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ABSTRACT

Motivated by the way in which the recursive definition of the responsc
of a generalized sequential machine is intertwined with that of the reach-

ability map, we introduce an intertwined recursion principle valid for any

endofunctor that admits free dynamics. This allows us to extend the Arbib-

Manes definition of a machine in a category to that of a process transformation

which transforms input processes to output processes. This formalization
includes primitive recursion, generalized sequential machines, bottom-up
tree transformations, and a generalized notion of linear systems which
treats the initial state and input on a symmetric footing. We analyze the
behavior of loop-free networks of process transformations, and pose open

questions concerning the products of endofunctors.

1 This research was supported in part by National Science I’'oundation
grant MCS 76-84477.



l. Introduction

There are two main approaches to the category-theoretic formulation of

systems. The closed-category approach (see, e.g., Goguen [1972] and Ehrig

et al. [1974]) takes as its setting a closed category K with denumerable
coproducts, and takes the state-space Q, output-space Y and input-space XO

of a system to be objects of K. A dynamics is then a morphism
(1) 6:Q®x0—»y

while the output map of the system is another morphism

(2) A:Q®xo—~—>v.

* *
The advantage of this approach is that we can readily dofine XO and YO as

the coproduct of n-fold tensor products, n = 0, of xo and YO respectively,

. * *
and then extend (6, A) to a response morphism Xo ——+-Y0. The disadvantage

of this approach is its limited applicability: it includes sequential
machines and bilinear machines, but does not include linear systems and
tree automata.

The recursion-process approach1 (see, e.qg., Arbib and Manes [1974a];

and see Bainbridge [1973] for a related approach) takes as its setting any
cateqory XK. takes the state-space Q and output-space Y to be objects of K,
and takes the input X to be a functor X : K —= & which is a recursion
procesé in the sense of Definition 2 of Section 2 below. A dynamics is

then a morphism

(3) § : QX —0Q

1 Elsewhere called the input-process approach. The reason for the

renaming is given at the start of Section 2.



while the output map of the system is another morphism
(4) B : 0X — Y.

An initial statemap T : A — Q extends! to a reachability map
@ . . . 4 A
r : AX — Q (and, taking X = —Q® X0 in a suitable , this includes
! *
the definition r : A ® XO —— Q of the closed-category approach).

However, the disadvantage of this approach is its asymmetry of trea:ment of

. * . « .
input and output -- Y has no analogue of Yo in the way that X  provides an
*
analogue of xo. In particular, we have no definition of a response map of
@ @

a form AX — BY for a system represented by (3) and (4). However, the
advantages of the approach are considerable. It not only handles sequential
machines and bilinear machines, but also includes linear machines, tree
automata and many others (see, e.g., Arbib and Manes [1975b]). Can we, then,
prescrve these advantages yet also provide the analogue of the response map

* *
X —-» Y_.? Our observation above that a suitable analogue might be of the

0 0

form Ax@-——+ BY@ provides the key to the answer -- input and output must
be treated on an equal footing, with both X and Y being recursion processes.
An elegant analysis along these lines was provided by Alagié [1975], who,

motivated by the way in which the dynamics and output map of a generalized

sequential machine are captured in a single map

(5) Q X X, —— ¥y % Q

offered the general concept of a direct state transformation which took

(a generalization2 of) the form of a natural transformation3

1 We explain how -- and define X@ -— in Definition 2.2.
2 Basically, replacing Y@ by the T of any algebraic theory.

3 The reader unfamiliar with natural transformations will find an
exposition in Section 3 below.



(6) ox — v%

where X and Y are recursion processes and Q is now a functor. A major moti-
vation for Alagié's paper was the study of tree transformations, and he showed
that (6) subsumed the bottom-up tree transformations of Engelfriet [1975]

and the generalizedz sequential machines of Thatcher [1970]. Alagié also

defined inverse state transformations to be natural transformations of the

form
(7) X9 — o¥®
where X and Y are again recursion processes, and the state-functor 5 is now
required to have a right adjoint. Alagié shows that this notion subsumes
top~-down tree transformations. He proves a number of interesting results
about these transformations, including the result (stated atop p. 299 as
part of his proof of Theorem 3.10) that to every inverse state transformation
on a free monad there corresponds a pure direct state transformation on a
free monad (the reader is referred to Alagié [1975] for the definitions of
this terminology) .

But the Alagié approach has one flaw: because Q is a functor rather
than an object, the state is 'entangled' with the input and output, so that

'running’' the direct state transformation (6) yields
- @ -
(8) QX — Y@Q

but there seems no general way to introduce objects A and B in such a way
that we can extract from (8) a 'state-free' input-output response

(N AX@ — BY@

as a suitable generalization of the f = Ber : Ax@ — Y available for

machines described by (3) and (4). Our major contribution, then, is to show

that the benefits of the Alagié approach can be obtained in any category with



binary products, and that we can once more use a state-object Q, with
Alagié's state-functor é restricted to the special form é = —x Q. In this
case, the direct state transformation QX — Y@Q unpacks into a dynamics
QX — Q together with a natural transformation éx — Y@. These two maps
are at the heart of the notion of a process transformation which we develop
in this paper. While these two maps may be seen as a specialization of
Alagié's machinery, the research reported here required delicate analysis to

reveal the proper way of handling A and B to yield a response of the form (9).

Oour development is based on an intertwined recursion principle which makes

explicit how the ({efinition of the response (9) of a process transformation
is‘intertwined with the definition of an appropriate reachability map

r : Ax@ —*~ Q. We show that our notion of a process transformation not
énly covers all the specific applications which Alagié provided for his
direct state transformations, but also includes primitive recursion, and
provides an insightful analysis of linear systems which shows that input
and initial state may be treated on a surprisingly symmetric basis when
considering reachability, but that this symmetry is lost when we consider
the response Ax@<——+ BY@.

Apart from some basic familiarity with the notion of a recursion process
and the necessary elements of category theory, the paper is self-contained.
In particular, no use is made of the results from Alagié [1975]. Where
Alagié offers an analysis of serial composition of state transformations, we

offer an analysis of cascade connection of process transformations, which

includes both serial and parallel connections.



2. The Intertwined Recursion Principle

In earlier papers (see, e.g., Arbib and Manes [1974a]) we have studied
the category Dyn(X) of X-dynamics for endofunctors X : 5&-——+JC, and seen

that ‘'running a dynamics' corresponds to X being a recursion process. (We

have used the term input process in earlier papers, but abandon it now since,
in this paper, we consider systems whose outputs, as well as inputs, are

recursion processes.)

1. DEFINITION: Let X : & — XK be any endofunctor. an X-dynamics is a
pair (Q,8) where Q is an object and & : QX — Q is a morphism in XK.

Given two X-dynamics (Q,68), (Q',6'), a morphism h : Q — Q' is an

X-dynamorphism if

)
X ———>0

hxl ) ih

QIX _'——_"Q'

We obtain a category Dyn(X) with composition and identities at the level of JC.

