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Abstract

A learning system in a complex, real-world
domain will require a significant amount of know-
ledge to be used in order to (1) deal with large
nymbers of features, most of which are irrelevant,
and (2) find similarities between the comncepts
that are inferred from the observed data. Use of
knowledge-free, syntactic approaches to general-
ization in complex environments will result in a
combinatorial explosion in the number of possible
generalizations. Moreover, the important semantic
features are not "in" the data; rather they must
be hypothesized using prior knowledge.

The learning system described in this paper
uses a multi-level knowledge-directed approach in
order to cope with these problems. This paradigm
is explored in the action-oriented game of base-
ball. The system attempts to interpret observed
activity in terms of general knowledge provided
about competitive games. This approach to learn-
ing can be viewed as a type of recognition, where
the Ievel of initial knowledge is general and
where the specific observations mold a particular
structure from the general knowledge. The system
is organized into multiple levels of pattern
descriptions, processing, and knowledge, reflect-
ing the logical structure of the problem. In
woving through those levels of description, the
system filters out irrelevant features, hypothe-
sizes additional semantic features (goals and
relationships) and forms a hierarchy of general-
ized classes that extract the similarities in the
descriptions. Examples of learning by a working
computer program are presented.

1.  Introduction

I.1 Learning as Knowledge-Directed Interpreta-
tion or Recognition

Based on our experience with a working
computer system, we shall discuss several impor-
tant issues involved in the tasks of learning in
a complex real-world problem. The -approach we
have taken to learning is eloquently expressed in
the following quote taken from Jordan's [1968]
commentary on Sir Alred North Whitehead's view of
the nature of explanation and generalization.

"Faith in reason should not totter
in the face of incoherence. Observers
on Mars, without our knowledge, have
planted a 'probe' with television
cameras and are now watching a game
of rugby football being played in
England. They want some explanation
of what the cameras are recording

lThia work was supported by ARI grant DANC19-76~
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which will cohere with their general
theories of what happens on our planet.
The ranges of the cameras are not power-
ful enough for the Martians to see the
ball; it appears that a lot of men in
patterned shirts are performing a dance
or orgy. The Martians' attention is
drawvn to the goalposts. They comnect
these with similarly shaped objects to
be seen on the roofs of some nearby
houses. Now it is to be imagined that
the Martians understard religious notions
but have no sporting instincts. They
conclude that the game is a religious
dance rite and that the buildings with
the H-shaped signs are temples.

The roof signs, of course, are
televisiou aerials, and their resemblance
to rugby goalposts are accidental. The
Martians are wildly mistaken. But their
guess illustrates cohesion. They are
trying to find meanings in the things
seen which will lie together in a harmony
that excludes the merely arbitrary.

This 1s precisely the nature of the
philosopher's faith in reason, a faith
widely asserted in spite of the frustra-
tions to which the above fantasy points.”

One interprets and thereby understands new
situations in the world in terms of the frame of
reference that one brings to the learning situa-
tion. For example, our curious Martian friends
used their understanding of religion and religlous
ceremonies to focus on specific features in the
environments under observation; they attended to
the T.V. antennas and the goalposts rather than
the thousands of other features in the "country-
gide scene"” and the "athletic-contest scene."
They interpreted these features in the context of
religion and then classified both scenes as
similar, i.e., as different aspects of a religious
ceremony. The knowledge which the Martians used
to perceive the world permitted this classifica-
tion -~ religion wasn't "in" the observations,
but rather, religion was "in" the heads of the
Martians. - :

The form of learning discussed above can
alternatively be described as a type of recogni-
tion. The Martians recognized various features in
the observations as examples of a religious
ceremony. The difference between recognition in a
learning situation and recognition in speech
understanding or scene analysis is the degrec of
detail in the knowledge which the system initially
possesses. In the learning situation that know-
ledge often is very general and not tuned to the
gpecific observations. In the perceptual tasks,
knowledge of more specific details' is usually



necessary in order to achieve minimal levels of
performance. In both cases recognition of exam-
ples of stored concepts must occur. This view of
learning as a form of recognition ‘can be traced-
back to the Greek philosophers, e.g., Plato
[Jowete, 1949].

