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ABSTRACT ~

This paper examines several image segmentation algofithms-which have
been explored in the development of the VISIONS system. Each of these
algorithms can be viewed as a variation on a basic theme: the clustering-

of activity in feature space via histogram analysis, mapping these clusters - -

back onto the image, and then isolating regions by analysis of the spatial
relationships of the cluster labels. It is shown that the interaction
between these two representations of data (global feature information and
spatial information) provides a view that is lacking in either.’

The scene segmentation algorithms contain the following stages:

(1) PLAN:  reduce the amount of detail in the scene to a bare
minimum by performing a fast simple segmentation into
primary areas using spatial and/or quantization
compression.

(2) REFINE: resegment the scene with careful attention directed to
the textural complexities of each region.

The primitive transformations which are used include histogram
clustering, region growing, data reduction by narrowing the quantization
range, and/or data reduction by spatially collapsing the data while
extracting features. These algorithms have been implemented using a
parallel, hierarchical computational structure. Comparisons of per-
formance on several images are given.

lThis research was supported by the Office of Naval Research under Grant

N00014-75-C~0459%¢
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I. INTRODUCTION

Outdoor scenes contain many different types of visually complex
objects. These objects appear in an image as a set of Fegions and our
goal is to decompose digitized images by exploiting various features of
these regions. In the design of VISIONS [1,2] an assumption was made
that semantic information would not be available at least in theinitialstages
of processing. Although the desirability and effectiveness of such an
assumptioﬁ is currently under debgte in‘the literature (3,4,5,6], we'
believe that.a.segmentation system initialiy should be data-directed
and then later receive feedback from interpretation processes.

The isolation of objects is not the goal of this work. A region may”
contain or be contained within an object. The relevance.of such relation-
ships is a function of the goal or "focus" of the visual analysis. There :

is no "correct" segmentation in general -- it is dependent on the goals of

the system. For instance, one could ask which of the following sets of

objects is the appropriate level of description for Figure 1:

(1) Outdoor scene

(2) House'+ trees + sky + grass

(3) Wiﬁdows + doors + roof + leaves + clouds + bladés of grass + ...
Clearly, each of the above descriptions is appropriate, given particula;

goals. Under our assumptions it is certainly not the responsibility of

a general (non-semantically directed) low-level system to choose between

them.

We propose, then, to provide a multi-level description of the scene

based on region properties. Regions can be extracted using the invariance
of gross features of "macro-texture" and then be refined into subregions

on the basis of features which provide a more detailed representation of the data.
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Figure 1: Example Scene
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‘A region ét any stage can be related to the parent region derived froﬁ
a coarser degree of segmentation or to descendant subregions using finer
degrees of segmentation. These results might be stored»in a tree structure
[7] in which relationships between the nodes represent déscriptive
properties of the structure of the visual elements. For example, a textﬁred
region might have descendant arcs to large'subregions representing macro-
texture elements, such as -large dark shado% areés of light leafy
branch clumps, which often appear in images of trges. This approach leaves
responsibility to a high-level sfstem to sort out the correct level of
description by fitting interpretations to different levels, or extracting
useful levels depending on size and properties of regions. Although -
;hefe are many interesting possibilities, the details have not been worked
out yet and will not be addressed further in this paper.

We employ (simulate) a hierarchical parallel datarstructure called
a processing cone [8] to facilitate the segmentation process. 'The higher,
more spatially compresséd layers of the cone are used to effect a global
view of regions of the scene; Values of features can be extracted by
applying a programmable function in parallel to local windows and col-
lecting their results (in parallel) into cells whose éffeé?ive receptive field
incre;ses from levc.al to level. The importance of using this operation of data reduction
lies in its ability to effectively collapse textural areas -- via the

extraction of some feature -- so that they tend to be more homogeneous

in feature space.
There is a second kind of global view of the data which is also
exploited. The spatial information can be ignored and instead we can

simpiy-focus on the statistical distribution of features of the data.
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Standard representations for global featuée anal&sis are 1- or 2-dimensional
histograms of features. Using this representation, clusters of activity
(i.e., clearly defined modes of the distribution) might be extracted.

Various descriptors which arise froﬁ the spatial and statiétical
techniques used in scene segmentation can be assigned to the regions.
For instance, the texture of a region may be describable as any of the
following:

(1) homogeneoug; or

(2) smooth gradient; or

(3) speckled (grainy, blobby), etc.
In a later section, we will show fhat it is possible to extract these
desscriptors using a spatial adjacency (co-occurrence) matrix [11,12],
For a given feature of a région, the adjacency matrix indicates the
number of times that feature value 1 ha; océurred_spatiallyadjacent ﬁoféaéufé
value j. A large diagonal entry iﬁdicates a homogeneous region of activity
in the image. Conversély, an off-diagonal entry indicates frequent adjacency
of two values which might bé a meaningful textural pattern.

Our centribution to the growing body of segmentation algorithms lies
in the interactions which we gevelop between the two typeé of global views
described above. Neither view alone is adequate to deal with natural
scenes. A simple region grower, which merges Roints based én local spatial
information cannot, in general, deal with textural variation. Likewise,
histograms of multi-object scenes suffer from ambiguities due to overlapping
distributions which obscure the fe#ture activity of individual regionms.

A system is needed to exploit the strengths of both representations.

s
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The algorithms which we have designed are executed in two stages:

(1) PLAN - coarsely segment; and

(2) REFINE - carefully segment.

