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ABSTRACT

We define the Hankel matrix of an adjoint system. Adjoint systems
include linear and bilinear systems, automata, and group systems in both
the time-varying and time-invariant cases. Our definition of the Hankel
matrix unifies the familiar Hi = CAi+jB of linear system theory (e.g. [17])
with the bilinear Hankel matrix of [16], [21] and the Hankel matrix of [12].
The time-varying case is subsumed by regarding a time-varying system as a
time-invariant system in a sequerice category as in [5]. For minimal reali-
zation theory and duality theory in the framework of this paper see [1], [4].
However, we lean much less heavily on category theory than in our earlier

works on realization.

We introduce 'adjoint correspondences' as the key algebraic ingredient

in generalizing familiar linear system results to the nonlinear case. For

. . ‘ ‘ . "
example, the linear realizability criterion Hg+1 = Hg ! does not make
sense in the nonlinear setting; the precise condition needed is that

. " .
'Hg+1 and Hi 1 correspond under adjointness'.

We provide a realizability theorem characterizing when a matrix Hi
can be the Hankel matrix of a system, and offer partial realization and
canonical realization theorems which associate systems with finite blocks of
a Hankel matrix. We provide a general theory of 'dimension in a category’,

and relate it to system realization via a simple recursion principle.

1 The research reported in this paper was supported in part by the
National Science Foundation under grant DCR72-03733 AOl. This paper

is the third reference promised in [6]. The authors gratefully acknowledge
T. J. Tarn for conversations which initiated the investigations that led to
this paper.



1.1

1. Adjoint Processes and Systems

In what follows, )X denotes an arbitrary category [3], [19]. Further
axioms on jc will be added gradually ~- a summary appears after Lemma 2.13.
In this section, we define adjoint processes and systems, and present a
number of examples. Recall that a functor X: X —+ X assigns to each
object Q of jg another object QX of X and assigns to each morphism
f:9Q — R of KX another morphism of form fX : QX — RX subject to the
preservation of identities and composition, that is, idQX = ide and,
given £f: 90— R, g:R— S, (gf)X = gX fX. As discussed below, basic
examples include tensoring with a fixed vector space in the category of
vector spaces and linear maps or assigning to a set Q the set of all functions

from a fixed set to Q in the category of sets and functions. Let XK.(Q,R)

denote the set of morphisms from Q to R in K.

1 DEFINITION: An adjoint process in X is a pair‘(x,z) of functors
X —*r K  together with bijective correspondences X (RX,S) — X (R,S2)
{(one such for each pair (R,S) of objects) subject to the axiom that, given

f:Q— R and h:S— T, if g:RX —> S and Y : R —> SZ correspond

then hg £fX : QX — T and hZ Yy £ : Q —* TZ correspond.

In the usual language of category theory, to say (X,2) is an adjoint
pfocess amounts to saying that 2 is right adjoint to X and, equivalently, that
X is left adjoint to Z.

For the duration of the paper we fix an adjoint process (X,2) in x.

A convenient notation is the display

g

RX —+ §

R———> S2

v



to indicate that g and Y correspond. We say g and Y correspond under

adjointness.

We may equally well use the notation

R—Y sz

RX — S

and we will frequently use displays like

L)

R —— SZ

to conclude that g = k.

The axiom above is then succinctly displayed as

(0):4 2.5 RX g > h > T

N
Ll

Q f%R wﬁ‘SZ hZ;Tz

We call attention to the special cases that arise when £ = idR

h = 1ds.

and when

3 LEMMA: For each B, define eB : BZX — B as the correspondent of

id,_ : BZ —- BZ. Then if g:AX —> B and 1 : A — Bz correspond under

BZ

adjointness, we may recover g from i) by
g = eB'wX .
Proof: Applying 2 we conclude that

X B
AX L. —~ BZX —> B

] ‘BZ

A ———— BZ ————— BZ

AX ) —> B
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4 ADJOINT SYSTEMS: An adjoint system is M = (Q,§,I,T,Y,B) where Q, I, Y

are objects (the state object, input object and output object of M) and
§: 9k —+Q, T:I—Q and B:Q — Y are morphisms (the dynamics, input
map and output map of M). (Note: 'map' is here a synonym for 'morphism'.)
Thé codynamics of M is the map A :Q — QZ which corresponds to § under
adjointness. |

Given two dynamics §:Q0X — Q and O :RX —- R, a dynamorphism
h: (Q,6) — (R,0) is amap h:Q — R which 'respects the dynamics':

Qx.___lgs__,.Rx

al 16
h
Q ————R

The time-i reachability map £, = xt — Q and the time-j observability

map cj : 0 — vgzJ are defined by
r, =T
0
r.X
i+l i §
ivl X g " Q
oo - F g.z
A j j+1
= > Z ~>-
0j+1 0 Q YZ .
The bisequence Hi, where Hi : IX* — v2z?  is defined by Hg = oj I, is

the Hankel matrix of M.

Adjoint systems are closely related to the machines studied in [10], [11]
and [13]. Realization theory for adjoint systems was developed in [1] and [4].
The Hankel matrix for adjoint systems is new, perhaps because the previous
authors were motivated more by automata theory (where the Hankel matrix is
not conventionally defined) than by system theory.

We conclude this section with a number of examples of adjoint systems

and their Hankel matrices.
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S EXAMPLE: THE DECOMPOSABLE CASE. Here X = Z is the identity functor of"
X%. The realization theory in this special case was studied in [2]. When %
is the category of vector spaces (or of modules over -a ring) an adjoint system

is just a linear system
C
The same system description holds in any category. The adjointness corres-

pondence is just.

Q"‘—‘—"g R
so that the codynamics is again A. We have r, = A'B  and oj = cA? so that

Hi = cattlp,

6 EXAMPLE: AUTOMATA. Let % be the category of sets and functions. Let A

be a fixed input alphébet. Define QX = QXA, 0Z = QA, the set of functions
from A to Q. For f:Q —- R, fX:QXA —> RXA is defined by

(q,a) > (£(q),a) whereas f£f2Z : QA -4-35 sends g:A —>Q to fg:A — R.
The adjointness correspondence

oxa—3 g

o — &

v
is the familiar (Yq)(a) = g(g,a). Let I have one element. Then T amounts
to an element of Q, the initial state. The dynamics and output map have
their usual forms §:QxA ——Q, B :Q — Y. It is easily checked that

r, s Al —* Q sends an i-tuple of input letters to the state reached from

the initial state. if the letters are inputted in sequence, whereas
j : .

Gj : Q —— Y(A ) sends g to that function al — Y composing B with the
. X 3
time-j reachability map if the initial state were g. Thus Hg N p— Y(A )

is essentially a way of describingﬁ’ri with emphasis on i as 'present time'.

+j
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7 EXAMPLE: INTERNALLY BILINEAR MACHINES ([12]1, [16], [21]): Let J be the

category of real vector spaces and linear maps. Define QX = Q ® U, tensoring
with a vector space U, while Q2 = QU, the vector space of linear maps from

U to Q. The adjointness correspondence

g9
Q XU ———R

Q — R
is then the familiar ¥g(u) = g(g® u). Let I be a vector space. Then
T:I — Q specifies the space T(I) of initial states 'reachable in time 0',
the dynamics is then a bilinear map 6 : Q ® U —— Q while the output is a
linear map B:Q — Y.
It is easily checked that r, : I ® U®i —— Q extends the map
Ix Ui — Q which sends an i in I and i-tuple of input vectors to'the state
;‘eached from T(i) under that input seguence; whereas cj : Q — YUJ sends
q to that function U:i — Y composing .Bwith the time-j reachability map if
3 ®i vl

the initial state were q. The Hankel matrix Hi : IQU — Y can be

viewed in a more symmetrical way as providing for each initial state label a
®i ® U®J

matrix U — Y.

The previous three examples can be subsumed in one very general example,
given below as example 11. But first we need to recall, (3, section 1.2}
[19, III.3, ITI.4), that if (2, : i € I) is a family of objects of % then
their product pr, : -IT Qi —_ Qk satisfies the universal property that

for all families of form fi : Q — Qi (i € I) there exists unique

f:Q — ]T Qi with pr, £ fi for all i. If it exists, the product is

unique up to isomorphism.
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. pr in
k 'k
% % Lo

NA NS

The dual notion is the coproduct ink P Q. T JJ_Qi. As we see in 8, in

floo
—
W2

both cases there is a bijective correspondence between arbitrary families

(£, : k € I) and morphisms f. In the category of sets, coproducts are con-

k
structed as the disjoint union whereas in the category of modules over a ring
(or a semiring), coproducts are constructed as weak direct sums. Both cate-

gories have products via the usual cartesian product construction.

2 PRESERVATION PRINCIPLE FOR ADJOINT PROCESSES. X preserves coproducts,

that is, if ink Q) ‘_‘*ﬂlLQi is a coproduct, so is inkx P QX ———4-(1lgi)x.
Similarly, Z preserves products.

Proof: The result is standard in category theory [3, p. 134] [19, V.5]). To
outline the proof, given a family fk : Qkx —* 0, let gy ¢ Qk — Q2

correspond to fk under adjointness, inducing the g :JJ_Qi —* QZ whose

correspondent is the desired f. The second statement is dual. ]

i,
it 9 TRy

10 BI-INDEX PRINCIPLE: If (Q, : ieI), (Rj : jeJ) and f£
then, so long as the coproduct and product exist, there exists a unique
morphism £ : lLQi ————+-rer such that prj:fini = fg for all i, j.