1.2 Use of a Multi-Level Organization for
Learning

In order to explore knowledge-directed learn-
ing, we have built a computer system that observes
human activity in the domain of action-oriented
games, namely, baseball. The system discovers
some of the concepts and structure in that game.

A hierarchical network is constructed which
relates the similarities in the acquired concepts
at various levels of abstraction. For example,
the system moves from observing actions such as
catch, run, and throw to inferring concepts such
as infield single and groundout, to ultimately
understanding those acquired concepts as examples
of more general classes such as "hits" and "outs."

The organization of the knowledge, proces-
sing, and pattern description is decomposed into
the levels shown in Figure 1. (Unless otherwise
noted, all further references to level numbers
address Figure 1). The logical structure of the
problem is captured in the multiple levels of
pattern descriptions, and in the corresponding
knowledge and processing components which operate
on those descriptions. Each level of description
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Reuristics for Verification
of Hypotheses: Prediction,
Frequency of Occurrence,
Consistency

Action-Oriented Games;
Important Features

Acquired Knowledge

Action-Oriented Cames:
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of Persons and Objects
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Results —+
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Reuristics for the
Perception of Activity:
Change, Energy Cycles

Attention
Mechanisa

Levels of Processing

A Hypothesis
Evaluation

Hypothesis
Generalization

Hypothesis
Generation

of the problem has some meaningful interpretation
in the problem domain. For example, level 3
(Figure ‘1) represents the segmentation of the
obgervations into episodes of high activity
cycles. Level 5 attempts to describe the goals
and causally related interactions of the players
in the game.

Correspondingly, there are levels of know-
ledge and processes provided to the system that
facilitate the successive transformations in the
behavior descriptions. The details of the des-
cription at each level serve to make explicit the
input-output relationships of the processes which
are to perform the transformation and the type of
knowledge that must be employed. Some knowledge
provides an understanding of spatio-temporal
activity independent of a game context. Other
more general knowledge about the types of goals
and action relationships often found in competi-
tive games, is used to make inferences (hypothe-
ses) about the specific goals in the observed
activity. Such hypotheses represent a descrip-
tion of the activity at a level far removed from
the actual perceptions of the physical events at
level 1. Finally, the processes which use the
levels of knowledge in order to achieve the
various levels of description are task independent
and represent a general paradigm for knowledge
discovery (see [Collins, 1976]}).

This highly structured organization also
facilitates the integration and subsequent use of

Levels of Pattern Description

Generalized

= Level 9

Claases Concepts
of Generalized  ~=== Level 8
Episodes e Level 7

Plan Summary of .
Annotated Episodes Level 6

!—Hypothesie of Goals — Level 5
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Episodes < .
with Simple Activicy

lulationshipa - Level 4

Segmented Snapshots
Episodes

Filtered émpshon - Level 2

Observed Activity -
Snapshots

~— level 3

= Level 1

Input

Figure 1 - Orgenization of System

Levels serve to structure the knovledge, proceseing and pattern descriptions.



acquired knowledge by the system. Since each
level plays a specific role, the system implicitly
knows what function the new information serves,
where that new information should fit in, and how
it should be used. Thus, .acquired knowledge at a
level is available for.further use in the same
format as the a priori knowledge which was used to
acquire it; this aspect is developed in more
detail clsewhere [Soloway, 1977].

The gspecific game under observation drives
the system bottom-up to make the specific in-
ferences and hypotheses. Thus, if the system
observed a variant of baseball or even another

game, the same general knowledge would be used but
instantiated differently. For example, the same
knowledge used to understand the timing relation-~
ship in an infield single in baseball could be
used to understand the timing relationship in a
"run" in cricket.

