.1.) This path gives rise to a path y' from a
to b in S which remains in T longer than Yy did,

which contradicts the choice of Y. 0

By a similar argument, one can show that
multiple uses of a subloop of a given loop can be
moved outside that loop.

By this lemma, we may assume without loss of
generality that the loops of Yq do not have embed-

ded VI-motions in them.

- Using the T-simple loop a from-o(c,) to o(b),
corresponding to Yl we now construct a sequence 6,
the existence of which guarantees that the algo-
rithm reports success. The conjoined sequence
YOG = ap%,a; ... 2y will satisfy several condi-
tions which will lead tc what we refer to as
alignment with the conjoined sequence YOYl' The
idea is that § will be the result of making some

of the motions that were used to form Yv,, while
4

deferring other mctions. From time to time it may
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be necessary to make motions in forming § which

are not used to form e These extra motions will

be necessitated by the requirement that § remain

in S. We will then show fhat corresponding to

these extra motions are other motions which can be

applied that effectively reverse the extra motions.

In addition, if a loop is used in forming E it

will be replaced by its sum in forming §. Recall

that a vector w € W, can be effectively reversed

1
using W2 if there exist Y, and ¥, which are proper
sums of vectors in Wl and WZ’ respectively, such

that w +w, +w, = 0. (In practice, w and ¥y
will be vectors, all of whose u-coordinates are

‘non-negative, and they will be applied to a path
emanating from a, and (—32) will be a vector all
of whose u-coordinates are non-negative, and it

will be applied to a path emanating from b.)

Recall that Yy =g¢j...C ... C and

5 ceeCos
"assume that i € s < j. Let a. be any point, given
by the algorithm, which extends Yo- We may say

that a_ aligns with ¢, if and only if
(1) a(a) =o0(c)s

(ii) the motions w ¢ VI and the sums of T-simple
loops that are used to form__o:S which are
not used at least as cften to form a_

affect only u-coordinates that can be in-

creased using proper sums of the vectors

in the basis of the cone at [FH

(1ii) the motions used to form a_ not used at
least as often to form.gs can be effective-
ly reversed using the basis for the cone at
Ej; in addition, none of these motions de-

creases any u-component.

We prove three lemmas about alignment, which
will be used to complete the proof of the theorem.
Note that (YO,VI) aligns with itself. The first

two lemmas will enable us to show that if align-



ment can be maintained, then the resultant vector
addition systems (which are of lower dimension
than the original) cause the algorithm to report
success. The third lemma will be used to show

that alignment can be maintained.

7.3 Lemma: Ifgr aligns with c_, then those
motions used in forming B that were not used at
least as often in forming_gr can be added to 2.
perhaps requiring some proper sums of basis vec-
tors of the cone at ¢, to remain in S. Let a" be
the result of adding the appropriate vectors.

Proof: Follows from the definition of alignment.[]

7.4 Lemma: a" and e, ¢an effectively be moved to

points a' and c¢' using proper sums of basis vec-
tors at a_ and -3 (respectively), such that
T ]

a'< a', c.< ¢'", and a'-¢c_=c'-c..
= w -] w i —S - -]

T

Proof: Note that a" differs from c¢_ only in that
it has extra motions, all of which are sums of
basis vectors of the cone at a . These are effec-
tively reversible using the basis vectors of the
cone at ¢, (by section 6.4 and lemma 3.2). Let a'
be the result of adding the necessary sums from

the cone at a_ to a" and let c' be the result of

adding the necessary sums from the cone at Ej' 0

7.5 Lemma: Assume that a is not an initial
point (in the sense of section 6.3) and that a. is
aligned with c_. Then there exist a' and ¢' such
that a' is aligned with c' and a' is some descen-
dent of a node with a label equal to a. given by
the algorithm.
Proof: Assume 2_ aligns with c_. Consider the
correspondence between the next move w = Yo
along Y and the next motion y to be made in C.
Case 1: w = y. In this case, the algorithm gives
a' =a + w + x as its next point along the con-
+w ¢ S.

structed path, where x =0 wunless a .

In this case, x is a minimal proper sum of basis
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vectors of the cone based at a.. But the fact
that these vectors can be effectively reversed is
guaranteed by the construction in 36, thus x must
be effectively reversible. The appropriate c' is
clearly < + w.

Case 2: w ¢ VI' If a_+ w extends a_ in the tree

- -r - -
of section 6.2, then setting a' = a +w and

cl

=c. + w clearly continues the alignment.

If a +w does not extend a, in the tree,
there are three possibilities. The first is that
a =49 for some predecessor g of a. in the tree.
In this case, merely use q instead of a giving
a'=q+w and c' =c  tuw

The second possibility is that a is a re-

. peating point and w affects only those u-coordi-
nates which can be increased using vectors in the
basis of the cone associated with a . Then the
use of w can be deferred, for it is still in V..
In this case, a'=32a and c'=c_ +uw.

The final possibility is that a_ + w'¢ S. We
may also assume that if a. is a repeating point,
then there is no X in the cone at 2  for which
a. tw+xe S, for that possibility was handled
in the previous paragraph. Since < +w e S, the
construction of this lemma must have omitted some
motions that were used to form Co as well as per-
haps making motions that were not used to form (3
First note that these extra motions could not have
caused a_ + W ¢ S, because no extra motion that is
used decreases any u-coordinate. Thus the diffi-
culty arises because of omitted motions. For
motions to have been omitted from the constructed
path, the path must have passed through repeating
points, in which case the omitted vectors can
affect only those u-coordinates that could be in-

creased using proper sums of vectors in the basis

of the cone associated with the repeating point.



These vectors are still available at _aT, and since
for no x in the comne ata isa +w+xe S, it
must be the case that there is a subtree based at
a. which b‘egins with one of the vectors that was
in the basis of the cone associated with a repeat-
ing point encountered before a. One of two things
will happen: either some successor a" of a with
a. <, a" will be a repeating point with a cone in
which can be found an x such that a" + x +w € S,
and a" - a_ can be effectively reversed (because
all motions from a  to a" were in some cone); or
no such successor of a. exists, in which case some
successor a" (where a_ <, a", since only proper
sums of basis vectors of cones will be used to

' move from a_ to a") will have an edge labelled w.
In either case, a' =a" and c' =c_  preserves
alignment and leaves a previously considered situ-
‘ation for the comstruction to continue.

Case 3: w¢V; and w # y. In this case w must
be the first motion of a loop B from q(_c_s). to
c(_gs) which corresponds to a T-simple loop in @
whicﬁ has already been traversed -in a. By the
choice of Yy, there are no VI-motions in this Ioop.
By induction on the rank of the T-simple loop that
corresponds to B, we can show that the sum of B is
the sum of T-simple loops which have already been
traversed. We simply repeat the argument of

case 2 using as w the sum of each T-simple loop.

Now let 8§ be the path formed by repeatedly
using the construction of lemma 7.4 until o is ex-
hausted, and let a, and [ be the points that
result. By lemmas 7.2 and 7.3, these points may
be moved to a' and c¢' such that c'-a' = PN
The existence of ¥ shows that there is a path from
g to Ej in S using motions in VI as well as sums
of T-simple loops along §. This implies that
there must be a path from a' to c' using the vec-

tors associated with 2, by the algorithm, all of
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which lie in o(b). By induction, the algorithm
reports success for this lower-dimensional problem

and hence for the original problem.
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