Proof: Define £ : llQi _— Rj by £ ini = fg and then define f by

Pr £ = £9. Uniqueness is left as an exercise. 0

For the balance of the paper we assume our category jC to be such that

every countable family of objects has a product and a coproduct.
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11l EXAMPLE: The following very general example of adjoint processes and
systems subsumes examples 5, 6 and 7. Let A be a fixed set (usually finite

in applications). Then define

x=9gxa=, . [lo

aeh
the coproduct of |A| copies of Q. For f : Q — R, £X is defined by the
coproduct property
ina
Q——>» X

f ' £X - (a € A)
in
R ——————3. RX

If we define 2 by

A .

Qz2 = Q = ||Q
def

aeA

the product of IAI copies of Q, with

pr,
Q€¢—— Q2

|
1

fl | £2,
pr_

R<¢——— R%Z

it can easily be verified that (X,2) is indeed an adjoint process, with the

correspondence

ox —I g

v

Q — Rz

being simply given by g-ina = pra-w : Q —+ R for each a € A.
Given a'system (T:I —Q, 6:Q0X —-Q, B:Q —* Y), we have that

A JJ_. I—Q, 0, : Q — 11_, Y and that, by the bi-index principle,
veA1 . J weA i .
‘the Hankel matrix Hi : [|; 1—— T, ¥ is equivalent to a [a"| x [a?]
veA weA

'matrix' whose entries are maps prw~Hi.'_~inv : I — Y.



. alizability and alizations

Before stating the next theorem we define the object of inputs Q and
the observability space I'. The notation follows Kalman's for the linear case.

[19, 10.3]. In [4] the notation used was Ix@ for Q and YX@ for T.

1 We set Q to be the coproduct ll(IXl : i 2 0) where 1x° = I and

i+ .
Ix* 1 = (le)x. Q carries a dynamical structure uo : QX —> @ defined by

Qx—————————*&]

SN

Here, we have used the preservation principle 1.9. (The story behind the

cumbersome notation uo instead of Y is found in [20, section 4.2].)

2 I' is defined as the product TT]YZJ : j20) with dynamical structure

L : 'X — T the correspondent under adjointness of the map A defined by

T A » I'Z

j+1 prjz
vzlz
These definitions coincide with Kalman's (save that he denotes both uo and A

by z) when Jk is the category of modules over a ring and when (X,2) is the

identity process.

3 REALIZABILITY THEOREM: Let Hi : IX" — ¥2Z) be an arbitrary bisequence
of morphisms and let H:Q — T be the unique morphism with perini = Hi

as in 1.10. Then the following three conditions are equivalent (and we say

Hi is a Hankel matrix if these conditions hold) .
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(i) Hg is realizable, that is, is the Hankel matrix of some system.

(ii) (The Hankel crossover condition): For all i, j:

) .
Ix1+1 i+l , YZJ
%t ) > yzitl
H3
1

Equivalently, by 1.3, the condition states

. . y
Ixx —ad .y pytt

341 3
Hy Xl J' Hin

v2dfly & o y7?

(iii) H : (Q,UO) — (I',L) is a dynamorphism, that is,

L HX =H1.l0 : QX — T

Proof: (i) ==>'(ii) is immediate from

i rix ) Oj .
Ix'x > OX — Q > vz)
i \ X R |
IX — »Q —x— Q% ——5 Y22
i
For (ii) == (iii), consult the diagram
HX » ['X
1L
o . v J
i » T prj > YZ

By principles 1.9 and 1.10, it suffices to prove that the bottom and top

paths from lex to Yz? are equal. But the bottom path is exactly Hi+

l'
whereas prjI. corresponds under adjointness to prj+1 : [ —— YZJ+l so
‘+ .
that the top path corresponds to Hg 1 and is thus also Hg+l'



To complete the proof we show (iii) ==> (i). We shall show that if H is
a dynamorphism, then the 'free realization' Q0 =Q, 6 = uo,_ T = ino,
B = proii has Hankel matrix H. One checks easily that ri = ini. To show
that cjri = perini it suffices to show that Uj = prjri. This is true by

definition for j = 0. The inductive step here is given by using the adjoint-~

ness axiom with £ = id., and where A is now the codynamics of Hot

Q
(pr.-H)Z .
o —2 g2 > yzI*L
Qx > § > YZj
Ho (prj H)
Again
pr, .
Q0 H ~ T j+1 N YZ]+1
N R |
Qx T I'x (Prj'L) > YZ

But by the dynamorphism property, H'uo = L*HX, and so

pr., .*H = (prj'H)Z‘A =0, . . a

j+1 j+1

The Hankel crossover condition provides evidence that adjointness arises

naturally in system theory. In the decomposable case (example 1.5) we capture

i i+
the familiar condition 'H? = H? L
i+l i

*
In the general context of example 1.11, Q may be identified with I® A ,

of linear system theory.

* %*
where A is the free monoid generated by A and ' may be identified with ™ .
* *
Now (- @A , (-)A ) is again an adjoint process in the category of sets.

* *
H:I®A — YA corresponds under adjointness to a map

..

%) I®A*®A*-———+Y.'

In familiar system examples one can discuss the 'subspace of Q reached
by time i'. Such a subspace may be constructed by 'taking the image' of the
k . . . .
map f : llex : 0sk<i) —— Q defined by £ in, = rk. To formalize

'taking the image' we structure X with an image factorization system.
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4 An image factorization system for a category JC is a pair (E:,WZ)
where 6,27 are subclasses of morphisms satisfying the following four axioms:
IFSl. € and M are each closed under composition.
IFS2. Every isomorphism is both in £ and in 77.
IFS3. Every element of £ is an epimorphism and every element of xq is
a monomorphism. (A map f : R—*> S is an epimorphism if whenever
g, h : 8 — T satisfy gf = hf, then g = h; dually, f is a monomorphism
if whenever a, b : Q —> R satisfy fa = fb then a = b.)
»IFS4. Every morphism f : Q — R admits an éﬁ,?ﬂ factorization (e,m) --
that ‘is, f=me withee £, m em -- and such factorizations are unique
up to isomorphism in the sense that if (e',m') is another one than there exists

a unique isomorphism Y with ¢Ye = e' and m'y = m.

The category of sets and the category of modules over a ring both have
E = sufjections and ‘nz= injections as unique image factorization system.
The same construction works in the category of semigroups but in that category
¢ = epimorphisms determines (see 8 below) another system; the includion of
the natural numbers into the integers is a non-surjective epimorphism in that
category. Image factorization systems in the category of linearly topolo-
gized vector spaces were investigated in a system-theoretic context in [14].

fhe notion of an image factorization system can be traced to [18]. The
version presented here is due to [15]. References in the system literature
to the 'Zeiger fill-in lemma' (see 7 below) are historically inaccurate.

We conclude this section by collecting a number of standard results.
Proofs of 6-11 appear in [20, section 3.4] although all are easy exercises.

For the balance of the paper, (ggz) is a fixed image factorization

system in Jt.
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5 DEFINITION: Let M be an adjoint system. The reachability map

r:Q—0Q of M is defined by

Q= _J_LIXi——-E..._y.Q

i>0
1ni T ri
Ixt

Dually, the observability map G :Q — I of M is defined by

Qmmety T vzd =T
320

Y.
PJ

vz’
We say M is reachable if M is in &, observable if 0 is in M. M is

reachable in time i if (r, | 0 sk <i) : JJ(xx* | 0 € x € i) — 0 is in

k
€. correspondingly, M is observable in time j if (o, | 0 <k <3 isin 7)(

M is reachable in bounded time if M is reachable in time i for some i;

and M is observable in bounded time if M is observable in time j for some j.

Let J(OP denote the dual category of J& For a discussion of duality
for adjoint systems see [4]. Thus products in JC = coproducts in .1(,°p ’

monomorphisms in JC = epimorphisms in ]COP and

6 PROPOSITION: (”l, £/) is an Image factorization system in the opposite

category j(,oP .

Proposition 6 clearly plays a role in establishing the duality between results
on reachability and corresponding results on observability -- e.g. the fact

noted after Proposition 9.



7 PROPOSITION (DIAGONAL FILL-IN): Given a commutative square ge = mf

e
—_—

0 R
P P d
7
”’
s

£ v
m

with e € €, m € }J| there exists (necessarily unique) { with Ye = £ and

my = g. [Hint for proof: take the images of f and g.]

8 PROPOSITION (8 determines M| ): The converse of diagonal fill-in holds.

That is, if m is an arbitrary morphism with the property that whenever ge = mf
with e € £ there exists { with Ye = f then necessarily m € 741 [Hint for

proof: factor m=m' e and let £ = idS.] Dually, m determines £ .

9 PROPOSITION: If £ € & and f € M| then £ is an isomorphism.

10 PROPOSITION: If f: Q— R and g:R—*+ S then gf € 5 implies

g € £ whereas gf ¢ ¥ implies £ ¢ /). [Hint for proof: use 8.]

Reachability in bounded time implies reachable. To prove this,

observe that

Q - > Q
v /
\J_I_(kal osksy” i)

where § is defined by l,l)ink = ink. Thus (ri) =r*)p in € implies r in & .

Dually, observability in bounded time implies observable.
1L PROPOSITION: Given a family £, : Q. — R, with each £, ¢ )] then the

unique f : TI_Qi —_— -[TRi defined by pr, £ = fi pr, is also in 747. Dually,

given a family £, Q TR, with each £, € € ., the unique f£ :_l_l_Qi — -U-Ri

with £ in:.L = ini fi is again in E . [Hint for proof: use 8.]
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12 PROPOSITION. X preserves £ if and only if 2 preserves n.