The approach to learning outlined above
requires the integration of a large spectrum of
issues. It resembles the work done on understand-
ing/recognition systems; the multi-level archi-
tecture is similar in spirit to that of the
HEARSAY II speech understanding system [Erman,
1975; Lesser, 1977], and the VISIONS scene inter-
pretation system [Hanson, 1976], while the belief
systems work done by Schmidt [1976] and Sridharan
{1977] has influenced our approach to the infer-
ence of goals and causal relationships of humans.
In this regard Schank's [1974] and Rieger's [1973]
work 1s also relevant. To demonstrate the
effectiveness of our systems, we require that it
use the knowledge that it acquires [Soloway, 1977].
Waterman [1970) has investigated this problem .
in the context of production rules, while Sussman's
HACKER system [Sussman, 1973] can subsequently use
LISP code that it has constructed and debugged.
Unlike the uniform syntactic strategy employed by
gsome formal systems for rule induction/concept
formation [Vere, 1977; Michalski, 1974; Hayes-Roth,
1976; Riseman, 1969], our system uses a knowledge-
directed strategy to perform generalizations over

various subsets of features in the description of
the acquired concepts. Recently, Hayes-Roth
[1977) has surveyed the need for such a knowledge-
directed approach to generalization,calling it the
"partial-match problem." Lenat's [1976] AM and
Buchanan, Feigenbaum and Lederberg's [1971] Meta-
DENDRAL uses a knowledge-based heuristic search
paradigm for concept formation; AM discovers new
mathematical concepts while Meta-DENDRAL discovers
rules for mass spectroscopy analysis.

The organization of the rest of this paper is
as follows: Section II will discuss the problem
of dealing with large numbers of features, while
Section III will discuss the problem of detecting
similarities among events and concepts. Section
IV will present an overview of the computer system
which embodies our knowledge-directed approach to
learning. Subsequent sections will relate the
various stages in processing (focus of attention,
hypothesis generation, hypothesis generalization,
and hypothesis evaluation) to the multiple levels
of descriptions.

II. Problem 1l: Dealing with a
Large Number of Features

Our system sees the continuous activity of a
baseball game broken up into discrete "snapshots.”
A snapshot contains a description of the activity
of each of the players and the state of the score-
board markers at each moment in time. A behavior
descriptor unit captures 4 dimensions of the sit-
uation: action, actor, location, and
time (Figure 2). A snapshot contains about 100
features, a typical episode might contain about 18 °
snapshots, while a game might contain about 3,300
snapshots [Soloway, 1975; Soloway, 1976].

Contrast this with the "blocks-world" state
description depicted in Figure 3 (from Vere [1977])
or the concept description in Figure 4 (from
Hayes-Roth [1976]). The object is to learn the
stack operator (Figure 3) or the most general
description (Figure 4) by extracting out the

12 104
(THROW Al PM BALL) (MOVING BALL PM (AIR FAST)) (AT Al PM)
(AT A2 HP) (AT AL PM) (AT A2 4P)
(AT A3 FB) .
(AT A9 RF) (AT A9 RP) (AT A9 RF)
(AT B1 HP) (AT Bl HP) (SWINGHIT 81 HP BALL)
Leyed (AT B2 DUGOUTB)" (AT B2 DUGOUTS)
(AT B3 DUGOUTB) .
(AT B9 DUCOUTB) (AT 39 DBUGOUTB) (AT B9 DUGOUTB)
(INNIKG 1) (INNING 1) (INNIRG 1)
N The pitcher throws the ball. The ball moves through the sir. The batter hits the ball towards

the shortstop

Figure 2 - Unfiltered Snapshots: Taken from an Infield Single

Zach snapshot describes the activity of cech, player at a ooment in time.
"Homeplate"” 1o used for the reader's convenience; the systea

in the seq ing of the pshots.
knows this only ae an X-Y l.oe‘uion.

