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Abstract

A system embodying a knowledge-directed approach to unsupervised learning is
examined in this paper. This approach is based on the premise that knowledge of
new situations is acquired and interpreted in terms of the previous knowledge brought
to the learqing situation. In particular, our system is provided with a general
characterization of action-oriented competitive games. This frame of reference
is used to construct an interpretation for the patterns of human activity that are
observed in games of baseball.

Multiple levels of knowledge and processing are used to proceed through various
levels of description of the observed human behavior. Hypothesis Generation shifts
the pattern description from observed physical actions such as "catch" and "run".
to inferred goals and causal relationships of the players executing those actions.
Hypothesis Generalization abstracts generalized classes of events and schemata
that represent concepts such as "hit" and "out." Hypothesis Evaluation closes
the loop in the learning process by verifying or rejecting the various hypotheses.
Knowledge encoded as schemata direct these processes; there are schemata for
inferring competitive and cooperative goals and causal relationshipé of players.

An important aspect of the system is its ability to use acquired knowledge.
The multi-level organization facilitates the integration of the new information
into the existing knowledge structure. Also, both the initial knowledge and the
acquired knowledge are represented uniformly as schemata (production rules).

- Acquired schemata, then, are available to assist in-'interpreting and predicting
future events. This ability demonstrates the effectiveness of our knowledge-

directed approach to learning.



I. Introduction

In this paper we outline the major points of a computer system embodying a
knowledge-directed approach to learning. The motivation for this approach comes
from our daily experience; it seems that when faced with a learning situation (e.g.,
understanding sequences of apparently novel events) one does not rely solely on
statisticél learniné techniques. Rather,.one uses various levels of knowledge
and processing to focus in a highly directed fashion on what is important in the
observations. This direction is provided by the predispositions, or frames [1, 2],
used to interpret those observations. |

In particular, our system is provided with a general characterization of
action-oriented competitive games. It uses that frame of reference in order to
construct an interpretation for the patterns of human activity in the observed
games of baseball. These behavior patterns are described in terms of four attri-

butes: actor, actiom, location, and time. The goal of the system is to acquire

a hierarchical network of schemata and concepts that represent an understanding of
the observed activity at various levels of abstraction. The generalized schemata
and concepts capture the relationships between the actions of the players and the
goals intended by those actions. A key objeétive of our research is to allow the
acquired schemata to aid in the further understanding of the observed patterns of
behavior. This learning process requires both general knowledge of the goals and
causal relationships in competitive action-oriented games as well as knowledge
about particular physical actions.

We have chosen this knowledge-directed approach to learning for several
reasons. First, knowledge is required in order to limit the combinatorics inherent
in generating and generalizing concepts in such a complex task domain. Whereas

many of the problems explored by other rule induction/concept formation systems



have included relatively few.featurgs, there are thousands of features in the
basebail games‘obServed by our éystem. While'déta—directed (bottom-up) induction
techniques may work on constrained prdblem domains, their unguided application in
our domain would result in an overwhelming explosion of possible generalizations.
Alternatively, our strategy is to use knowledge to form hypotheses about subsets
of features that are relevant to the domain of interpretation. Though this
process introduces other types of problems, it does succeed in significantly reducing
the number of features over which generalization must occur. Moreover, the features
that are most interesting relative to some domain of interpretation often are
not "in" the data. Thus, knowledge must be used to hypothesize and add those important
features. For example, the goals and causal relationships of the players in a
competitive game are not observed explicitly--rather they must be inferred using
a priori knowledge. Finally, since our objective is to have a dynamic system
that can use what it learns, this requires that the system must know where to put
the acquired information in the existing kﬁowledge structure so that it can be
effectively retrieved and utilized.

Our work on knowledge-directed learning is more akin to work on other knowledge-
based learning (cf. [8, 14, 15, 26, 27]) and understanding (cf. [3, 4]) systems
than to the more formal systems for rule induction/concept forﬁation (cf. [9,
10, 11]). While we use generalization techniques similar to Hayes-Roth [9] and
.Vere [11], we do so only after we have used knowledge to restrict the number of
features over which generalizations will take place. Employing a knowledge-directed
approach, Lenat's [27] AM system discovers new mathematical concepts from a large
knowledge base of interacting mathematical concepts. Winston [8] developed.a
system which used heuristic generalization techniques to learn structural descrip-~

tions in the blocks world. 1In both Waterman's [14] system to learn heuristics in



power and Sussman's [15] HACKER system to debug programs about manipulating objects
in a blocks world, knowledge that has been acquired is subsequently used. Schmidt's
[17, 19] work on the inference of peoples’ intentions, from observations of their
actions, has influenced our approach to this problem in the baseball domain. The
importance of causal relationships in understanding connected discourse -and connected
behavior has been discussed and fanalyzed by Schank [21] and Rieger [7]. Lesser and
Erman's [4, 31] HEARSAY-II systéﬁ uses a multi-level architecture in a speech
understanding task, while we use that architectural approach in our learning

system.