Crudely stated, the purpose.of the planning stage [9,10] is to veduce
the amount of detail in the scene to a bare minimum. This will have the
effect of decomposing the scene into grossly similar regions (primary
areas), thereby egsing the problem of histogram overlap mentioned above.
Once we have found these large regions, the segmentation can be refined,
using a subset of a 1;rger pool of features and more sophisticated pro-~
cesses for clustering and region growing. In the next stage of development
of the VISIONS system, this pool of features could provide the basis for
careful object verification.' )

The next section of the paper examineé a series of problems inherent
in’ the histogram clustéring analysis. Following this is a detailed presenta-
fion of the‘segmentation strategies proposed heref Finally, we present

several results of applying_the algorithm to real data (Figures 1 and 2).



Figure 2: Octher outdoor scenes which are analyzed here
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II. REGION FORMATION VIA CLUSTER ANALYSIS OF HISTOGRAMS

This section outlines some of the problems inherené in histogram
clustéring. For expository reasons, these problems are presented using
extremely idealized examples; their real world countérparts are much
less well-defined.

Histograms provide a global séatisticél view of the data which is
independent of the (global) spatial relationships in that same data.
While the goal of processing in the spagial domain is to isolate regions,
the goal here is.to laBel clusters (or modes) of feature activity.
Ideally, if each cluster of some histogram corresponded to a particular

region in space, then it would be simple to assign to each point in the

image the label of the cluster to which it belongs. Subsequent application

of a simple region growing algorithm can then be used to merge all con-

tiguous points with the same cluster label into a distinct symbolic

regidn [13]. The two stages of transformations —- assigning cluster
}abels and regfon growing -- may be expressed fuﬁctionally as follows:
CLUSTER and.REGION GROW: Pi ———4-CA —_ Rd
where:
P =A{pixels in an image and their corresponding feature value}
C = {cluster labels corresponding to clusters which have been
found in the histogram of an image}
R = {region labels found in the followiné manner: Pixels P

and Pj will be given the same region label Ra, if: i

(1) they have been assigned the same cluster label,
and

(2) they are spatially connected}

.
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At the most general level it is clea£ that such a histogram woulﬁ,
of necessity, be multi-dimensioral. That is, there is no single feature
of the input data which can be expected to discriminate all regions of
a typical image. We have rejected the use of N—dimensibnal histograms
(where N > 2, or possibly 3) because of the difficulty humans encounter in
trying to understand the feature distribution in N-space; the algorithms can-
not be easily evaluated because distributiéns in N—épace cannot be examined
in a straightforward manner. One-, two-, and three-dimensional histograms
can be displayed graphically, require relatively modest storage, and can

be clustered reasonably fast. On the other hand, clustering in N-space,

in addition to being costly, leads to fragmentation of the scene since
differences in additional features will cause regions to split into sub-
regions.

The following examples in this section will serve to illustrate éhe
clustering process and its problems: For convenience; all the.e;amples
will be presented in termé of histograms'of a single feature %~‘let us say
intensity or brightness -- Without any loss'of generality in the conclusions
that are drawn. . The cluster labelling algorithms proceed as follows:

I -~ form the histogram; ‘

II(a) - smooth the histogram;

II(b) - set © equal to the deepest valley which occurs between the
highest peaks;

II(e) - label all points in the histogram which are to the

left of O as 'CA and those to the right as C_, (denoting clusters
: B
A and B);

III(a) - assign to each point in the image ‘the label of the corresponding
cluster to which it belongs; .

ITI(b) ~ grow regions across adjacent points which bear the same cluster
label; and
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v - clean up by merging small regions into a larger surrounding.
region. ’ ‘

Note that in the description of this algorithm it is impiied that there
are only two clusters and one division point. It is possible, of course,

to generalize to as many clusters as are reasonably defined in the data;

-we will return to this point later.

The key effect of the cluster laﬁelling .p.roces_s is to allowall pointé
within a cluster to be considered equally similar. Consider the following
case. Two adjacent points in the image-(xl,yl) and (xz,yz) haye feature
) and f(x

values f(x ) which fall in the same cluster QA' Depending

lSYI Z’YZ
upon whether they are near each other in the cluster or on opposite sides

of the cluster, their distance - : ' . ~

d = ”f(xl9y1) - f(xz)yz) ”

will be relatively large or small. In order for a spatial region growing process

‘to put them in the same region, it must use threshold © where & > d. But

then .all spatially adjacent points whose difference is less than®will be grouped.
This can cause severe problems when two distinct clusters are less than d
apart. This condition is not unusual since clusters may be large while
their boundaries are not far apart.

The cluster labelling process deals with this problem quite nicely. .
All points of a cluster are pro&ided a label which in effect says that
they ére equivalent or zero distance apart in labelied feature épaée.
Now points on the opposite sides of clusters can be considered "closer"

than points in the next cluster, no matter how close that next cluster is.
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II.1 Segmentation by Recursive Cluster' Analysis

A very simple segmencation problem is illustrated in Figure 3a. An
intensity image 1is presented wﬁich contains a dark and a bright region.
The histogram of the image (Stage I) is clearly bi-modal and can be seen
as a composite of two normal distributions. The.goal now is to isolate‘
the two clusters (Stage II) by determining-the ginimpm © which lies betwgen
the two modes. Having labelled the two cluéters, we are now in a position
to re—examine the image. . The clustering process. has effectively compreséed
the feature scale to two values, and by mapping these back to the correspond-
ing iﬁage points (Stage III) we obtain a much simpler picture; one ih
which all local textural variations have been ignored. Finally, since it ~
is possible‘that one cluster label may generate many spatiélly distinct
regions (although this does not occur in the example), it is necessary to
region grow. In this context, the region grower would be defined so as to
link éll.image poinfs which are spatially adjacent and bear the same cluster
iabel. -

Figure 3b shows an example of the technique shown in Figure 3a using
real data. The regions under coﬁsidergtion are the sky and grass areas -

from Figure 1. The example is somewhat artificial in that these two regions

do not comprise the entire image; we have contrived to show an easy segmen-

tation case, i.e., one in which the distfibutions of the objects are quité'
sepa?able. In the examples that follow it will be evident that the sitﬁation
presented here is an exception. Most histograms of complex scenes are quite
messy since the distributions of the individual objects tend.té overlap

one another leading to difficulties in cluster separation.