Time is encoded implicitly
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any other blocks. Note, the . before a nzoe indicates a
variable (from Vere, 1977).

commonalities and deleting the differences.
Essentially, the before-after pair in Figure 3a is
matched against the before-after pair in Figure
3b, while the description in Figure 4a is matched
against the description in 4b. Where there are
differences in items, variables are substituted
and bindings noted. The inferred generalized
"stacking operator” requires that the block to be
stacked must be on the table (U in Figure 3a, X
in Figure 3b, so variable .N10 in Figure 3c), and
the block on which the first block will be put
must not have any other block on top of it
already. Similarly, in the generalized concept
description described in Figure 4c only those
features common to both figures remain, e.g., one
block 1is above another block, where both those
blocks are small.

While strict data~directed generalization may
wvork in problems on the order of complexity of the
above examples, as soon as the number of features
increases, some direction must be supplied in
order to find the significant features. Are
features of color, size, and age of the blocks
important to the stacking operator? If both
blocks were 4 years old and green, should that be
a property of the stacking operator? Knowledge of
features important to the physlical manipulation of
objects might provide direction for this analysis.

If a syntactic matching technique for gen-
eralizations were employed in the domain of base-
ball, it would result in a combinatorial explo-
sion. . Matching of just one before-after pair of
snapshots against just ome other before-after pair

(a)

. .:Effiz
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{SAMEISIZE:2,SAME!STZE 1),

(sMaLL:2),
(square:1},
(smaLL:1},
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{TRIANGLE: 3},
{LARGE: 3 })
()
Figure f‘ Pigure &b
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=2 {—2
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FPigure 4 - Concept Pormation Task

The resultant genersl concept captures the com-
sonslicies in both geometric patecras (from
Hayes-Roth, 1976). .

yields 2200 possible different generalizations!
This problem is exacerbated because sequences of
length far greater than two are needed to capture
other meaningful "operators or rules” in baseball!
Knowledge is clearly required in order to direct
the search for the interesting generalizationms.

I1I. Problem 2: Finding Similarity at
Different Levels of Description

Let us reiterate -- the goal of our system is
to construct a hierarchical network of generalized
concepts (classes of events) that capture similar-
ities in observations. The "hierarchy'" represents
our intuition that two examples may look quite
distinct from one perspective (level), yet appear
similar or identical from another (usually more
abstract) point of view. 1In linguistics it has
been argued that the notions of deep structure and
surface structure [Ross, 1967; Lakoff, 1969] cap-
ture that intuition. For example, while the
surface structures of corresponding active and
passive sentences are different, their deep
structure representation captures the equivalence
of their meaning.

As we saw in the Martian scenario, what is
confidered aimilar in two situations {8 dependent
on the frame of reference of the observer. In .
baseball a "walk" and a "single" have quite
different activity sequences (surface structure);
however, their meaninpg (deep structure) relative
to this particular competitive game shows them
both to be means to achieving the same goal:
getting-on-firstbase.



In order to reflect a domain specific inter-~
pretation, additional features need to be added to
the original description. The Martians added the
feature descriptor, "religious item,” to their
description of the roof signs (television
antennas). Similarly, as we shall see in Section
1V.2, the process of hypothesis generation attempts
to add features relevant to competitive games -~
aanein . the goals of the actors and the causally
related .interactions between the actors. It is
these features which capture the meaning -- the
deep structure -- of the activity, and which form
the basis of the subsequent generalization process.

Knowledge 1s used to form potential classes
of events at various levels of generalization.
However, the system does not know what classes
should exist in baseball -- if it did, that would
beg the whole question of learning. Rather,
general heuristics suggest subsets of features to
serve as the basis for class formation. For
example, the feature '"competitive goal" (Section
IV.3) will be used to form classes; those episodes
with the same competitive goals will be grouped
together. Distinct sets of features at the
different levels permits the system to find various
similarities among the observed events.

IV. Overview of System

While the preceding discussion has focussed
on the issues, the following sections outline how
our learning system actually accomplishes multiple
shifts in description and how those levels are
used in the learning process. The following
sections will mirror the flow diagram of the
system processes depicted in Figure 1. In moving
from level 1 to level 3 irrelevant features are
filtered out while important ones are highlighted.
Levels 4. - 6 annotate the output of level 3
(episodes) by hypothesizing additional feature
descriptors that are relevant to action-oriented
games. Levels 7 - 9 represent the discovered
similarities in the events as generalized classes.