Figure 1 illustrates the mpltiple levels of knowledge, levels of processing,
and levels of pattern description exhibited in our systém.1 The Attention
Mechanism, described in more detail elsewhere [12, 13], "sees" the games of baseball
in terms of symbolic primitives fepresenting actions. The actual continuous
activity is frozen into discrete moments and represented by snapshots. Each
snapshot encodes all the actions of players occurring at that moment in time.

The Attention Mechanism uses the biologically motivated heuristic that one should
"attend to change" as an initial technique for filtering irrelevant detail and
focusing on interesting information. Later, feedback from Hypothesis Evaluation
can redirect the initiai attention strategy. The output of this level of procesging
consists of episodes. These are sequences of activity characterized by a period

of low activity (e.g., pitcher holding the ball), followed by high activity (e.g.,
pitcher throwing the ball, batter hitting, etec.), and concluding with low activity
(e.g., the pitcher holding the ball again). An infield single, ground-out, or
fly-out would all be examples of episodes.

The role of Hypothesis Generation is to accomplish a shift in description--from
patterns of acts of individuals to patterns of goals of individuals executing those
acts. Several levels of knowledge are used in this process. The output comprises

episodes annotated with hypothesized goals and plans for both the actors and teams.



Hypothesis Generalization uses the annotated episodes to form generalizations
of the hypotheses at various levels of abstraction. At one level this process
uses both the actions and goals to generate classes of similar episodes, while
at another level it focusses only upon the goals. Finally, Hypothesis Evaluation
collects various forms of evidence that bear on the validity of the hypotheses.
Based upon that evidence, hypotheses are accepted or rejected as truths. Once
acduired knowledge is verified and accepted as new truth, it is fed back to
Hypothesis Generation and used in the same ways as the a priori knowledge of the
system. This acquired knowledge is also used to aid in the evaluation of the validity
of unverified hypotheses. Hypotheses in the pool of alternatives that are incon-
sistent with new constraints are deleted.

The remainder of the paper will discuss the most intersting aspects of the

latter three stages of processing. Further details appear in [16].

IT. The Selection of Baseball as the Task Domain

An important consideration in the development of AI paradigms and techniqueé
is the choice of task domain. Selection of an action-oriented gaming domain
such as baseball might appear to be a frivolous choice. However, we feel that
baseball has provided us with a rich set of behaviors in which to explore issues
crucial to AI. It is a spatio-temporal world in which there is simultaneous and
continuous activity. This activity is generated by human actors having purposes
and plans and by inanimate objects obeying physical laws. Thus, the Frame
Problem (cf. [22, 30]), modeling simultaneous and continuous activity (cf. [24]),
and understanding causality (cf. [7, 21]) must all be considered. Moreover,

whether human activity is perceived by reading stories or through actual visual



observation, the same underlying processes must be performed--namely, the inference
of goals, and plans of the actors (cf. [5, 6, 20]) based upon their actions.

Thus, baseball encompasses many of the important issues in the mainstream of

AI research.

In this domain we have had to develop the knowledge base for action-oriented
competitive games ourselves. Though there has been research into games (cf. [29]),
its orientation and detail have not provided the knowledge needed for inferences
by our computer program. Thus, ferreting out the requisite general knowledge about
action-oriented éames (the logical and physical, competitive and cooperative
relationships between the players and their goals) has pProven to be a challenging
enterprise. Nonetheless, the amount of knowledge needed by the system to acquire
a basic understanding of the structure of the game-—bﬁt not necessarily the subtle
details--has been quite reasonable,

Regarding the complexity of baseball, concern has been voiced that it would
be difficult for a human to acquire an understanding of that game from observations.
On the contrary, we believe that many of the local goals of the observed actors often
have only a few rather obvious alternative explanations. The complexity arises
because it is difficult for the many local hypotheses to be integrated into a
global structure by a human observer. Moreover, as the number of examples
increases, so might the confusion. Nonetheless, we believe that, with patience,
people can and would understand many of the important rudimentary aspects of this
game. In any case, a complex domain is a challenging one for state-of-the-art

Al research.



