QUEUEING MODELS
FOR
DISTRIBUTED COMPUTER SYSTEMS

A Dissertation Presented

By

Yuan-chieh Chow

Submitted to the Graduéte School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree_of

DOCTOR OF PHILOSOPHY
August 1977

Department of Computer and Information
Science

QUEUEING MODELS
FOR
DISTRIBUTED COMPUTER SYSTEMS

A Dissertation Presented

By
YUAN-CHIEH CHOW

Approved as to style and content by:

laits /. Ledllor

Dr. Walter H. Kohler, Chairperson of Committee

@/(L&AQ M &LQ&JM QJ! -

" Dr. Richard H. Eckhouse, Jr., Memher

4 ™ dia

»(A

//‘z:-u .'.‘g(L
b Dr. Harold S. Stone, Member

““Gr. Conrad A. Wogrin, Member

Prof. Robert M. Graham, Department Head
Computer and Information Science

August 1977

~ ACKNOWLEDGEMENT

The author would 1ike to express deep gratitude to Professor
Walter H. Kohler for his suggestion of the research tepic, technical
contributions to the preparation of the dissertation, constant
support and encouragement, helpful advice, and demonstration of
significant ability to direct research project. The research was
supported in part by National Science Fundation Grant MCS 76-03667.
The author is also indebted to ‘the members of his dissertation
committee, Dr. Richard H. Eckhouse, Jr., Dr. Harold S. Stone, and
Dr. Conrad A. Worgrin for their patience and constructive advice.
Special thanks go to Dr. Donald F. Towsley for providing the author
many technica].suggestions and insight in this research area. The
dissertation could not have been completed without the excellent

typing of Mrs. Olanyk and my wife Taiying.

iv

ABSTRACT
'Queueing Models
for

Distributed Computer Systems

August 1977

Yuan-chieh Chow, B.S.E.E., National Chiao Tung University.
M.S. and Ph.D., Computer and Information Science,
University of Massachusetts

Directed by: Professor Walter H. Kohler

Queueing models are developed for distributed computer
systems that dynamically balance the workload among cooperating
autonomcus processors. Workload balancing is achieved by using
adaptive job schedu]iﬁg policies. Several adaptive state
dependent job routing strategies are ﬁroposed. Examples are
used to demonstrate that system performance as indicated by job
turnaround time and throughput rate can be improved significantly
by dynamically balancing the workload.

Numerical solution techniques for the analysis of simple
homogeneous and heterogeneous models are developed} In particular,
the method of analysis for two-processor models with well defined
deterministic job routing strategies is shown to be dependent on
special properties of the two-dimensional state diagrams. An

efficient recursive solution method for computing the state

equilibrium probabilities is introduced for these cases. In

other cases the Coxian staging method is used to derive the new
Job inter-arrival time distribution Ccreated by the job routing
policy.

Finally, the relationships between system reliability and
performance is briefly considered. It is shown that a processor
with exponential failure and repair functions can be replaced by
an equivalent failure free processor. The equivalent service
time distribution is derived by using the Coxian staging method.

The approach illustrates that the consideration of system

reliability can be embedded into performance measures.

vi
| TABLE OF CONTENTS
CHAPTER PAGE
L. INTRODUCTION ovmmrs i 5 imensona s s's SHess s & . iboinimmie s's o wiilabeivias's « s win 1
IT. GENERAL CONCEPTS AND PREVIOUS WORK;.... 3
2.1. Definition of Distributed Computer Systems (DCS) 3
2.2. Queueing Networks as Models for DCSovvvurnn.n. 7
2.3 Previous Work s sswmss s siininissinim i i e e o 9
B8 B UGS BOBEL. 5 2ammes @3 e 5's v oo o « o sideiafele’s’s % 5 biyraieds €5 5 5 iZ
J. 1. Proposed MUGET "Ly s is o b sbons 1 15 5500t 25 o5 b sieains e s 12
3.2, State EqUITIBrium EQUaTIONS ... 01 vewsivs vs's sahmbny i's's 14 i
3.3. Pérameterization of the Job Routing Policies 16
3.4. State-Transition-Rate Diagfam 17

