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Abstract

A wide range of segmentation techniques continues to evolve in the
literature on scene analysis. Many of these approaches have been con-
strained to limited applications or goals. This survey analyzes the
complexities encountered in applying these techniques to color images
of natural scenes involving complex textured objects. It also explores
new ways of using the techniques to overcome some of the problems which
are described. An outline of considerations in the development of a
general image segmentation system which can provide input to a semantic
interpretation process is distributed throughout the paper.

In particular, the problems of feature selection and extraction
in images with textural variations are discussed. The approaches to
segmentation are divided into two broad categories, boundary formation
and region formation. The tools for extraction of boundaries involve
spatial differentiation, non-maxima suppression, relaxation processes,
and grouping of local edges into segments. Approaches to region formation
include region growing under local spatial guidance, histograms for
analysis of global feature activity, and finally an integration of the
strengths of each by a spatial analysis of feature activity. A brief
discussion of attempts by others to integrate the segmentation and interpretation
phases is also provided. The discussion is supported by a variety of

experimental results.
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I. Introduction

In the design of a general computer vision system for interpreting
images, one must face many of the issues confronting the development of
complex AI systems in general. Image understanding requires the proces-
sing of vast quantities of sensory data, with noise from the sensing
mechanisms as well as non-semantic information obscuring the semantically
significant entities that are to be perceived. One must organize both
processes and knowledge structures in a modular fashion to interact in
a flexible manner (Hanson & Riseman [1976], Arbib & Riseman [1976]).

The complexities in the design and implementation of such systems
-typically has led to a decomposition of the problem into distinct sub-
systems for segmentation and interpretation, often referred to as 'low-
level' and 'high-level' processing, respectively. We ‘view the goal of
the initial stages of processing in visual systems as segmentationm,

a transformation of the data into a partitioned image with parts in a
representation which is more amenable to the semantic processing.

The general problems of segmentation involve processing arrays of numeric
values representing brightness (and color) in order to extract features
of boundaries and regions over local areas or 'windows'. By a variety

of means this information can be aggregated, labelled with symbolic names
and attributes, and then interfaced to knowledge structures by interpre-
tation processes.

There has been some debate over the degree to which semantic infor-
mation should be employed in the partitioning of an image. The problem
of segmenting scenes with textural variations is rather challenging,
and it is clear that the context of local data in a picture influences

our interpretation of that data. Then it is reasonable to ask why the



jmage should not be processed immediately with knowledge of 'chairs',
'tables', or any other objects expected in the image. This will be
discussed in more detail later in this paper, but it is worthwhile to make
our views on this matter clear now.

A vision system which is to operate in a constrained domain with
constrained goals will bevable to use such knowledge to its advantage.
However, this'means;that the segmentation operations cannot be applied_
to a _new domain without prov1d1ng the new knowledge for that domain, inﬂ
each case the content, form, and manner of use of the domain-dependent :
knowledgeimust be specified. This also might involve serious computa-
tional considerations depending on the amount of knowledge and its use.
This implies afreconstruction and‘evaluation of the'segmentation system
in each new application. It seems to us tﬁat there is a large degree of
non-semantic patterns of sensory visual data which can allow effective,

, althOugh not perfect initial segmentation without recourse to semantics.

A 31m11ar view ‘has been expressed by Zucker, Rosenfeld and Davis [1975]

The human v1sual system can do quite well in partitioning nonsense images,;‘
eten»wben neighboring regions‘are highly:textured.
Vfor these.reasonSqne view the problem of image understanding~as one

of performing“initiai-segmentation via general procedures, feeding this

, low-level output to a high-level system, and then allowing feedback loops
so that the interpretation processes can influence refined segmentation.
This allows senantic information to influence segmentation in a goal
oriented way without coupling all such knowledge directlf into the low-
level processes. In this paper, however, we will look primarily at
computer techniques for a one-way transformation from 'raw' visual input

of static images to a segmented array.
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From this point of view, the segmentation processes provide a compact
description of the location and characteristics of visually distinct
areas of the image. However, the local analyses may generate a great deal
of spurious activity because objects in images do not appear as uniformly
colored areas (as in cartoon drawings) but rather have natural textural
variations, reflectance, shadows, etc. Thus, the integration of local
processing into globally consistent boundaries and regions is not at
all straightforward.

From a classic AI point of view, this analysis involves an enormous
search space. If one adopts the ideal goal of bringing together these
local representations of data into an optimal global representation, one
must immediately face the combinatorics of the problem and the question
of computational efficiency. Global brute force search is quite impossible,
and of course one would not even recognize acceptable solutions without
the application of higher-level processes to each alternative. Humans can
understand images of natural scenes even in the presence of a high degree
of noise and local textural variations. Clearly, the different phases
of processing that are employed must be integrated and techniques to
constrain the alternatives within each are necessary. Interaction between
the analyses of local visual areas can be employed, but there must be
provision for global guidance; not all possible global boundaries can
be considered, but local noise in the formation of a long straight line
should be handled by the global view of the line. In this paper we will
examine some of the ways of dealing with these problems.

In the next two sections of the paper, we examine feature extraction,
color, and texture. The main focus of this paper, techniques for boundary
formation and for region formation, are presented in the next two sections,

with a concluding discussion in the last section.




2. Feature Extraction

2.1 Raw Input and Color

Firstly, then, what is the 'raw' visual input? In an animal, it is
simply the pattern of light (distributed across the spectrum) falling
on the animal's retinas. This pattern changes over time as the animal
moves and the environment changes. 1In a computer visual system, the
input may be far more restricted. The simplest input is a black-and-white
photograph which provides a two-dimensional map of light intensity in a
static scene. Such an input can be subject to boundary formation and
texture analysis. In this paper, we shall provide computer techniques
for analyzing a static scene enriched by color. The usual way of
representing a color photograph is by coding it as three arrrays, each
sampling the brightness of the pattern through a different standard
filter. Usually, the peak frequencies of the filters correspond to the
three primary colors of red, green, and blue. This is true of the eye
as well as of the computer: each rod in the retina has peak receptivity

near the frequency of one of the three primary colors.
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Fiéute 1 depicts a simple house écene viewed through each of the
three fiiters an& also averaged into a black and white (B & W) mono-
. chromatic image. If one views the blue component (Fig. 1c) of the
colored image as a black-and-white photo, then bright regions are those
Qith a strong blue component. Since white light has all spectral com-
ponents, both blue sky aﬁd white clouds may appear indistinguishable in
éhe blue image. However, ;he red and greén components of the image will
portraj the boundary between sky anq'clbuds:
The color of the sky is actuaily cyan (greenish blue) which
" .has a much larger green contribution than red. .Conseéuently the red
component (Fig. la) of the image would shpw the sky area to be much
darker than the cloud area, while the contrast is not as great in the
. gfeeh.(Fig. 1b) component. By properiy viewing the three images one can
estimate the c9lors of other'areas, e.g., the roof and unshadowed side .
of the house is reddish, the grass is yellowish green (high in green,
moderate reda, the house trim is white (high in all componenés), etc.

Consequently, even the roughest sense of the color of an object
cannot be determined without looking at ail three values. On a dark to
light gray scale from O to 63, a red value of 40 could represent:

 ;) a bure re& (1f the other components are 0); or

- 2) yellow (if the green value is 40, and blue is 0); or

3) white (if both green and blue are also 40); etc.




2.2 Hue, Saturation and Intensity

Due to these problems, the raw data is often transformed into a
’ éifferent coordinate system which is more intuitive to the human user:
hue, saturation and intensity, often referred to in this paper as HSI
features or pafameters. The following is a brief discussion of the
"definition of the;e features.

The information aésociated with each.point (i,j) can be viewed as
a vector in 3 space, [R(1,]), G({,3), B(i,j)]. We restrict each element
. of thé vector to the range (0,63]. To help the reader visualize this,
we adapt the clear and simple presentation ﬁrovided by Schacter, Davis
and Rosenfeld [1975], and view this as a vector within the 63 x 63 x 63
c&se depicted in Figure 2a.

ﬁy- viewing the brightness of a point as anaverage of the three
primary color components,'it is clear that the origin [0,0,0] is black

and maximum brightness [63,63,63] is white. We may define a gray scale of

" brightness or 'intensity' by ' . ° .
o ¢ RAEBAG
I 3 .

This is eduivalent to the length of the projection of the vector [R,G,B]
associated with any point upon the diagonal vectorlshown in Figure 2a.
Thus, points in the color cube get progressively brighter as oﬁe moves
from the bottom right.to the upper left corners.

Other colors are obtained as one combines the primary colors in different amounts.
The corners of the color cube are labelled in Figure 2b with the names of perceived
coloré whit;h are formed from the three primary colors. For example, red and green
in equal émounts produce yellow, wheﬁ the blue component is O. Thqs, one can
imagine the right face of the cube in Figure 2b varylng across green,

yellowish-green, yellow, yellowish-red (orange), and red. A diagonal




Figure 1:

5a

Digitized images of a natural color scene.
(a) Red, (b) Green, and (c) Blue components are shown.
(d) Intensity (or brightness) is an average of the first

three images; subareas A and B will be used in examples later

in the paper.
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Figure 1:

Sa

Digitized images of a natural color scene.
(a) Red, (b) Green, and (c) Blue components are shown.
(d) Intensity (or brightness) is an average of the first

three images; subareas A and B will be used in examples later

in the paper.







line from black to yellow (i.e., red and green components are equal)
will reptesent yellow at different levels of intensiqyl. Now we

need a way of describing the points inside the cube as weil as on the
gurface of the cube. The pointé in a plane perpendicular to the gray-
gcale vector from black to white are of equal intensity. The largest
such plane within the unit cube is the plane péssing thfough the cube

at the corners R, G and B, forming the equilateral triangle depicted

in Fig. 2c¢c and 2d. At any other level of intensity this triangle is
smaller. The implication is that there is a smaller range of color
combinations that can be formed as one appr?aches minimum and maximum #
intensity (black and white). )

The color triangle of Fig. 2¢ can now be used to describe two other
characteristics of color space, hue and saturation, which are independent
of intensity. The intersection of the color triangle with the line between the origin
and any point P in the color cube defines the proj ectién of P onto the color

triangle at 'P'. The placement of this point P' is defined by normalizing ir

the.values o% R, G and B:

rﬂ_——R——
* RIG+B
S
8 = RIGIB

and b =

B
RtG+B

The problem is much more complicated from a psycholcgical_view because

our perception of the color yellow is also a function of intensity and
below some threshold, we might call it another color such as tan, brown,
blackish-brown, or black. Human perception of color is a very complicated
process and we will not be able to treat this problem in detail. The
reader is referred to Evans (1948], Cornsweet {1970}, Bouma (1971] and




Bl il Akt

which implies that r + g + b = 1. Since there are only two independent
6ar1ab;¢§, it is convenient to convert the equilateral colo% triangle into
a right color triangle with the point P! defined‘by r and g (on the R and
G axes, respectively) as shown in Fig. 2e.
Now one can specify the hue and saturation of point P'. .Intuitlvely,
ﬁue can be thought of as representing the type of color. Saturation is a
measufe of the richness or purity of. the color and is inversely propor-
tional to the ;;ount of white light diluting the hue., Both of the colors
pink and scarlet may have the same hue, but pink is unsaturated while
scarlet is highly saturated. If one represents the center of the color.
.triﬁngle as W (where W is the neutral point representing the projéction of
white and all gray levels between white and black), then the extension of
the line between W and P' to the perimeter of the triangle describes the
hue of P'; it is denoted by H in Fig. 2e. There is a one-one mapping
between points on the perimeter of the color traingle and the angular
orientation 6 with réspecg to an arbitrary reference point, in this |
case R. Thus, hue can be represented as an angle @ with red as 0°,
green as 120°, and blue as 240°.
Saturation of P' is computed as a percentage of the distance of P'
from W to the perimeter point H:
¢ o 127
|84
If P is anywhere on the perimeter of the color triangle, then it has a
saturation of 100% while the point W (white) is comp{etely diluted and has
a saturation of 0%..