Proof: Assuming X preserves £ we wish to show that mZ : QZ —+RZ €M

given that m : Q — R ¢ 7”. This is immediate from 8 and the adjoint

correspondences

0

» R

(where capital and lower case letters correspond). The converse result

is dual.

O

We can now state all necessary standing assumptions and summarize them
here for convenience. For the balance of the paper we assume that:

j‘ is a category with products and coproducts of countable families.

(X,2) is an adjoint process in X, .

(€,7 is an image factorization system in XK.

X preserves £ (and hence Z preserves W) .

I is a fixed input object. Y is a fixed output object.

It is often the case that £ = all epimorphisms or that £ = all morphisms
which are the coequalizer of some pair [3, section 1.3] [19, p. 64]. This is
the case for the category of sets and for the category of modules over a ring,
the unique € being the class of epimorphisms = the class of all coequalizers.

In these two cases, it is well known that X must preserve £: [19, V.5].
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13 DYNAMORPHIC IMAGE LEMMA: Let f : (Q,8) ——- (S,8) be a dynamorphism,

that is, the perimeter of the diagram below commutes.

£X
| v
ox eX ’sz mX > SX
16 LY 16
¥
0 — >R TS
L 4

£
Let f=me be an £-7fl factorization of f. Then there exists a unique
dynamics Y : RX —* R rendering the above diagram commutative.

Proof: Since eX € £, this is immediate from 7. O

14 DEFINITION: The canonical realization M, of a Hankel matrix Hi is the

system (QH' GH' Ty BH) defined as follows. ILet H : (Q,uo) — (I',L) be

the dynamorphism defined by prj'H'ini = HJ Let
i

0 H \ H

be an € -77[ factorization of H. By the dynamorphic image lemma, there exists

a unique dynamics 6 : QX — Q% rendering r

- and OH dynamorphlgms .

H

Define Ty = ¥y ing and BH = pr, Op.

It is proved in [4, theorems 2.1, 3.15] that MH is a realization of Hi,

that the reachability and observability maps of MH are r _ and GH (so that MH

H
is reachable and observable) and that any other reachable and observable
realization is isomorphic to MH

The question of interest here, however, is under what conditions the
canonical realization can be found from a finite fragment of the Hankel

matrix (HJi | 0<is k, 0<j<n). We first present a partial realization

which tells us when such a fragment lets us define an adjoint system whose
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behavior is consistent with that portion of the Hankel matrix. Then, in the
remaining sections, we present general conditions on m and n under which
this partial realization will be isomorphic to the canonical realization.
Let us fix the following notations:
n=1{0,1, ..., n}

x5 = |[xt ;v =TT v2d
iek jen
while

HE : 1KS —— yg?

3 1 . I_lo 1 = j 1 X 3 n
is defined by prj Hk in, Hi for iek, jen.

i
: o~ k k+1 ~ .
Define U : Ix_}i-——r IX by u :|.niX =in, .
~ n+l ﬁ ~ - e
€ : YZ X — YZ by prj € = EYZJ prj+lx .

Then the Hankel crossover condition yields

g — P gkt

% ) |

yettly € L ygl

{(just precede the square by inix and follow it by prj for 0 i<k, 0SS j<Sn

to recapture the square of 3(ii)).

n+l
H-

Let %

s — =y e s = .. .M
have 2-7}? factorization (€,m) with image Q while Hey factors
as (&,M) with image §. Then, since X preserves £ , we may define

3 EQX — § by diagonal fill-in:

_ - .
16 x*x U >ka 1
éxl l’é
7 G R
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The important fact is that 0 is completely determined by the Hi for

0<ic<ktl, 0= 3 < n+l.

To obtain our partial realization theorem, we must establish conditions
under which 8 may be viewed as a dynamics. To this end, define
in : IXk —_— Iiﬁ¢r by in°ini = ini

pr : YZn+l — yz" by prj-pr = prj .

Then the bi-index principle, 1.10, yields

_ gl __
12 - K i
in n . 2 of

l Hy l °

I8 TL = > yzP

Forming the 2,7}1 factorization (e,m) of HE with image R, we then obtain t

and u by diagonal fill-in:

Al
ol

o
> l////
¥
10> € ==ty == 1O
o ot
%
r
=T o]
R

=]
N
=
s
=

18

-
>

in

IXk+1 e

Y

19 PARTIAL REALIZATION THEOREM: If t, u are isomorphisms in 18, we may

define the system M = (0, 8, T, B) by

§ = ¢l -1.%

20 =t "eu "*§ : OX —+ Q0 (using 16 and 18)
21 T=§'inO:I—>-IXk—*§
22 B=pro-i"t-1': Q0 — vz — v,

Then the Hankel matrix of M agrees with Hi for 0<i<n, 0< 3 <k,
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Proof: Let T.s Gj be the i-step reachability and j-step observability maps,

respectively, of M. We prove the theorem in two steps:

(i) We show r, = Ix* 1, —5 45 for 0 < i S k.
_ = pr. .
(ii) We show o, =§ By T, T for 0 £ § < k.

It is then immediate that 0..r, = pr.-mee*in, = pr.'Hn+l-in. =Hl .
j i j i j ok i

Proof of (i): For i = 0, this is 21. Now, for 0 < i < k, we have by induction

il T 6-rix
=t g e x
i
-1 -1 % .. . . .
=t "u °5°ex'1nix by induction hypothesis
= t'lu'l-a-ﬁ-inix by 16
-1- A o . . ~
=t u e in; by definition of U
=t u "ust+@ing o by 18, and definition of in
= e+in, as was to be shown.
i+l
Proof of (ii): By definition 00 = f = pro-ﬁ. But then, for 0 £ j < k,
°j+1 = ojz-A
0.8 by 1.2
J
= pr.+m+§ by induction hypothesis
= prj'ﬁ'u't'6 by 18, and definition of pr
= prj°ﬁ-g by definition of §
= prj°g'ﬁx by 16
= €Yzj°prj+lX°mX by definition of €
- i}
pr,, .°m



3.1

ralizi. otion of Fini Dim iopnali

For a linear system M, the subspaces Qi generated by the union of the
images of AkB : I —Q, 0sk<1i, constitute an ascending chain of
subspaces of Q. If Q is finite-dimensional -- or more generally, for modules
over a ring rather than vector spaces, if Q is Noetherian -- this chain is
eventually stationary, Qm = Qm+l = ..., and M is reachable in time m. In
this section, we show how such dimensionality considerations may be extended
to our category K -- with dimension reducing, essentially, to cardinality
in the case of Set. The notions of £ -height and 77-height were introduced

in [1]. Further properties of Noetherian objects appear in [7].

-1 DEFINITIONS: Let Q be an object of & . The set of all pairs (R,m) with
m: R—Q ¢ ﬂ[ admits a reflexive and transitive order by defining

(R,m) < (R',m') if there exists Y with m'Y = m

(note that such Y is necessarily unique and is itself in.”?). Thus
(Rym) ~ (R',m") if (R,m) < (R',m') and (R',m') < (R,m) is an equiva-
lence relation whose equivalence classes [R,m] are called the subobjects
of 9. ([R,m] = [R',m'] if (R,m) £ (R',m') is a well-defined partial order
on the subobjects of Q. It is easily seen that [R,m] = [R',m'] if and
only if there exists an isomorphism { with m'Y = m.

Q is Noetherian if every strictly ascending chain of subobjects of Q is
finite. Let h 2 0 be an integer. Q has Mf-height h if Q admits a strict
chain of proper subobjects of length h, but none of length h+l. Q has finite

M-height if Q has M -height h for some h.
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The dual concepts relative to X are formulated by repeating the above
definitions in $C°p (using 2.6). Thus, the ordering on quotient objects

of Q is described by

R e :
*\ [R,e] < [Rl'el]
¥ Q P
| e, e'
R'K =

(Note that we reverse the arrows, not the ordering.) We say Q is Artinian
if Q is co-Noetherian, that is, if every strictly ascending chain of quotient
objects of Q is finite. The definitions of ' € ~height' and 'finite € -height"*

are clear.

2 EXAMPLES:: In the category of sets, subobﬁects may be identified with
subsets of Q and quotient objects may be identified with the canonical quo-
tient projections induced by equivalence relations on Q. A set with h
elements has W-height h+1 and £-height h, except that the empty s'et has
€-height 1. For sets, Noetherian = Artinian = finite, Notice that for
both subsets and quotient sets, ascending chains mean increasing cardinality.
In the category of modules over a ring, the passage from a submodule S
to its cokernel Q/S establishes an anti-isomorphism of partially ordered sets
between subobjects and quotient objects. For this reason, Artinian is equi-
valent to the descending qhain condition on subobjects (the usual definition
in module theory) and a module has finite height if and only if it is
simultaneously Noetherian and Artinian. These two properties do not hold
in a general category where descending chain conditions are not equivalent

to the ascending chain conditions defined above, and do not seem to be well

motivated in a system context.

1]
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In abelian groups, Noetherian = finitely-generated, whereas finite
7ﬂ-height = finite. The group of additive integers is not Artinian. For
vector spaces, on the other hand, Noetherian = Artinian = finite height and
M-height = € -height = 1 + dimension.

It is unclear how to define ‘proper subobject' so that the four finite-
height conditions discussed above come out 'right'. One could exclude the

proper subobject [Q,id_ ]l although from the system point of view this sub-

Q
object is not the trivial one; it is the zero subobject that is trivial from
the point of view of building increasing chains. Recall that an object O is
initial if there is a unique morphism 0 — Q to every Q and, dually, an
object 1 is terminal if there is a unique morphism Q — 1 for every Q.