2.. DEFINITION: We say that X : jk-——+J% is a recursion process if there

exists a free dynamics (Ax@,AuO) over each object A in Jt; i.e. (Ax@,Auo) is

coupled with a morphism An : A — Ax@ with the universal property that

lor every other pair of an X-dynamics (0,d8) and morphism 1t : A —* Q there
@

exists a unique X-dynamorphism r : (AX ,Auo)-——+ (Q,6) such that x+An = t.

i.e. given T and §

Ap

(3) A An >;Ax@< 0 AX@X
| I
Iy lrx
T | |
s ¥
Q0 < 10).¢

there exists & unique r such that (3) commutes.



It can be easily shown that x@

in (3) is the object map of a functor
@ . . . .
X :50——*-}9. As an application of this we note that each recursion

process yields a family of maps

Ap AX@X@ —_— AX@

defined by the diagram

(4) Ax@ Ax@ n > Ax@x@ - Ax©uo AX@X@X
:
idAx@ : Ap ApX
:X@qL Auo AX@X

We now show that (3) includes the classical scheme of simple recursion.
Let be the set of natural numbers, let A, B be sets, and let o : A — B,

I': B—* B be maps. Then the scheme

a(a)

Y (a,0)

I'(y(a,n))

v(a,n+l)

defines a unique function Yy : A x N — B. We say that vy is defined by

simple recursion from a and T'. Now this yields the diagram

0 id_xs
(5) A A

Y
>

-4
4
>

o]
w+——x
< ,
~-3
0 g——— X
-

4

where s : N—+ N, n+ ntl is the successor function, OA: A-—AxN, a > (a,0)
is the zero function. I.e. given @ and T, there is a unique Yy such that (5)
commutes. (It is well known (Lawvere ([1964], Freyd [1972, prop. 5.22]) that
any natural numbers object N in a topos satisfies the property.) We now

observe that (5) is the special case of (3) obtained by setting

=

2

et, X =id

i

Set

where we then have that



@ .
= X = X = -
AX A N, Auo ldh s, An 0A

We now turn to Mealy sequential machines, and see that the definition
of the reachability map is again an instance of (3), but that the definition
of the response map requires an extension of (3) which -- motivated by the
above discussion of the simple recursion principle -- we shall call the

intertwined recursion principle.

6. DEFINITION: Given sets A, B, Xo, YO a Mealy sequential machine

M: (A, X)) — (B,YO) is a quadruple M = (Q,8,T1,a,A) with

§ : 0 x X — Q0

0
T : A—Q

a : A—B

AsQox Xy Y

(A, the set of 'initial state label’s', is usually taken to contain only one
element a, say, so that Tt(a) = 9 is the initial state. When A and B eacq

have only one element, o may be omitted.) By a generalized sequential

machine M: (A,XO) ——*-(B,YO) we mean M = (Q,6,71,0,A) with §, T as above

but with
*
u:A-——*BXYO
*
AsQ X X o=+ Y,
where Y; is the free monoid generated by YO. Regarding YO as a subset of Y;,

each Mealy sequential machine is also a generalized sequential machine.

7.. DEFINITION: Let M = (Q,8,7,0,3): (A,X)) — (B,Y,) Dbe a generalized se-

. 3 . . *
quential machine. Then the reachability map r: A><X0 — 0 is defined by

(8) Basis Step: r(a,A) = t(a) (A the empty word)

*
Induction Step: r(a,wx) = 8(r(w),x) (w e XO, X € XO)



* *

The response map y : A X xo —* B X YO is defined by

(9) Basis Step: y(a,A) = af(a)
*
Induction Step: ¥Y(a,wx) = y(a,w)*A(r(a,w),x) (w ¢ xO' X € XOJ

*
where * is the concatenation of YO.

We see that (8) may be rewritten

10) An * O *
B ——— X - X X
( A A Xo A XO XO
> l r r X Xo
0 -« 0 QxX

which is clearly the special case of (3) obtained by taking
X = set, X = — x xo

where we then have that

AX@ = A X x*, Auo(a,w,x) = (a,wx), Anf{(a) = (a,N).

0]

*

* *
Incidentally, note that in this case the concatenation A X XO x x0 ——= A X xo,

(a,w,v) » (a,w+v) is just the Ap : AX@X@ — AX@ of (4).

Now, (9) requires a 'recursion' that is 'intertwined' in the sense that
the induction step requires that the previous step of r, as well as that of v,
be available. Diagrammatically, (9) becomes

Ap
An * 0 *
——— 3 X
(11) A A X XO A X XO Xo

Y

* r

B x Y0-4——————————- (B xY, xQ) xX

2
O ef——
—~
" =<
L —
x
<
o]

0
-Y * *
where ol A X Xo — (B % Y, X Q) : (a,w) v (y(a,w), r(a,w))

and T(b,v,q,x) = (b,v*A(q,x))

so that the square says
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y(a,wx) = T(y(a,w), r(o,w), x) = y(a,w)*A(r(a,w),x).

Just as (10) was a special case of (3), so may we see that (11) is a special

case of (13) below:

12.. THE INTERTWINED RECURSION PRINCIPLE: Let X be a category with binary
products, and let X :36-——*JC be a recursion process. Then, given
T:A—Q, 6 :0k—+9Q, a:A—K and T : (K x Q)X —> K there

exists a unique vy : Ax@ — K such that, with the r : AX@ — 0 defined

by T and § as in (3) we have

. Ap
(13) A An__ o ax%« 0 ax%x
v
a * [1)x
K -« r (Kx Q)X

We say that y is defined from o and I' by intertwined recursion with r.

Proof: Given I' and § we may define the X-dynamics

r
[6-pr X] : (KX Q)X — K X Q
2
which then lets us apply (3) in the form
Ap
(14) A A0 ax%e 0 ax%
|
7 [4x
a lr r
NG
K x Q =€ [ T (K ¥ Q)X
o)
pr2X
@ = Q

to develop a unique pair (y : AX —> K, r : AX — Q). Via the

projections Q +— Q x K —> K, (14) is equivalent to (15) and (16):

(15) A An__ . ax®e AX X

r rx

Q « [0):4
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A
(16) A—An o axCe 0 AX X
Y
| b
K = - (K X Q) X

Comparing (14) and (3) we see that, by unigueness, r = r so that (15)
is just (13). Now if Y' also satisfies (13), we have that (15) and (16)
r

- [ ]
hold with r =r, ¥y = y' so that (14) holds, yielding [:] = [Y] and

hence vy = y'. ]

Just as we saw that simple recursion (5) was a special case of the
recursion process setting (3), so we now see that the classical notion of
primitive recursion is a special case of intertwined recursion of (13).

Given a: A—> K and T: KXAXxXN, we say that y: AXN — K is obtained

from @ and y by primitive recursion if it is defined by

a(a)

[}

Y(a,0)

Y (a,n+l) r(y(a,n),a,n).

But this is equivalent to the diagram

o) id_xs
(17) A—2> o aAxy A AxXN
Y
v [,
o I ldAx_
K -« ! Kx (AxN)
which corresponds to (13) with XK= set, X = ids where we then have,

as in (5), that
@ s
AX = AXN, An =0, Ap_ = 1dAXs .
Finally, we take our underlying dynamics to be the free dynamics over A, i.e.