3.5. Analytical Solution Methods and Their Limitations 18

3.5.1. Power iteration method0...... 18

3.3.2 TransTORmEbIonE ;. st ome s s 1o ks s 55 b basiies o o' 21

3.5.3.° Product Torm soTUtTNS ... oveeesrsbnmnansss 25

3.0:.4." NOPEON"A. THeore vhsashv's i samae b3 55 bommasdas 26

3.0.9. Recursive method ... 0 n . . veheis el cenmnesans 28

; =D, Approximation” MeThols v s svamemiss s smsrss i 31

Sl AT SR TATON SR ha cbdeinns o & weacoie 0 5 § Bl b 32

Y. | OMOGENEOUS: SYSTEMB' Bida & sasniee v v s htmnmmbs b § Sewuumt 55 8 Sabamsvs 33

G+ Imtroduetd bl o d o i S G R e IR s o 33

4.2. Closed Models for Multiple-Processor Central Server

SYETENE Ll HSRREERE (BRI T st £ 1 S witgy' o0

vii

CHAPTER w PAGE
4.2.1. System models and analysis 35
§.2.2. SINGLE CPU wummios «5 5055565 & o o mosmons o0 mosevrsinn g & 39
4.2.3. Multiple CPU's with shared memory 40
4.2.4, Multiple CPU's with local memory and load

balancing ...ttt 42

4.2.5. Multiple CPU's with Tocal memory and

different job classesoovvevnnn.. .. 49
4.2.6. Multiple CPU's with local memory. 51
4.2.7. Comparison of performance 54
4.2.8. Application to the ready queue model 65

4.3. Open Models for Systems with State Dependent Job

ROULKEE- POLIEIES. ;. & vpmuma 5 s 5 miimied £ 3 605000 o« » e 66
4.3.1. Random routing policy;.. 67
4.3.2. Alternating job routing policy 69
4.3.3. Join-the-shorter-queue POHSTCY & 5 eemmuses 449 5. 70
4.3.4. Random arrival with channel transfer 4

4.3.5. Join-the-shorter-queue policy with

ChAanmel TranmsPer wumisss ooee oo v sommmoome swme 76

4.4. Comparison of Performance J— T a— 78

R 3] TR B B ———————————— e PR 83
5.1. Models with Non-Deterministic Routing Policies 84
5.1.1. State independent job routing 84

5.1.2. State dependent job routing 87

CHAPTER

VI.

VII.

viii

PAGE
5.2. Models with Deterministic Routing Po]icieé 95
5.2.1. Maximum ratio policy ...eevevennon... S eremsaix & % 96
5.2.2. Minimum system time POLICY «.ivmvniss obmmness 98
5.2.3. Maximum throughput POTECY 5 55 6t & s s ennies s o 103

5.3. Recursive Solution Technique for Two-Processor
SYSEEIIS et i e o s i & 3 o ot B e nece 106
5.4. Lower Bounds on the Average Job Turnaround Time 117
5.5. Comparison of Performanceoouvoununnnnn. .. 120
RELIABILITY RELATED‘PERFORMANCE EVALUATIONccoivussonen 126
6.1. Average Job Turnaround Time of An Oben Model 127
6.2. System Throughput Rate of A Closed Model 131
6.3. Discussion of the Approachesoveeeonnonn.. 133
CONBEUSIANS" oo o iy 6 P ns § § B o m s Y S gt 137
RPPENDLE I ity s bt s s ie®, | bl MR AL R i § s e 140
BPFENDER B ot o5 v aunionsty s b atonnd & 5 i 5 s b B o110 2] 142

CHAPTER 1
INTRODUCTION

Multiple-processor computer systems have become an important
research area in computer system design and data processing. The
concept'of such systems evolves from the desire to share resources
(data, programs, hardware), the need to achieve very high-speed
computation, and the requirement of high reliability in some appli-
cations. One of the crucial requirements in the design of a multiple
processor computer system is to estabilish contro] over the flow of
jobs in the system to improve overall system performance.

This dissertation introduces and analyzes queueing models for
distributed computer systems (DCS), a special class of multiple
processor systems with state dependent Jjob routing policies. The
use of queueing networks as the basis for modeling computer systems
has been studied extensively in recent years and has proved to be a
powerful tool for system analysis. However, the modeling of multiple-
processor computer systems with state dependent job routing policies
is a‘re]atively new and undeQe]oped research area. In the disserta-
tion we propose and analyze queueing models with state dependent
routing Strategies for both homogeneous and heterogeneous distributed
systems. Thesé models include closed and open systems and are motivated
by our desire to analyze real multiple-processor systems that share
rescurces to improve performance. The results of this analysis can

be used to influence the implementation of such systems. Both deter-

ministic and nondeterministic state dependent job routing policies

that attempt to balance‘the overall system workload are proposed

and formally defined. Tﬁese job routing strategies are shown to

be effective in improving system performance. Essential to the
analysis of queueing models is the development of solution techniques
which can provide efficient_and-accurate solutions. We investigate
the existing solution methods and their Jimitations. Some analytical
solution techniques are extended and shown to be useful for the
analysis of our models.

Chapter II contains our definition of distributed computer
systems (DCS), some background material, and a survey of previous
work. Chapter III presents the general concept of a DCS model. It
also includes a survey of existing solution methods and their limi-
tations. In Chapter IV we discuss homogeneous distributed systems.
Multiple and single-processor systems are analyzed and compéred, and
the concept of load balancing through a communication channel is
introduced. Chapter V presents various job routing policies for
heterogeneous systems. The proposed job routing strategies are
formally described and a recursive solution method is illustrated
and shown to be-e?fective for the heterdgeneous models with deter-
ministic state dependent job routing policies. The effects of these
routing strategies on system performance are compared. Chapter VI
presents an initial investigation of the relationship between system
reliability and performance. Chapter VII summarizes the results of

our study and suggests directions for future research.