III. Hypothesis Generation

The objective of this level of processing is to generate hypotheses about
the goals and causal relationships of the actors in the observed activity.
In this section we describe the organization, representation and use of knowledge

needed to perform this task.

III.1 Act-Schemata: Domain-Independent Knowledge

The first level of knowledge applied to the episodes output by the Attention
Mechanism are the Act-Schemata. They contain information needed to understand
actions independent of the particular confexts in which they take place. The
major aspects of the spatio-temporal world that they capture are illustrated
in the Act-Schema for the action THROW (Figure 2). Consider the entry PRIMARY-
PHYSTCAL-ENABLING-CONDITION of that Act Schema. When executed, this Act-Schema
would find the immediately preceding action that created the state permitting
the present action to occur. In our example of THROW, such an action would be
to catch or to hold the object.

Oupcomes of an action can be affected b& varying the amount of skill or
energy used in its performance. These effects are noted in the Act-Schema
under the entry A-DELTA-~INCREASE-IN-SKILL-ENERGY-CAN-AFFECT-PERFORMANCE. This information
representsthecommonsenseknowledgethatittakes,forexample,moreskillorenergy
to throw a ball faster or farther (we presume that even a child would possess
this knowledge at an early age). We define a difficult act as one that requires
a relatively greater amount of energy and/or degree of skill. As we shall see
in the next section, in hypothesizing a competitive goal'for an actor, it will

be important to ascertain whether or not the act he is executing is difficult.



III.2 Causal-Link Schemata: Domain-Dependent Knowledge that Directs Interpretation

The system is initially provided a general characterization of competitive
and cooperative goals in action—orieﬁted games. For example, competitive goals
occur in situations where one player (team) wants to achieve an action whilé an
opposing player (team) wants toiprevent the execution of that action. The system
can exploit this knowledge to identify examples of competition within the episodes
analyzed by Act-Schemata. Similarly, a cha;acterization of the causal relationships
between the goals of actioms is provided. For example, a "timing" relationship
might be that one player often tries té execute an act before an opposing player
executes some other act; this relationship further specifies that if the opposing
player has executed his act earlier, the first player is not allowed to achieve
his goal.

This characterization of goals and causal relationships is embodied in rules
called Causal-Link Schemata (CLS). Figure 3 illustrates the hierarchical ofganiza—
tion of CLSs. Implemented as production rules, the CLSs are triggered both by
immediate and inferred aspects of the observations. Once activated, the CLSs
hypothesize:

(a) a causal relationship between two actions;

(b) goals for each of the actors executing the actions;
and (c) success and failure labels for the goals of the actionms.

As a result of applying these rules, the system shifts its description from observa-
tions of actions to hypotheses about the goals and causal relationships of the actors
executing the actions.

To illustrate how the CLSs are used to infer goals, consider Figure 4. The
current Act-Schemata for THROW and SWING-HIT (for '"swing a stick, and then hit

an object") are applied and their variables are instantiated as indicated. Now



the set of CLSs are applied, and the PHYSICAL-COMPETITION CLS is found applicable--
one player physically enabled (PHYSICAL-ENABLE ACT~X ACT-Y) an opposing player
(OPPOSING-TEAMS ACTOR-X ACTOR-Y) to execute an act, where both acts were inferred

to be difficult (DIFFICULT-ACT ACT-Y). An assumption we believe |to be reasonable

in the context of action-oriented competitive games has been mad‘ here:. when

one executes an action that requires a considerable degree of skill and energy,

that act is probably intentional.

Next, we assume that in a competitive interaction, opposing players must have
some oppbrtunity to affect the outcome. In our example, this amounts to inferring
whether or not the pitcher Al could have done something (e.g., throw the object
faster) éﬂat would have decreased the likelihood of the batter B2 being able to
execute his act SWING-HIT. By accessing information in the Act-Schemata, the system
(CAN-AFFECT-PERFORMANCE ACT-X ACT-Y) makes the inference that the outcome could
have been different (e.g., THROW and NOT SWING-HIT). Thus, it decides that the
ﬁitcher had an opportunity to prevent the batter's act. We believe that the common-
sense information used in these inferences is possessed by most adults, independent
of them ever seeing a baseball game. An example of such knowledge is, "an object
is harder to hit if it is moving fast."

From these inferences, the system can hypothesize that the pitcher and batter
were in a competitive causal relationshiﬁ (PHYSICAL-COMPETITION ACT-X ACT-Y)
and that the goal of the hitter was to execute the act SWING-HIT while the goal
of the pitcher was to prevent that event from happening. Combining this hypothe-
sis together with the observed acts, the system can also hypothesize that the

pitcher failed and the batter succeeded in achieving their respective goals.