IV.1 The Attention Mechanism

The attention mechanism uses general domain
knowledge to focus on potentially "interesting"
aspects of the observed behavior. This module
accepts complete snapshots at level 1, and pro-
ceeds to filter them and partition them into
logical groups (level 2 and level 3, Figure 1).

. Two heuristics are used in this process. First,
the biologically-motivated notion that "change is
important” guides the system to filtering out of
the snapshots all those actions that remain con-
stant. This process reduces the number of act
descriptors in a snapshot from about 25 to an
average of 2 or 3 per snapshot. Certainly, things
that don't change can be important. On a first

" pass, we will miss such subtleties, but hopefully
later processing can re-direct the attention
mechanism. to take note of such non-change, when
necessary.

Next, snapshots are partitioned into episodes
based on the following observation: in action-

.

oriented games the amount of activity measured in
terms of energy expended by the actors goes in
cycles; a low amount of activity (e.g., pitcher
holding the ball) is usually followed by a high
amount of activity (e.g., players moving), which
is usually followed by a lull in activity (e.g.,
the pitcher holding the ball again). Each episode
contains on the average 30 act descriptors over a
range of about 15 time units. The episode parti-
tioning is crude and later stages provide more
semantic analysis in order to punctuate the
boundaries of the competitive episodes more
clearly.

IV.2 Hypothesis Generation

The hypothesis generation process uses a
priori general knowledge to interpret the observed
activity from the perspective of an action-orient-
ed game. To this end, it makes hypotheses about
competitive/cooperative goals and causal relation-
ships of the players in the observations.

The inferences depend upon the system under-
standing the observations first in terms of
spatio-temporal activity independent of a game
context. For example, the system adds to the
description of the actions Throw and Swinghit in
Figure 5 that the throw Al, set up a condition
that enabled the hitter B2, to execute his act;
i.e., Al performed a physical action which enabled
B2 to hit the ball. Knowledge about the various
primitive actions in the system is represented as
Act-Schemata. They are implemented as templates
with constraints on slots, which represent the
various aspects of an action (e.g., the physical
enabling condition for Swinghit in Figure 5).

Hypotheses of goals and causal relationships
of the players are added to the description of the
observations at level 5. Causal-Link Schemata
(CLS), which encode the general game knowledge of
the system, are the agents in this process.
Represented as production rules [Davis, 1976},
CLSs draw on the output of the Act-Schemata as
they test for competitive and cooperative inter-
actions in the observed actions. Figure 5 i{llus-
trates how one such CLS, PHYSICAL~COMPETITION,
makes the following hypothesis of a goal aud a
causal relationship for the interaction of the
pitcher and the batter:

(1) The goal of the pitcher Al was to prevent
a player on- the opposing team Bl from
hitting the ball; the goal of the batter
Bl was to hit the ball.

(2) The causal relationship was a
tive-physical-enablement."

“competi-

Triggering the PHYSICAL-COMPETITION schema {n
Figure 5 results in the creation of a new specific

lThe system can deal with other aspects of such a
spatio-temporal domain, e.g., understanding that
the difficulty of executing an action vatles with
changes in its preconditions.
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Pigure 5 - Moving From Observed Actions to Goals and Causal Relacionships by Hypothesizing Specific Causal-Link-Schemata
The Act-Schemata add features to the description of the observations that capture an understanding of non-game activity;

e.g., the physical-enabling-condition that Al set up (the ball moving) enabled B2 to execute his act.
Link-Schemata use thogse features while adding their own competitive game interpretation.

Then the Causal-
The result of triggering a-

general CLS is the hypothesis of a CLS specific to the observed actions; in this case $ACT-X is bound to the act-

pattern (THROW Al ...) and SACT-Y ia bound to the act-pattern (SWINGHIT B2 ...).

CLS have the same production rule structura.