¢
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Simple Segmentation Algorithm

Image

Stage I: Histogram

# of
points

intensity —

Stage II: Cluster and Label

set O here

Stage III: Map Labels Back to the Image

and Region Grow the Labels

® 6

Figﬁre 3a
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Result of mapping cluster labels back to image.
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'Figure 4 indicates the effect of overiapping distributions in a particular
feature. Two of the regione would be separable as in Figure 3a, but the
introduction of the third region obscures‘the other disbributions, leaving
only one discernable cluster. The mapping of the cluster label back onto
the image allows the spatial relationships of feature activity to be
integrated into the process. In this case, growing regions in the image
space provides information which allows us to discfiminate the two die-
connected regions R o from R 8 v The proper segmentation is accomplished
by repeating the clusfering process on R(I_via the sequence of operations
shownAin Figure 3a. This recursive partitioning of a region was employed
by Ohlander [13] and Price [10] quite effectively. The recursive segmen-
tation stops when a region is found to be unimodal in all features under X
consideration. In practice, of course, we might not know a priori which,
if any, regions would heed to be reprocessed; all would have to be exémined."
This is very disconcerting in that it can lead to a proliferation of
histogramming epeations; |
Figure 5 indicates that even a recureive analysis might not succeed.
In general, the particular location of a reéion is quite arbitrary; this
example differs only slightly from the previous cases: a small change in the
spatial arrangements of regions. The algorithm fails because the mapping
of the cluster label to the image does not lead to spatial splitting of
distinct subregioﬁs. This example is particulafly annoying (and realistic)
in that Region 3 might be joined to Region 2 at only a few points. “Heuristics
can be defined to deal with each such problem, but, in general, one wishes to

avoid a proliferation of heuristics for a variety of special problems.
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Figqre 4

and recurse, if
necessary

13
Recursive Segmentation
Image
Stage I: Histogram Stage IV: Re-Histogram
region’Ra region RB
" Stage II: Cluster and Label Stage V:  Re-Cluster and Re-Label

CA QA

Stage III: Map Labels to the Stage VI: Re-Map to Imégg
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Recursive Segmentation -- Failure

Image

Stage I: Histogram

Stage II: Clﬁster and Label

14

Stage III: Map Labels to. -

the Image

G,

Figure 5

Stage IV: Re-Histogram

Stage V: Re-Cluster and Label

Stage VI: Re-Map to Imégév.

no segmentation
has occurred
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For example, in this case, a region could be snipped in two at narrow points;
one way to do this is by shrinking the region in from its perimeter for
a few layers of pixels and detecting those isolated subregions which may have

been formed.

IT.2 Reducing the Errors by Conservative Cluster Formation

Let us now look more carefully at the clustering process. So far,
the illustrations have shown distributions which were either highly over-
lapping or quite distinet. More difficult situations are created as the
distributions increasingly overlap at their tails. The area of significant
overlap involves points whose cluster identity is most uncertain.

The clustering algorithm discussed previously makes use of "liberal-
clustering; i.e., a liberal policy of defining clusters. This leads to
expectations that the cluster will include points which cannot be reli;bly
associated with that mode. As a result, upon mapping the cluster lab;l
and growing regions, it is expected that regions or parts of regions will
be erroneously'lébelled.
| The errors whichrhave been introduced by the liberal clustering process
can be minimized by analyzing their effect in the spatial domain. A -simple
error reducing heuristic would involve suppressing the outer layer of all
regions, i.e., those which are "all boundary" will be completely suppressed.
This is desirable in that it will have a tendency to clean up noisy areas
since regions of size no less than 9 points are needed in order to have
a non-empty core. Second, weakly adjacent regions that
are spatially linked by a very thin trail of pixels wi;l be

separated. Finally, it is observed that there are instances in which
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the points lying along the sPaéial peripher& of a region also lie at
the tail of the distribution. In these cases the peripheral points.
are those which have a low probability of being feliably affiliated with
the region and ought to be suppressed unfil a further analysis can decide
where they should belong.
The analysis just described does not fully explain ?he problem --
it focusses only upon the spatial relationéhipibetwéen the pixel and thé
region. However, the relationship of the histogram point to the cluster
(the feature values of the pixel and the region) should also be used.
A more effective analysis of the problem of liberal clustering might
involve assigning a confidence value that a point in the histogram belongs
to a particular cluster. A straightforward confidence measure for a point
is some function of the distance of the point from the cluster mean (e;g., .the
number of standard deviations). The éuppression pass could then be
qualified so that only low confidence peripheral points would be suppressgd.
As an alternative to the liberal.formatioﬁ of clusters, it could be
argued that it is better to leave ambiguous portions of the distributién
unlabelled rather than have to undo their effects at a later time; errors

can be reduced by démanding confidence in decisions until they are more

" certain, a standard technique in pattern classification. To this end, we-

propose a "conservative clﬁstering" analysis as depicted in Figures 6a and
6b. The original clustefing algogithm'at Stage II would be amendé&
as follows:

II(a) ~ smooth the histogram;

II(b) - set O equal to the deepest valley which occurs between the
highest peaks; )

’
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Conservative Cluster Formation

Image ’
Stage I: Histogrém
Stage II: Normal Cluster Stage I1': Conservative Cluster
=
Stage III: Map Labels to Stage III': Map Labels Back
the Image
ABAB BBA AAABB
AAAI*i3 TB A AB B
BABA B‘B' AALA B
erronéous‘;
labels
Stage.IV': Grow Out from Cores
AAA BBB
AAA BBB
AAA BBB

Figure 6a

-~
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II(e) - set OL

set OR

©® - K and

[}

© + K where K is some constant or a function of the

cluster widths;’

II(d) - label all points to the left of ©
the right of OR as CB'

[ as CA and all points to

When the cluster labels are mapped back to the image, we will have
labelled only those points which have a high probability of being parts

of regions; these we call the region cores. Note that the region core

is not necessarily spatially internal to the region. It maps onto the
region leaving missing points or "holes" at various places in the regiom.
The points of the region which are not in the core have a lower pro-
bability of being in the region, but often they will be adjacent to -
(possibly several) high probability points of the region. o

It is at this'point that the global feature information can be bro;gh;
_tégether with the spatial information in the image. The low probabilkty
points could be added onto the core by region growing in the context of
high probability.points - raiher than making the decision in the abéénce
of such information. The global fegture analysis can be expressed in terms
of the mean and standa?d deviéfion of the region core, as well as the distance
of a point not in the core to the mean of the core. The spatial information
is available as the peighboring points aroqnd a given point which is not
in the core; the number of neighbors which are in the core, as well as
their confidence, can be used to decide whether to.ad& the given point
in a region growing process. "There are many liberal or conservative
region growing strategies which can employ this rich interfacé of local
and global analysis. In Figure 6a, we have depicted Stage 5 as a region
growing process of a few iterations to retrieve fhose points which have

a relatively high likelihood of being part of the region.
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III. PLANS

One-dimensional histograms of scenes containing multiple objects

cannot be expected to reveal distinct distributions for each of the individual

objects. The feature distributions of objects often overlap, and the histo-
gram analysis leads to erroneous region labelling. In order to deal with
this situation without semantics, the low—ievel'system will perform a
segmentation in two stages.

The first stage of segmentation is called plan generation. The goal

of the planning stage is to partition coarsely with respect to capturing
detail in the picture. It is expected that the planning algorithms

will make mistakes sucﬁ as the overmerging of regions and suppression of ~
fine detail. The reason for using the planning stage is that its output,
although coarse, will tremendously reduce the complexity of the sceng;

it will generate a set of subscenes where some of the major regions may
contain-as few as one or two "objects".

Once the plan has been generated, each region can be carefully-
segmented into subregions. Hopefully it is at this stage--called refine-
Egggf-that the systep will generate a set of regions which are closer to
5 one-to-one correspondence with the parts of objects in the scene.

Of course, the problem of ﬁocus of attention will persist--does the scene
contain, say, 10 leafy regions or one tree region? The goal here is to
generate regions which are reliable; that is, given a particular focus,
the refined segmentation should provide, as often as possible, high
confidence regions in correspondence with objects or parts of.objects.

The refinement algorithms will use two-dimensional histograms

to break up overmerged regions. The presence of texture can cause clusters
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in a histogram of any dimensienality to beeome wide, to smear, or to .
become multi-modal. When dealing with many differently textured areas,
two-dimensional clustering becomes difficult, and even under human direction
the cluster labelling and mapping procees becomes quite error-prone. The
strategy of reducing cluster interference'by'prbblem decomposition becomes
quite useful. By using the sub-scenes provided by the regions of the
plan regions, two-dimensional histograms become maﬁageable tools for
exploiting pairwise'feature dependencies. |

It is a further goal.of the refinement algorithms to associate a .
texture descriptor with each region. This descriptor.will be used as
an aid to object recognition during the semantic interpretetion phase
of analysis. We desire measures of the structural and/or statisticel
characteristics of the micro-regions of a region. Adjacency matrices [14]
have been mentioned as a possibility; if there are N types of subregions,

one can form an N x N adjacency matrix where the entry a,. is a count of

ij

. the number of times subregion type i is adjacent to subregion type j.

For example, measurements across the tree region could result in the Formation

of_regions‘with different hue values and an adjacencynmtrixndghtshowa;lerge
off-diagonal entry, indicating blue (sky) adjacent to green (leaves).

Simple functions of the adjacency ﬁatrix, sech as angular second moment
difference (ASMD), might indicate relative heterogeneity of the underlying.
spafial distributipn. This type of feature has been used effectively by
Haralick [11] in classification of texture in ERTS images. Other-

measures of texture such as variance and edge per unit area can also be

computed over features of the plan regions [3,15].

’
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To summarize, the plan ana refinement stages provide a hierarchical
decomposition of the scene into regions which will correspond tc objects
at some level of description or focus of attention. The final output
of the low-level system will be a set of segmentationé, each one of
which will provide a more microscopic view of the scene. Each further

partition will carry various feature descriptors of the regions involved.