The complete annotation for an infield single is depicted 1in Fig;re 5.

In this diagram, there are two levels of description: acts and goals. Now,
several other levels of descriﬁtion will be abstracted. We define a Plan to

be composed of the sequence of subgoals of a player, with an assumption that the
intermediate goals are attempted in order to achieve the last competitive-goal
in that episode [17]. 1In Figure 5, for example, the various subgoals of the
batter B3 form a plan to achieve the execution of the action ON FIRST-BASE.

There is a Cooperative Summary of an Episode for each team. It is defined as

the sequence of cooperative interactions of distinct players. We define Competi-

tive Summary of an Episode to mean the set of competitive interactions in an

episode; Figure 6 shows three competitive Causal-Link-Schemata which form the

Competitive Summary for the infield single of Figure 5. By Final-Competitive

Episode Goal we mean the last competitive goal in an episode, e.g., the ON-

CATCH event in our example.

As can be seeﬁ from the PHYSICAL-COMPETITION SCHEMA of Figure 4, general
CLSs test for properties of an interaction rather than for specific actions.
However, the specific CLS which they hypothesize do test for specific actionms.
It is the particular game under observation, then, that determines which CLSs
are triggered. Thus, the specific concepts learned are determined by the data

presented to the system.

III.3 Acquired Knowledge: How and When It Can Be Used

The system can use its acquired information because it can integrate it
into its existiﬁg knowledge framework. That structure defined how the new
knowledge can be used and suggests when it can be used. The uniform representa-
tion of CLSs in our system facilitates the "how," while the multi-level organization

facilitates the "when."
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All CLSs have the same production rule structure--a pattern to trigger the
schema, and an associated hypothesis to be generated when the schema is activated.
Moreover, the hypotheses made by general CLSs have a description identical in form
to that of a CLS; Figure 6 depicts three acquired specific CLSs. Learned information,
then; is in the same format as the knowledge used iﬁ the learning process. Thus,
the system acquires CLSs specific to basebail. These specific schemata can be
used during Hypothesis Generation like the general schemata, without neqessitating
modification of the system. Also in Figure 6, we see how the acquired schemata
are used to recognize an infield single directly. This is done without requiring
the intervention of general CLSs.

Control of the acquired schemata is implicit in the level organization of
the system. In particular, the system uses knowledge at the level of CLSs when-
ever it hypothesizes competitive and cooperative goals (and causal relationships)
for the players. In particular then, the acquired CLSs can be used when goals of
players need to be infefred. In other words, when to apply the CLSs is information

passed from general CLSs to the specific CLSs which they spawned.

IV. Hypothesis Generalization

The role of Hypothesis Generalization is to construct classes of similar
annotated episodes at various levels of abstraction. This reflects our common-
sénse intuition that events which appear different at one level of description
often are actually quite similar at another level. For example, while the
actions (surface structure) in a "walk' and a "single" are quite different, their
final goals (deep structure) of getting ON FIRST-BASE are the same. The system

does not know a priori what classes should exist in the data. In order to discover
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them, we again make use of the underlying semantics of the observed activity.

We provide the system with a set of features.meaningful in the domain of games which
serve as the basis for the formation of specific classes. Thus, rather than
wmatching all the features of several episodes to abstract generalizations--a
combinatorial nightmare--only various subsets of the features are used in t_he‘
matching process.

Presently, two levels of classes are produced: clagsses based on the Competi-
tive Summary of an episode (the competitive goals plus the corresponding actions
in specific causal relations) and classes based solely on Final Competitive Goals
of episodes. Figure 6 illustrates generalized hypothesized CLSs which represent
the class of infield singles based on Competitive Summaries. Figure 7 illustrates

the range of classes which the system has discovered and verified; thus far, "hit"

" 13

and "'out’

are the highest level concepts learned (see Section VI).

V. Hypothesis Evaluation: Dealing with Errors and Combinatorics

Hypothesis Evaluation closes the loop in the learning process by verifying
or rejecting the hypotheses of goals, causal relationships and episode classes
produced earlier. Currently, our system is running without the benefit of
trainer-feedback regarding these hypotheses.2 Consequently, this analysis is
complicated by errors in the hypotheses output from Hypothesis Generation and
the presence of plausible alternative interpretations (i.e., alternative cohpe—
titive summaries). We have found that the impact of these problems can be

alleviated by the assignment of confidence values.