For sets, 0 is the empty set, 1 is a one-element set and for modules 0 is
both initial and terminal. While the unique 0 — Q is not always in 7/,
the image factorization of this map produces the least element of the par-
tially ordered set of subobjects of Q. Dually, the image factorization of

Q — 1 produces the least quotient object of Q. It seems hard to posit a
natural procedure to decide when to omit the zero subobject from chains which

both preserves duality (i.e., the same procedure must be applied to quotient

chains) and works right in the examples above.

Motivated by the sequence r, : xt — Q induced by an adjoint system,
we consider an arbitrary sequence of morphisms of form fi : Pi — Q,
i €7 = the set {0,1,2,...} of natural numbers. The following four con-

structions are useful. We fix their notations for the remainder of the

paper.

3 For each non-empty subset S of 72 define

PS=_|_|_(Pi:ieS)

f

s Ps — 0, where fs in, = fi (i € 9).
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[

For scTc 7, ing, : Pg — P, is defined by ing, in, = in,

(i € 8).

5 Fix an £-7] factorization of £

S S
P > I >0 .
6 For scTc 7, msi 2 I — I, is defined by diagonal fill-in (2.7):
e
S
p » I
S
S /‘/
ing, n

83/

P , s

%
P

10

T ~>
(to prove that the square commutes observe that both paths are fi when

preceded by ini).

We observe at once, using the results of section 2, that mST € 7&, that
Moy Mgp = Mgy fOr S ¢ T cU, and that if £g € £ then £, € €. whenever
ScrT.

Motivated by system theory we should like to prove results such as 'if
Q is Noetherian and M is reachable then M is reachable in bounded time' and
'if fS is onto and if T is the subset of S obtained by deleting those k for
£ is the same as the union of

M

the images of fo,...,fk then fT is still onto'. We observe that the reason

which the union of the images of f

these results are so easy to obtain in the category of sets is because the
passage S IS is union-preserving; IS is, after all, just the union of
the images of the (fs : s € S). Our approach below is to show that, in
general, this passage is sufficiently supremum-preserving to lift the theory

to a category. We present general results about 'dimension in a category'

fo
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in this section; and turn to their system-theoretic application in section 4.

1 LEMMA: For any object Q, every non-empty countable family of subobjects

of Q has a supremum.

Proof: Given [Rk,mk] define f by £ ink = m, and consider

where (e,m) is an E,-m factorization of f. Using diagonal fill-in on the

' [] s — s .

square' m(e :Lnk) = m id induces !bk, so that [Rk'mk] € [R,m] for all k.
We will show that [R,m] is the least upper bound. Suppose that

L ] 3 L
[Rk,mk] € [R',m']. Then there exist ¢ | as shown

R

and hence a unique h with h in =y’ . Clearly m'h = f. Hence, if (e,f)

k

is an 6—7}{ factorization of h, (&,m'f) is an E-m factorization of f so

that [R,m] = [I,m'M]. But then, via i, [R,m] < [R',m']. O

Given f : R— Q, let [f] denote the subobject of Q obtained by

taking the image factorization of f.

8 LEMMA: Let fi : Ri — Q be a non-empty countable family of morphisms

and let £ : _I_I_Ri —— Q be defined by £ :i.ni = fi' Then [£f] = sup([f]).
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Proof: Consider the diagram shown in which [fi] = [Ti,mi] and

[I,m] = sup([fi]) according to the construction of Lemma 7.

in,

me'

Define e by e ini = ini e. Then the diagram commutes -- that is, £
-- because both paths coincide with fi when preceded by ini. By 2.11, e € Ei

so that [f] = [I,m] as desired. ' B

Before continuing, we introduce the abbreviation IS for the more

cumbersome [Is,mS]. 'I_ is a subobject of Q'.

S

9 LEMMA: The passage S\ I_, preserves non-empty countable suprema.

S
Proof: Let (Sk : k € I) be a non-empty countable family of non-empty subsets

of ) and set S =us We must show that I is the supremum of the I,

k’ S

(where we use the subscript k for the more cumbersome S, throughout). Con-

k
sider the map 0 : ilpk — P, defined by 6 in = in, ¢ (k € I). In view
of the commutative diagram
in
k
Pk 4 .U_Pk

in
kS ,/6
%&A %
L M e
IS

RN

Q
it suffices to show that 0 € £, for then (ese,ms) is precisely the con-

struction of the supremum in Lemma 7. To prove that 0 ¢ f: we use the dual

e

"
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of 2.8. For s € S choose k(s) with s ¢ Sk(s)' Then consider the diagram

S
Pk(s)‘ Ps
mk(s)lr 1in
S
8
1z, > Py
’/
f l P /"’ g
-
P
AA‘ m —B

. where g, £ and m are only required to satisfy g =mf and m ¢ 77.

We must construct Y with m) = g.

Define § by Y in_ = f ing (s) in_ as shown. Since 6 ing (s) in_
= lnk(s)S in_ = ing (see 4) we have (mJ.]J):Lns =m £ lnk(s) in_ =
g0 iny gy in_ = g ing for all s € S, so that mp = g. g

For the next definition and two propositions we consider an arbitrary
non-empty-countable-supremum—preserving map I:R — L where R is the
partially ordered set of non-empty subsets of 71 and L is an arbitrary
partially ordered set. For the general I we write I(S) instead of IS' I

S

is not the only application; see [8].

10 DEFINITION: Define n = {0,...,n} € R. I is stationary if I(n) = I(AFD

for all n. A € R is adequate if I(A) = I(S) whenever A < S. Equivalently,

A is adequate if and only if I(S) = I(T) whenever A ¢ S c T.

11 PROPOSITION: If A is 'one-step adequate' in the sense that

1(A) = I(a v {k}) for all k then A is adequate.

Proof: IfAcS, S=u(dau {k} : kesS). O

12 PROPOSITION: For each non-empty-countable-supremum—preserving map
I : R—* 1L, the set

a={0luikel | IGD < 1(k)}

is adequate.
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Proof: Note that if I is stationary, then A = {0}, and certainly this A

is adequate. Otherwise, it suffices to prove I(A) I1(a v {0,...,n}) for

0. Suppose now that

all n. Since {0} c A, this is certainly true for n

I(d) = 1(A v {0,...,n-1}). Then if n € A, it is certainly true that
I(A) = I1(A v {0,...,n}). Otherwise, I(n-1) = I(n), and so

I(A v {0,...,n}) = sup(I(a),I(n))

sup(I(A),I(n-1))

I(Aun-1) =A 0

13 COROLLARY: If Q has 7){-height h, fi Pi — Q has an adequate set

with h+l or fewer elements. ]

“
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4. Adequacy for Systems and the Simgle Recursion Principle

In this section, we study the implications of Section 3 for an adjoint
system M. We introduce all of the notions of Section 3, with

fi : Pi —rQ = r, : Ixt — Q. We write IXS instead of PS.

1l PROPOSITION: If M is reachable and Q is Noetherian, M is reachable in
bounded time. Dually, if M is observable and Q is Artinian, M is observable
in bounded time.

Proof: By definition, Ig=r is the reachability map of M and M is

reachable in bounded time if and only if r_ € £ for some finite S. Since

S

Q is Noetherian, there exists a finite one-step adequate set A. Then A is

adequate by 3.11 and, in the diagram shown, m_, is an isomorphism.

sn

If M is reachable, my is an isomorphism (2.10 and 2.11) so that rg = Mgy Mgy eg

e £ (by IFS1 and IFS2). 0

2 DEFINITION: Let V be a set. A sequence Vo in V is defined by simple
recursion if there exists a function g : V —* V such that Ve~ g(vn),

. n
that is, Vn =g (VO).

3 EXAMPLE: The sequence span(B,AB,...,AnB) of subspaces of the state
'space of a linear system is defined by simple recursion. Define
g(s) = span(S u F(S)) for each subspace S. The next result shows that

this construction works for arbitrary adjoint systens.



Recall that n = {0,...,n}.

4 SIMPLE RECURSION PRINCIPLE FOR ADJOINT SYSTEMS: Let Iﬁ be the subobject

[rﬁ] of the state object of an adjoint system 'reachable in time n'. Then
the ascending sequence Iﬁ is defined by simple recursion. Dually, the
ascending sequence of observability quotient objects of the state object
is also defined by simple recursiqn.

Proof: We define the endomorphism g on the subobjects of Q by

g([R,m}) = sup([R,m],[6°mX]). To verify that g(Iﬁ) = I——, recall that

n+l

- . = ~*1 7 < -
ri+l 8 riX, and that r, rn ing for i £ n, and that we have the copro

duct diagram

Ix'x .
l i+l
in. X r.X
i
n
I > -—3n
XX = (0).4 3 Q
n

Now, by lemma 3.8, [6°rﬁx]==sup([rl],...,[rn+l]) = sup(Il,...,In+l). But
because X preserves &,

[6°rﬁx] = [G-mﬁxfeﬁxl = [6°mﬁxl.
Moreover, Iﬁ = sup(Io,...,In) by 3.9. Therefore

g(Iﬁ) = sup(sup(IO,...,In), sup(Il,...,In+l)) = sup(IO,...,In+1) = IE:T

An immediate consequence is a better proof of the general version

[1, Theorem 4.6] of the 'if you stick you're stuck' result of [9]:

5 COROLIARY: If I =T

7+ then n is adequate.

Proof: IE?E?T = g(IE?F) = g(IE;E:I) (induction hypothesis) = Iﬁ?ﬁ“ 0

While the proof of Corollary 5 bypasses Proposition 3.12, the latter is

still a useful principle, as we shall see in [8].