ITI.1 Histogram-Guided Quantization Compression or Gross Clustering

A standard data compression techniqug in image processing is thaf
of gray-sacle transformation by histogram clustering. Our use of this
technique (which we shall refer to as compression) involves reducing
the number of bits per pixel from, say, 6 to 2 producing an extremel&. 7
coarse resolution in the values of the feature involved. The compfes—
sion can be performed without global analysis by linear scaling, but
this resﬁlts in many erroneous comtours being fofmed in the image.

In Figure 7, linear scaling to 8 buckets causes undesirable bréaks in
the clusters of the distribution. A region grower applied to the
transformed image often would produce a set of regions which have been

artificially fragmented.

— — Sh——— o— So—
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Figure 7 - Linear c¢ompression to 8 buckets,
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As an alternative to blind scaling, a more sophisticated quantiéation
compression could be applied to the statistical distribution of the feature
under consideration. Instead of defining buckets at predefined linear
or non-linear intervals, the histogram could be used to.guide the algorithm
so that tﬁe designation of the intervals would be defined by the gross
cluster points (minima and maxima) of the distribution. This is, of
course, a generalization of the clustering.algofithﬁ presented in the
previous section.

A simple measure of the reliability of a bucket designation (refer
to Figure 8) is how well the peaks (A1 - Aé) within buckets
are distinguished from the value of the distribution at the breakﬁoints
(BO - B4) of the buckets. For the breakpoint B, this could be the
MIN[AZIBZ,A3/B2]. The effectiveness of the breakpoint set (or cluster

boundaries) will be some measure of the sequence of ratios, such as average

or maximum.

—
e —— —

Figure 8 - Example of compfession quantization scale that has been linearly
defined. : '
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In.this example, B1 and B3 would not be considered reliable because the
ratios AllBl, AZ/Bl’ and A3/B3, A4/B3 are small. By the same criterion,
B'o in Figure 9 would be considered a reliable breakpoint since A'llB'0

and A'2/B'o are large.

!
B

Figure 9 - Setting of intervals that more reliably reflect the grossest
level of cluster structure.

Rather than deal with N-dimensional (N > 1) histogram analysis in

the first development of plans (where mistakes are expected), the features

initially will be examined independently. The kind of compression indicated

above will be performéd separately on each of, say, 2 (or 3) features followed
by a simple intersection of the 2 (or-3) resulting images. One way ‘to think
of the resulting image is as an image of symbolic labels. Let us assume

for the momenf that only one breakpoint will be used to compress each

feature into two buckets. This would form two (or three) binary images.

The intersection of these is equivalent to encoding each point ﬁith one of

a very few labels (4 or 8) of the compressed feature scales, where each
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label represents a hypervolume in N—space.l' A region grower could now
be applied which would link spatially adjacent points which carried the
same label. These regions then would form the plan.

Examples of Quantization Compression

The above procedure is demonstrated iﬁ the following set of figures
(lO - 13). The three features used are Y, . I, and Q (see appendix)
which are the standard color representations of the'televiéion industry.
These features are a linear transformation of the red, green, and blue
input data into a second' color space. Designe& as color opponents thgy
measure, respectively, intensity, cyan-orange, and green-maroon. The
histogrammed features have been compressed by hand using the criterion .

demonstrated in Figures 7-9. 1In most cases, the setting of the threshold

is obvious and we are currently developing algorithms to automate this

process. Note that the "I" feature often does not produce the well-defined

bimodality of the other two features; in such cases the feature.is not

.used,

The photograph accompanying each figure demonstrates the technique

mentioned above; that is, 1ntersecting binary images which have been formed

after thresholding the histograms of the features involved. The images

. used were selected from among the set used by Ohlander.

1Of éourse, if the data called for it, each feature could be broken into
more than two buckets allowing finer resolution for the feature scale,
and therefore more possible labels for each pixel. We believe that it
is only useful to think of the values as labels in the coarsest resolu-
tions. Once there are a few values per feature, the textural variations
will begin to fragment the image into many different subregions. There
will be so many possible labels that the set of features ought to be
thought of as a vector of features in the i.sual sense.
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IIT.2 Planning Algorithms II: Spatial Compression

A second method of data reduction involves the spatial compression
of an image. This transformation is car;ied out in the processing cone.
Briefly stated, the cone is a simulation of a parallel.computationalAdata
structure which facilitates the transformation and reduction of large
amounts of data in a layered fashion. Features of the input data can be
extracted during the reduction process sé that'each.cell in a higher layer
of the cone Qill contain features with a more global view of the data
(see Figure 14). Here, the goal df the processing cone structure is to
aid in the segmentation of scenes by allowing extraction of features
that effectively collapse the textural variation in regions. -

As an example of the utility of the cone, let us cohsider a textﬁred
region where the distribution is strongly bimodal ("salt and pepper")r
A simple region grower applied herg would probably be ineffective dué to
the local variations in the data and would generate a severel& fragmented
segmentation. Further,vthe histogram-guided algorithm would find two
cluster types for the pixels; the region woulq be fragmented by this
approach also. On the other hand, by averaging the information over a

local window, the data can be smoothed so that internal variations of the

region are greatly reduced. Now the histogram-guided algorithm will find

one cluster type for the pixels and the region can be effectively labelled.

Notice that other features can be extracted over local areas while reducing
the total amount of information. Since the higher levels of the cone
do not contain much data, the extraction of features and coarse labelling

of regions can be done at a great time savings.

’
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Now we will examine a somewhat differenﬁ use of the cone -- the label-
ling with the same symbolic label of spatially disjoint regions which have
the same visual features. This involves the reduction of the symbolic
information in the plans formed by the histogram compression algorithm.