To this end, Hypothesis Evaluation collects evidence on the valldity of the
hypotheses and modifies the confidences of those hypotheses accordingly. The

observation of additional members of some class increases the confidence in the
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hypothesis of that class. Another factor in assessing confidence is the degree
of consistency with other hypotheses of high confidence. However, the major
source of evidence is through predictions derivable from the tentative hypotheses.
Predictions are passed to the Attention Mechanism where they induce a '"perceptual
frame" for future matches in the input. Thé correct prediction of future events
is an-excellent test of the accuracy of the system's evolving interpretation of
its world.

Three types of predictioﬁs can be made. The first type exploits the concept
of competition. If players are competing with each other, one should expect
to see team A succeed when team B fails, and aléo expect at other times to see

team B succeed when team A fails. For example, in the competitive interaction

between the pitcher and the batter (Figures 4 and 5), the hypothesis was that the

pitcher failed because he did not prevent the batter from hitting the ball.

This allows the prediction that eventually the pitcher will succeéd with respect
to his goal, and hence the ba;ter will fail to hit the ball. The system forms
predictions of complimentary outcomes--success predicts failure, failure predicts
success--for all hypotheses of competitive interactions. These predictions are
implemented as patterns which the Attention Mechanism uses to match against
further observations. Whenever a prediction is matched, the confidence in the
original hypothesis is increased. The other two types of predicted events are
situations that are implausible vis-a-vis current hypotheses. 1In particular,
hypothesized causal relationships which are valid should not be violated; the
appearance of an inconsistent event suggests that the hypothesis is either wrong
or incomplete. The third type of prediction detects inconsistencies of ﬁypothesized

goal classes. Such evidence is used to decrease the confidence of the related

hypothesis.
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Finally, Hypothesis Evaluation must decide when to elevate hypotheses to the
blateau of accepted "truths." At this point our strategy is rather trivial.
High confidences are formed for those hypotheses which lead to positive predic-
tions, occur frequently, and are consistent with other hypotheses. Therefore,

the hypotheses having the greatest confidence are considered true.

VI. System Implementation and Experimentation

The system components (Attention Mechanism, Hypothesis Generation, Generaliza-
tion, and Evaluation) are implemented in LISP on a CDC 6600 [25]. A present, for
reasons of simplicity and programming ease, all thg episodes are first processed
through Hypothesis Generation, then through ﬁypothesis Generalization, and finally
through Hypothesis Evaluation and the Attention Mechanism. 1In total, the system
requires approximately 75K of core.

Table 1 provides a sense of the volume of sensory data whicﬁ is input to the
system.3 For ‘example, on the average there are 43 episodes in an"inﬁ{hg. Recall
that an episode was a segment of relatively high activity, such as an infield
single, or a flyout. However most of the aétivity in an inning is simply the ball
and strike episodes that precede the singles or the outs.

Table 2 presents the results of various levels of analysis on the raw sensory
data. The Attention Mechanism (Figure 1) significantly reduces the number of actions
in an inning from about 14,000 to 1000 by filtering based on change in activity.
Since subsequent pattern matching uses the four features (actor, action, location,
time) of an action, we shift to a description of the data in terms of features;
in 1000 actions there are 4000 features. Similarly, we can view the hypothesis
of a goal and a causal relationship as the addition of 2 new features to the pattern

description. On the average, since there are 11 competitive and cooperative
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hypotheses.inran episode, this implies ﬁhat 22 features ére added to the descrip-
tion of an episode. These features reflect the interpretation of the observations
via domain knowledge. While there are about 5500 features in a filtered and annotated
(interpreted) inning, the generation of classes of generalized episodes and concepts
is based on only the 1000 inferred features. Thus, the system uses only a sﬁall
amount of data at the interpretation levels, although there is a large volume of
data at the sensory level.

The classes depicted in Figure 7 were produced from approximately 172 episodes
comprising 4 innings of a simplified version of baseball. The system has not learned
the schemata for "strike-out" or "walk" since both require an ability to count and
an understanding of the changes in the scoreboard. Currently, knowledge is being
added that would allow the system to monitor the scoreboard and make hypotheses
about the relationships between changes in the markers on the board and the goals

and events on the field.



VII. Summarz

We have outlined a system that embodies a knowledge-directed approach to
unsupervised learning in a complex, real-world task domain. The objective of the
system is to comnstruct an interpretation for observed patterns of human activity.
Multiple levels of knowledge and processing enable the system to describe patterns
of behavior and goals at various levels of abstraction. The generalized classes
of episodes and goals which are learned, such as "out" and "hit," are far removed
from observations of physical acts such as "run" or "catch." All of the learned
concepts are consistent with each other and with the general, a priori domain
knowledge.'