0
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6 COROLLARY: Let M be an adjoint system with state object Q. If Q has
M-height h then M is reachable in time h. Dually, if Q has g -height h,

M is observable in time h. 0O

To tie this back to the realization theory of Section 2, and especially

the Partial Realization theorem 2.19, we make the

7 OBSERVATION: It is clear from 2.18 and 2.10 that t is in € and that u

is in M. It is then clear that if f£-height (Q) = £-height (R) and both
are finite, then t is an isomorphism; while if 7q—height (R) = ﬂirheight (Q)
and both are finite, then u is an isomorphism. Thus the condition 't and u
are isonlofphisms' in 2.19 may be replaced by £-height ((,72) = £ -height (R)

and #f-height (R) = M-height (J) and both are finite'.

8 COROLLARY: For adjoint processes in Vect, we may obtain a partial reali-
zation as soon as

dim(Q) = dim(R) = dim(Q) = Ffinite.

This yields both Tether's [22] criterion for partial realization of
linear systéms, and Isidori's [16] criterion for partial realization of
bilinear systems (internal sense).

Combining the argument for Corollary 6 with the Partial Realization

Theorem 2.19 and observation 7 we have

9 THE HANKEL REALIZATION THEOREM: Let Hi be a Hankel matrix having a

realization with state object Q having &€ -height < h and "'[—heigbt < L with
h and & finite. Then the canonical realization of Hi may be constructed by

applying the construction of 2.19 with k =h and n = %.
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Proof outline: The crucial point is that the finite height conditions

imply that items (i) and (ii) of the proof of 2.19 -- r, = é-ini and

cj = prj-x?t -- hold for all i and j respectively. But this not only shows
that the M of 2.19 has Hankel matrix Hi, but also that M has reachability
map @ in € and observability map @ in 772 -- so that M is canonical. 0

10 OBSERVATION: As in 8, we note that when XK = Vect the two height
conditions in 9 collapse to the single condition 'Q having finite dimension h°',

and we may then take k = n=h in forming the realization.

For the biadequacy criterion for Hankel realization, see [8, Theorem 4.9].
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ABSTRACT

Recurrence and corecurrence of the Hankel matrix of an adjoint system
is related to the existence of finite realizations. Adjoint systems include
linear and bilinear systems, automata, and group systems in both the time-

varying and time-invariant cases.

After a brief review of the setting of [4], we define recurrence of

degree m for a Hankel matrix H). Such recurrence implies that HT depends on

Hg, ceey HT-I for all i. The ;ual notion is corecurrence. To relate these
conditions to 'finiteness' we investigate ascending chain conditions for sub-
objects and quotient objects of an object in a category. Recurrence is
related to Artinian realizations with injective Artinian input object whereas
corecurrence is related to Noetherian realizations with projective Noetherian
output object. The scarcity of Artinian injective modules in the context of
linear systems over a ring puts the emphasis on corecurrence there. Our
theorems unify the familiar linear results [9], [6, XVI.1l0} with the group

machine result of [5, theorem 2].

The 'recurrence polynomials' in the context of modules over a noncommu-
tative ring, as considered by [10], are algebraic operations in the sense of
universal algebra [8, section 1.5] as opposed to morphisms. They cannot be

subsumed in the discussion here and will be discussed elsewhere.

1 The research reported in this paper was supported in part by the
National Science Foundation under grant MCS76-84477.



l. Generalities

We quickly record some definitions and facts concerning the Hankel
matrix of an adjoint system. For details, see [4] and the references cited
there.

We work in an arbitrary category ) with countable products and co-
products and provided with an image factorization system (8,7)1) (generalizing
£ = surjections, m= injections in familiar categories such as sets and
functions, or vector spaces and linear maps).

We fix an adjoint process (X,2). This means that X and 2 are functors
from K to itself with 2 right adjoint to X. Thus there are bijective

correspondences

R ——— S2

Y
(one to each pair of X -objects (R,S)) subject to the naturality condition

ox £X - R g}s h;T

0 R ” > 82— T2

whenever f£:Q —- R, h:S — T. 1In this notation, ¥ may alternatively
appear on the top with g on the bottom. We also assume that X preserves €
(and hence [4, theorem 2.12] that Z preserves 7)[) .

For example, let j( be the category of sets and functions. Let A be a
fixed input alphabet. Define QX = Q X A, 0Z = QA, the set of functions
from A to Q. For £f:Q— R, fX : Q X A—— R x A is defined by

A
(g,a) v+ (£(q) ,a) whereas f£2: QA — R sends g:A —+Q to fg:A — R,
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The adjointness correspondence

Q x A —L— R
9 —5— &

is the familiar (yq)(a) = g(g,a). Here, let &£ = surjections and let
m= injections. It is indeed true that fX is surjective when X is and that
gZz is injective when g is.

An adjoint system is M = (Q,6,I,T,Y,B) where Q, I, Y are objects (the
state object, input object and output opject of M) and § : QX — Q,
T:I—>Q and B:Q — Y are morphisms (the dynamics, input map and
output map of M). (Note: 'map' is here a synonym for 'morphism'.) The
codynamics of M is the map A:Q — QZ which corresponds to § under
adjointness.

Given two dynamics §:Q0X —-Q and 0 :RX —> R, a dynamorphism

h: (Q,6) — (R,0) is amap h:Q —> R which 'respects the dynamics':

$ 0

0— = 5=

The time~i reachability map r; xt — Q and the time-j observability

map Gj : Q — YZJ are defined by:

r, = 1T
0]
r.X
o itl it §

rigy = IX > QX —+ Q

Oy = B
o = 4 , QZ %" yz3*tL
ja1 = 2 4 - :

The bisequence Hi, where Hi : IXT —— vzJ is defined by Hi = 0’j L. is

the Hankel matrix of M. The Hankel matrix for adjoint systems was introduced

in [4], which also contains further references on related studies.
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We continue our earlier example to describe 'automata theory'. (For
the other examples mentioned in the abstract we refer the reader to [4].)
Let I have a single element so that T amounts to an element of Q, the initial
state. The dynamics and output map have their usual forms 6 : Q x A — Q,
B:Q— Y. It is easily checked that r.: Ai-——+ Q sends an i-tuple of
input letters to the state reached from the initial state if the letters are
inputted in sequence, whereas Gj : Q — Y(AJ) sends q to that function
Aj — Y with B following the time-j reachability map if the initial state
(ad)

were q. Thus Hg : Al — Y is essentially a way of describing B-r,

i+j
with emphasis on i as 'present time'.

As in [4] we define the object of inputs  to be the coproduct
1Lext
TTvz?

and 2.2]. The following realizability theorem is proved in [4, 2.3].

i 2 0) and we define the observability space I' to be the product

.

j 2 0). Then Q and TI' carry canonical X-dynamical structure [4, 2.1

REALIZABILITY THEOREM: Let n; : IX' — v23 be an arbitrary bisequence

of morphisms and lef H: Q — T be the unique morphism with prj H ini = Hg.
Then the following three conditions are equivalent (and we say Hi is a Hankel
matrix if these conditions hold).

(i) Hi is realizable, that is, is the Hankel matrix of some system.

(ii) (The Hankel crossover condition). For all i, j:

. g .
IX1+1 i+l + yzI
xt PR yzi*t

u3
1

(iii) H : Q — I' is a dynamorphism.



Let M be an adjoint system. The reachability map r : Q —- Q of M

Ixt — Q. The observability map o : Q —* T

is defined by «r 1ni = ri

oj : Q — vz, we say M is reachable if

r € £, and observable if 0 € M.

of M is defined by prj°o

To conclude this éection we recall that the canonical realization MH

of the Hankel matrix Hi is the system (QH, §., T

a Ty’ BI-I) defined as follows.

Let H : (Q,uo) — (I',L) be the above dynamorphism. ILet

r o
: . H_
Q F Qn -+ T

be an E-m factorization of H. By the dynamorphic image lemma [4, 2.13],

there exists a unique dynamics & : QHX —_ QH rendering r

H and O'H dyna-

H

morphisms. Define Ty = ¥y ing and BH = pry Op-

It is proved in [2, theorems 2.1, 3.15] that MH is a realization of Hg_,

that the reachability and observability maps of MH are r, and o (so that MH

H

is reachable and observable) and that any other reachable and observable

realization is isomorphic to MH
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2. Recurrence for Matrices

For the duration of the paper fix an input object I and an output

object Y.

. j i j .
1 DEFINITION: Given Hi : IX' —— vX? and an integer m > 0, a recurrence

morphism of degree m is a morphism p such that

(H
1 y-TTXYZJ : 053 <m

~.

holds for all i. By (Hi) we mean the unique morphism f such that prj f = Hi

for all 0 € j < m. If such p exists, Hz is said to be (morphically) recurrent

of degree m. Dually, a corecurrence morphism of degree m is a morphism p

such that 3
(H.) 3
J__[_(IX :0Si<m >~ Y7

T~ A

holds for all j. If such p exists, Hg is corecurrent of degree m.