Q=AxXN with T = 0,: A —>AXN, 6=idA><s

which has reachability map r = id .
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In 2.12, we established the intertwined recursion principle, namely

that to each 1: A —-Q, &8: X — Q, o©: A —+ K and T: (KxQ)X — K

. . G
we can assign a unique 'response' vY: AX —* K

Al
(1) A AN axle 0 ax®x
Y
a ly [I]X
K -¢ r (KxQ)Xx

where r: Ax@ — Q 1is the reachability map of (1,68). As a special case of

this, we saw in 2.11 that we had the response of a generalized sequential

machine
Ap
An . U * 0 *
e ———— X - X X
(2) A A Xo A X0 x0
. : Y x
* l" ( *
- X X X
BxY BxY,xQ) xX
where T now takes the special form
* A
Bxy x
* 0 * * B X concatenation *
X — B X X —
B YOXQXXO B Yo YO BXY0
If we introduce the functors 6_ =—=%xQ, X=—xX and Y = —xY_, this

0 0
takes the form (recall 2.4 and the comment following 2.10)

@
(3) pylox —BY B | @@ __Bu @

where B: KOX —> KY@ : (keqg,x) » (k,2(q,x)) 1is a natural transformation.

This immediately suggests the notion of pfocess transformation given in

(12) below as the appropriate categorical generalization of a generalized
sequential machine. However, for completeness, we first give a brief treat-

ment of natural transformations, and of functors of the form é = —xQ.
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4. DEFINITION: A natural transformation T: F —* G of functors

F,G:  — B is an assignment of a P-worphism Al: AF — AG for each
object A of A in such a way that for each of-morphism f: A —»= A' the

square in (5)

(5) A AF Al - AG
fl fpl l e
A’ A'F -—-—-A—-F———PA'G

commutes. Each such square is called a naturality square.

As an important example of natural transformations, we state, without

proof, the following well-known fact:

A @ e, ™ @
6. FACT: If we fix a choice of A —20 , Ax° and AX X ——* AX in

2.3 for each object A in j(r, we obtain a pair of natural transformations

n: ldx — X@
U.: X@X — X@
0
Moreover, the Au: Ax@x@ —_ Ax@ of 2.4 define a natural transformation
Q
u: X@X@ —_— XL. i1

TORS: Let 4% be a category with binary products and a

2. .OBJECTS AS FU

e

terminal object 1. Given f: A —* B, g: A' — B', we define

£xg: AxA' —> BxB' by

pr pr
A - 1 AxA' 2 > A'
]
|
£ 1 £xg lg
¥
B —€— B xB' = —-»>- B'
pr, pr,

In particular, each object Q of % induces a functor 0: Kk — X Dby

ad) = axQ, £0= fxidQ :
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pr
A - 1 AXQ
) pr
fl £0 2
B« BxQ -5 Q
pr, pr,

As part of the theory of monoidal categories (Mac Lane [1972, III.5,
VII.1]) there are canonical isomorphisms (AXxB) XC & Ax (BxC),
1xA =A=Ax1 which may be recast in the form

A A

(8) ABC

i

aA(BxC)”

~ ~

1A

14
Y

e
>

=

Thus the representation A w» A converts x into functorial composition.
9. DEFINITION: Given two functors F,(: ..1(,--*.{, . where z is a category
with binary products, we define the functor T xG: 5(, —+0 by

A(F xG) AF X AG

£f(F xG) fF x fG.

Motivated by the observation that led to (3) above, we now verify:

10. PROPOSITION: Let % be a category with binary products and a terminal
object 1. Let @, Xo, YO be objects of X . Then there exists a canonical
injection from morphisms

At QXXO — Y

0
to natural transformations
B: X, — ¥,
given by
id_x A
11 AB: A0X = A x —_— > av .
(11) B Aon A (Qxxo) AYO

Proof: To see that (11) describes a natural transformation, we must verify

commutativity of the outer rectangle of
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" id, x )
= X X S *
A AOX ) = A X (QXX) > AY
f £0X f x id f x id
0 QXX Y,
B BQx0=Bx(Qxxo) ide)\ > BY

But this is immediate since the canonical isomorphism Aéio = A><(Q=<x0)
renders the left-hand square commutative.

Finally, A is determined by its 8 since A equals

QxX, = 1@)‘:0-:- 1x (QxX) _daxA 48

Ik
a3
.

0 0

As a corollary of Theorem 4, which we establish in the next section,

Ar B is bijective when dC = Set. However, for 7C== ect, given

A': 00 X, — X the transformation

o’
B: éﬁo — ?o with AB(a,q,x) = (-a,A(q,x))

is natural but is not induced by any A in the fashion of (11).

With these preliminaries, we may now build on the motivation of (1),
(2) and (3) to give the promised definition of a process transformation.
The passage from the map Az Q><x0 ——+-Y0 to a natural transformation will
come to seem far less artificial when we turn to the serial composition of

process transformations in Section 5.

12. DEFINITION: Let A, B be objects of %, and let X, Y be recursion

processes in ﬁo. A restricted process transformation M: (&,X) —* (B,Y)

in K is M= (Q,6,1,u,8) where

(0,8) is an xX-dynamics, the state dynamics

t: A— Q is the initial state

a: A —> B is the initial throughput

B: éx —+ Y is a natural transformation, the output transformation.

.
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A process transformation M: (A,X) — (B,Y) in % is M = (9,6,1,a,B)

where (Q,8) and T are as above, but o, B are generalized to

o A—*BY@

B: Qx——+Y@

A restricted process transformation induces a process transformation

M= (0,8,7,0,B) by defining

(13) A—2 o QX—B——>Y
\\ S
PN Bn é\‘\ p
AN
e , N @
Any G] Au0 @

where p is the natural transformation defined by AY ———— AY Y ———— AY .
In this sense, a restricted process transformation 'is' a process transfor-
mation.

Recalling (1), (2) and (3) we have:

14, DEEINITION: Let M = (Q,6,t,2,B) : (A,X) — (B,Y) be a process

transformation in X . The response of M is the morphism y: AX — B!{@1

defined by the intertwined recursion
Ay

A A axle ° ax®x
o Y [I] X
py® ~— BY@Y@+—-6— (y® x )X
BY B

with r the reachability map AX@-~* Q of (t,6).

For a restricted process transformation M = (Q,G,T;a,B) the response
is defined to be that of the corresponding M and so, by (13), is given by
the diagram (14), on noting that

Bu-sy@é = Bu-BY@p'BY@B = By O'BY@L’.
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Ap
(15) A An_ . axle 0 ax®x
y
a Y [r]X
B B ~p BY@4 5 BY@Y 4————@-——- (BY@ x Q)X
n Yo BY B

EMMA: Let M: (A,X) — (B,Y) be a process transformation (Q,6,t,a,F)

ot
(o}

and let M': (A,X) — (A,Y) be obtained from M by replacing a by

An: A -—*-AY@. Let a be defined by

Au
A
A n > v e 0 av®y
a 1 ay
a Bl
By < 0 Y%y

Then the responses y of M and Y' of M' are related by
y=a-+y': AX@——*BY@

so that we have

(a,Y)

M #E}———v(B,Y)

=
|

>

o)

has response Yy = a-*y'.