The plan labels themselves can be "reduced"'by passing upward the most
frequently occurring label in a 2x2 area. The labels which reside at
the top layers of the cone would represent the iargeét regi;ns of the
image.

' By maintaining a hierarchy of possible segmentations, a "correct"
segmentation may be assembled by a knowledge directed system as a fﬁnction :
of the goal of the system or degree of effort to be expended. A knowledge--
directed system may determine the correct level of description by fitting
interpretations to different levels in the hierarchy or by extracting useful
levels depending on the size and properties of regions.

There are problems encountered in the reduction process which should
be pointed out.. First, each region of the datal will be best éollapséd
at some corresponding cone level. However, it is not obvious a priori
what level that will turn out to be. Fpr fine grass texture a relatively

low (unreduced) level of the cone might allow a reasonable statistical

‘'sample of the textural feature, while a higher level of tﬁe cone will be

needed in order to encompass a number of the macro-texture elements for
the gross shadow and highlight areas of the tree within the recepfive field
of a single cell. Of course, thé qptimum'level is also a function of the
size of the object in the image.

The implication of this discussion is that, at any given cone level,

some cells will represent data at the proper levél of reduction for producing



—3

33

a meaningful texture measure of a region, While other cells at the same
level will represent features of a region extracted from a receptive field
that is too small or too large. Therefore, we can expect that "mutant"
features will be produced when the reduction window is too large and over- »
laps two regions with distinct characteriséics. *In tﬁis respect the process
is blind and the windows éontaining adjacent textures will be treated as

if they contained a single texture. In additioh, sﬁall reéions will be
merged to form single regions which_will contain, perhaps, none of the
characteristics of the original data. -

‘The problems that have been described are not problems of the cone.
Rather they are problems to be faced by a hierarchical view'of textural -
variations without knowledge of the appropriate level of analysis in each
area. These difficulties seem to be inherent in the problems of texture [3].
In light of these considerations, the higher, more compressed, layers of .

the cone must be used cautiously ~— but they do provide a coarse organization

.of the data at little computational expense.

Combining Spatial Reduction and Quantization Compression

. The following two examples indicate two uses of the cone during the

planning stage. Figure 15 demonstrates the strategy of spatial reduction

- followed by quantization compression. The data was obtained as follows:

(I) Reduce raw input data (red, green, blue) by averaging 2 x 2
windows. Reduction takes place from level ¢ (256 x 256 pixels)
through level 4 (16 x 16 pixels);

(I1) At each level 1-4 perform the following steps'

(a) compute Y, I, and Q;

(b) cluster each feature via quantlzatlon compression to form a
binary image; :

(c) intersect the binary images to form an image with at most 8
labels;

(d) clean up the resulting symbolic image in the following manner:
change the label of a pixel to that of the most frequently
occurring frequency, i.e., > 807 of the window.
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This figure clearly illusfrates the wiﬁdow problem mentioned earlier.
As the window size increases (corresponding to higher cone levels), we
see small regions merging into larger surrounding regions (e.g., trim around
windows) and large regions becoming fuzzy at their boundaries. Textural
variations are greatly smoothed over, leaving a small set of relatively
homogeneous regions at leﬁel 4 of the cone (16 x 16'pixels?. fhé poor quality
of the segmentation at leQel 2 was the worst résult'in all the experimeﬁts
run. Obviously, very little has been gained by this plan; the low-level

system can recover from this, though, during the refinement stage where.

a more detailed and careful analysis can be performed.

Notice that the coarseness of the sampling leads to false contours -
in the images presented. This is dembnstrafed in the area’of the right
tree, for example, where the object has been split into two separate-
regions. Of course, from another point of view the system is distingﬁishing
textured tree with sky showing through from textured tree with roof
showing through. 1In general, these four segmeﬁtations illustrate the

observation made by Rosenfeld [15]:

"In a slowly changing scene it is important to have fine
quantization, but the sampling can be coarse, while in a scene

with a large amount of detail, it is necessary to sample finely,
but quantization can be coarse." '

A more useful analysis is shown in Figure |6 which demonstrates the

strategy of quantization compression followed by spatial reduction._

The following steps were performed:

(I) compute Y, I, Q from raw input data (red, green, blue) at
level @ (256 x 256 pixels); ‘

(II) cluster each feature via quantization compression to form a
binary image;

(III) iﬁtersect the binary images to form a plan with 8 labels;



r—“‘gf“‘s

36

(IV) reduce the plan from level § thfough level 4 by passing

upward the symbolic region label which is the majority in the
2 x 2 windows. :

Figure 16 presents a set of plans which are more desirable than
those in Figure 15. The plan from which these are derived (Figure 10)
was generally good but benefitted by some cleaning up in the tree regionl
By selecting for large regions, the reduction of the plan ignores small
local subpatterns while maintaining the most important information of the

original plan; namely that the picture consists of five major regions, cor-

responding to sky, gfass, house, and the two trees., This is shown in Figure 16d.

Distinct region labels formed by region growth on the small amount of
data a high level can be projected down to level @. Then disconnected
portions of the tree will be given the same label. This can be done with-

out the necessity of a complex and time-consuming process performed on

the mass of data of the original image.