The HSI features that we have defined are not entirely independent.

If one examines the diagrams in Fig. 2, one can see that totally saturated




Figure 2:
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Transformation of the raw data (R,G,B) into parameters of

hue, saturation, and intensity (H,S,I).

(a) The color cube and (b) the names of colors at the corners.
(¢) Formation of the color triangle. (d) Projection of a point
p' on the color triangle. (e) Only two parameters of (r,g,b)
are independent, producing the right color triangle; H and

S are shown in this representation.
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yellow, cyan or magenta can have an intensity twice as great as the highest intensity
red, blue or green which still remains totally saturated. Certain colors may only be
perceived within a range of one of the parameters; e.g., yellow is seen as brown only
when the intensity is low. Thus, if a mapping from HSI into the symbolic color names
is desired, one must take into account dependencies between the HSI parameters. For
other treatments of color see Tenenbaum et al. [1974] and Sloan and Bajcsy [1975].

Recently Kender [1976] has addressed a problem that some have known about, but has
not been discussed in the literature. In the transformation to normalized components
or HSI, there are points of instability where arbitrarily small changes in R, G, B
will produce large differences in the transformed components; e.g., near point W,
small changes in the raw components can cause very large changes in hue and satura-
tion. Kender's treatment is a very thorough numerical analysis of the computation
and use of color, but is beyond the scope of this paper.

Most of the information with respect to boundaries seems to be visible in the

B & W intensity array of Fig. 1ld. Thus, one can avoid the problems of color if omne
is willing to risk the disappearance of boundaries between areas of distinct color
but similar intensity. We believe that color information is extremely useful for
interpretation and despite the potential problems will continue to refer to the HSI
features throughout this paper.

2.3 Extracting Other Features Over Windows of Variable Size

Themajor complexity that arises in segmentation is that the areas to be partitioned
still are usually not invariant across the primitive parameters of hue, saturation,
and intensity (HSI). These problems are intertwined in the complexities of texture
which will be treated later in this paper. What we now stress is that even when
scene analysis works with static color input, the features upon which segmentation
algorithms operate need not be restricted to the HSI values associated with image
points. For example, an algorithm for boundary detection may only produce the

correct results if it operates on some of the average HSI parameters computed



across a local window of the right size; the proper boundary may only be
obvious to local operators after some degree of blurring (which provides a
more global viewpoint). Thus, one is faced with analyzing features of local
windows of differing sizes as well as of individual points at the resolution

level of the image.

Once the constraints on what constitutes a feature are relaxed in
this manner, a huée class of possibly important properties becomes
available. The meaningful feature might.actually be the variance of a
property over a local area, not just the average of that property. This
provides a measure of invariance or homogeneity of a given property.

If texture elemeﬁts are extracted as atomic areas which are homogene;us

in one or more of the HSI parameters, then the shape, size, and orienta-
tién of these areas might be the crucial property forming the cohesiveness
of the perceived region. Although we shall not attempt to discuss the
extent of the many efforts at feature extraction, properties for which
computational procedures have been developed include: average of an

area (blurring), average edge per unit area (spatial differentiation and
thenvilurring), average orientation of local edges and average sp;t size of
uniform contiguous area. All of these techniques have been carefully
explored by Rosenfeld's group (Rosenfeld et al. [1970,71,72]) and are
treated by Rosenfeld and Kak [1976]. Bajcsy [1973] has used frequency
distribution in the Fourier domain in the analysis of texture gradients.

The compntétional games that are available for constructing more
complex features by combining these techniques seem endless. Let us
‘consider a sequence of operators to determine the orientation of line
elements as the textural property characterizing a region. One might
.first compute a series of directional derivatives of the image in color

space to determine the strength of color differences at various orientations;
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@hen,in a blurring process, average these values over a local window of
;ome sizé to delimit the areas which contain the lines (i.e., average edge/
unit area); and finally differentiate these values for each orientation.
The result at a particular poink represents the strength of a boundary
between aréas on either side of it, where the values of these areas are

based on the property of average strength of edgeé in the particular orien-

tation. If the first two steps are replaced by a function which computes

the size of atomic areas and then averages these sizes, the differentiation

might discriminate between textures of different coarseness.

The important point to remember is that many of the algorithms giscus-
sed can work upon any array of extracted features, not just the simple
exgmples presented. The problem is further complicaﬁed by the choice of
applying algorithms to vectors of parameters. A spatial differentiation
operator might be applied to the intensity array of a static scene to find
large changes in brightnéss or to all three of the RGB or HSI parameters as a
three-dimensional vector. The metric is ofgen defined in one-dimensional
.and three-dimensional space, but in general can be applied in n-dimensibnal
space (if n'features have been extracted):

Given the state-of-the-art in scene analysis, one is faced with a
combinatoric explosion of alternatives--experience has not yet provided..
answers to this problem. It is probable that working systems will require
the ability to determine dynamically the proper size and membership of the
subset of features employed by the algorithms. It must be stressed that many
scene analysis systems will be tailored for specific applications--be they
assembly lines, cardiovascular data, chromosome analysis or satelite imagery.
Muéh of the success of such a system will depend on the judicious choice of

. those local features most likely to speed up the segmentation of the res-

tricted class of images presented by the problem domain.
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3. _Segmentation and Texture

3.1 Goals of Segmentation

We shall distinguish two main approaches to the segmentation of

natural scenes:

a) Boundary Formation -~ finding the boundaries which delimit a

region; and

b) Region Formation - analyzing properties of areas to merge or

- split them into regioms.
The goals of these two types of analysis are equivalent--they both form
a partition of the scene into regions and boundaries. They both must
employ some type of grouping, clustering, o; binding of local areas/edges
together. But the focus of the first is upon differences (discontinuity)

in properties while the second is upon similarities of properties. It is

quite possible that specific examples of these approaches could produce
consistent or even isomorphic results. Placements of boundaries in one
repreéentatipn might be e;actly between the regiéns formed in another
representation. However, in practice algorithms which operate'upon
arrays of numbers representing complex visual information end up taking
many different forms in dealing with the problems to be described.

The dataare often manipulated differently depending on whether one tries
to form lines or extract properties of areas. A scheme which is tracking
edges would be able to use the expected straightness of a boundary dﬁring
the processing, while the region approach might collect distributed
characteristics of widely separated local areas.

A powerful scene analysis system will make cooperative use of

several such processes in handling all but the most -sharply differentiated

of regions (Arbib and Riseman [1976]).
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Before we discuss particular segmentation techniqﬁes, ;eé us look
again at the scene depicted in Figure 1 and note distinguishing characteris-
tics of the parts of the image that we would hope to extract as regioms.
The sky and clouds are.relatively distinct homogeneous regions. It turmns
out to be easy to segment_the main area of sky from the rest of the scene
on the basis.of intensity. The grass, only slightly more difficult since
it has arather homogeneous fine texture, becomes distinct from the
surrounding areas on the basis of 'average' hue or intensity in a blurring
process. Of course the area in shadow is separated sharply from the rest
of the grass on the basis of intensity, but it turns out that there is only
a slight shift in huel. fhis means that there is information avail#ble
duringsegmeﬁtation either to form the shadowed grass area separately or to
bind it to the unshaded.grass area. In these examples, it appears
thatra conservative strategy which forms separate regions might be better since
there is information available to merge the regions with more confidence later
under semantic guidance. If these regions are merged immediately, then problems
of backtracking must be faced. The primitive regions which have been formed will
need to be examined later to see whether they should be partitioned in an alternate

way.

The more difficult areas in the scene of Figure 1 are the maze of textural
variations in the tree, the smaller areas of detail which are not clearly defined

in the house and shrubs, and the areas running off into shadows. The left window

1 In general, one cannot expect the hue of a shadowed area to remain un-
changed. In fact if the light is reduced significantly, the hue will
be quite prone to error (Kender [1976]) as it approaches black through
the lower intensities.°
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area is partly occluded by the leaves and branches, so that the distinct portions
of the window trim and panes do not form areas which are easy to join together
and interpret in the absence of context. This problem in the window area is
compounded by reflections and shadows, e.g., the light areas of the window pané in the
%ntehsity image of Figure 1d are blue reflections from the sky.

. One'can now appreciate the difficulty of purely low-level formation of

a single region covering the whole tree--both the area of tree with sky

showing thtough,'gs well as thé area of tree with obscured house in the
background. The background textural elements are quiﬁe different in these

two areas, yet there are common textural qualities which form one part

of this maérotexture (the leaves and branches) in each.case. This, and

the fact that texture elements in the two areas are connected, are cgucial

clues which can be used to hypothesize the joining of these two regions.l

3.2 Problems and Goals in Processing Texture

.= The major problem for all segmentation techniques is texture.2
We use the term texture rather loosely to encompass the variations in
. the visual properties of objects/surfaces/regions, including the texture induced

by reflections from an irregular surface (e.g., highlights in the crown

lOnce again, cooperation of high-level processes which know something about
background areas showing through objects can be used to remove any remain-
ing ambiguity. This reiterates the importance of our observation that high-
level systems ought to affect segmentation at some point in the processing.