Proof: On noting that & satisfies a-Ap = Bp-aY, and that M and M' have

the same reachability map r, we see that Yy is defined as a*y' by the diagram:

X Au
A An > axle 0 ax%x
Y
an '
g ME
Q @’f
ay®
a Ayl BU avly «——2Y B (AY" x Q)X
P oy l 20X
@ eV -
BY@% BuU BY@Y - BY B (BY X Q) X [ ]



is

*
In the classical study of monoids, any map f: xo — Y0 extends to

* * *
a homomorphism £ : xo — YO by the inductive definition

*
£ (A) A

*

* *
f (wx) f (w) £(x) for we X, x € X.

1]

*
This reveals £ as the response of l-state generalized sequential machine

with T=oa=1id

1l
*
§: 1xx0—+1 which extends to the unique r: 1xX —r1
* *
B: 1xX —rY = f: X —Y_ .

(0] 0 o 0
This motivates the followingAresult, which (apart from the interpretation

in terms of process transformations) is a version of a well-known construction
concerning morphisms of algebraic theories [Manes, 1976]:
17. LEMMA: Let X be a category with a terminal object 1, let X and Y be
recursion processes in ¥, and let' f: X — Y@ be a natural transformation.
We may then define a process transformation (A,X) — (A,Y) by

o = idA: A —> A

T: A — 1

6: 1Xx — 1 which extends to the unique r: 1X@ — 1

B: ix——»y@ = f: X—'—Y@

the response Af@: Ax@ —_ AY@ of which is defined by the X-dynamorphic

extension

X
X Ay
A —20 o ax® e 0 ax®x
Y l"f@ 1 ar®x
An
AY@-A—Y-— av%y® < 5 ay®x
Au AY f

@ e .
Then f : x@ —> Y is a natural transformation.
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al
Proof: For a: A — B, we must show that Bf@'ax@ = aY@'Af(. We do this

by observing from the following that both are induced as X-dynamorphisms by

the same specifications.

X
(18) A BN > AX ot ™o ax%x
al ax@ X l ax@x
B Bn o ex%< o BxCx
> ps® l BESX
. By e : av®y% 5 By®x
By BY £

. X X .
commutes since n and u are well-known to be natural transformations.

0
Again,
X
(19) A an’ > ax’ ™o ax%x
N lAf@ , . l aex
a ) avle A ar®yCe BY S ay®x
l ay® l ay®y l av®x
;; Bn > B« Bu py&yCe By’ py®x

20. COROLLARY: The 'memoryless code' a: A —* B, f: X ——*-Y@

(A, X}l @/ (B, Y)

viewed as the process transformation (a/f): (A,X) — (B,Y):
(0, 8:1Xx—1, t:A—1, a: A—+B, f: X —+-Y@) has response

e,_.@8 e @ 0

Bf *aX = aYy °*Af .
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4. . Txee Transformations

In this section, we shall show that bottom-up tree transformations form
a special case of process transformations, and then provide a Yoneda-type
lemma which provides further motivation for the introduction of the natural

transformation B: 0x —- @,

1. DEFINITION: An operator domain Q is a sequence (Qn | neN) of (possibly

empty) disjoint sets. An Q-algebra is a pair (Q,6) where Q is a set and
§ = (Gn) is a sequence of maps Gn: Qn><9n —+ Q. We write Gm for

6(— w): Qn —+ Q for w e Qn. Q is the carrier of the algebra.

Civen !, we define a functor Xo: Set —* Set by

'} n
(2) ox = O x Q
@ n=20 n
while, for Q — Q'
(3) hxg(ql,...,qn,w) = (hql,...,hqn,w).

We now observe that an Xn—dynamics in the sense of 2.1 is just an

{-algebra, and that an X_-dynamorphism h: (Q,8) — (Q',8') is just an

Q
Q-homomorphism, for the diagram in 2.1 unpacks to

= [] n
hdw(ql,...,qn) = dw(hql,...,hqn) for w € Qn, (ql,...,qn) € Q.

Moreover, xQ is a recursion process. Axg is the carrier of the well-

known free Q-algebra generated by A, and may be defined by the usual
inductive definition (Birkhoff [1935]):

@

(4) A c AXQ

@ Q@
If w ¢ Rn, tl""'tn e AX then mtl...tn € AXQ .

n'
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Thus the elements of Axg may be regarded as finite rooted trees, with nodes
of outdegree n labelled by elements of Qn' save that some leaves (nodes of

outdegree 0) may be labelled by elements of A. We abbreviate x@ to T we

Q Q°

may define

(5) An: A —* AT,, ava

Aug: ATQXQ —> AT, : (tl,...,tn,m) as wtl...tn.
1f (Q,8) is any Q-algebra and T: A — Q0 is any map

Au

An 0
D s —
(6) A —— AT ATQXQ
T r 1 er
- J (9) .4
Q OXq

then the unique dynamorphic extension r: ATQ — Q of T is given by

(7) r(a) = 1(a)

r{nt, ...t ) § (rt ,...,rt )
n w 1 n

1
Note that this reduces to the dynamics §: QX XO — @ of 2.10 if we take
Ql = xo while Qn =@ forn#l.

Suppose that @ and I are two operator domains. We consider 'bottom up'’

(i.e. working from the leaves to the root) transformations of trees in ATQ

into trees in BTX:

8. DEFINITION: Given operator domains Q and £, and sets A and B, a bottom up

tree transformation (A,Q) — (B,I) is given by maps a: A —* B,

T: A — Q together with a sequence 0 = (On) of maps

(9) o : 0" x @ — {1,...,n}T; x Q.
n n z

The response of (a,1,0) is given by Y: ATQ — BTZ X 0

y(a) = (a(a), t(a)).
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To define Y(wtl...tn), let Y(tj) = (sj,qj).

Then let © (qlr .o aqn,w) =

I
~—
-~
o]
~

so that Y(wtl... tn)

1
-~
-

Q
~

Re-examining (9) we see that is defined by two families of maps

n
(10) 6n. Q x Qn-——+ 0
and
(11) | B : Qn x Q@ —=+nY
. n n

where n denotes an n-element set and Y = X5 is a functor Set — Set.

The following Yoneda Lemma (Mac Lane [1972]) style result provides
considerable generalization for our formulation of B as a natural trans-

formation.

12. THEOREM: Let Q be an operator domain, let Q be a set, and let Y be any

functor Set — Set. Then there exists a canonical bijection

(13) QXQ By

n B

Q XQn'—-—-)-nY

betwecn natural transformations B and sequences (Bn) of functions.

Mutually inverse passages are given by

_n k . ng =
(14) Bn =Q x Qn > anQ > nY

where k(ql,...,qn.w) = ((l'ql)""'(n'qn)'w)

(15) AB: AQXQ — AY, ((al,ql),...,(an,qn),m)l+ (al,...,an)Y-Bn(ql,...,qn,m)
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A typical element of AQXQ comprises an element of

n
(A x0Q) XQn.
n . n_n
1 n (axQ) XQn=A x Q) XQn—* (nY — aY) (nY) = AY

(g, f, w) gY(Bn(E'.m)).