An important characteristic of any lgarning process is the ability to use
the acquired knowledge in a flexible manﬁer. The information that has been learned
by our system is not just a set of isolated rules that represent correlated events.
Rather, the new schemata capture the underlying relationships between the players'
actions and their inferred goals. Once the schemata are verified, their integration
into the a priori knowledge framework of the system is straightforward because
the acquired knowledge and the initial general knowledge are represented in a
uniform way. Thus, acquired scheﬁata are available to aid in interpreting and
predicting future episodes. This ability demonstrates the effectiveness of

our knowledge-directed approach to learning.
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Footnotes

1 - For a more detailed description and analysis of the multi-level architectured
used in our system see [28].

2 - In supervised learning a trainer informs the
decisions; this provides the s
feedback mechanism.

system of the accuracy of its
ystem with a powerful focus of attention and

3 - The tables are read in a column per row (column/row) fashion.

For example,
there are 13 snapshots per episode, on the average. -



Figure Captions

Figure 1 -

Figure 2

Organization of system

Levels serve to structure the knowledge, processing and pattern
description.

Simplified outline of an Act-Schema

The arguments to the various functions in the schema are patterns,
where the '"?" indicates an unbound variable and the "$" indicates

a pattern-matched variable previously bound by a "?".

Figure 3 -

Figure 4

Figure 5 -

Figure 6 -

Hierarchical description of domain knowledge

This represents the organization implicit in the domain knowledge.
The tip nodes of the tree are the actual independent schemas which
have been implemented.

Moving from observed actions to goals and causal relationships
by hypothesizing specific Causal-Link-Schemata

The Act-Schemata add features to the description of the observations
that capture an understanding of non-game activity; e.g., the physical-
enabling-condition that Al set up (the ball moving) enabled B2 to
execute his act. Then the Causal-Link-Schemata use those features
while adding their own competitive game interpretation. The result

of triggering a general CLS is the hypothesis of a CLS specific to

the observed actions; in this case $ACT-X is bound to the act-pattern
(THROW Al ...) and $ACT-Y is bound to the act-pattern (SWINGHIT B2 ...).
The general CLS and the hypothesized CLS have the same production-rule
structure.

An infield single episode annotated by hypothesis generation

The thin arrows indicate the work of the Act-Schemata, while the thick
arrows indicate the work ot the Causal-Link Schemata. The Cooperative
Causal-Link Schemata also make hypotheses about pairs of actions,
e.g., _

(#14 THROW A5 SS BALL) - (#22 CATCH A3 FB BALL)
The three compete links relate the following pairs of actions:

(#2 THROW Al) - (#6 SWINGHIT B3)
(#6 SWINGHIT B3) - (#12 CATCH AS5)
(#20 ON B3) - (#22 CATCH A3)

Using generalized versions of acquired CLSs to recognize an infield
single

The three inferred CLSs represent the generalized version of the Compe-
titive Plan Summary for the infield single episode depicted in figure 5.
For example, the left-most one (PHYSICAL-COMPETITION between ?ACTOR-Z
?ACTOR-Y) is derived from actions #2 and #6 in figure 5. Variables
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can replace constants in the person, location and time position; this
permits the successful matching of similar examples. 1In the above
figure the variable ACTOR-Z is bound to the player Al, ACTOR-Y to B2,
ACTOR-X to A5 and ACTOR-W to A3. Also, HP is an abbreviation for
homeplate, PM for pitcher's-mound, SS for shortstop and FB for first
base.

Acquired classes of concepts and schemata

Different subsets of features of the annotated description of the observa-
tions ([action actor location time goal casual-relation]) at level 6

are used as the basis for finding similarities. One subset may uncover

a similarity between two observations while another will not. For example,
based on features of the hypothesized Causal-Link Schemata in the
competitive plan summary of level 6, infield groundouts and flyouts

are not similar at level 7. Based upon only the final competitive

goals in the description, infield groundouts and flyouts become

-similar at level 8.

Unanalyzed sensory data input to the éystem

There are 26 actions in a snapshot if all the actions and all the
markers on the ‘scoreboard are considered. On the average there are
43 episodes/inning. (Read these tables: column per row.)