2Here we are referring to the primary difficulty in partitioning a scene into
distinct visual compoments, not the major goal of determining the semantic
relationships between the pictorial components. Later, we briefly discuss
some attempts to integrate semantics with the segmentation process.
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of a tree) and by occlusion of the light source (e.g., shadows in the
crown of the tree due to branches blocking the light source). The areas

to be partitioned are rarely uniform in any of the simple parameters of

hue, saturation and intensity.

Segmentation processes are always faced with the difficulty of dis-
tinguishing between a region covered by texture elements and the texture
element itself; the system might be mistakenly focussing upon the internal
structure of a region. The proper area varies as a function of resolution,
focus of attention, and goal orientation--is one attempting to bound the
}eaf, the brahch, the clump of leaves, the tree from other trees? |

. ﬁany studies have been conducted on images containing at most two
textures or the simpler problem of classifying an image of a single
textﬁre. The problems that appear when one requires a single process
to deal with arbitrary texture types in regions of varying size, quality,
aﬁd place;ent have not been explored in the literature. Textures canm,

- occur as a recursive embedding of te%ture types to make the task even more
difficui:. Faced with a combinatoric explosion of possibilities, research-
ers have correctly chosen to deal with restricted classes of textures.
However, the set of tools that have been developed might become more,

effective when a system can employ. them in some general but structured

manner. It appears that the time is ripe for an integrative attack upon

the complexitié% of visual texture.
L ]

There are three common goals in texture analysis:

a) classification of texture into a set of categories;

b) description of texture in terms of primitive properties; and

c¢) segmentation of texture.
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In the first two cases, one usually assumes that the given sample is an
example of a single texture. Because this is not true in the third case,
techniques for categorization of a single given texture or formation of
its description are not sufficient for the determination of a boundary

between two areas (of unknown sizes and shapes) but with distinct textures.

3.3 Hierarchical Approaches to Texture Analysis

One of the main problems in segmentation of textured regions is
that the textural feature whose difference is to characterize the boundary
may need to be extracted over a local area of unknown size and shape.
1f the information is sampled over areas that are not large with respect
to texture elements or variations, then one cannot expect these local
analyses to provide feature values that are invariant across the textured
region. Consequently, it is desirable to extract the textural information
over as large an area as possible. However, this leads to the 'window
problem'--one cannot be sure of when the window area over which the feature
is extracted is entirely placed inside a region or when it is extracting
a '‘mutant' value (i.e., confusing a mixture of two textures as a single
new texture) because it overlaps regions.1

A general segmentation system will need the ability to extract such
information over varying window sizes. The selection of the proper
size for the 'receptive field' must surely be a dynamic decision (and

sometimes could be provided by feedback from the interpretive process).

lThis problem is related to the 'mixed pixel' problem. When an image is

first scanned, the pixel could be on the boundary between distinct visual
areas. This would produce a value between the values which would be
produced for pixels entirely to the two sides of the boundary.
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One can structure the system to analyze sets of increasing window sizes

n n

(e.g., 2 x 2, n=1,2,...) in some hierarchical manner (Rosenfeld and
Thurston [1971], Marr [1975]) so that the correct size is sure to be
included. One then must deal with the problem of automatically selecting
the relevant data or maintaining all of it in some multi-level data structure.
Although the problems become quite tricky, they do not seem insurmountable;
however, such systems structures are still not yet understood very well.
The hierarchical processing cone structure (Hanson and Riseman
[1974]) might allow an integrated attack upon these problems. Extraction
of features over varying size windows is implicit in the design of the
system. The processing cone is a simulation of a parallel array of micro-
computers that is hierarchically organized into layers of decreasing
resolution (2562, 1282, 642,..., 12). Sequences of operations allow
full resolution image data to be transformed, compressed in amount,
and stored at higher levels of the cone as coarse resolution features
of subareas below. This allows both local and global features to be
available simultaneously. Coarse descriptions of major areas might be
utilized to guide the formation of more refined representations by merging
atomic areas at lower levels. In this way the cone allows the system to
work at both levels of description, either independently or dependently,
but finally with the goal of bringing the local and global descriptions
together.
An interesting approach to the recursive embedding of texture
characteristics has recently been suggested by Ehrich and Foith [1975, 1976].

A versatile data structure for extracting the relationships between intensity

peaks and valleys of a one-dimensional scan line, called a 'relational tree',
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has been developed. The description of peaks and subpeaks (which could
represent microtextures within a macrotexture) in terms of their width

and relative heights can be extracted from the waveform rather simply.

The relational tree captures structural information in a hierarchical
fashion; fine texture appears as 'frontier peaks' embedded in coarse (wide)
peaks representing more global textural characteristics. The two-~dimen-
sional case becomes somewhat more complicated since the structure of
distinct scan lines in the same or different orientations must be
correlated. The approach appears to be quite powerful for classification

and description, and bears promise for applications to segmentation.

3.4 First— and Higher-Order Statistics

One approach to texture description uses first- and higher-order
statistics of (monochromatic) scene elements (Julesz [1975]). The first-order
. statistic is simply the average gray level of an area; and differences in this parameter
have been widely ;mployed in previous work. The computation of the second-
order statistic for an area requires the determination of the likelihood
of finding gray levels i and 3 for pairs of points as a function both of
‘tﬁe length and orientation of a line between them. Third-order statistics
are extracted as a function of the relationships'between three-tuples of
points.
The information in second-order statistics is precisely the data
contained in the 'gray level adjacency' matrices which have been studied

by Haralick [1973] and Rosenfeld & Troy [1970]. For a given length and

orientation, a square matrix of the co-occurrences of gray level i with
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gray ;evelhj in the defined relationships must be constructed. This
technique has been used effectively for classification of texture samples
by transforming each matrix of values into a scalar ;alue by computing
features such as the angular second moment about the diagonal (ASMD).

It is interesting to note that the ASMD can be computgd locally in parallel

using little intermediate storage in the procensing cones (Hanson & Riseman [1974]).

In a series of interesting experiments, Julesz et al. [1973] and Julesz [197;]

_ demonstrated that two textures with identical first- and second-order

' gtatistics but different third-order statistics cannot be spontaneously
discriminated by a human obsefver, while differences in first- or second-
order statistics generally allow spontaneous discrimination. They showed
that textures could be constructed with these characteristics by performing
siﬁple transformations of the texture elementl. This would imply that if
"the first-‘;nd second-order statistics were extracted from a texture:

these often could be used to determine boundaries of the textured area.

Unfortunately, use of second-order statistics is not a computationally .

viable approach. For purposes of segmentation, the amount of data that would
have to be collected to determine similarity or differences of general second-order
statistics of unknown areas of arbitrary size, shape, and placement is
an enormous data overload. Thus, segmentation based on extracting a full
range of second-order statistics seems doomed to failure. However, the use
of selected features dependent only on second-order statistics could prove

quite fruitful.

1It should be noted that this study was constrained to black and white

binary images. Although the extrapolation to more general scenes is
reasonable, it should be done with caution.
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4. _Boundary Formation

There are many ways to form a description of a scene in terms of
a line drawing. There are several intermediate representations of
boundaries that often are formed prior to obtaining the final representation.
Computation of the strength (and sometimes orientation) of the gradient
of intensity can be obtained via the application of a spatial differentia-
tion operator. The transformed image is composed of independent edges
whose spatial relationships, among other things, can be used to infer
more global entities. Optionally, these edges might be filtered to
remove redundant and/or less important edges. Then, a subset of edges
might be linked into line segments; in some domains these segments might
be restricted to linking edges that either form a straight line or observe
certain constraints on edge orientation. Finally, the line segments
might be grouped together in terms of the standard ways lines may come
together at vertices or in terms of more complete boundaries.

Much of the early research in scene analysis was based on techniques
for tracking straight lines (Roberts [1965], Binford & Horn [1971]).
If the objects under consideration were polyhedra, then knowledge about
their vertices could also be employed during or after the formation of
straight line segments (Roberts [1965], Clowes [1971], Huffman [1971],
Shirai [1972], Duda & Hart [1973], Waltz [1975]). It should be evident
that in natural scenes these techniques will be quite limited if utilized
alone. More general nonsemantic procedures for binding local edges into longer
segments are needed. An interesting approach that the reader should be aware of,
but that we will not examine here, involves an understanding of surfaces,

their orientation, and the light reflected from them (Mackworth [1973], Horn [1975]).
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There are a variety of techniques and control strategies that can be
used to form edge representations. Edges can be seqeuentially tracked
along points of roughly uniform gradient strength. On the other hand,
edge information can be extracted prior to sequential or parallel binding
of edges into line segments. Colinear edges can produce clusters in
feature space via Houéh—like transforms (Duda and Hart [1973]). This
can allow groups of edges with similar properties to be globally analyzed
and provide local direction to the control of boundary formation
(0'Gorman and Clowes [1973], Nevatia [1975], Shapiro [1975], Wechsler
and Sklansky [1975]). The latter approaches bear similarity to techmniques
for region analysis presented later in this paper, and we hope the reader
can extrapolate their potential by considering the general utility of
global feature analysis in forming regions.

One cannot expect a low-level system to directly provide all final
boundary representations which might be meaningfully interpreted by a
semantic processor. This search space is enormous and constraints upon
the final representation are almost always embedded in the téchniqués
and control strategies. Sometimes in cases of unce;tainty the goal of
forming a single final representation can be relaxed, and the determination
of a consistent representation can be delayed for other processes which
utilize different types of knowledge. Thus, we will limit ourselves to
examining variations on two approaches to the early stages of finding lines.
A survey on edge detection techniques by Davis [1974] focusses upon other
issues and approaches, providing a nice complement to the treatment in

this paper.

vy
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4.1 Spatial Differentiation

As we have stated, the usual first step in computing boundaries is
the application of a spatial differentiation operator (often defined as
an edge mask or template) to transform the original image into one with
edges highlighted. Although many such operators have been suggested
(Hueckel [1973], Bullock [1974], Fram and Deutsch [1975], McKee and
Aggarwal [1975], Marr [1975]), one that combines low complexity with
high reliability is an operator (Kirsch [1971]) computed on the local

window shown in Figure 3a as follows. Let
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M= [SGa +a, +a,) -3+ .. Fa )]
< ’
where the indices are computed modulo 8; then let -
S(X) = Max M, and D(X) = {1i|such that M, is max}.

This gives, at evéry point X, estimates of the gradient strength S(X)

and gradient direction D(X) (quantized to 45° intervals). Later we will

show that it is useful to save the sign of the gradient; this will tell us
the sides that are light and dark as we move across an edge of a given contrast.
If X is within a uniform area, S(X) = 0 and orientation of an

edge is meaningless, whereas D(X) is defined, but not necessarily unique,

-

L]

in all other cases. Actually D(X) only encodes four unique orientations.
For each orientation, though, information is available as to which side
of'point X is the best fit of the edge; an example of the two placements

of a vertical boundary is shown in Fig. 3b.