2 RECURRENCE THEOREM FOR MATRICES: Let Hg be a Hankel matrix which is

recurrent of degree m. Then Hi

=Tz’ : 035 <m.
Proof: Define B = pry : Q—Y, define T : I — Q by prj T = Hg :
I —vzZ) and let § : QX —* Q correspond under adjointness to the A

has a realization with state object

defined by
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YZj+l
Prj+1 prjz (3 < m-1)
Q » QZ

l prm—lz

yz"

(where we make use of the fact [4, 1.9] that Z preserves products). We must

show that Hi = Gjri. We first show that r;, = (Hz : 03 <m : Ixi — Q0

by induction on i. For i = O this is the definition of T. For the inductive
step, if 0 £ j < m-1 we have ‘

r.X s pPr.

x*t . > OX > Q L, yg)
. r. pr.z .
+
x—2 5 9 4 1, ygpi*
. r, pr. .
= IXl i 0 j+1 R YZ3+1
- H?+1
1
j
Hin

whereas, for j = m-1 we have the related argument that prm_lZ°A°ri =pr;

= p (Hg : 0£3j <m (by the induction hypothesis) = H? (by the definition

of recurrence morphism) which corresponds under adjointness to H?;i as

desired. 1In particular, we have shown that pry r, = Hg which is the case
'f = 0' in showing that Hi = ojri' But the inductive step on j is immediate

from the fact that both Hi and Gjri satisfy the Hankel crossover condition. [J

3 CORECURRENCE THEOREM FOR MATRICES: Let Hg be a Hankel matrix which is
corecurrent of degree m. Then Hz has a realization with state object

Q= lljlxi : 0i<m).

Proof: The proof is dual to that of 2 but we record the construction.

Define T = in define B by B ini = Hg and define § by

ol



QXi+l
ing 4
(i < m~1) iniXJ
S
19).¢ - Q
inm_ lX r -
X" 0

4 EXAMPLE: THE DECOMPOSABLE CASE. Here X = 2 is the identity functor

of K. The realization theory in this special case was studied in [1].
When X is the category of vector spaces (or of modules over a ring) an
adjoint system is just a linear system

1—2+9 o—2vg o—Ssv.

The same system description holds in any category. The adjointness corres-

pondence is just

g

Q—*R

Q ——*R

so that the codynamics is again A. We have r, = A'B and oj = cAl so that

j i+] m m
Hi = CA B. A recurrence map takes the form p : Y — Y (where Y denotes
the m-fold product of copies of Y). If X is a category such as modules over
a ring or groups in which objects are 'sets with structure', morphisms are
determined as functions (though not all functions may be admissible as
morphisms) and the underlying set of a finite product is the product of' the

underlying sets, the recurrence condition literally takes the form
0 m-1 m
p(Hi(u),...,Hi (w)) = Hi(u)

for all i 2 0, u € I. When X is the category of groups, theorem 2 above is
a direct generalization of the sufficiency proof of [5, theorem 2] (for the
necessity part see 3.4 below). Owing to the fact that the coproduct is the

free product in the category of groups (see [3, 3.2.3] for the details)
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corecurrence for group systems may not be a very useful notion. When X is

the catégory of modules over a ring (or semiring), however, a corecurrence
m ‘s .

map has the form p : I — I and the corecurrence condition is

m-1

H;(u) = z H]Jc P (w)

k=0
where p(u) = (po(u),...,pm_l(u)) and j 2 0. This essentially recaptures
the recurrence polynomials familiar in linear system theory (see, e.g., [6,

XVI.9.1] and [9, p. 34051).



3. _Recurrence for Systems

1l DEFINITIONS: Let M be an adjoint system. M is reachable in time iif
. k . .
(rk : 0k <1i) : lljlx : 0k £i) —+Q € £ and, dually, M is

observable in time j if (ok : 0k £3j) e hq. M is reachable in bounded
time if M is reachable in time i for some i, and M is observable in bounded

time if M is observable in time j for some j.

Reachability in bounded time implies reachable {4, 2.10]. Dually,

observability in bounded time implies observable.

2 RECURRENCE THEOREM FOR SYSTEMS: Let M be an adjoint system with Hankel

matrix H] = or;. Let p : TTvz? : 0<§ <m) —— v2" be a morphism.

Consider the diagram
:0<j<m)

>TTvzd :0<3<m)

\/

(i) If the diagram commutes, Hi is recurrent.

Then

(ii) If M is reachable and Hg is recurrent with recurrence map p, the
diagram commutes.

Proof: Consider the diagram

TTT(YZJ :0<9<m)

YZ
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0

In the notation below, 0 < j < m. From the definition of a product, we have

- - j 3 j - =
that ri(oj) = (r.,0,) = (Hi). Thus, if p(oj) O’ p(Hi) p(ojri)

|
p(Gj)ri = omri = HT for all i, and thus p is a recurrence map. To prove

. j m
(ii), if p is a recurrence map then for all i, [p(Uj)r]J.ni = p(Hg) = H,

i
= lomr]ini. By the definition of a coproduct, p(oj)r = omr. As M is

reachable, r is an epimorphism so that p(oj) = Om as desired. 0

Theorem 2 reduces the problem of finding a recurrence morphism of degree
m to the filling-in of a single diagram. Before exploiting the result, we

pause to state the dual theorem:

3 CORECURRENCE THEOREM FOR SYSTEMS: Let M be an adjoint system with Hankel

matrix Hg and let p : IXm ———+__L|_(Ixl : 0<1i<m) be a morphism. Then
(i) If (ri :0<s1i<m)p= ro Hi 1s corecurrent.
(ii) If M is observable and Hi is corecurrent with corecurrence map p,

then (ri : 0<i<mp= r . ]

Our first application of 2 is to finite-state deéomposable systems, fully
recapturing theorem 2 of [5] by choosing,jg to be the category of groups and
gfto be the finite groups. We note that our proof specializes to theirs
in all essentials. The generalization to any class of universal algebras

is immediate.

4 RECURRENCE THEOREM FOR FINITE-STATE DECOMPOSABLE SYSTEMS: Let X and Z be

the identity functor of K as in example 2.4. Let 5{ be a class of 'finite'
objects in the sense that the following two axioms hold:

(i) ™ e Sr for al; m > 0. |

(ii) For all Q € ., the set %(Q,Y) of all morphisms from Q to Y is

finite.

Let Hg : I — Y be an arbitrary Hankel matrix. Then Hg has a realization

with state object in ‘@ if and only if Hg is recurrent.
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Proof: One direction is clear from 2.2. Conversely, Let M realize Hg with

state object Q € 57. Since cj : Q — Y and there are only finitely many

Jt-morphisms from Q to Y, there exists 0 £ k <m with O = Ope But then
prk(oj : 029 <m) = Uk =0, So that pry : Y —y is a recurrence
map by 2.(i). a

The reader may easily formulate the dual theorem to 4.

5 INJECTIVE AND PROJECTIVE OBJECTS: An object Q is injective if each

diagram of form

R o > S
Vs
/
e
£ #/ g
Q
may be completed (not necessarily uniquely) -- that is, gm = £ for some g -

whenever m ¢ 77. Dually, Q is projective if

whenever e € & .

The following result is immediate from 2 and 3. It is trivially checked
that any product of injectives is injective and any coproduct of projectives
is projective so that, e.g., the condition that YZ" be injective for all m

is often reducible to showing that Y is injective.

6 OBSERVATION: Let M be an adjoint system with Hankel matrix Hi If Y2 is

J

i is recurrent of degree m.

injective and if M is observable in time m then H

J

i is corecurrent

If IX" is projective and if M is reachable in time m then H

of degree m. 0
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1 EXAMPLE: In the category of sets, all non-émpty sets are projective and
all sets with at leastAtwo elements are injective. It follows that, in the
context of the example of section 1, even if I, Y or A are infinite, obser-
vability in bounded t&me implies recurrence, arid reachability in bounded

time implies corecurrence.

8 EXAMPLE: In the linear case of examble 2.4 with J, the category of
modules over a ring (or semiring), if I is a free (or projective) module
then IX" = I™ is projective for all m. Using 6, we recapture the famili;r
result that if (AiB : 0i<m - — Q has the same image as

(AiB : i 20) then CAi+jB is recurrent of degree m. This result does not
generalize to arbitrary universal algebras because -- unlike the module case
where finite products are also finite coproducts -- there is no reason for

I" to be projective when I is free.
A converse result to 6 is a trivial exéension of 2.2:

9 PROPOSITION: If Hg is recurrent of degree m, Hi has a realization which
is reachable in time m. If Hi is corecurrent of degree m, Hz has a realiza-
tion which is observable in time m.

Proof: Use the realizations of 2.2, 2.3. It is trivial to check that

(oj : 03 <m) and (ri : 0 £1i<m are, respectively, the identity map. [
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4. Noetherian and Artinian Objects

Noetherian and Artinian objects were defined in [4, 3.1]. We briefly
recall the essentials. An object Q of K is Noetherian if every structly
ascending chain of subobjects of Q is finite. Here a subobject is an equif
valence class [R,m] of pairs (R,m) with m:R —- Q in 27. The length of the
longest strictly ascending chain of subobjects of Q is called the Zv-height of
Q. Thus finite 7n-height implies Noetherian, but the converse is false. Dually
Q is Artinian if every strictly ascending chain of quotient objects of Q is
finite. The length of the longest strictly ascending chain of quotient objects
of O is called the ¢ -height of Q.

In the category of sets, subobjects and quotient objects take on their
usual meanings. ’We note that the partial orderings have been chosen so
that ascending chains -- of either subsets or quotient sets -- have increasing
cardinality.

In the category of modules over a ring, the passage from a submodule S
to its cokernel Q/S establishes an anti-isomorphism of partially ordered sets
between subobjects and quotient objects. For this reason, Artinian is equi-
valent to the descending chain condition on subobjects (the usual definition
in module theory) and a module has finite height if and only if it is
simultaneously Noetherian and Artinian.

In abelian groups, Noetherian = finitely;generated whereas finite
M-neight = finite. The additive integers is not Artinian. For vector
spaces, on the other hand, Noetherian = Artinian = finite height and

7’[—height = & -height = 1 + dimension.