Filtered and annotated data at higher levels of description

After filtering out non-changing activity at the level of the Atten-
tion Mechanism, the average number of actions/snapshot is reduced from
26 to 2. Four features comprise an action: actor, action, location,
time. Hypothesis Generation adds new features to the description of
the activity by interpreting that activity as an action-oriented

game. Each hypothesis adds a goal feature and a causal relationship
feature. Since on the average there are 11 such competitive and co-
operative hypotheses per episode, 22 features are added per episode.
The generation of classes of episodes and concepts is based on these
inferred features.
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IF  OPPOSING-TEAMS (ACTOR-X ACTOR-Y)
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PHYSICAL-ENABLING-ACT -+

S 4

CONCURRENT ACTIVITY +

-=(#1 1 HOLDOBJ A1 PM BALL)

(PHYSICAL-COOPERATION WITH 9#2)
(GOAL? (WANT ENABLE EXECUTE $2) SUCCEED)

|
-—-(82 2 THROW A1 PM_ BALL)
(PHYSICAL-COOPERATION WITH #1)
(GOAL: (WANT EXECUTE #2) SUCCEED)

(PHYSICAL~-COMPETITION WITH #4
(GOAL: (WANT PREVENT EXECUTE

~~(43 3 AT A1 PM)

{
|+— PHYSICAL-ENABLING-ACT
|

~=(¢4 3 AT B3 WP) -=(83 3 MOVING PM BALL (FAST AIR))

COMPETE

—-(#6 4 SWINGHIT B3 WP BALL) ,

PRYSTCAL-COMPETITION WITH §2) 1
GOAL?! (WANT EXECUTE #4) SUCCEED)

PHYSICAL-COMPETITION WITH #12)

1

i
~-=(#9 & AT A §S5)

i

t

i

0AL: (WANT PREVENT EXECUTE €12) FAIL)
(LOGICAL-COOPERATION WITH $7) '
(GOAL: (WANT ENABLE EXECUTE $7) SUCCEED)

+— Hypotheses

-=(47 S RUN B3 HP (FAST))
(LOGICAL~COOPERATION WITH #4)
(GOAL? (WANT EXECUTE $7) SUCCEED)
(PHYSICAL-COOPERATION WITH #10)
(GOAL: (WANT ENABLE EXECUTE #10) SUCCEED)

==-(48 3 BOUNCE HP BALL (GRND))

==(#10 6 RUN B3 HP (FAST))
(PHYSICAL-COOPERATION WITH #7)
(GDALS (WANT EXECUTE ¢10) SUCCEED)
(PHYSICAL-COOFERATION WITH #13)
(GOAL ! (WANT ENABLE EXECUTE #13) SUCCEED)

-=(#11 6 MOVING HP BALL (FAST GRND))

~~(#13 7 RUN B3 HP (FAST))

(812 7 CATCH AF S5 PALL)

(PHYSICAL-COMPETITION VITH #4)
(GOAL! (WANT EXECUTE $12) SUCCEED)

(PHYSICAL-COOPERATION WITH #14)
(GOAL! (WANT ENABLE EXECUTE #14) SUCCEED

(PHYSICAL-COOFERATION WITH ¢10)

(GOAL: (WANT EXECUTE #13) SUCCEED)
(PHYSICAL-COOFERATION WITH #1S5)

(GOAL?! (WANT ENABLE EXECUTE ¢1S) SUCCEED)

-=-(#14 8 THROW AS SS BALL)
(PHYSICAL~COOPERATION WITH #12)
(GOAL: (WANT EXECUTE #14) SUCCEED)
(PHYSICAL-COOPERATION WITH $22)

(GOAL: (WANT ENABLE EXECUTE $22) SUCCEED

--{#16 9 AT AS S5)

~-(#19 10 AT A3 FB)

COMPETE —
--(8#22 11 CATCH A3 FB BALL)

==(#15 8 RUN B3 HP (FAST))
(PHYSICAL-COOPERATION WITH #13)
(GOAL:! (WANT EXECUTE ¢15) SUCCEED)
(PHYSICAL~-COOPERATION WITH $17)
(GOAL: (UWANT ENABLE EXECUTE $17) SUCCEED)
==($17 9 RUN B3 HP (FAST)) --(#18 9 MOVING SS BALL (FAST AIR))
(PHYSICAL-COOPERATION WITH $15)
(GOAL ! (WANT EXECUTE #17) SUCCEED)
(PHYSICAL-COOPERATION WITH #20)

(GOAL: (WANT ENABLE EXECUTE $420) SUCCEED)
--{$20 10 B3 FB) - -~-(#21 10 MOVING SS BALL (FAST AIR))
(PHYSICAL-COOPERATION WITH 417)

(GOAL: (WANT EXECUTE €20) SUCCEED)
(TIMNE-ORDERING-COMPETIVION WITH 422)
L _{GOAL: (WANT EXECUTE 820) SUCCEED)