¢

4.2 Suppression of Redundant Data

A disadvantage of most spatial diffe;encing operators is thaf multiple
ipdicétions of the same line can be produced. The raw digitiied data
sometimes.introduces a gradient of brightness which is not a éteﬁ function
when one is expectéd. In the house scene of Figure 1d, the sharp boundary

33) éctually has one

between sky (intensity = 52) and roof (intensity

n

intermediate row of transition values (intensity = 46). This problem is
related to the placement and size of the scaﬁning point which might over-
lap the areas (the problem of "mixed pixels"). In many cases there is a ramp function

in the data because of shadowing and highlights. Thus, many different window placements
will redundantly detect a boundary, whereas the go/al is to find a single line
which best separates the two areas.

In the case of the.specific operator we have 1ntroducéd, an additional

problem of multiple representations of the same boundary occurs. If an
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A spatial differentiation operator.

(a) The strength S(X) and the orientation D(X) of the gradient

at X. (b) Placement of edge with respect to X. (c) Edges

which are logically equivalent can be formed at adjacent points.
(d) Non-maxima suppression could cause fragmentation. (e) Shifting
edgescanstandardizetheirlocation. (f) Directions for non-maxima
suppression of edges. (g) Suppressionoperates only for edges with the

same sign of the gradient so that one pixel wide regions can be

detected.
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edge occurs on one side of point X, the edge will be detected when the
3 x 3 window is centered on some of the points adjacent to X. A simple
case is depicted in Figure 3c where a vertical line is detected as
equivalent adjacent boundaries with equal strength and orientation. Any
single point appears in nine different window placements, and Any pair
of adjacent points appears in six different window placements. There is
a confusing overlap of edge analysis. 1In areas to either side of an edge
where there is some (possibly minor) variation, the strengths (and even
the orientations) of the adjacent edges may not be identical. Clearly it
is desirable to have only a single indication of a boundary, and techniques
for cleaning up this information are called for. However, as redundant
and weaker edges are removed, the condition of Figure 3(d) must be avoided;
the suppression of local edges should not lead to global fragmentation of
a line. Two operations will be employed to enhance the meaningful infor-
mation: removal of logically equivalent edges and suppression of non-
maximum strength edges.

The representation can be simplified by adopting a standard position

for edges at a given orientation, thereby eliminating separate indications

of logically equivalent edge positions. Currently, a pair of parallel edges at adjacent

pixels can represent a variety of situations; edges which are two pixels apart (and pro-

bably distinct), edges one pixel apart, or edges actually in the same position. By
adopting a general convention of shifting edges, pairs of adjacent boundaries
can be collapsed into a single representative in a consistent manner.

The standard positions that we have selected for the four orientations of
our operator are shown in Figure 3(e). Each of the four orientations
associated with a pixel now has a fixed position relative to the pixel;

an edge can only appear in the north to southeast semicircle about a pixel.
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The edges in non-standard position can be uniquely shifted to the pixel
which has that edge in a logically equivalent, but standard, position.
The neighboring edges which could shift into a single pixel are also
shown in Figure 3(e). 1In the end there are still 8 edge values competing
at four unique locations with the maximum surviving. This could be
computed directly at the first application of the edge masks and allow
the 8 possibilities to compete directly rather than be distributed among
5 pixels (and of course competing with many edges in other positions)
before their results are collected into the single pixel.

For many edge operators suggested in the literature, suppression
techniques are limited (or noisy) because information which encodes
the placement of the edge with respect to the pixel is not available.
The suppression schemes must focus upon the strength and orientation of
these boundaries in order to clean up the edge image. Various thinning
and smoothing techniques have been suggested. Rather tﬂan review this
body of literature, we will examine only the techniques for suppressing
non-maxima (Rosenfeld & Thurston [1971], Hayes et al. [1974]) of edges and
spots. They seem to be directed towards the heart of the problem—-a local
analysis which retains a good fit of an edge and suppresses redundant data.

Suppression can take place by having each local edge examine the
strength and orientation of the edges in its neighborhood. It will

be suppressed by indications of parallel (or possibly, near parallel)

lThis process can actually proceed prior to grouping local edges into a
more global line. However, a single straight line which is globally
the best fit might be useful in directing the local analysis and is an
argument for delaying such local suppression.
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lines of greater strength nearby. The simplest heuristic scheme given our
edge representation is portrayed in Figure 3(f) where an edge at some orien-

tation can be suppressed by a stronger parallel edge which is adjacent

in a direction perpendicular to the orientation of the first; this means
that for each edge, we must examine the values of exactly two of its
neighbors. There are many other heuristics that can be employed as a
function of strength and orientation; e.g., edges at 45° angles to each
other might also activate suppression, or can require a different thres-
hold factor of relative strength before suppression will succeed.

Finally, there is a problem with this suppression scheme in that one
pixel wide regions will produce parallel edges which would suppress each
other. Here we can employ the sign of the gradient to discriminate between
distinct boundaries as depicted in the example of Figure 3(g). Only
parallel edges having the same gradient sign can be multiple instances
of the same edge; suppression will not take place otherwise.

Figure 4 shows a differentiated portion of subimage A in Figure 1d
(the diagonal roof and door area in the house); Figure 4a and 4b represent
S(x) and D(x) before suppression. Note that in Figure 4a S(x) has been
scaled by a constant factor, and the sign of the gradient has been included
to guide the later stages of suppression. For simplicity the four orienta-
tions of edges are represented graphically in Figure 4b, even though this
leaves ambiguous the exact position of each edge in the diagram. In
Figures 4c and 4d, the edges have been moved to standard positions so
that their position relative to the pixel is between north and (moving
to the right) southeast. Now adjacency and contact of boundaries is

clearer.




Figures 4e and 4f show the results of first suppressing non-maxima and then
thresholding out weak edges; the thresholding is carried out by computing mean
and variance of non-zero S(x) and removing edges whose strength is below
u + ko (here k = -.25). Note the presence of the one-pixel-wide light vertical
region in the bottom center of the image. The important boundaries stand out
clearly but there are still some spurious and redundant edges along some boundaries
or at vertices. These edges are a result of the complexities introduced by many
of the edge formation windows overlapping a boundary in various ways. Many of

them can be removed by using a suppression pass that is slightly more sophisticated.

4.3 Relaxation Processes for Boundary Formation

All of the preceding considerations might be generalized and embodied in a
process of competition and cooperation within the parallel 'relaxation' procedures
formulated by Rosenfeld, Hummel & Zucker [1976]; using this approach there has been an
exciting range of applications from boundary apalysis (Zucker, Hummel & Rosenfeld [1975],
Vanderbrug [1975]) to template matching (Davis & Rosenfeld [{1976]1). This approach
ofdistributedcomputatioqoverlapsearlierideasincludingthespring-loadedtemplates
to flexibly map parts into a whole (Fischler and Elschlager [1973]), "constraint satisfaction" |

applied to labelling vertices of polyhedra with shadows (Waltz [1975]), and to the formation

of a consistent set of labels for the identities of regions by Tenenbaum and Barrow [1976].
Here we will briefly review the general idea while applying these ideas of
distributed computation to boundary formation. This approach can embody not only
nonmaxima edge suppression but also edge fitting and binding. The advantage of the
relaxation techniques is that likelihoods of all orientations of each adjacent point
can contribute to the label assigned to a given point, not just the 'best' choice for
adjacent elements. Whereas in the previous algorithms the strengths of edges at
nonoptimal orientations are thrown away, they now prove very useful. Thus, a
break in a long horizontal line might be repaired automatically by the context. We

present our own variant to the approach of Zucker et al. [1975].
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Figure 4: An example of processing local edges.
(a)-(b) The strength and orientation of edges produced by
applying the operator of Figure 3 to subimage A in Figure 1(d).
The sign of the gradient is retained to show the relative brightness
on each side of an edge. (c)-(d) Removal of logically equivalent
edges by standardization of the position of edges with respect to
the pixels they separaté. (e)-(f) Suppression of non-maxima edges

and thresholding edges whose strength is below & = u - .250.
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Assume.we have a set of elements A = {al,...,an} and a set of
labels A =.til,...,);},where,each label represents a possible inter-
pretation for each of the elements. In this example domain the elements
are the image pointé and the label set consists of edge orientationms,
with the null label used to represent the absence of an edge. A labelling
P= (pI,:..,pn) is a sequence of probability vectors py: A — [0,1]
with pi(kk) being the probability of the hypothesis that Ak is the
correct label for a. Shortly we will show how our spatial differentia-

tion operator can be used to provide initial estimates of these values.

The relaxation process involves an iterated updating of these pro-
babilities in an attempt to move P towards a globally correct labelling.
This is achieved by updaéing the value of each pi(lk) on the basis of
the information in its local "neighborhood". Thus, if aj is in N(ai), the
neighborhood of ay, then the probability of label Ak at a; will be increased
(decreased) by label Az at aj if the labels are compatible (incompatible). The
effect of this change on pi(kk) will be weighted by pj(xl), the likelihood of
the influencing hypothesis. Thus, the belief in each interpretation can be
strongly influenced by its context, leading to competition and cooperation between
alternati§e interpretati&ns of elements in a common néighborhood.

Now we only need to define the compatibility functions which specify
the relationships between labels. To some extent this allows the semantics

of the domain to be employed via propagation of local influences in arriving

~



at a global interpretation. We define the compatibility function between

a, and a

3

rij: Ax A — [-1,1]
such that rij(xk,xz) >0 1if Ak and Ap are compatible;

<0 if A, and AL are incompatible;

k
=0 1if lk and Ap are independent.

Here we use the term compatible in the semse of the phrase "lends support

to". For edge labelling the compatibility of edge orientations must capture

both the types (orientation) of edges as well as their spatial relationship.

Finally, we have the basic idea of updating the change in pi(xk)

as
I o
ap (N = ) d.. ) rij(lk,kz)pj(lz) for i=1,...,n

jeN(a,) 13 ¢4
and k=1,...,m

where dij is a weighting of the influence of the various aj upon a, .

Let us denote the probability of a label Ak after the tth

iteration as
pi(t)(kk). Since Py + Ap1 can become negative for ‘a label with strong
negative evidence from its context, the updating will be nonlinear as

follows

(t+l)

- (B) (t)
1 () =py (AL + Apy ()]

with Api remaining in the interval from -1 to +1.