Proof: To see that (15) describes a natural transformation, we must verify

(A x Q)XQ AB » AY
(h x Q) xQ l hy
(B x0) xQ BB > BY

for arbitrary h: A — B. But starting from (qg,f,w) € AnXQnXQn, the
upper path yields hY*gY(Bn(f,m)) and the lower path yields (hg)Y(Bn(f,w))
and these are equal since Y is a functor.

We now verify that (14) and (15) are inverse.

Now if (B ) » B v (8 ), we have
n n

Bn(ql,.- . ,qn,m) = nB((l.ql) ree-s (n,qn) ,0)

. : n n
nB(J.dn,f,m) for 1dn en, f= (ql,....qn) € Q

idnY(Bn(f,m)) = Bn(qlf .o ,qn.m)

Conversely, if B~ Bn 2g E, then for g € A" we have the naturality

square
(nx Q)X nd > nY
(gxQ)X, l ng
(A x Q)X h8 > AY
so that (AB) (g, £,w) = (g¥) (B_(£,w))

(g¥) (nB(idn. f,w))

(AB) (g x Q) XQ(idn,f,w)

n

(AB) (g, £,w) [
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We thus conclude

16.  OBSERVATION: A bottom-up tree transformation is simply a process
transformation M: (A,X) — (B,Y) for X = XQ, Y = XZ for operator

domains  and L.

17. EXAMPLE: We now show how to capture the essential ideas of Reynolds'
[1977]1 "Semantics of the Domain of Flow Diagrams" by giving a succinct
account of the relation between general flow diagrams and linear flow dia-
grams which provides the paradigm for the other relations discussed in that
paper. We fix a set P of predicate symbols and a set F of function symbols.

A general flow diagram may be represented by a I-tree where

(18) £0=F. £1=¢. 22-—-Pu{;}

and we interpret the following element of ﬂTz

AW
h/// \\f g// \\\f

(19)

as "If the p-test yields true, execute h then f; whereas if the test yields
false, carry out the p'-test, executing g if the outcome is true, £ if the
outcome is false."

A linear flow diagram is one in which we cannot compose arbitrary
operations using ";", but instead apply one f at a time. They correspond

to Q-trees where

(20) QO =F, Q =F, Q9 =P

and (19) corresponds to the following element of ﬂTQ

(21)

N\
L g/// \\\f
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We now show that that transformation from linear flow diagrams (as
represented by -trees) to general flow diagrams (as represented by I-trees)
is given by a pure (i.e. Q has only one element) tree transformation, i.e.

(recalling (9)) by a sequence of maps

en: Qn - {l,...,n} Tz

which in this case take the form

(22) 6,(f) = £
0,(@ = / N\
g 1
6, (p) /P\
p =
2 1 2

The response ﬂTQ ——->-¢Tz does indeed transform (21) into (19), and the

reader may see that it also yields the following typical transformation:

SN PN
] SN\,

k/// \\\f . -//// \\\\f

| VN

h

(23)

N

h

Now Reynolds provides for each direct (resp., continuation) semantics for
general flow diagrams a corresponding semantics for linear flow diagrams.
But each semantics for a general (respectively linear) flow diagram is
nothing more nor less than a %- (respectively Q-) algebra. Any particular
choice of a transformation of semantics which "preserves meaning" with
respect to a particular transformation of’flow diagrams is subsumed in the

following result (which works just as well when Tz and T . are replaced by

Q

arbitrary algebraic theories T1 and TZ):
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24 POSITION: Let @ and I be oberator domains, and let ¢&: sz'——+ R

be a given L-algebra. Further, let the family of maps

Gn: Qn — {1,...,n} TZ

define a pure tree transformation. Then there exists an Q-algebra

S: Rxn-——+ 0 such that the result of running § on any Q-tree equals the
result of running £ on the transformed I~tree.

gggég: By (13), for the case Q = {1}, Bn is equivalent to a natural trans-
formation 0: xﬂ —r TZ

yielding, in particular, the map

(25) RO: RXQ — RTZ.

Now we define the run map E@: RT. —* R of (R,t) by the diagram (compare (6))

b3
Ry
Rn P 0

(26) R —- » RT . < - RTZXE

@ @
- 3 £°X
1dR l . l T

R <« RXZ

and we may then define an Q-algebra (6,R) by

e
(27) § = RK, —— rp, —=—R .

To show that 6 has the claimed property, we must look at the response

of the process transformation with A =B =R and o = id

Y: RT, —* RT, R’
0=1 and t: R—* 1, and with X = XQ, Y = xz and B =6: X — Y@.
We have
Q

Rn® Ry
28 R > <
(28) > RT,, R'rgx9

T Y ¥X

Rn l . RT,6 e
< -—
RTy RT3y RTy¥q
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We have to show that 6 = RT + RT., — R to complete the proof of

Q I

the proposition. But this is immediate from the following diagram:

Ry B
(29) RTYX).
TI
X,
RT_O Y
Ru . T
RT Ty RT. X
v @ v
lg TZ £ X“
@
13 RO
RTZ < RxQ
VI
S

where I and II are just (28), III and IV extend (26), V is a naturality

square for 6, and VI is the definition of 8. Thus €@'Y satisfies the

diagram which defines 6@ uniquely.

[

Since it is an immediate generalization of the above, we may :tate the

following without further proof:

30. THEOREM: Let M = (1,6,t,id,,B): (A,X) — (a,Y)

transformation (Q = 1) with response Y: Ax@ ——+-AY@,

Y-dynamics. Then the X-dynamics (§,A) defined by

satisfies the equation

be a pure process

and let (§,R) be a
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Our development in this section is motivated by the study of the cascade

connection of sequential machines as shown in (1) (Arbib [1968]).

" X r |
X Y l X Y
p 1 -1 2 2 e
f > Ml —C g » M2 Jh

In this motivating example, we assume a‘singie initial state, so that a may

Y

be omitted. Here, then, M., = (0.,6.,7t.,A.): X, — Y, are Mealy machines,
h R 1 1 1 1 1 1

and f, g, h are auxiliary functions of the form

(2) £f: X — X

1
s XX
g: XxY) —> X,
h: leYz——*Y

The formal definition of the cascade connection of Ml and M2 via (f£,g9,h) is

then the Mealy machine M = (Q,8,7,A): X —~ Y defined by

(3) Q=10 xQ
G(ql.qz,x) = (Gl(ql.fx), Gz(qz.g(x,'xl(ql,fx))))
T = (Tl,Tz)

A(ql,qz,x) = h(Al(ql,Fx). Az(qz,q(x,kl(ql.fx)))).