CLS tailored to the particular observatioms, 1i.e.,
the right-hand side of a production rule produces
a new production rule. Thus, the hypothesized
CLS is structurally identical to the general CLS.
Once generalized and verified this acquired CLS
can be effectively used in recognizing recurring
instances of the episode and can be used in
hypothesizing goals in different contexts (dif-
ferent episodes). We can also view the action of
a CLS as adding 2 features (goal and causal rela-
tionship) to the description of observations. In
Figure 6, PHYSICAL-COMPETITION adds a goal feature
and a causal-relationship feature to the Throw
(act #2) and Swinghit (act #6) actions.

The control structure ‘for the application of
the set of cooperative and competitive CLS's is a
grammar that characterizes competitive episodes.
The grammar is implemented as an augmented-transition
network (ATN) parser [Woods, 1970]. Episodes are
parsed "left-to-right" with the spatial metaphor
referring to the forward movement of time. Each
action serves as a state in the network, while an
arc connecting two states represents the hypothe-
8is of a causal relationship between the actions.
At each arc the eight CLS's currently in the ays-
tem are tested for applicability. For example,
in processing the infield single episode of Figure
6, the ATN creates a state for the Throw action
(act #2) and then tests surrounding actions with
the CLS's. The activation of the PHYSICAL-
COMPETITION schema creates an arc (a hypothesized

The general CLS and the hypothesized

causal link) between the Throw (act #2) and the
Swinghit (act #6). More than one CLS may have

its triggering conditions met and thus multiple
CLSs can be invoked. This results in multiple
arcs representing alternative hypotheses emanating
from one state (action).

Analogous to defining a grammatical sentence,
we define a grammatical episode to be one in
which there is at least one competitive inter-
action as hypothesized by a CLS (see [Rumelhart,
1975]). If at the end of a parse the ATN has not
found a competitive interaction, it backs up.and
looks at the original data at level 1. This is
done in order to find an action that may have
been filtered out initially, but which now may be
a potential competitive act. For example, since
in a "called strike" or "ball" episode the batter
does not swing the bat, his unchanging. action of
standing at homeplate is filtered out at level 2.
The ATN finds such an action and the CLS's examine
its competitive interaction possibilities.

The shift from level 5 to level 6 is one that
reduces the data by abstracting from the newly
annotated episodes a plan summary. This summary
highlights the important goals and relationships
of the players occurring in an episode. It con-
sists of all the competitive interactions and the
cooperative interactions between distinct players.
The dark arrows in Figure 6 indicate the 3 com-
petitive 1nteracg}ons and 1 cooperative
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‘relationships have been extracted by the system as the Plan Suzmary of
an episode, e.g.,

cooperative interaction:
(#14 THROW A5 SS BALL) - (#22 CATCH A3 FB BALL)

competitive interactions:

(#2 THROW Al) - (#6 SWINGHIT B3)
(#6 SWINGHIT B3) = (#12 CATCH AS)
(#20 ON B3) = (#22 CATCH A3)

interaction that constitute the plan summary for

constant. At level 9,.flyouts and groundouts are
an infield single.

generalized into the class of "outs" (Figure 7).

IV.3 Hypothesis Generalization The system does not initially know what

classes should exist in baseball, nor does it have
the benefit of a trainer carefully ordering thc
observations and providing feedback as to the
correct classification. Rather, the system is
given heuristics which suggest the types of
features which should form the basis of classes.

The input to Hypothesis Generalization are
individual episodes in which each action pattern
i8 described by 7 features: action, actor, loca-
tion, time, modifiers, goal-of-player, and causal
relationship (levels 5 and 6). The task for this
wodule is to generate general classes of similar

episodes. For example, inficld single episodes

at level 6 are grouped together to form a class

of inficld singles at levels 7 and 8 (Figure 7).
The strategy for class formation 1is to hold a sub-
set of the above features constant. The other
features in the pattern description are allowed to
vary, thus permitting differentiation within a
class. Moreover, a hierarchy of classes is formed
by choosing different subsets of features to hold

At level 7 (Figure 7), classes are formed by
holding the goal, causal relationship and location
features of a plan summary constant. At level 8
(Figure 7), only the goal and causal relationship
are held constant; while at level 9 (Figure 7),
the most general classes currently gencrated hy
the system are based only on the final competitive
goal in the plan summary. Thus, at level 9, fly-
outs and groundouts are similar and form a class;
they have the same final competitive goal of
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preventing the opposition from getting on first-
base. The choice of features on which to base
class formation is dependent on the domain of
interpretation; here, only those that suggest
meaningful classes relative to the domain of
action-oriented games have been used.