We now modify the equation to normalize the updated values across k = 1,...,m

in order to maintain a probability vector

p, Dapa+ s,

Tte, P a + o, O o]
k

(t+l1) _
This updating process can be jterated some number of times, converging

upon a locally consistent interpretation which hopefully is a globally

acceptable interpretation. Some results on the convergence of this process

are provided by Zucker, Krishnamurty and Hoar [1976].
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4.4 Applying Relaxation to an Inter-Pixel Edge Representation

The ideas of the last section will be illustrated in a specific
example. For this treatment we choose a different representation of
edges among the pixels. Using the differentiation operator presented
in the previous sections, the set of possible edges that can be associated
with a pixel are shown in Figure 5(a); this would leave us with 5 possible
labels at each point, LINEO®, LINE45°, LINE90°, LINE135°, NULL (no line).

Here we simplify this representation by only allowing horizontal
and vertical edges to be placed in the image between pairs of adjacent
points as in Figure 5(b). Rather than associating edges with pixels,
we have an inter-pixel edge representation with the location and orienta-
tion of edges represented at a local level more naturally. This type
of representation has some desirable characteristics and has been used
elsewhere (Brice and Fenema [1970], Yakimovsky [1976], Prager, Hanson
and Riseman [1976]). ’

There are nowonly twice as many possible edges as pixels (Figure 5b)
compared to four times as many before (Figure 5a). However, we will
view these edges quite differently. The results presented in earlier
sections allowed the four types of edges about a pixel to compete, with only
the strongest surviving. Figure 5(c) demonstrates why we do not wish
to allow the horizontal and vertical edge around a point to be mutually
exclusive--they both should be present for diagonal boundaries.l

This leads us to viewing each horizontal and each vertical edge

in our current representation as a distinct element a; in the set of

1Note that now higher level processes will be required to detect the global

characteristics of a straight line at some orientation other than horizontal
or vertical.
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elements A. For each element there are only two labels to be associated
with it, EDGE and NO-EDGE. Since the relaxation scheme that we have
described demands that the probabilities of the labels sum to one, we
have a situation which has simplified nicely, where only one probability,
P(EDGE), need be stored to represent the likelihood of the two labels.

Before discussing the compatability coefficients and the manner
in which the labels will be updated, we will adapt our differentiation
operator of Figure 3 to the new situation. Figure 5(d) demonstrates
the computation of the strength S(Ei) of an edge Ei (in this case vertical)
as the max of the output of the two masks which were associated with putting
an edge in the given position. Now let us utilize the strength of the
globally strongest edge in the image

SMAX = max S(Ei)
Eieimage

to convert each S(Ei) into the probability of EDGE (and consequently determining

the probability of NOEDGE) at location i by .

E;
P(E;) = iax

Thus, the probability of an edge will approach 1 only at the strongest
edges in the image.

Only the specification of the compatability functions remain. We
must define rij: A x A — [-1,1] to cause suppression of redundant lines
and strengthening of weak or incorrect l1ines. Generally these are intui-
tively specified as heuristic weights. Letus consider the types of weights on
the neighborhood of surrounding labels which should influence the likeli-

hood of a horizontal label.




Figure 5:
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An inter-pixel edge representation for relaxation.

(a) Competing orientations of an edge for each pixel in

the previous representation. (b) Both horizontal and vertical
edges about a pixel will be allowed in the new representation.
(¢) For complete diagonal boundaries both horizontal and verti-
cal edges at a pixel are required. (d) Modified edge operator
is maximum strength of the two placements of masks. (e) The
labels in the neighborhood of a horizontal edge which might

be used to update the probability of a horizoﬁtal edge;

note that the null label is depicted by 0.
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®
(a)

(c)

(b)

(e)

(d)

Figure 5
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The labels shown in Figure 5(e) are the only labels that will be
allowed to affect the probability of the horizontal label in the center of a
3 x 3 window. Horizontal edges "a" to the left and right of a horizontal
label represent the continuation of a horizontal line and should support
the likelihood of that label by a positive coefficient; the null label
"pb" left and right should have a negative weight because the edge doesn't
continue. Vertical edges "c¢'" should have positive weights since they
represent a consistent extension of a horizontal edge. Horizontal edges
above and below "d" call for suppression--hence a negative weight. Finally,
the presence of a null label "e'" above or below a horizontal edge might be
considered as supporting evidence (rij = +,3) of that horizontal label
and would be positive. The size of the weights employed represent one's
heuristic estimate of the relative compatability of the label of point j
on the horizontal label of point i. Specification of the vertical label
can be derived by symmetry (a 90° rotation followed by a mirror image
transformation).

The correlations for updating the null label can be heuristically
spgcified in a similar fashion but it is difficult to specify as a set of
linearly independent contributions.l We will address this question again
shortly. Here, an rij = 0 on all points will cause the probability of the

null label to vary inversely with positive or negative changes in the evidence

1Note that Zucker, Hummel & Rosenfeld [1975] deal with the null label by
setting up a competing null label process. However, the desirable

weights are only clear in areas where there is no evidence of strong

edges anywhere in the local context. Thus, if multiple edges for a single
boundary are allowed, the null label probabilities only need to grow in
areas without edges. If one is trying to carefully refine the presence

of a boundary to a single thinned edge representation, the features for
increasing the probability of the null label cannot easily be expressed as a
set of weights for a linear function. ’
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of an edge. Thus,'we have the means of computing a change in the pfoba-
bilities of the horizontal or vertical labels based on the surrounding
context, and by renormalizing obtain new probabilities of these edges.
Figure 6 are results of examples with different compatability co-
efficients and show variods problems with the process as it has been
formulated in this paper. In order to avoid a strong edge from being
overwhelmed by the combined effect of a pair of weaker parallel edges to
either side, reduction of strength of non-maxima edges by some factor k
(in our example k = 2) will be applied prior to beginning the relaxation -
process; i.e., all edges parallel and adjacent to a stronger edge will
be reduced. Figure 6(a) shows the resultant vertical and horizontal
probabilities and an edge image with all edges with probability lower

than .2 removed. It is clear that there are incorrect edges whose pro-

bability must be lowered while many vertical edges in the diagonal boundary

should be increééed.

Figure 6(b) shéws an:exémple set of coefficients and the results
after 1 iteration, while 6(c) shows results after 6 iteratioms. The
infof@étion cleans up with most of the vertical spurs hanging off the
diagonal boundary in 6(a) being rapidly reduced. However, the major
‘diagonal boundaries are missing key vertical edges whose probability has
>aléo been reduced. In addition the upper right diagonal boundary started
with lower probability edges and they are in the process of disintegrating.
In order to combat these effects, the size of some of the positive weights
are increased in the example of Figure 6(d). The probabilities of edges
after 6 iterations show many spurious edges growing stronger while parts

of the weaker boundary still disappear.

o’
.,




Figure 6:
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The relaxation process for boundary formation.

(a) The ihitia1 probabi1ities of vertical and horizontal edges, .
and the location of edges with probability 2 .2. (b) An example

set of weights and the probabilities after one itération. (c) Shows

ptéﬁaﬁilitieé%aftér 6 iterations. (d) A set of coefficients which

tend to grow more lines, and the results after 6 iterations.
(e) The addition of a feature which is a non-linear function of a

set of points in the neighborhood, and the results after 6 iteratioms.
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It is difficult to balance the effects of keeping the vertical edges
in the diagonal boundary and the suppression of growth of spurious edges.
Much of this problem is due to the limitations of using a function in which
the points contribute in a linearly independent manner. Figure 6(e)
shows the use of one additional factor, the probability that an edge is
unconnected. For a given edge to be a part of a continuing boundary,
there should be at least one high probability edge emanating from each
end of our given edge. If the three possible edges from each side are
called &> €y, €

and e4, e 6° respectively, then

3 5° €

P(unconnected edge) = 1 - MAX[P(el),P(ez),P(eB)]*MAX[P(e4),P(es),P(e6)].

If this probability is associated with a negative weight, it will keep
spurious lines from growing off a strong edge into areas where there are
only low probability edges. However, this factor is a non-linear function of the
probability of six labels and is an extension of the theory as presented.
The result of using this negative contribution is shown in Figure 6(e).
Now larger positive weights on other coefficients can be used. The results
after 6 iterations show the desired effect with all edges in the major
boundary growing stronger. However, the other diagonal boundary dis-
appears because weak points within it caused it to appear disconnected
and it broke up.
1f the relaxation process is to just carry out gross strengthening
of boundaries without worry about producing thick lines with multiple
edges, it probably can be used quite reliably. However, if the goal is
refined edges as we have been seeking here, then it appears that contribu-
tions from independent labels will be quite difficult to tune and contri-
butions from sets of labels will probably be required. This area will

be left for future research.
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4.5 Grouping Edges into Line Segments

The problems have not been exhausted. Although theresults in Figure
6 appear to be good segmentations at a macro-level, upon close examina-
tion theremaystillbeincompleteboundaries,texturaledges,andnoisepoints.
If local edges which are a part of a common boundary are to be grouped

into distinct line segments, then some criterion of similarity is needed.
Certainly orientation is important when scraighé lines are being tracked,
ipt in tﬁe general case this characteristic cannot be relied upon. If

a pair of edges are of approximately equal strength, it is a strong cue
that the edges should be jéined. However, the regions surrounding any
‘given region are bound to have different properties. Therefore, no matter
upon what feature the strength of the gradient is based, one must expect
widely varying values as the boundary of a single region is tracked.

" Figure 7a depicts three regions with the edge strength based upon intensity:
the strength of two line segments SAB and SAC bounding region R, are quite

A
different.

*

This problem calls for the goal of forming line segments each of which
lies between oniy one pair of regions. Then, one can expect local edges
to exhibit charécteristics which have less variance. In addition, the
comparison of features of the regions to either side of a pair of adja-
cent edges, Figure 7b, can be very .useful in directing the edge binding
procc;_ss [Perkins [1976]) . Notice that SBC and S AC which are equal in strength have the
properties of RC in common, but differing properties on their other sides
(RA vs. RB) leads to opposite signs on the direction of the gradient. The
similarity of two edges E1 and E2 can now be based upon much more complete
information, a comparison of (Fxl, sz) and (Fyl, Fyz) as well as Sl and S,.

2

Thus, SAC and SBC can be detected as distinct segments yet retain information

that they bound a common region.




Figure 7:
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Use of region information in the grouping of edges.