As can readily be seen the serial connection (4) and parallel connection

(5) may be obtained as special cases.

o
N
Y
<

(4) Xy v > My > M,

which is obtained from (1) on taking

19 Y3 T Xy Y5 Y

9= Pry (xy) & yi h=pr, (v,,v,) »y,

L]
1
[N
Q
o]
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(5) M

X=X =X

f

id, ; g =pr., {x,y) » y; arbitrary h.
x1 1

It is also well-known that the behavior of an arbitrary cascade connection
can be reconstructed by a loop-free network built up using only series and
parallel connections. We shall provide an analogous result in a more general

setting. We work, for simplicity, with restricted process transformations.

6. DEFINITION: Let M, = (Q,,8,,7,/,0,48,): (A, /X)) —> (Bl,Yl) and

= . i t -
l"l2 (Q2,62,12,a2,82) 2 (A,,X,) — (B2,Y2) be restricted process trans

formations in . Let f, g, h be natural transformations

(7) f: X — X g: XxYy, — X h: Y. xY —>Y

1’ 1 2! 1 2

where X, Y are also recursion processes; and let a, b, c be morphisms

(8) a:A—*Al, b:AXBl—*Az, c: BlXBz—FB.

Then the cascade connection of Ml and M2 with respect to (£,g9,h) and (a,b,c)

is the restricted process transformation M = (Q,6,7,a,8): (A,X) —* (B,Y)

represented in the block diagram

(9) » A/X

A /X B,/Y 1— A /X 132/512
a/f > M b/g > M2 31 c/h]

B/Y



and is defined as follows!:

- X
T
1
(10) Al ”Ql
A _
a Tprl
A t 0. X0
""""""" > 7Y
1dA r
ala p.2
e b a2
AxB, > A, > Q,

{t(s) =

If we now define

30

A ! >
1 1
7
| N —B xB, —S 5B
) —
’ b %2 Fr2

AXB ——%A_-——%B

(Tla(s). sz(s,ala(S)))} {a(s) =

1 2 2

c(ala(s), azb(s,ala(S)S}

11) r = Ox Af‘x="“x—6'—2—8—1—>—y
( =@ R = 0% 2%1
pr % '
R [ r ] A 29
A= 0x == 0)X x QpY) —— 0%,
“‘(ql,qz,x) = (qz,Bl(ql,f(x))); A(ql.qz.x) = (qz,g(x.Bl(ql.f(x))))}
then ¢ and B are defined by
o.f §
1l 1
(12) le > lel “1
PrlX T pr,
8
o — 0
Al pr
l 5, Y 2
X > 0
2%, > Q,

1

below each diagram.

To aid comprehension we place the classical formula in parentheses
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(13) 5, X e o5, %, ! >y,
B X ] pry
/_\ I
Y G Y XYy ¥
| P
0%, 5 Y

(6(ay,ay,%) = h(B,(q £0x)), B,(q,,g(x,8) (g £(x)))))]}

Following the example of (4) and (5), we may read off the following
definitions of the serial and parallel connections of two process trans-

formations.

14. DEFINITION: Given restricted process transformations M,: (A,X) — (B,Y)

TS ST 1‘
and MZ: (B,Y) — (C,2), their serial connection M2M1: (A, X) — (C,2)
is represented by the block diagram
Y
(15) (A, X)—> M, » M, ——{C,2)

and is the cascade connection with auxiliaries

I
n

f=idx: X —X; g =pry: XXY—Y; h pr,: YX2 — 2

a=_idA:A—>-A; b pr,: AXB —rB; C = pr,: BXC —C .

Thus M2Ml = (Q,6,1,a,B) where

(16) 0=0 *x9

[
1 = Tzal‘-'A_""leQz

{t(s)

(Tl(s), Tzal(s))}

{a(s)

1]
=
Q

(=
7]
~
—
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)
1
Q. X > 0
1l ‘\l
prlx T prl
6
ox > O
Q% X pr,
0.8
=271
62 Y
Q2Y > QZ

{6(q1,q2.x) = (Gl(ql.x), 62(q2.61(ql.x)))}

B=0x 2 QZQIX > 0,Y -+ Z

{B(qquzlx) = Bz(qzrﬁl(qux) ) }

7. .DEFINITION: Given restricted process transformations Mi: (A, X) — (%i,Y.i)
- Y,

2

1, 2), a recursion process Y, a natural transformation h: Y. xY

(i=
the (c/h)-parallel connection of Ml and 'M2

and a morphism c: Bl XB2 - Y,

(A,X) — (B,Y) represented by the block diagram

is M:

(B,,Y.)
1’717 .

(18) Ml W

(A, X c¢/hp——>(B, Y)

M J)
2 )
(BZ’YZ

and is the cascade connection with auxiliaries

=.: ; = < x ;
f id: X —X; g pr, X Yl—*—x 1 5

a = id: A — a; b=prl: AXB1—+A: Cc: 1 2

Thus Ml x M2 = (9,§,1,0,B) where
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(19) 0= Ql x Qz
) a oy
= :
T= Uy 9 %9
!
u=c-a2:A—+B xaz—rB
/—\B\
$ A
00X —————3-0 x—_—*leyz_F—*Y
A
prix pr, prixl pr.
Gi 6i
: ; 0 —_—
le —> Qix ¥y

{G(ql,qz.x) = (Gl(ql.x). 62(q2.X)); B(ql.qz.x) = h(Bl(ql.X),Bz(qz,x))}

It would be pleasant to replace (18) by the parallel connection

represented by

(20) M1 '(Bl'Yl)
(a,X)
M2 >4B2.Y2)
However, this requires Y1><Y2 -- rather than just Yl and Y2 separately -- to

be a recursion process. At present, we do not know how reasonable it is to
expect the product of recursion processes to again be a recursion process.
(A related question: What can we say about natural transformations

h: Y. XY, — Y when Y is a recursion process but Y

1 ?
1 2 le2 is not?)

However, the following example may suggest the subtleties involved:

2l. EXAMPLE: Let @ and I be operator domains, and let xQ and XZ be the

t —r Set. Then

corresponding recursion processes
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X,

1L meszm x || anzn

m20 m20

k
e oll Q *xI)

k20 m+n=k

Q(XQXXZ) x QXZ

I

Thus xgxxE is a recursion process in this case, and is of the form xw

where the operator domain Y is the convolution Q*I of Q and I defined by
(Q*Z)k = {(w,0) l w € Qm, 0 € Zn with m+n = k}

A 'reasonable' recursion process in Set is a quotient functor of some

X XxY is easily seen to be a quotient

X If X, Y are quotients of X

Q- Q"

of XQ*Z and, hence, again a recursion process. We conjecture that a product
of constructive recursion processes (in the sense of [Addmek, 1974, p. 595]) is

again a constructive recursion process.

We devote the rest of this section to studying the behavior of these

various connections:

22. DFEFINITION: The behavior of a restricted process transformation M is

the quadruple (r,a,B,y) comprising

r: Ax@ - Q, the reachability map

a: A —r B, the initial throughput

B: OX — v, the output transformation
Q @

Y: AX" — BY , the response.