1 A class & of objects is closed under subobjects if whenever m:Q —* F
€ 77 with F € , also Q € ¢ . Similarly, Qf is closed under quotients if

~

e:F—+Qe& and F e G imply O € F .

A class of 'finite' objects might well be expected to be closed under

subobjects and quotients. It is obvious that 'Noetherian' is closed under
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subobjects and that 'Artinian' is closed under quotients. We conclude this
section with a proposition that concludes that 'Noetherian’ is closed under
quotients, leaving the statement of the dual theorem as an exercise for the

reader.
2 LEMMA [8, 3.4.12]: Given a pullback square

'
P e

— S
m' lm

Q

withm ¢ 7], also m* « M. It is easily verified that [P,m'] is uniquely

determined by [S,m); [P,m'] is the inverse image of [S,m] under e.

We say that € is closed under inverse images if e' € £ whenever e €§

and m € M in a pullback square as above.

3 PROPOSITION: If £ is closed under inverse images then 'Noetherian' is
closed under quotients.
Proof: Let Q be Noetherian, let e:Q0 — R ¢ £ and let [R ,m ] be an

ascending chain of subobjects of R. Let (Pn,e;l,m;_l) be pullbacks of

P o >R
n n

v! ¥
Y Cntl "’

m' P >

n+l Rn+l mn

L]

mn+1‘ l T+l
L > 9 = —R <

m . = 3 4 ] -
(e,m ) as shown. If m o1 Y =™ defines ¥, then, since moa el
moe,“e m' , there exists unique ¥, as shown (by the definition of a
pullback). Thus [Pn’m;xl is an ascending chain of subobjects of Q and there

exists N such that lp;l is an isomorphism if n 2 N. But for n 2 N we have

two € -M factorizations of the same map:



llb R .

This induces an isomorphism as shown which must be wn. 0

In both the category of sets and the category of modules over a ring,
both 'Noetherian' and ‘'Artinian' are closed under subobjects and under
quotients. This may be shown to be a corollary of the proposition although,

of course, these results are well-known.
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5. Noetherian Corecurrence

e e e e

l LEMMA: Let M realize Hi with state object Q. Then there exists a diagram

< e m -
% R o

withme N, e € £ . R is the 'reachable part' of Q.

Proof: Recall the canonical realization HH of section 1 and consider the

diagram
el m
Q > R — 0
7
//
Ty et o]
J{/ GH
O > T

where (el,m) is an £-M factorization of r. The outside commutes by the
bi-index principle [4, 1.10] inducing the diagonal fill-in e [4, 2.7] which

is in g by [4, 2.10]. 0

2 THEOREM: Let & be a class of Noetherian objects which is closed under

€, closed under 7%, closed under the formation of finite coproduces and

which contains Ixi for every i 2 0. Assume that IXi is projective for all i.

Then the following three conditions on the Hankel matrix Hg are equivalent:
(i) Hi is corecurrent.

3

(ii) H;

i has a realization with state object in QF.

(iii) The canonical state object Q. is in &.

Proof: For (i) => (ii) use 2.3. PFor (ii) ==> (iii) use lemma 1. That
(iii) ==> (ii) is obvious. To see that (iii) ==> (i) combine 3.6 with the
fact [4, Proposition 4.1] that if M is reachable and Q is Noetherian then M

is reachable in bounded time. : 0



3 COROLLARY: Let R be an arbitrary ring and let Hi : I — Y be

R-linear where I is a projective Noetherian R-module. Then Hz has a

J

realization with a Noetherian state module if and only if Hi is corecurrent

(see example 2.4). ]

4 COROLLARY: Let R be an arbitrary ring and let Hg : I — Y be

R-linear where I is a projective R-module. Then Hi has a realization whose
state module has finite homological dimension if and only if Hi is corecurrent.
Proof: This is theorem 2 with 5{ the class of modules which have finite

homological dimension. See [7, VII.1l] noting exercise 3 on page 204. (J

Corollary 3 may also be stated when $f= modules with finite 7/-height
and when .Q(: finite modules (although the latter is also clear from 3.4).
The duals of these theorems are also of some interest. We state the dual of

corocllary 3:

5 COROLLARY: Let R be an arbitrary ring and let Hi : I — Y be R-linear
where Y is an injective Artinian R-module. Then Hi has a realization with

an Artinian state-module if and only if Hi is recurrent. O
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ABSTRACT

For the Hankel matrix of an adjoint system, the image of
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1. Motivation

If B: I—0Q, A:Q—Q, C:Q—Y is a reachable and
observable linear system, let Qg, for J, S non-empty subsets of the set 7]
of natural numbers, be the image of the partial Hankel matrix (CA1+JB :

. . . . S J .

ie€e8S, je€J) considered as a linear map from I to Y . Thus dg is the
set of states reachable by inputs applied at times in S, and then Qg is
obtained by merging those states that are indistinguishable by observations
made at times in J. Hence, given T, K finite subsets of 7, with S ¢ T and

J ©€ K there is an obvious commutative diagram

o > >0
T 7 > Xy

T>
N 7
%
where — denotes a projection whereas > denotes an injection which £fills
in unused slots with zeroes. Thus each Qg‘is a 'subquotient' of Q, that is,
is a subobject of a quotient object of Q. The diagram above is used to
motivate the definition of a partial order on the set of subquotients of an
object in a category. The main abstract result is that, replacing the CAi+jB
by a much more general bisequence of morphisms, the passage (J,S) H~ Qg
preserves countable suprema. In particular, the theorem applies to the
Hankel matrix of any adjoint system [2, 3] with projective input object.
Recall that a sequence v in V is defined by simple recursion if
v, = gn(vo) for some g : Vv — V. The ascending chain span(B,AB,...,AnB)

of reachability subspaces of a linear system is defined by simple recursion:
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let V be the set of subspaces of Q and set g(S) = span(S u A(S)); More
generally, the ascending chain of reachability subobjects of the state object
(and, dually, the ascending chain of observability quotient objects of the
state object) of any adjoint system is defined by simple recursion [2, 4.4].
Examples abound to show that for the bisequence Qg of a linear system, none

of the sequences

Qg (fixed S)
Qg (£ixed J)
:

(wvhere n = {1,...,n}) need be defined by simple recursion. 1In particular,

n n+l . N+l n+2 . .
Qﬁ = QH:T does not imply QH¢I = Qﬁif (as is well known in the study of

partial realizations). This paper, then, was motivated by the desire to find

a more positive result for Qg.
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2. Generalities

Let J¢ be a category and let (£477) be an image factorization system
in K, that is, f?,72 are subclasses of morphisms satisfying the following
four axioms:

IFS1. ¢ and /] are each closed under composition.

IFS2. Every isomorphism is both in £ and in 77.

IFS3. Every element of 2; is an epimorphism and every element of 7& is
a monomorphism. (A map f:R —- S is an epimorphism if whenever
g, h : § — T satisfy gf = hf, then g = h; dually, f is a monomorphism
if whenever a, b : Q — R satisfy fa = fb then a = b.)

IFs4. Every morphism £ :Q —* R admits an ¢f-7ﬂ factorization (e,m) --
that is, f=me withe ¢£ , m €/ -- and such factorizations are unique
up to isomorphism in the sense that if (e',m') is another one then there

exists a unique isomorphism ¢ with Ve = e' and m'y = m.

The category of sets and the category of modules over a ring both have
A ¢ = surjections and '27 = injections as unique image factorization system.
For the theory of image factorization systems see [5, 3.4}. We record two
general lemmas here. The first is standard. The second, pointed out to us

by J. R. Isbell, improves [5, 3.4.14].

fir=

DIAGONAL FILL-IN LEMMA: The following two statements about a morphism

e : Q —> R are equivalent.

(i) ec E.

(ii) For every commutative square ge = mf with m ¢ 7,
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Q /;R
P
f v_~ g
”~
s X >T
m
there exists unique Y with Ye = £ and mp = gq. ]

Recall that, given f, g : U — V, their coequalizer is a morphism
h : V— W such that hf = hg, and such that whenever h'f = h'g there

exists unique ¥ with ¢h = h'.

£
U >V b > W
/
g 7/
h! g
K
w'

The category K has coequalizers if every pair £, g has a coequalizer. See
[1, pp. 20, 34] and [4, pp. 64-65]. The category of modules over a ring has
coequalizers -- let h be the canonical projection to the cokernel of £ - g.
The category of sets has coequalizers ~-- let h be the canonical projection

to V/R where R is the smallest equivalence relation containing

{(£(x),g(x)) | x € U}.

2 LEMMA: If h is the coequalizer of some £, g then h € §, .

Proof: We use lemma 1. Consider the diagram shown where ma = bh and

£
u TV b > W
”
g -~
P
a Y.~ b
/”
A% > B

m

m e 7%. Since m is a monomorphism af = ag and the desired y is induced by

the coequalizer property. O

v
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2.3

Let Q be an object of K. The set of all pairs (R,m) with
m: R~—Q in 77 admits a reflexive and transitive order by defining

(R,m) £ (R',m') if there exists § with m'y = m

(note that such ¥ is necessarily unique and is itself in M). Thus
(R,m) ~ (R',m') if (R,m) < (R',m') and (R',m') £ (R,m) is an equivalence
relation whose equivalence classes [R,m] are the subobjects of Q.
[R,m] £ [R',m'] if (R,m) £ (R',m') is a well-defined partial order on the
subobjects of Q. It is easily seen that [R,m] = [R',m'] if and only if
there exists an isomorphism § with m'y = m. Q is Noetherian if every
strictly ascending chain of subobjects of Q is finite.