(a) Three adjacent regions Ra’ with associated intensities

Ia’ a = A,B,C, produce edge strengths SAB’ SAC’ and SBC'

(b) The features to either side of a pair of edges can be

used to group the edges into boundary segments. (c) Edges

are grouped and segments of boundaries are symbolically labelled
with distinct numerical symbols. (d) Segments obtained across

the entire image. (e) The remaining long segments after

thresholding by length.
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Typical results of grouping edges (Prager, Hanson & Riseman {1976]) are
shown in Figure 7c. Distinct numeric labels are used to denote edges which
are part of a common boundary. Note the places where a local variation caused
a boundary to be divided into subparts. It is easy to join these back together
by comparing the global average values of each segment (when there is not a
vertex involving more than 2 segments). Then small variations will have
little impact on long lines and context again allows decisions to be made
that otherwise would be quite difficult. The result binding of edges produce
the segments of Figure 7d; segments can be thresholded on the basis of
length to obtain the most reliable boundaries as in Figure 7e. Further
analysis of these procedures are available in Prager, Hanson and Riseman{1976].

It should not be difficult to utilize region and boundary information
in an integrated manner within the relaxation process. The similarity
of the regions associated with contiguous edges might be a weighting
factor for the mutual support of the edges. This could be used to
limit the mutual development of edges to those that would be grouped int§
a line and might prevent the aggregation of texture element edges into
a spurious line.

There are other problems that remain. The quantization of direction
by the Kirsch operator is quite crudé. A straight line segment whose slope
is not a multiple of 45° increments might have local edges appearing as
shown in Figure 8a. One ié faced with grouping these edges into the slope
of the line (as a continuous parameter). Marr [1975] has considered
a similar problem which can be summa;ized by Figure 8b. The line to be
detected can be formed by grouping similar primitive elements, which could

be defined by the shape of the element or an edge of a certain orientation.
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Figure 8c points out that an abstract line can be perceived by grouping

a set of places where each place is specifigd by an element (a line, endpoint,
_ or some other entity of arbitrary‘complexity) at some point 1ﬁ.space.

In addition, curves may have to be fit to any eype of boundary; line or

curve descriptors need not be restricted to the orientations of the detectors
of small segments. All of these additional topics deserve careful treat-

ment but will not be considered any-further in this paper.
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Figure 8: Additional problems in boundary formation discussed by Marr [1975].
(a) The orientatiom of global lines may be different than the
orientation of the local edges being grouped. (b) Lines
formed by grouping similar primitive elements. (c) An abstract
line can be formed by grouping distinguished 'places', in

this case the endpoints of other lines.
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. 2aRegion Formation

- .
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The two main approaches to region formation of natural scenes,
other than the indirect route of forming boundaries, are based on either
merging local ;reas or splitting global areas, both eventually deter-
.min;ng regions. In this section we will examine some of the fundamental
properties of the problem domain that have been utiiized in a few specific
examples of re;ion formation. It is argued that most of_this work has
focussed upon either local features and two-dimensional spatial properties
of the image or global features of the image, but that these different
types of information havé not been fully integrated. By integrating the
types of feature activity in a scene with an analysis of their relative
spatial distributions, local region formation can proceed under the
guidance of a global analysis.

‘The discussion is compiicated in some ;ases by the issues of semantic
guidénce in.the region seémentation process. The lack of a global view
of region properties can be compensated for by prdviding (the probabilities
of) éemantic labels to various régions, thereby allowing region merges
to be blocked or made more likely. However, there is some contfoversy
how and whether to bring semantics to the initial segmentation of a scene.
gome of tﬁese qﬁestions will be considered in the approaches that use local
spatial analysis and semantic guidance to merge small regions.

Let us examine three approaches to region formation. Recent articles
(Zucker [1975], and Weiman [1976]) can provide the reader with additional

approaches. The three efforts focus upon different characteristics of

scenes:

34
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1) Local spatial examination of the scene — This involves the merging
¢ of local:areas under syntactic (comparison of visual features
of the areas) or semantic guidance; regions are built up from
sma}l‘pieces which have a high probability of entirely belonging
to a final goal reéion (Brice and Fenema [1970], Yakimovsky
and Feldman [1973], Tenenbaum and Weyl [1975], and Tenenbaum
and Barro§ [1976], Barrow and Temenbaum [1976]).

2). Global examination of feature distributions across the scené -
Here, peaks and clusters of activity in one-dimensional histo-
gréms are used to threshold the scene and recursively split
the image; large pleces of the image are broken down into
smaller areas until there is a high confidence that they are
homogeneous under the features of interest (Ohlander [1975],
Tomita, Yachida and Tsuji [1973], Schaﬁhter, Davis and Rosenfel&
[1975]); and o

5) Interfacing spatial analysis with feature analysis — Clust;rs
of activit& in Ewo-dimensionai histograms are used to label
local areas of the scene, followed by a spatial analysis of
these labels to guide the formation of the desired region;

. (Hanson, Riseman and Nagin [1975]).

5.1 Region Growing via Local Analysis

There has been a range of work on techniques for locally merging
areas. One can break any scene into 'atomic' areas by merging all ad-
jacent points (either 4-neighbor or 8-neighbor adjacency) into the same

region if they differ in some property by less than a threshold ©.

35
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These algorithms are usual}y programmed to sequentially add points adjacent
.to a gisén region or pointl. If © equals 0, these areas are formed in

the most conservative manner possible (although even here because of problems
such as shadows one is not assured that these regions each lie entirely
‘within an area encompassed by a single object)f With only a little
experience in region growing, it becomes obvious that there does not

‘exist any single threshold for region merging that is acceptable, even for

several different areas in a single scene.

Consider subimage B of Figure 1d which includes

on the right side an area of sky above the somewhat speckled roof, and
qn_the left side tree foliage (reflective highlights and shadows), as
well as sky or roof showing through in some places. Figure 9 shows the
results of region growing (using 4-neighbor adjacency) w;th two values

of 8; the conservative v;lue does not grow the tree together but a small
increase (on a gray scale of 64 values) joins the roof to the tree. What
is noise or textural variation in one area becomes a meaningful boundafy
in anofher.' Thus, dynamic setting of thresholds is needed in the different
areas, but that is a complex process to ‘automate without global guidance
or a priori knowledge. It is always difficult to determine whether or not
a local discontinuity with respect to some feature(s) should bar further
regi;n growth or should be bridged as an internal variation of the region

being formed. However, one meta-strategy 1s to form atomic areas far

1 It is easy to formulate parallel region growing algorithms. 1In a
spatial array processor such as the processing cones (described in section
3.3), every image point can act as an initial 'seed' point and all

regions can grow simultaneously (with some being gobbled up by others).
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too conservatively and then seek additional means of merging these areas
(Brice & Fenema [1970]). This can be effective but it is very difficult
to avoid all incorrect local merges; a single 'leak' between regions might
cause very large changes in the final segmentation. Semantic constraints

have been used to provide greater reliability.

Freuder [1976] provides an intersting variation to the region merging
process by grouping those regions which are relatively more similar to

each other than to other regions. This is continued and a tree of regionmns

is constructed up to a single region over the scene. This whole structure
would be passed to a global semantic processor which must extract ‘the
relevant information for different parts of the picture from nodes of

the tree at varying levels of grouping. Potentially, this can be a
powerful and flexible way to present information to semantic processes.
However, it seems that the tree should be greatly pruned prior to semantic
processing if it is to be useful. This leads to the difficult questions
concerning texture that remain to be solved if this is to be a viable

approach.




Figure 9:

A simple region grower, where regions are represented by a
unique symbolic label (mod 99).
(a) Regions growing on intensity values of subimage B with

& = 3. (b) Regions grown with & = 5.
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5.2 Merging Regions Under Semantic Guidance

The focus of this paper has been upon techniques that can be applied
independently of the semantic context in which the computer vision system
is operating. In many systems stored models are used to match and then
refine noisy and incomplete segmentation. Our general position was outlined
in the introduction--that it is desirable to perform an initial segmentation
without use of semantic information. However, there are many opportunities
to use such knowledge in the kinds of processes we have been examining.
This section outlines abcouple of the more general attempts to integrate
segmentation and interpretation by controlling the merging of atomic areas.
The decision-theoretic approach for image interpretation of Yakimovsky
and Feldman [1973] addresses the difficulties previously outlined by intro-
ducing semantics in a decision-theory framework. Their segmentation process
is based on merging atomic areas if the probability of a global interpreta-
tion is improved:
P {global interpretation|context, measurements}

= TrP{R(i) is INT(i)|va1ues of measurements on R(i)}
i

* TrP{B(i,j) is between INT(i) and INT(j)lmeasurements on B(i,j)}
B(i,j)




38

where R(i) is region i, B(i,j) is the boundary between regions i and j,
and INT(i) is the semantic interpretation of region i. There are several
important points to note. The identities of regions are assumed to be
independent of each other except for the relationship across the borders;
'bo;ders are also assumed to be independent of each other and depend only

upon regions to.either side. These assumptions seem to be reasonable
'approximations fop local region interpretation. However, when a'roof can
" appear on either side of a tree, such an assumption fails. Of key
importance, though, is that semantic information is introduced at the segmentation
levéi--regions can be merged if they improve the meaning of the partitioned
scene. The boundaries between pairs of regions are linked into the region
anaiysis,.influencing the segmentation and interpretation processes. |
Excellent results were obtained on several road scenes and chest x-rays.

This approach integrates the segmentation and interpretation phases. It
also captures the flavor of the more recent relaxation schemes by allowing a

local hypothesis to be influenced by the context of other local hypotheses.

. However, it loses a parallel . ' .

computational flavor for determining a model because decisions for
merging:regions are carried out sequentially. Yakimovsky and Feldman
avoid an exhaustive sequential search for the best global interpretation
by approximating the best interpretation as a result of a heuristic

search.

This leaves the extremely difficult problem of the determination
of the probabilities for this scheme. The probabilities for interpreting

R(i) seem feasible but the relationships of boundaries in an inherently
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three-dimensional world often vary uncontrollably. Although one knows

that sky is virtually never below ground (actually a protrusion on a

mountain or a change in one's viewpoint would allow this), one cannot

fix the probability of seeing a car roof adjacent to grass without ha?ing

a very restricted micro-world. On the other hand, the.inherent téo-

dimensional spatial relaﬁionships of a chest in an x-ray pﬂotograph are

relatively easy to approximate. In the most general applications their approach

might have less difficulties at later stages of processing after initial segmentation.
.Tenenbaum and Weyl [1975] present a detailed analysis of a range of

strategies including syntactic and seman&ic merging criteria. The simplest

- nonsemantic measures involve comparisons of average differences in

éroperties of local areas immediately to either side of the common

bouﬂdary.(one of the techniques employed by Brice and Fenema [1970] in

the %undamental early work on region growing) or average properties of

the entire areas. The two regions with the weakest boundary are merged>

and this process is repeated. All the algorithms performed many correct

merges, but a few bad merges ('leak' of one region into another) can

produce disastrous consequences. Anothe; difficulty is the lack of mean-

ingful stopping criteria for the algorithms. L s
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Tenenbaum and Barrow [1976] QemonstraCed that the interactive human
. semantii‘labelling of regions could be used to block most erroneous
merges made by nonsemantic rules. They interactively supplied

labels of identities to initial éonservatively formed atomic

regions whose size is greater than some threshold 92.