23. THEOREM: Given M, : (A,X) — (B,Y) and M,: (B,Y) — (C,2) with

behaviors (r.,a.,8 .Yl) and (rzrdz.B

17%789 ) respectively, then the

272

behavior (r,oa,B,y) of their serial connection Mle: (A, X) — (C,2) is

given by



r
(24) r = [r%]: AX@——+Q xQ
2'1 1 2
a=a2u1: A —C
B = B,rD,8y
Y=V,

35

Proof: The expressions for a and B are immediate from definition 4. we

first recall the diagram defining Yl

Ay
(25) A An >-AX@< 0 AX@X
Y
o Y [ 1])(
l 1 rl
B B '“BY@< B BY@Y 4————-—@——— (BY@ X Ql)x
n Yo BY B
1
and that defining r:
. Ay
(26) A an o axCe 0 ax®x
lr 1 rX
4] ;
2 Q1><Q2 - (leQz)x
To see that pry‘r = Iy, we simply inspect the diagram
AU
(27) A An -~ Ax@< 0 AX@X
§
[:1] 0~ oxX
2
. l prl l prlx
1 61
Ql - le

To prove pr,-r = r,'Yyr we show that each is defined by intertwined

recursion on the same specifications:



Ay
0
(28) A A axCe ax®x
Y @ y r
Y By BY B
@
B Bl o By < 0 v’y < 1 (8y® x 0,)%
I 1T
I I l r2Y
T
2 r Y
Wr Iv V
- o A
Q¥ o, Q= 5 09X

where the upper rectangles commute by the definition of Yyv I and II

commute by the definition of r,, III commutes by the naturality of Bl’

and IV commutes by the definition of 6.

Ap X
(29) A —2" o axle 0 ax®x
o I r rX
1 v Y s pr,°r
B ~Q € : oxX r X
pr 1
pr [" Z]X
T 2 pr
x Y 62'9281 lA 1
Comparing (28) and (29), we see that pr,°r = rz-yl. To show that
Y = Y,V we must verify that
X
X Ap
(30) A An ::Ax@_: ° Ax@x
a Y 7 l[l]x
cn? e Yo @ cz® @
Co " C2 4——— CZ 2% (Cz" xQ)X

which is accomplished in the following diagram, which makes use of our

verification that r = [ 1 ].
N
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(31) A An , axle 0 ax%x
o
1 II M
)
Yo @ BY'B, @
B ——>BY < S BY Y& (BY x0,)X
[+ I Bn Bu
0
2
r2 Y )
v v Y VI Y,|a
@ 2|0.x
Y, (Cz™ xQ,)Y r.)=<1
a, 2 a 2
2% C2 9,8,
2# VII
e @ @ -
o > CZ Z CZ Z < 5 €z°0,0, X
cn cuo cz B

In (31), I is the definition of a, II and III define Yl' IV and V define Yo
VI commutes by the naturality of Bl, and VII defines CZ@B. Comparing (30)

and (31), we conclude that Y = Y,¥p- [l

We state the next result without proof, since the proof is akin to,

but simpler than, the proof we have just given for the serial composition.

32. THEOREM: Given Ml: (A, X) ——*-(Bl,Yl) and M2: (3,X) — (B2'Y2) with

behaviors (rl,al,B y and (rz,az,Bz,yz) respectively, then the behavior

1'"1

of their (c/h)-parallel connection M: (A,X) — (B,Y) 1is given by

r
(33) Y = [rg]
=]
%

R lprlx]
szrzx

R
I

B=h

while the response y is uniquely determined by
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X
X Ap
(34) a —2" o axle o ax®x
a
|
["2 1 BY®8 -[Y ]x
1 (r
B, XB Y 1
1) P2 e, [y
BY B [ ]x
c 2 \r
Y 2
B Yo B e. Brh e ¥ @
B N o BY < —— BY Y———BY Y, XBY Y, 0

Diagram (34) corresponds to the recursion

y(A) = A

Y(wx) = y(w)-h(B, (r, (w),x), B,(r,(w),x))

* *
In the classical case, we can extend h to h : (Y13<Y2) — Z where
*
)

(YlXY2 = || Y; x Yo, so that we also have the formula

n20 2

*
Y(w) = h (Yl(w), YZ(W))-

However, as Example 21 emphasizes, no similarly convenient extension of h

is known to be available in the general case.

We close this section by ﬁotinq that the cascade connection (9) can be
simulated by the loop-free network shown below in (35). By this, we mean
that (35) has the same response y as that of (9) -- although we shall not

burden the reader with the diagram-chasing involvéd in the proof.

(35) A /X, B, /Y
Ny 1M u, 171
A/X =l |e/hp—> B/Y
id A/X D)
A/X B./Y
b/g—22 M, 2/ %2
A /X B, /Y
7 e s G M 1771
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We start by forming two copies of Ml-(a/f), the series connection of M1 with

. the memoryless code (a/f) of Corollary 3.2. Then Ml-(a/f) has response

Yl-Alf@-aX@. Then, as discussed in 3.17, we may regard the identity natural

transformation id: X —* X as a process transformation, and its response

is the identity natural transformation x@ — X@. We then form the (b/g)-
parallel connection of id and M1°(a/f) -~ call the result M3. Finally, we
form the series connection M, °*M_,, and then the (c/h)-parallel connection of

2 3

Ml'(a/f) and M2-M3.

6. __Linear Systems

There are two formalizations of linear systems in the recursion process

literature. The decomposable system approach (Arbib and Manes [1974b]) takes

X = . and represents a linear system with input space A, state-space 0,

id
Yect
and output space B, and with input map G: A —> Q, dynamics F: Q —* O

and output map H: Q —> B as:

(1) T

1
Q

.A—-)-Q
§ =F: QX =Q —Q

B=H: Qg —B

The coproduct approach (Arbib and Manes [1974al), noting that Q + X = Q x X

0 0
in Vect, takes X = —+X, = io, and represents a linear system with input
space XO’ state space Q, and output space YO in the form
(2) T: A — Q, the space of initial states is t(a)

§=(F.G): QX =0Q + X, —>0
B=H: Q —Y

0 -
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The decomposable ‘system approach does not square well with the process

transformation approach:

(3) §: QX —Q
Tt A —Q
a: A—> B

B: OX — Y

When we take X = id, (3) includes no representation of the input-
dependent map Q + A —* B one would look for in extending (1). However,

translating (3) in the context of (2) we obtain:

(4) § = (F,G): Q + X

o 92

T: A —Q
a: A—r B

B: Q+x0-—-r-§{0

where o0 now describes the recoding of initial states, and the representation
B: Q-+X0 — Y0 is obtained on noting-that, in Vect, Q £ —4+0, and we
take Y = —+Y_.

0
The crucial point in the above, then, is that we may identify + with x.
This is a feature that Vect shares with any additive category (Arbib and
Manes |1975a, Section 5.2]}), and the following development is available in
any additive category -- in particular for the category R-Mod of modules

over a commutative ring R. However, we shall restrict our attention to Vect

for concreteness.

... DEEINITION: Let A, B, X

Bt R R B O

and Y _ be vector spaces. Then a linear system

0

is a restricted process transformation M: (A,X) — (B,¥). More specifi-

cally, M= (Q,F,G,7,0,H,J) where
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(F,G): Q+x0 — 0 is the state dynamics
T: A —*rQ is the initial state map
a: A— B is the initial throughput
(H,J): Q-+X0 ——+-Yo is the output map.