III.3 Refinement of Plans

The coarseness of the planning stage will yield, in most cases, a
segmentation which contains grossly overmerged regions. In order to
effect an accurate segmentation, the system will have the ability to
recursively apply the histogram—guided compression techniéue to a region
of the plan at each lower level of resolution in the cone. This may not
have to be performed on all regions since these algorithms are eventuélly
to be embedded in a process with feedback from semantic high-level pro—'
cesses. For example, the fefinemen; process may be guided by object
verification strategies so fhat some portions of the hierarchical plan

representation are analyzed to a greater level of detail.
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One region of the plan can be analyzed with a 2D histogram based
on different features. However this recu;sive histogramming of regiéns
and subregions can lead to serious computational problems, because the
number of regions in textured scenes can increase exponentially as finer
textural detail is extracted. |

Once the texture components have been assigned unique labels, the
actual texture is difficult to describe, particularly if statisticall
descriptors are desired. On the other han&, sﬁructﬁral properties of
the texture elements can be extracted. It is possible to avoid frag-
mentation of textured regions in those cases wh;re many small disconnected
regions are nearby and ought to have the same region identifier. Heré
the cone can be employed be extracting the majority region label frqm
a local area and forming a labelled image at a coarser level of resolu-
tion (at a higher level in the cone). Then,Aa region in the coarser
resolution plan could repreéent a set of disconneg¢ted areas at levei;
below. It is an inexpensive procesé to map this particular label to
many regions at finer lé;els of resolution. 1In the processing cone,.
simulated parallel hardware.pérforms such operations. However, it is
even more important to avoid histogramming regions of micro-texture.
Thus, Price [10] used planning to reduce his data and tﬁe:impact of the
problem. This leads to a need for hierarchical region description
and séme way of dgtermining that the system has moved down to the level
of "micro-texture" (which of course is a relative term).

It is hoped that the use of the higher dimensional segmentation will
limit this potentially recursive anélysis to just one refinement step.
We outlined in a previous paper [12] a teéhnique for.two—dimensional
clustering. Briefly, the algorithm involves placing the histogram into
the cone and treating it as a pseudo-image. The histogram is blurred

up the cone by averaging, and it is scaled so that valleys between clusters
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digappear. Thus, clustering becomes a problem analogous to region isola—.
tion except that from a textural point of view the histogram data is '
usually much simpler than the original image data. It is highly unlikely,
therefore, to see a "salt and pepper distribution;" rather, a more probable
description for a two-diménsional plot would be a "continuous gradient"
in the histogram (not necessarily c¢orrelated at all to spatial gradients
in the image). A gradient detector [16] could Ee uéed to isolate cluster
centers, and region g;owing could be used to add on peripheral 1éyer§ to
the degree desired (refer to conservativé labelling in Section 11.2),
Figures 17 and 18 illustrate the refinement process using two-
dimensional histograms. Here, for convenience, clustering was done by -
hand simply by thresholding the histogram.so that the very low mégnitudes

which link the cluster centers were turned off. This was not automated

because we wanted to see the limit in effectiveness of this process

without errors introduced via unsophisticated clustering methods. Region
growing was thep applied to the isolated cluster -centers to yield the
results shown.

Figures 17a and 17b shoﬁ.the Y and Q distributions for the grass/shrub
region of Figure 1. Tﬁese histograms wouid be considered uni-modal
(i.e., no threshold point is apparent) by the clustering algorithm out-
lined in Figures 7-9. and thus would not offer any new segmentation infor-
mation for this region.‘ On the other hand, the twé—dimensional‘histogram'
shown in Figure 17¢ reveals two distinct subclusters (corresponding to the
(1) grass and (2) shadow régions). These clusters are isolated and labelled
as shown in Figure 17d. Note that clustefing was done interactively by the

following steps:
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Figure 1l7e:

Map clusters found in Figure 17d

back to corresponding image pixels.

Note appearance of shadow region (bright
area).
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(1) place the histogram into the cone at level 2 (64 ¥ 64 pixels);

(2) suppress (i.e., set to 0) all points below a user-supplied
threshold; )

(3) region grow (join adjacent non-zero points) to label all
connected points in a cluster with a unique symbolic label.

Figure 17e shows the region cores which resulted from mapping the
clusters which were labelled (Figure 17d) to the corresponding pixels in
the image. The holes which appear in these regions result from the use of
the conservative clustering algorithm which labels only the very well-
defined cluster centérs. In most cases, these Hbles can be filled in
with a reasonable heuristic; namely, a hole which is mostly surrounded
by a core region takes on the label of that region.

Figures 18a and 18b show the Y and Q distribution for the gfgss/
shrub and left tree "region" (the image at'level 4 of Figure 16 indicafgs
how this large area of the image could be labelled as a single region).

The two-dimensional histogram in Figure 18c and cluster labels in Figure 18d
serve as a further illustration of the power of this higher-level representa-
tion -~ clusters which would have required a recursive clustering analysis

in the one-dimensional case are found in one step here.

ITI.4 Second Order Analysis of Texture

Finally, we would like to outline a second order analysis of texture

through the use of spatial adjacency matrices. We_wish to characterize

the various levels of textural detail of a region by analyzing distribu-

tions of local feature activity of adjacent cells. Information which
clusters around the main diagonal indicates relatively small differences
in activity. Conversely, information on which is off the main diagonal

indicates relative heterogeneity of the image data.
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Figure 18: Refinement of Grass/Tree PLAN-Region by 2-D Histogram



Figure 18e:

Map clusters shown in Figure 18d back
to corresponding image pixels. Note
texturing of cluster labels in tree.
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For our purposes, the usefulness of this representation lies in its
ability to refine overmerged PLAN regiéns.l The histogram analysis is
insensitive to the structure of the textural properties of the data,
and therefore the following type of situation is likely to occur: Suppose
that a portion of an image contains a relatively, homogeneous dark region
which is adjacent to a speckled texture regioﬂ (Figure 19). The histogram
analysis will assign one region label to all connected (8-adjacent) dark
pixels and a different label to all connected bright pixels (shown in
Stages I and II). Tﬁese regions can then be syﬁbolically reduced in the
cone in order to retain only the coarsest amount of detail in the imagé,
e.g., the most frequently occurring labels (Stage III). By collapsing
all textural variations, a region mask can be produced from a set of adja;ent
identical labels that have been brought up from below. However, each lahel

in a particular mask could have been produced by many different variants

of the data, i.e., there is a many-one mapping and the underlying data may

not be as uniform as the plan suggests. Now the high-level mask can be

used as a guide to further analysis. The adjacency matrix of the data
which lies within the receptive field of the mask contains two clusters,

corresponding to dark vs. dark and dark vs. bright (Stage IV). Finally,

~a cluster labelling algorithm can be applied and the corresponding region-

labelling will yield a segmentation (Stage V).

" Notice that once the high-level mask has been created, the adjacency '.
matrix can be measured across either the full-resolution, full-quantization
image data or the quantization compressed plan data. In the latter case the

adjacency analysis would take into account the first-order (pointwise
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feature) clustering of the data as obtained from the initial analysis.
By using the PLAN region labels as input to the adjacency matrix, this
representation will be mucb clearer iﬁ that it will not be obscured by
very small (noise) differences.

In addition to texture discrimination, the adjacency matrix can be
used for texture description. Features such as angular second moment
difference (heterogeneity) and entropy (information) have been used by
Haralick [11] for classification. .However; texture description is more
difficult. Scalar features of the adjacency matrii can be computed
and used in a descriptor list which couid be associated with each region.
We expect though, that this representation will not be sufficient
because much of the information is being thrown away. Research into

this problem is now in progress.
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APPENDIX - PREPROCESSING

IV.1- Removing Mixed Pixels and Use of Conditional Blurring

The images used by the lo&—level syétem‘are 256 x 256 arrays of
pixels digitized to 6 bits per pixel. There are three planes of data
obtained by scanning the image through red, green, and blue filters.
The total amount of data which must be processed ;s approximately
1.2 million bits.

The input data is preprocessed in two s?ages; First, an operator is.
applied which will remove gradients (introduced by digitization effects)
at boundaries. In the initial scanning process the beam will sometimes
measure a light intensity which falls across a boundary and therefore will
record an average brightness value between the values on either side of the |
boundary. The data which results from this process are called mixed pixelsw

and can be identified with a local detector [17]. The algorithm will

‘unmix when exactly a two-pixel gradient is detected in all three inpuﬁ_

planes (red, green, and blue). Once found, a mixed pixel can be assigned
the value of the adjacent pixel which is closest to it in the three features
and lies along the gradient. In the sample window of data shown below,

the center point would be detected and unmixed as indicated.

(35,40,20) ) (35,40,20)
(20,30,15) — (35,40,20)
(2,10,9) : : (2,10,9)
"MIXED . UNMIXED
Two-pixel gradient around . De-blur center pixel to point
center pixel. Pixels shown it is closest to in red, green,
as red, green, and blue and blue planes.

triples.
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A second preprocessing stage is employed whereby data is averaged
only if the total amount of local pairwise difference over a window is

small. This conditional blurring operation [18], which is similar to an

algorithm presented in [19], will have the effect of smoothing finely
textured areas while leaving strong boundaries intact. The algorithm can:

be described as follows:

=1 '
LM " % “n. L mg
s n,eS
n n n i
R
n6 n7 n8 wﬁere:

ng = output_value for no
S = {ni| |ni-n0| < T}

preset threshold

L |
I

# elements in s

-
]

IV.2 Color Transformation

Researchers in computer vision are faced with a bewildering set of
alternative color spaceé which can be used for their many purposes.
Various considerations have led us to adopt .the YIQ color space for initial

segmentation. The computation of YIQ is linear and it appears to be a

simple approximétion of the opponent color process which some theorists
believe takes place in the eye [20]. The Y component essentially measures
intensity, while the I and Q oppoments, which respectively measure cyan-
orange and magenta-green, transform the image in such a way as to heighten
color contrast. This is a particularly desirable effect for histogram-
guided operations in that there is é tendency to force bi-modality in

the distributions.
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The formula for YIQ is as follows:

Y 1509 1.000 .194 R
I=11.000 -.460 -.540 * ¢
Q 403 -1.000 .597 B

Since the I and Q opponents can take on negative values, these features.
may need to be shifted into a positive range. In addition, when wo?king
with integer data, it has been found to be'usefﬁl té spread the distri-
bution by sdme small'linear scale (i.e., multiply by 1.5 before trunca-
tion). The necessity for scaling érises from the fact that natural
scenes tend to have low saturation (white-washed) and thus the range of

I and Q is quite compressed. Much of the information which would be lost_

in the process of integer truncation can be recovered by scaling the

distribution beforehand.

Note that in the histograms presented in this paper ﬁe have change&
the sign of the Q component. This is done so that it will more or less
correspond to the green gun of our color monitor display.

A full discussion of the behavior of YIQ, as well as other color
transformations,'is given in a recent paper by Kender [21], He shows
that non-linear transformations such as hue and normalized red, green,
and blue, are unreliable as features due to the essential singularities
in their distributions, i.e. small perturbations of the input data can-

cause arbitrarily large changes in the output of these features.

?
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