.Then, an attempted merger of two regions with differing

labels can be blocked, while the merger of an unlabelled region with a
labelled region will inherit the available label, and finally the merger
of two unlabelled regions will remain unlabelled. For those unlabelled
regions that grow larger than &, the human again supplies the proper
label. For a simple offiée scene and outddor scene, the final results

_ are quite reasonable when €. is set so that about 20 regions are labelled

S

during this process.

This approach led Tenenbaum and Barrow to employ a generalization of
Waltz's [1975] constraint satisfaction approach on the region labels.
Constraint satisfaction can be viewed as a special type of relaxation
procedure where relationships between labels in a local context can be
used to eliminate some of the alternative labels. They extend the semantic
region merging process by alternating this merging process with the propaga-
tion of semantic constraints on the identity labels. For this approach
to be automated it requires the initial labelling of all elementary regions
(even individual picture elements!) and the specification of computationally
effective procedures to extract the semantic relationships between regions.

However, the degree to which one can satisfactorily label the possible
interpretations of a small section of an object on the basis of purely
local information is still uncertain; with a large number of possible

objects this problem may be serious. The authors demonstrate examples
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with this labelling supplied manually or directed via pre-defined geometric
models. The results are quite interesting, but the extensibility of this
approach to automatic segmentation of general scenes seems to be quite
difficult. Discussion of these problems is presented ina bit more detail
in Arbib and Riseman [1976].

When one examines the effort and ingenuity involved in trying to
keep: one région from leaking 1nfo another, one can only conclude that
better nonsemantic data will be required to guide segmentation. In
parﬁicular, it suggests the need for analysis of feature activity in
the context of the area under consideration. For merging purposes, one -
can only determine relative similarity of atomic areas in the context

of the characteristics of atomic areas in the vicinity. This consideration
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’ leads to the more global feature analysis of the second major approach.

<

5.3 Region Formation via Global Feature Analysis

This approach is based on the premise that the global distribution
of feature activity in a scene contains sufficient information for seg-
‘.mentation of major areas. If two regions have a distinct difference in
intensity one would expect the intensity histogram to form major peaks
aﬁout their respective means. Figure 10 is a set of one-dimensional
-histograms for subarea B in Figufe 1d and in certain places they have a
multimodal distribution of the type expected. One can try to form the
desired regions by separately turning on all image points in one or
- another of the clusters. Automatic determination of cluster boundaries based
on histogram peakslmay be simple or difficult depending on the particular
case. If one examines cluster.Z of Figure 10a, and the points that are
turned on in the image (Figure llaj, it appears that this approach works
nicely. : _ o

Ohlande; [1975] developed a technique of recursively partitioning

an image by setting thresholds at valleys of 1D-histograms of various features.

The first partition will form around the clearest peak in any histogram;
then, the associated points in the image are turned on and adjacent points
with -'t.he same label canbemerged into a region by growing on the symbolic
labels; these regions are smoothed by blurring, and each of these distinct
regiong will be the basis for furthe; analysis by histograms. A region

is kept intact only when it is unimodal in all histograms employed.

In order for this process to work, Ohlander subtracts out 'busy areas'

of texture and smaller detail by using a measure of the amount of edge




Figure 10: One-dimensional histograms of subimage B with a few possibly

useful clusters marked.

(a) Hue is represented on a scale of 0 to 120 representing €
of Figure 2e varying from 0 to 360°; therefore, red = 0 and 120,
green = 40, and blue = 80. (b) Saturation is represented on a

scale from 0% to 100%. (c) Intensity is represented on a scale

from 1 to 96 obtained by [(R+ 1) + (G + 1) + (B + 1)1/2.
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_ in each local area. These areas are processed by different
’téchniqdbs including the blurring operation previously mentioned.

| Despite the obvious effectiveness of this procedure in some cases,
there are several deficiencies with this type of histogram analysis. Consider some
of the otker histogram clusters in Figure 10--the peaks and cluster
widths are not so clear. A more serious problem, though, is that dif-
ferent obiects can have partially overlapping distributions in one or
all of ;he_features. This can cause peaks and valleys to appear and,
disappear as the particular combination of objects is'varied,'dgépigé;3=
thg possibility that all of the objects appear, visually distinct to
tLe‘human observer. A companion difficuléy is that one cannot expect
) HSf features to produce clusters in many types of texture. The blﬁrring
operations employed by Oﬂlander will not be sufficient to deal properly
'with the general characteristics of texture.

These éoints are emphasizea when one examines the rest of the HSI .

) histogtéms fn FTigure 10. The two clusters.in Figure 10a produce a
reasonable first approximacion in delineating the sky area and tree
area (Figure 1la). However, when one maps thé three saturation clusters
' of Figure 10b Sack onto the image (Figure 11b), one finds the clusters
associated with sky (3) and roof (1) are interspersed in the tree with
" the iast cluster (2). It‘begins to appear quite messy. Use of the
intensity histogram is also poor in that tree and roof are in the same
.cluséer together (Figure llc). Although.the other histograms will

separate these regions in the recursive splitting process, the formation

PN
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of the tree as a distinct region will not occur because the hue mapping
will be split by the saturation mapping.

One cén hope that the sequential determination of lérgest regions
can be used to continually subtract away the data which obscures the
presence of iess-noticeable peaks. However, the quality of this algorithm
gseems to be subject to an arbitrary condition, namely the particular mix
of regions being examined. This problem would probably be reduced if the
image were broken into smaller areas; this can be thought of as
a on?a; window where the system initially focusses in a directed manner
_.upon a sﬁbgggg of the entire scene in far more detail. .
Similarly, the peaks would have less chance of )
being obscured if multi-dimensional histograms were employed (although then
the detection of peaks and clusters is less straightforward). Figure
12 depicts possible difficulty in discriminating different.intensity and
hues with one—dimensional histograms. One might hope that other features ‘
would detect differences.in these cases. Of coﬁrse this problem can
‘ occur in 2D histograms and require one to go to higher dimen81ona1
spaces, but at least w1th 2D histograms pairwise dependencies
are available and this might be sufficient. But there is a still more
‘significapt drawback that must be overcome; that i;, the lack of information'*}“
én the spatial relationships of the features being examined.

When a histogram of a feature based on individual points is used
to form a region in the manner described, spatial information is employed i
during this analysis only in terms of adjacency of points which have similar

labels. On the basis of global histogram analysis, one cannot determine

the difference between a red area bordering a yellow area and red polka
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Figure 11: Projection of 1D cluster labels from Figure 10 back onto the
points in the image.

(a) Hue, (b) Saturation, and (c) Intensity.




Figure 12:

44¢

Potential problems with one-dimensional histograms.

(a) Assume four clusters of activity in a 2D histogram of
hue vs. intensity; the peaks of activity are assumed to be
at the center of each circle and topologically are on the
axis coming out of the paper. (b) A 1D histogram of either

hue or intensity will obscure the clusters.
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dots within a yellow area——they can produce identical histograms and the
differgn@e in structure is not seen. More generally a texture can be
composed of a set of micro- or sub-texture elements. Each micro-texture
i could contribute toward a macro-texture with a given spatial distri-
»bution Py- These distributions might tend towards spatial randomness
or they might form more structured geometrical relationships. The rela-
'tive occurrence of each micro-texture type can remain fixed and still
- allow a virtually unlimited number of différent textures.

If many local areas possess similar characteristics, this is a cue
to texture, e.g., sky and foliage, newsprint on paper, or a simple checker-
board. It should thus be possible to bind.;arious types of micro-tex£;re
characteristics into a single macro-textured region. If one turns on either
the blue or the green patches of sky-foliage texture for separate analysis,
only a partial texture is obtained and other kinds of problems are intro-
auced. It is clear that the spatial relationship of these features is
a fuﬂaamental aspect of this texture. Blurring to smooth Fhese regions
apd make them homogeneous is an alternativé, but this produces its own
problems and does-not get at the basis of texture. Our solution for
effective region growth calls for utilizing the strengths df both approaches,
integrating global feature activity with a local spatial region growing

process. .

5.4 1Integrating Spatial Analysis with Global Feature Analysis

The scheme we present for binding feature histograms to spatial
relationships in the image is described in more detail by Hanson, Riseman,
and Nagin {1975], and bears some similarity to a previous investigation

by Tomita, Yachida and Tsuji [1973]. In this approach, histograms of
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various feature pairs are employed to find clusters of feature activity.
The system restricts its attention to a two-dimensional feature space because the analysis

of the histograms can be carried out by operating on them as pseudo-images

in the processing cones described earlier (since the cone is essentiall&,
a generél 2D array processor). The algorithms assume the existence of a
process which can dynamically select relevant features and make them
'activef. The point has already been made that the composition of the
relevant featureé varies with the situation and with the movement of, a
‘fovea if one exists in the system. A low-level system will need a fromt
géé‘for this selection process and it would have to be interfaced to the
;é;erél oﬁher types of algorithms that we have presented.

Each feature is computed as a function of a local window of some
size (the windows may be overlapping or non-overlapping). As the size of
this window increases, the qualj.ty of the information changes depending
on the situation. If the window is centered entirely within a tegibn;
ﬁhen the average and variance computed over the local area becomes statistically more
meaningful as the size increéses. On the other hand, as the size increases
it becomes more and more likely that the window will overlap different
regions and a 'mutant' value for the aver;ge and variance will be nroduced.
This is thé window problem that we have already mentioned, and we shall
see ;hortly ;hat this type of noise causes problems.

Figures 13 and 14 are two simple examples of two-dimensional histo-
grams of subarea B (roof, tree, and sky) of our example scene, in particular
hue vs. intensity (H vs. I), and intensity vs. saturation variation

(I vs. Sv). Despite the noise it is quite clear

(]
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that several major clusters in the different feature spaces are correlated with the
color image. The sky is bright blue (cyan) and the roof a speckled red; these areas
have little variation in intensity and saturation. The tree area has |
a hue of various greens, blue, and white; saturation and intensity varia-
tion is high bec;use the surface is irregular and there is large variation
between figure and background sky showing through.