Besides facilitating the discovery of similar-
ities in the data and the hypotheses, the multiple
levels of generalization also aid the system in
avoiding the nasty problem of premature over-
generalization. By holding most of the features
constant and letting only a few be changed into
variables, the space of possible generalizations
is drastically reduced. In addition, before the
system moves to a higher level of abstractionm,
i.e., letting more features vary, the system
requires that generalized hypotheses at lower
levels be verified first (Section IV.4). For
example, at level 7 (Figure 7) a class of infield
singles will be generated in which the ball hit by
the ‘batter goes to the shortstop. Before allowing
this class to be merged into the class of all
infield singles at level 8, confidence in the
hypotheses at level 7 is required. This .is a
conservative and structured generalization
strategy and it may require that a large number of
observations to be made. It is an alternative to
trying to recover from an over-generalization, a
problem which has been little studied. '

Those features not used in class formation
are allowed to vary and take on values under the
direction of the incoming data. For example, at
level 7, the "actor" feature is not held constant
and thus is replaced by a varfable, That variable

onpetitive goale in the descripcion, infield groundouts

is allowed to match any actor in the observations.
In this manner, the set of matched values allows
for variability within a class; the batter in an
infield single can be Bl, B2, Al, or in general
ANY-PLAYER, while the pitcher in that event is
required to be some player on the opposing team.

IV.4 Hypothesis Evaluation

In a learning system there are inherent
problems in the production and evaluation of
hypotheses. First, hypotheses are just that --
unverified conjectures which quite possibly are
wrong. Indeed, there are often multiple inter-
pretations for the same events. Second, the
knowledge used in evaluating hypotheses must be
general -- not specific to the particular game
being observed. The generality of knowledge at
this level distinguishes perceptual recognition
systems (speech understanding) from recognition in
a learning system. The former systems usually
have detailed knowledge on how to evaluate
hypotheses ([Hanson, 1976; Lesser, 1977]). The
approach we take is to let hypotheses provide
their own evaluation; if hypotheses predict
events -~ and their interpretations -- that have
not yet occurred and if hypotheses bind together
into an internally consistent global view, then
confidence in those hypotheses 1s increased
accordingly.

The motivation for this approach stems from
the assumption that one has more confidence in
knowledge that can be used to accurately predict
the future. Both the occurrence and the correct
interpretation of a specific predicted event are



important evidence. The system makes three types
of predictions. One type predicts the complemen-
tary success/failure outcome of a competitive
interaction. For example, the system hypothesized
that the pitcher failed and the batter succeeded
when the batter hit the ball; so an obvious pre-
diction is that the system should see the batter
fail to hit the ball with the pitcher thus suc-
ceeding. Predictions are fed back to the Atten~-
tion Mechanism for matching against the incoming
observations. Events found in this way together
with their interpretation are then passed back to
Hypothesis Evaluation where the confidence values
of the hypotheses are modified appropriately.

In addition to prediction, features such as
frequency of occurrence and consistency affect
the confidence values on the hypotheses. The
system accepts as "truth" those hypotheses with
the highest confidence values. Such verified
hypotheses (specific causal-link schemata) are
then passed back to Hypothesis Generation to be
used in further learning. They are also used in
Hypothesis Evaluation to eliminate unverified
hypotheses that are contradictory. For example,
when the system decides that getting on -first-
base 1s a desirable goal (for one team), then all
the hypotheses which suggest that getting on first-
base is undesirable, can be eliminated.