With any vector space A we may associate its countable copower

§ L.
A" = {(...,an,...,al,aO) | each aj € A, only finitely many aj non-zero}

with the two associated maps

(7)

Ain.: A ——*—Agz av» (...,0,...,0,a)

0
Az: A§ — A§: (...,8.4---0a_,a ) (...,a yeeesa. ,0)
j 0 j=-1 7o

1

from which we may define

(8) Ak = (z,ino): 1!\§ + A —* A§.
We then have that the free X-dynamics over A, for X = —~+x0, is
given by
(9) AX@ = A§ + xg
Al,: AX@X — AX@ = Az + xok: A§ + (xg + xo) — A§ + xg
An: A — AX@ = Ain0 + 0: A —-+-A§ + xg .
The reachability map r: A§ + xg is defined by the recursion
(10) A—-——-i-no—-»A§+x§ < 2+ (2t A§+xg+x0
T (rpeTy) (rarTy) * X
< (F,G) Q+ %,

which unpacks as two simple recursions



42

in in
0 § z § o .5 z §
(11) A e A ot A and XO > XO > Xo
. T 1 . \;\\\\\l rx 1 Ty
Q "————F Q Q € ——c— F Q
yielding
J j
r (c..ja.,s..05a,a) = I F'Ta,; ¥ (ceeyX.peeerX,,%X.) = I PF'Gx..
A j 1’0 320 3 X 3 1°70 i50 3

The crucial observation, which appears to be new, is the complete

symmetry in the treatment of A and X  in the reachability of the system.

0]

Setting Xo'to 0, we obtain —+X_ £ id and we recapture the decompos-

0 Vect'

able machine setting for linear systems -- but where we now realize the the

input is better viewed (though the mathematical effcct is the same) as a

continuing increment to the initial state, added in anew at each time step.
Setting A to 0 in (11), we recaptﬁre the 'usual' model of a linear system
in which the initial state is 0 and so there cannot be non-zero increments
during the running of the system. These observations explain the somewhat
anomalous position of decomposable systems within our general theory of
machine: in a category -- as the one case in which the initial state

1: A —»+ Q 1is treated as an input map.

With this, we can now turn to computing the response of a linear proce

transformation with, in view of the above, special attention to the case

Ss

A =B = 0. In the present case, the general definition 3.15 of the response

takes the form:

in 2+ (z,in )
(12) A—240 2% x5 0 ataxdix
0 070
a Y
. Y § .5 [r o
in 5 § z+(z,1no) 5 § B +Y0+(H,J) §

0] 0

B————»B +Y B  +Y +Y g B 4+Y +O+X
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Y Y
. BA BX
We may write vy = 0 where vy_ _: s§ ——*—Rs and (12) unpacks
YY A YY X
0 00

to yield the diagrams (13) - (16) below.

in
(13) A O oAl Z a®
* in lYBA Ypa
B O gl 2 g

YBA(...,aj,...,al,ao) = (...,a(aj),...,a(al),a(ao))

This is a memoryless recoding of the initial state symbols from A to B.

(14) A >

. .
Setting vy YY A’ Ye have

0
Y'(inoa) =0

Y'(zw) = zy'(w) + in

HrA(w).

0

Thus Y'(...,aj,...,al,ao)k = H-rA(...,a ) and

J4k+L" " 342" ¥

records, with unit delay, the effect in YO' via H, of successive cumulative

effects of the initial states.

in
0 o .8 | z §
(15) X, > X X,
Y Y
0 l BXO J BXO
B2 8
which implies that Ypx = 0 -- quite properly, since the inputs XO should
0

not have any effect upon the initial state symbols B.
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in
0

16 X “‘X§<’ z X§
(16) 0 T %0 0
Y
. Y . Y X
1n0 J YOXO (z,anH)[r 0 O]
X
§
Y0
Setting Y = Yyg y ¢ Ve have
070
Y(lnox) = 1n0Jx
~ _ , m
Y (zw) zy'(w) + 1n0 rx(w)
so that
(17) Y(zw + 1nox)0 = HrX(w) + Jx

which is the sum of the contribution, via H, of the state rx(w) reached via

previous X.-inputs and the contribution, via J, of the present input x to

0

the Yo—output.

Modifying notation appropriately, we see that the Y of (17) is essen-
tially the result fM, in the sense of Eilenberqg ({1974, Sec. XVI.2], of the
linear system of Definition 5 when A and B are restricted to be O.

Eilenberg associates with M the transformation from an input sequence
x = (x ,xo,...,xn,...)

0

to both a state sequence

q= (orqlr---:an---)
and an output sequence

Y =(y0,Y1:---,Yj:---)

given by the formulas

1 T Fy * G

yn an + an .
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Then £ : X gﬁ——+-Y0§= is the passage from x to y so defined, and we see that

fM(x)n = Y(...,O,...,xo,xl,...,xn) .

To close the section, we specialize the definitions of series and
parallel composition for restricted process transformations given in Section 5
to the case of linear systems with A = B = 0. Proposition 18 is obtained
by specializing Definition 5.14; while Proposition 19 is obtained by special-

izing Definition 5.17, and taking Y = Yl + Y2 = Yl X Y2, B = Bl x B2, and

letting ¢ and h be the appropriate identities.

18. PROPOSITION: Given linear systems M, = (Ql,Fl,Gl,Hl,Jl) 2 Xy T Y, and

Mz = (Q2,F2,G2,H2,J2): YO — ZO' their serial connection M = (Q,F,G,H,J):

X, — Z0 is defined by the equations:

0
Q=0 +0,
(F.,G,)
1'%
9 %o >
Prl"'XT T Prl l [Fll 0 Gl ]
(F,G) (Fle) =
Q) +Qy* X, >t GyHyr Fy | Gy
Q2 +Q1 +X0 pr2
Q2+(H1,Jl)
(F2'G2)
Q*¥ > 2,
o O.+(H, ,J.) (H,,J,)
2 Ot (HyJy) 292
|3y Q) +Q, +Xy =+ Q,+0; X, rQ¥Yy T 2

so that  (H|3) = (3,H,, H, | 9,9))- 0



;:9'; PB_QPQ%I,_T;:ON! Given linear syStemS Ml = (QliFerllHl:Jl) H Xo

and M2 = (Q2,F2,G2,H2,J2): X0-~—+ Y2, their parallel connection
M= (Q,F,G,H,J): xo - Yl + Y2 is defined by the equations
Q=0 +0,
(F,G)

QPP Xy ————> 0 +Q,

Fl 0]
pri+X0 pr, (FIG) =lo F
(F.,G.) 2
0. +X i
i 0 e |
(H,J)
—_—
Q1+Q2+x0 Y1+Y2
Hl 0
+ =
pr X, pr. (u|a) 0 u
(Hi.Ji) 2
0. +X > Y,
“i 0 i

—— Y

These do indeed coincide with the usual definitions of series and

parallel composition of linear machines (see, e.g., Eilenberg [1974,

Sections 6 and 7]).
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