(PHYSICAL-COOPERATION WITH #14)
(GOAL! (WANT EXECUTE #22) SUCCEED)
(TIME-ORDERING-COMPETITION WITH 820
(GOAL: (WANT PREVENT EXECUTE #20) FAIL)
(PHYSICAL-COOPERATION WITH #23)

Figure 5
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(GOAL! (WANT ENABLE EXECUTE €23) SUCCEED



o

PHYSICAL-COMPETITION betue(mml-z TACTOR-Y

INFIBLD SINGLE

"

PHYSICAL-COMPETITION between $ACTOR-Y ?ACTOR-X

TIME-ORDERING-COMPETITION between ?ACTOR-W $ACTOR-Y

(IF  ACT-PATTERN
(?SNAPSHOT-Z THROW 7ACTOR-Z PM BALL)
ACT-PATTERN
— (?SNAPSHOT-Y
. SWINGHIT
?(ACTOR-Y (OPPOSING-TEAMS $ACTOR-Z $ACTOR-Y))
HP
BALL)
THEN-HYPOTHESIZE
(PHYSTCAL-COMPETITION
($SNAPSHOT-Z THROW $ACTOR-Z PM BALL)
(SSNAPSHOT-Y SWINGHIT $ACTOR-Y WP BALL))
(GOAL-OF
($ACTOR-Y (WANT-EXECUTE SWINGHIT) SUCCEED))
(GOAL-OF v
($ACTOR-Z (WANT-PREVENT SWINGHIT) FAIL) ) )

(IF  ACT-PATTERN

($SNAPSHOT-Y SWINGHIT $ACTOR-Y HP BALL)
ACT-PATTERN
(2SNAPSIIOT-X
CATCI
T(ACTOR-X (OPPOSING TEAMS $ACTOR-Y $ACTOR-X))
?LOCATION-X
BALL)
THEN-HYPOTHESIZE
(PHYSICAL-COMPETITTON
($SNAPSHOT-Y SWINGHIT $ACTOR-Y HP BALL)
($SNAPSHOT~X CATCH $ACTOR-Y SLOCATION-X BALL))
(GOAL~0OF
" ($ACTOR-X (WANT-EXECUTE CATCH) SUCCEED))
(GOAL~OF
($ACTOR-Y (WANT-PREVENT CATCH) FAIL) ) )

(IF  ACT~PATTERN
($SNAPSHOT-Y ON $ACTOR-Y FB)
ACT-PATTERN
(?SNAPSHOT-W
CATCH

FB
BALL)
THEN-HYPOTHESIZE
(TIME-ORDERING-COMPETITION
($SNAPSHOT-Y ON $ACTOR-Y FB)
($SNAPSHOT-W CATCH $ACTOR-W FB BALL))
(GOAL-OF A
(SACTOR-Y (WANT-EXECUTE ON) SUCCEED))
(GOAL-OF
(SACTOR-W (WANT-PREVENT ON) FAIL) ) )

?(ACTOR-W (OPPOSING-TEAMS $ACTOR-Y $ACTOR-W))

\CTIONS: .

] l |

« (2 THROW AL PM) , , (6 SWINGHIT B2 Hp) , .

-

.(IICATCHASSSBALL)........

Figure 6
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(20 o8 B2 FB) . . (21 CATCH A3 FB BALL)




Classes at this Level

Level Based on the Feature
8 Final Competitive Goal
Classes at this Level
Level Based on the Features in

7 the Competitive Plan
Summary (goals and
causal relationships)

Levels Annotated Episodes

5 and 6

GENERALIZED CLASSES
HIT: WANT TO EXECUTE OUT: WANT TO PREVENT
OPPOSITION FROM
GETTING ON FIRST-BASE

FIRST-BASE

outfield
single

infield

infield

I

! . infield infield infield outfield
I single

l

I

* | groundout|* " ° |groundout|* "] flyout |- flyout I
INDIVIDUAL INSTANCES I

'-_.____._.______.___._______._,,..___—--_..___—____._____.__—_.——_.___--——

infield
single

outfield
single

outfield
single

Figure 7



ACTIONS

SNAPSHOTS EPISODES

SNAPSHOTS 26 — —

EPISODES 338 13 —

INNING 14,534 559 43

Table 1
ADDITIONAL
ACTIONS FEATURES HYPOTHESIZED
: FEATURES
UNFILTERED | FILTERED || UNFILTERED | FILTERED

SNAPSHOTS 26 104 8 0
EPISODES 338 1,352 208 22
INNING 14,534 1,118 58,136 4,472 946

Table 2