V. System Implementation and Experimentation

The computer system described in this paper
is implemented in LISP and requires approximately
75K on a CDC 6600. An earlier version of the
system [Soloway and Riseman, 1977] processed all
the observations at one level before proceeding
to the next level of processing. The current
system operates in "real-time;" it makes hypothe-
ses, predictions, and generalizations as it'is
observing events in the game. Since this analysis

is sensitive to the order in which events occur,

a conservative generalization strategy was employ-
ed to prevent the system from prematurely over-
generalizing. The current version required the
observation of 9 innings of baseball in order to
learn the highest level concepts and generalized
episodes depicted in Figure 6.

Additional Causal-Link Schemata are being
added to the system which would allow it to make
hypotheses about the relationship between changes
in the scoreboard markers (hits, outs, etec.) and
the goals and events in the game. This should
enable the system to acquire schemata for episodes
such as "strikeout," "walk," and "score,”" which
require this additional knowledge.

A sense for the volume of data in the pattern
descriptions is provided by Table 1. The large
number of initially observed actions is reduced
by the Attention Mechanism's heuristic filtering
algorithm; the number of actions per snapshot is
reduced from 26 to 2 on the average. Since each
action is described in terms of 4 features
(action, actor, location, and time), this reduc-
tion results in an average of 8 features in the
pattern description of a snapshot. Hypothesis
generation adds the features of goal and causal
relationship to the behavior description. 1t is
these additional 946 features per inning that
characterize the observed activity. They serve
as the basis for class formation during general-
ization. Thus, while there is a significant
amount of data at the sensory level, the systen
requires only a relatively small amount of data
at the interpretation levels.

ADDITIONAL
ACTIONS FEATURES HYPOTHESIZED
. FEATURES
H‘UNFILTERED FILTERED !UNFILTERED FILTERED
SHAPSHOTS 26 2 104 8 0
EPISODES 338 26 1,352 208 22
INNIRG 14,534 1,118 58,136 4,472 946

Table 1 - Filtered and Annotated Data at Higher Levels of Deacription

There are 26 actions in a snapshot if all the actions and all the markers on

the scoreboard arve considered.
and 43 episodes/{nning.

On the average there are 13 snapshots/episode
After filtering out non-changing activity at the level

of the Atteation Mechanism, the average number of actions/snapshot is reduced

from 26 to 2.

Four features comprise an action: actor, action, locacion,

time. Hypothesis Generation adds new features to thé description of the activicy

by interprcting that activity as an action-oriented game.
adds a goal feature and a causal relationship feature.

Each hypothestis
Since on the average

there are 11 such competitive and cooperative hypotheses per episode, 22 features
arc added per cpisode. The guneratlon of classes of episodes and concepts

is based on these inferred features. (Read this table: column per row.)



VI. Summary

The problems of learning in a complex real-
world domain require that a significant amount of
highly organized knowledge and processing be
brought to bear. In particular, a system must
deal with large numbers of mostly irrelevant
features and must discover meaningful similarities
in the new observed situations. To this end, our
gystem employs a multi-level knowledge-directed
learning paradigm: it attempts to interpret obser-
vations of novel situations in terms of its prior
general knowledge. Thus our approach to learning
can be viewed as a form of recognition, where the
level of initial knowledge is general and where
the specific observations mold a particular struc-
ture from the general knowledge.

This approach permits the system to filter
out nonessential features and to add new descrip-
tive features which have a meaning in the task
domain. Based on these semantic features, similar-
ities are found in the observations. Such similar-
{ties are represented in the multiple-levels of
generalized episodes and concepts. In the action-
oriented game of baseball, the system moves via
multiple levels of processing through successive
descriptions of behavior patterns: from the initial
observation of seemingly independent actions such
as throw, run, catch; to high-~level concepts and
integrated activity patterns such as "hit," "out,"
"single. "

A system architecture using multiple levels
of knowledge, processing, and pattern description
significantly contributed to the successful
design, construction and operation of the learning
system. ’
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