The dual concepts relative to ﬁC are formulated by repeating the
above definitions in the dual category j(?p. Thus, the ordering on quotient

objects of Q is described by

R e
?\ [R,el < [R',e']
é.A”/;T” “eel

(Note that we reverse the arrows, but not the ordering.) We say Q is
Artinian if Q is co-Noetherian, that is, if every strictly ascending chain
of quotient objects of Q is finite. Facts about Noetherian and Artinian
objects appear in [2, 3].

We assume that every countable family Qi of objects of X has a
product pry, : TTQi ———*-Qk and a coproduct ink : Qk‘———+ llQi [, 1.21,

{4, III.3, III.4). Hence there are bijective correspondences
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pr.

i
K "k
TToy >0 O — 1o,
‘E?\\\ ///1%:' \;:\\\ ‘{///;/
0 0

between morphisms f and families fi as shown in the diagram. An immediate

consequence is the

3 BI-INDEX PRINCIPLE: If (Q :ice I, (Rj : j e J) and fi : Q ———»-Rj
then, so long as the coproduct and product exist, there exists a unique

morphism £ : llgi ————+-TTkj such that prj £ ini

= fg for all i, j.
Proof: Define fJ : llQi —_ Rj by £ in, = fg and then define f by

pr, £ £). Uniqueness is left as an exercise. 0
An object Q is projective if each diagram of the form

R-———e—»s

may be completed (not necessarily uniquely) as shown. Clearly, a coproduct
of projective objects is projective. In the category of sets all objects
are projective. In the category of modules over a ring, every free module

is projective.
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3.8 ient

Fix an object Q. Consider (R,m,S,e) where

R>2 s g 0

Motivated by the diagram of section 1, say that (R,m,S,e) < (R, m', S, e')

if there exists a commutative diagram

|

ml

U
>

Y

L/ Q

A
pN

R
An equivalent way to say this is that [S,e] < [S',e'] as quotient objects
of Q and that [R,m] is contained in the image of R' — S§' — S. It is

clear that < is reflexive. We also have

1 LEMMA: < is transitive.
Proof: Suppose that (R,m,S,e) < (R, m' S',e') < (R", m" S",e"). This is

expressed in the diagram

where Il—-—H I, >—*s is obtained by E-m factorization of a'm, and

where I2 >e=- 13 is then obtained by diagonal fill-in, Lemma 2.1. But
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this shows that (R,m,S,e) < (R",m",S", e"). (]

2 DEFINITION: A subquotient object of Q is an antisymmetry class [R,m,S,e]
arising from the reflexive and transitive order above. The subgquotients of
Q are partially ordered by I[R,m,S,e] < [R',m',S" e']l] if (R,m,S,e) <

(R',m', S', e'). The following result shows that the ordering relation is not

"too abstract".

3 OBSERVATION: [R,m,S,e] = [R',m',S' e']l if and only if there exist iso-

morphisms o and B as shown.

Rh_m_:jw\e
' red

Proof: If [S,e] = [S',e'] as quotient objects of Q then a is an isomorphism.

B Q

R' > s’

But then [R,m] = [R', a-lm'] as subobjects of S so that B is an isomorphism. [

4 PROPOSITION: Consider the two conditions
(i) Every strictly ascending chain qf subquotient objects of Q is finite.
(ii) Q is Noetherian and Artinian.
Then (i) => (ii). If € is closed under inverse images [3, 4.2] then
(ii) ==> (i).
Proof: If [Ri'mi] is a strictly ascending chain of subobjects then [Ri,mi,Q,id]
is a strictly ascending chain of subquotient objects. If [Sj'ej] is a strictly
ascending chain of quotient objects then [Sj,id,Sj,ej] is a strictly ascending
chain of subquotient objects. Conversely, if [Rh'mn'sn'en] is a strictly
ascending chain of subquotients then, as Q is Artinian, we eventually have
[Sn'en] = [Sn+1’en+1] = ... and [Rh+k'mn+k] is an ascending chain of sub~
objects of Sn' Now use [3, 4.3) which asserts that 'Noetherian' is closed

under quotients providing € is closed under inverse images. 0
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3 COROLLARY: In the category of modules over a ring, a module is Noetherian
and Artinian if and only if its every strictly ascending chain of its sub-

quotients is finite. : 0



4. ia ac
We consider an arbitrary bisequence fi : Pi —_— Rj’ j being just a

superscript.

1l  For each pair (S,J) of non-empty subsets of 7] define
pg = [P, : ies)

RJ='|T(RJ. i § e J)

J J . . . . . .

fS : PS — R is defined, using the bi-index principle 2.3, by
J . _ \ .

prj fS in; = fi (Les, jed.

2 Pairs of non-empty subsets of 'n, constitute a partially ordered set
with ordering (S,J) £ (T,K) if Sc T and J € K. If (S,J) < (T,K)
weé have a commutative diagram

K
£
T K
PT » R
in fJ rKJ
ST T p
N T
PS fJ »R
S
where in__ in, = in, (i € S) and pr, erJ =pr, (j e J). The
; ST i i ] J
diagram commutes by the bi-index principle.
. J
3 . . .
3 Fix an €-W factorization of £ s
eJ mJ
S J S J
—_— >———>R" .
Ps QS R
4 Diagonal fill-in on the diagram of (2) yields

4.1




eX m
T K T K
P >0 > » R
T 7 ~T
4 er | K
* T
in J rKJ
ST QT mJ P
| E; }
ST k Y
Ps J 0 2 3 >R
S S
S Whenever (S,J) < (T,K) we have
m§ .
K_ N . K nK
7 Q> > S “n
KJ KJ _ Q’;:
eT m; en Q=
J " J nI
QTI g Qn en
mJ mJ
ST J sn
QS

This diagram recaptures that of section 1. Here Q abbreviates Q’,}{ .
Thus Qs is a subquotient object of Q (we use Qg qua subquotient object
for the more cumbersome [Qg, mgn, Q‘,]V e’,lLJ]) and the passage from (S,J)

to Q‘; is order-preserving.

6 DEFINITION: Let A, B be non-empty subsets of . (A,B) is biadequate

if . (A,B) £ (S,7) implies Qi = Qg. By 3.3, Q: = Q'; if and only if ey,
eK':r and mJ are isomorphisms '
T ST P :
The following result is immediate from [2, 3.12) applied to the passage
S
S — Q-
1 THEOREM: Let i = {0,...,i}. Define A={i e | i =0 or QEII < Q-i}.
Then (A,A) is biadequate. 0

We now turn to the main result of this paper.
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8 THEOREM: In the context of (1) - (5), assume that Pi is projective for
all i e 7Z and assume that JZ has coequalizers. Then the passage from (S,J)
to the subgquotient object Qg of Q preserves suprema of non-empty countable
families.

Proof: Let Sa' J, be non-empty countable families of non-empty subsets

8
of 7 and set S = Usa' J = UJB. We must show that Qg is the supremum, in
the partially ordered set of subquotient objects of Q, of the QB

(we will
o

use the subscript a for Sa and the superscript B for J,). That Qg is an

B

upper bound follows from (5). Now let (F,m,G,e) be another upper bound, and

consider the diagram shown. To explain the diagram, we first apply the dual

m
F >—
\I

-7

/’

4r/ Y

Y\

J
o
1
B
87”/”)r
Q>
J

of [2, lemma 3.9] to the singly-indexed sequence £j : Q —+ R to conclude

/

that Qz is the supremum of the QS as quotient objects of Q. This is why G

factors through Qi. Let I be the image of F — Q;’ and then let IB be the

image of the various I —> QB. Then I, is the image of F ——+'Qi so that,

B
J
by hypothesis, QS factors through IB for all o and B. We must show that QS

factors through I. The argument is outlined in the second diagram. The

desired factorization Qg — 1 is constructed by diagonal fill-in.
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W J
e, = O
S /
A \\w‘ P
=~ o //
/7
in /)’& /
o v ¥ J
/a/ 7 I>—— Q)
: JB
d B B
Pa_—»'Q b IB>——-—>. Q
This breaks down into three steps: (i) defining w ¢ £; (ii) defining y;

(iii) proving that the two maps t = J_l_PaA—-)- F — Q;IL and

us=|lp — Qg — Qi are equal.

Step (i). Define 6 : -U-Pa. —rPS by 6 in, = in Then 6 ¢ £. To

oS’

prove it use 2.1 and the fact that S is the union of the Sa; proof details

(with the same notations) appear in [2, proof of lemma 3.9]. Then o = eg 6 :

J
_I_]_Pa——++Ps-—-r-+QS e £.
Step (ii). Any coproduct of projectives is again projective, so each Pa‘

is projective. Thus there exist tpa and hence ¥ as shown.

B . __B B _ JB .
t 1na = man ea = ey t 1na
for all a and B. By the coproduct property it follows that e;TvB t e‘,]‘B u

Step (iii). It is routinely checked that e;-{

for all B. From this we conclude that t = u as follows. Let h : Q;Tt e ol |
be the coequalizer of t and u. Then h ¢ £ by 2.2. Thus, as a quotient

object of Q, Q% 2 W. On the other hand, e%e factors through h because

e',J)B t= e%e u and h is the coequalizer of t and u, so that W 2 Q,Bz for
each B. But as Q;‘; is the supremum of the Q,BL, Qf» =W and h is an isomorphism.
Since th = uh we have t = thh T = uhh ! = u. O

As a corollary, we obtain:



9 THEOREM: If (A,B) is 'one-step biadequate' in the sense that

B Bu{j}

=

B . . . .
QAu{i} = QA ~ for all i, j € 7] then (A,B) is biadequate.

Proof: If (A,B) < (S,J) then (S,J) = sup{lau{i}, Bu{j} | ies, jeda}. O
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