Useful informétion appears in all of the histograms and the clusters
in the different histograms are certainly correlated. A low-level gystem
should extract these dependencies and use the redundancy to increase the
confidence in the results of this processing. Although som; clusters
éf; quite clear and easy to extract, others are more amorphous and wide-
spread. The ciarity and definition of a cluster may be aggravated by the
window problem. A window that overlaps two adjacent homogeneous regions
will produce a value in between these clusters when computing the mean
of a feature, and false activity in the case of variation of a fgature..
This ;an produce trails between clusters.

~ In order to geduce the impact of the ;indow problem on histograms,

the‘téchnique of non-maxima suppression discussed in Section 4.2 can be
utilized. In this application we have chosen to generalize it to a

process of -non-extremum suppression: values which are not local minima

or 1ocal maxima in 8-adjacency neighborhoods will not be allowed to
contribute to the histogram. 'This will have the effect of suppressing
‘much of the trails between clusters associated with smooth regions.

As the window moves across a boundary, the values of‘the means of a
window will be changing from min to max (or vice versa), while the

values of variations will increase and then decrease so that only a
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Use of two-dimensional histograms to guide region formation
in subimage B -~ Example 1, Hue vs. Intensity.

(a) A two-dimensional histogram of hue vs. intensity with each

character representing the number of points having the associated

values of H and I on the respective axes; note that alphabetic
characters represent values between A = 10 and Z = 35,
punctuation and special characters represent va;ues between

36 and 45, while a period represents all valuesig;eater than
45. (b) Non-extremum suppression is used to suppress image
points whose values are not local minima or local maxima.
Analysis of both the unsuppressed and suppressed histograms
might allow the delineation of the clusters which are enclosed
in rectangles in the two histograms. (c) Projection of
clusters in the suppressed histogram back onto the image with

suppressed points appearing as blanks. (d) Projection of the

unsuppressed histogram back onto the image.
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Use of two-dimensional histograms to guide region formation
in subimage B - Example 2, Intensity vs. Saturation Variance.
Refer to Figure 13 for more detailed explanation. (a) A two-

dimensional histogram of intensity vs. saturation variance

(SV), where SV of each point X is computed across a 3 x 3
window centered on X. (b) 2D histogram after non-extremum

suppression is applied. (c) Projection of clusters in the

suppressed histogram back onto image. (d) Projection of clusters

in the unsuppressed histogram (a) back onto the image.
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_subset of the mutant values (the peaks) will be present. When forming
histograms of the features of individual points (e.g., HSI), fhen the
points which are on a gradient between min and max values will be
suppressed; thus, in the case of tree-type texture, just the highlight
and shadow points will contribute. Figures 13c and l4c portray the
position of non-extremum points as blanks in the subimage. It should

be noted that in the case of two features, a point is not suppressed

if its value is a min or max in either of thé two feétures.- Ff;ures;w\
13b and 14b poftrgy the.ZD-histogr;ms unde:’non—extremum suppressioﬁ12;a
it clearly énhanées the clusters of intérest. Although the results are

not entirely predictable in non-trivial areas of an image, generally cluster

clarity should be improved.

There are many approaches to the extraction of clusters. A very simple

technique utilized by Hanson et al. [1975] employed éhe cone structure
to extract clusters. Clusters of activity are extracted by blurring
(averaging) so that the activity is smoothed, and scaling so that

low activity valleys between clusters disappear with ?only the peaks
remaining. This corresponds to Ohlandér's threshold setting process, and
with some difficulty, it canbe automated. All of these operations
(besides the formation of the histogram itself) can easily be computed
as local parallel operations in the processing cone. Afterwards, the
boundaries of each cluster can be grown outward to capture the areas
.blurred and scaled away. Although there are many more SOphi;ticated
clustering algorithms (see Meisel [1972]) which might produce higher
quality results,'they may be exorbitant in computation or not be as

intrinsically parallel in their nature.
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It 18 clear that a system can use the information in the suppressed
ggg_unsuppressed histograms to define clusters in the unsuppressed histo-
grams. We will assume that the clusters outlined in the histograms of
Fig;fes 13;and 14'have been extracted. Each gluster is symbolically
labelled with ;.dlstinct numeric symbol. The next stage, of processiing
involveé a feedback loop to correlate tﬁese features with their spatial
reiationships.in the original image. Points in the original image can
be labelled according to the éluster to which they belong. Figures
13c-d and l4c-d represent the image labeyled by the clusters in both the
suppressed and unsuppressed histograms of Figures 13 and 14 respectivély.
In Figure 14d:'. the I-Sv hisfogram, it is clear that ‘two ‘of the clusters
represent tﬁe roof (medium I, low Sv) and sky (high I, low Sv). hbte
;hg two unlabelled rows in between these areas. They are ca&sed by
false variations due to the window placement, and are incorrectly grouped
into clusters 3 and 4 representing the tree-sky area as shown in Figure
14d. Siﬁce our window is 3 x 3 fhere will only be two rows which have
these fals;‘values, but the problem becomes more critical as the window
size increases. An 'intelligent' low-level system would understand.the o
-strengths and weaknesses of each segmentation procedure. Thus, this
problem can be expected and, at least in this case, easily cleared up by
a little more précessing.

Now it is quite straightforward to grow regions across adjacent points

with the same label and retain those regions which are relatively large.

.
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But areas of heavy texture might form several clusters in the histograms,
from highlights an& shadows or from sky and foliage. Thus, the textured
area which one wants to extract may have local areas of varying labels,
with possibly many disconnected local areas of the same label. This
effect is hinted at in Figures l4c-d and is seen more vividly in Fighrg 15
which is a result of a histogram of intensity mean vs. intensity variance
on 3 x 3 windows.

At this point we have atomic areasﬂhhich represeit® either regions26r
pPossible texture elements depending on the resolution and the particular
object. Certainly any.large area so formed which consists of a single
tfpe of activity will be evaluated as an entity in itself, a region.

. If these areas are small, however, they might be considered microtexture
elements.

The labelled points and areas provide the system access to statistical
‘and structural spatial properties of the feature types. This analysis
can be used :to guide region growth across the symbolic labels. 1In an
initial attempt to extract simple propérties, the VISIONS group (Hanson,
Riseman and Nagin [1975]) utilized an adjacency matrix as a measure of
the degree to which atomic areas of different types are interspersed. ’
Large numbgrs imply that two texture types are often adjacent to eaéh other
and signal the possibility that they formone or more regions with a macro-
texture of these two (or more) types. By growing across the labels |
representing those two microtextures, a single macrotextured region is
formed. We have depicted this case in Figure lée by“enlarging the cluster
to cover both clusters 3 and 4 in Figure 1l4a. Thus, we have captured

texture patterns in a single region and it is a simple matter to extract
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symbolic descriptors of t:t;e different microtextures used in the construc-
tion of the macrotexture. We leave .the analysis of the redundancy of these
differ,enf. segmentation results for the reader's inspection.

" A more sophisticated analysis of t:he's'tat:lscical and structural
_characteristics is desired. One w;'mld like to note the difference between
blue and green vertical stripes, and blue iirregular shaped blobs amidst
a green background. This implies the utility of a hierarchica.l feature-

- selector/texture-analyzer which.is .the subject of ongoing research.

- LN - 2



Figure 15:

51a

Interspersion of cluster labels in textured areas. These
projections of cluster labels are derived from a 2D histogram
of intensity mean vs. intensity variance computed on 3 x 3
windows. ' (a) Clusters projected from suppressed histograms.

(b) Clusters projected from unsuppressed histograms.
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5. Conclusion

Ungil recently individgal efforts in computer vision have been

rather limited. This is not intended to bé a criticism of some of the

fine work that has been conducted. However, it does point out that the
complexity of vision has not been tested against a multi-level systems
approach of modular processes with effective means of communication between
them. Humans use the high degree of redundancy available in images in
order to understand them. Distant mountains have cues of ﬁerspective,

a blue color shift, upper boundary shapes, and further semantic constraints

which allow strong hypotheses to their identity. Similarly, there is

a redundancy of features.and/or algorithms which can lead to consistent

segmentations in terms og regions and boundafies. Animals seem to

éﬁhibit multiple representations at an early level to aid their goal-

oriented visual perception (Lettvin, Maturaﬂa; McCulloch. and Pitts [1959]).

. This paper exhibited-several algorithms for the‘éxtraction of boun&aries

or regions. VSince a representation of either boundaries or re-gions implicitly defines the
other, we have a means of integrating their results in terms of the ideas of
competition and cooperation (Arbib & Riseman [1976]). Relaxation and constraint-
satisfaction algorithms may afford a genéral mechanism by which many kinds

2f information can be integrated. There are also algorithms for region

zrowéh on labels determined by global analysis. Each algorithm approaches

the data from a different perspective and may be subject to different
weaknesses. A system of these routines could allow performance beyond the
capability of any single algorithm by allowing multiple and somewhat redundant
representations to determine the portions of the segmentation for which there

is high confidence. The difficulty with this approach is that several partially

reliable segmentations could produce a maze of inconsistencies which are not easy
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to resolve. There is also a significant overhead in additional computation

on a serial machine. However, it seems quite reasonable to view these compu-

tations taking place in future on parallel hardware and in real time.

A low-level sSystem for segmentation should have a front-end that
allows any subset of a pool of features to be invoked for use by the
different algorithms. This requires mechanisms to select relevant features
entirely upon the basis ;f limited ﬁrocessing of the specific imagg.under
consideration. It is one example of the need for binding global feature
analysis with local spatial analysis. One might use global histogram
analysis to identify clusters of feature activity for ordering the potential
importance of the features. Feedback from semantic processes after initial
segmenta;ion and.interprétation can provide powerful guidance to the invoca-
tion of specific features. '

We'have examined the difficulties produced by overlapping feature
dist?ibutioﬁs from different parts of a scene. This confusien in the
analysis might be reduced by performing a coarse segmentation by edge
gnalysis on a blurred image so that major areas can be delimited and
g:ogessed independently. In our example, then, areas of tree texture and
the straight lines within the house migﬁt be analyzed by distinct algorithms
and/or features which are most suitable to each. At this point in our i
development of computer vision systems, such a level of generality and

flexibility is extremely difficult to achieve. However, it appears to be

‘a natural direction for integrating the broad range of efforts underway.

“
e it e e



Some workers believe that implementation of general computer vision
systems will not be within our grasp for some time. This paper has shown
that such a conclusion is not without justification. However, the
effectiveness of an integrated system approach has yet to be evaluated.
While research on general computer vision systems continue, they should
provide spin-offs in more constrained applications. There has already
been a focus upon ERTS satellite imagery, bio-medical applicationms,
and limited industrial assembly line work with promising results. It
is important to pursue the goals of'EEEE general vision and limited goal-

oriented vision systems during the coming years.

54
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