CHAPTER II
GENERAL CONCEPTS AND PREVIOUS WORK
2.1. Definition of Distributed Computer Systems

Distributed computer systems (DCS) are a special class of
multiple-processor systems. Multiple-processor systems are
sometimesycategorized as "multiprocessors”, "distributed function
computers", "distributed systems", and "computer networks",

- depending upon their degree of decentralization of resources,
control, and data. They range in organization from two processors
sharing a common memory to a large number of relatively independent
but interconnected computers which are geographically separated.
Various criteria can be used to classify multiple-processor

systems [FULL 73, ANDE 75, ENSL 76]. One that suits our study

is the concept of "coupling" [FULL 73]; that is, the relative over-
head of inter- vs. intra-processor transactions. A systeﬁ is measu-
red as "fight“, "intermediate", or "loose", etc., with respect teo
the degree of coupling.

For examp]e{ array processors like ILLIAC IV [BARN 68] would
be classified as tightly coUp]éd. Identical processing elements
(PEs) synchronously execute a common instruction sfream under the
control of a single control unit while a direct data path exists
from each PE to its orthogonally neighboring PE. Multiprocessor
systems in which all processors execute asynchronously while
Sharing common peripherals and main memory are somewhat less
tightly coupled. However, they rely on a common supervisory program

for synchronization. C.mmp [WULF 72] is one state-of-the-art

example and many others can be cited [BAER 73].

In contrast to these.systems we have existing computer networks
which are loosely coup]ed.‘ Whole programs and data files are trans-
ferred between processors sometimes via a separate communications
subnetwork. Resources can be shared in this way, but the overhead
of each interprocessor transaction is high. ARPANET 1is a
prime example of a very loosely coupled multiple- processor system.
Not only are the host processors geographically distributed, but
they are also inhomogeneous and thus interprocessor transactions
can occur only indirectly by using a common procotol [KAHN 72].

The resource sharing advanfages of a network architecture are now
available to minicomputer users through host-satellite configurations
[HEWL 74, MODU 75]. The processor interconnections may be either
hardwired or via modems and the telephone network. While capable of
being more tightly coupled than the ARPA Network, these multiple-
processor systems are still loosely coupled compared to multi-
processor systems like C.mmp. The host-satellite systems provide
the ability for centralized control of a distributed system and the
sharing of files and high cost periphera1s¢ These systems have
already found wide application in real-time process and inventory
control.

Intermediate coupling, the area between these two extremes,
has not gone unnotiéed [STON 75, VAND 74]. This area includes
systems where the control, storage, and éxecution of program and

data modules are dynamically distributed over multiple processors.

For example, modules might be combined into a local working set

resident on some processor. As the working set and/or system load
changes, execution might shift dynamically from one processor to
another. To minimize the overhead of interprocessor transaction,
simple interprocessor protocol is necessary. The minicomputer/
multiprocessor Interface Message Processor designed for ARPANET

by Bolt BERANEK and Newman [HEAR 73] is an example of a special
purpose system that includes some of these features. In this case
the system program is finely partitioned into subtasks which are
dynamically ordered by priority. The identity of the highest
priority task is passed to the next available processor which then
loads the necessary data and program from a common main store and
proceeds to execute the task locally. This is an example of
intermediate to tight coupling. Thomas [THOM 73] and Cosell et al.
[COSE 75] describe the resource sharing capability in ARPANET made
possible by a distributed executive program (RSEXEC) and a

companion service program for TIP users (TIPSER) that run on TENEX
hosts and allow users to transparently access all TENEX subsystems
and a virtual file system distributed over multiple PDP-10 TENEX
hosts. The load is dynamically balanced by broadcasting user service
requesté aqd then selecting the most responsive host to provide the
cervice. Although this system has some of the features characteristic
of intermediate coupling, the existing ARPANET host-to-host protocol
imposes interprocessor communication overhead that restricts its
effectiveness. Another prototype that approaches intermediate coupling

is the host/satellite graphics system described by Van Dam [VAND 74]

and stabler [STAB 74].

In this research we define distributed computer systems (DCS)
as the class of multiple-processor systems with the following
characteristics:
1. intermediately coupled;
2. interconnected set of decentralized compatible processing
é]ements (PE);
3. each processing element is usable both as a stand alone
system and with other PE's for resource and load sharing;
4. the control, storage, and execution of program and data
modules can be dynamically distributed over all processing
elements.
In general, triese systems fall into a category between two extremes:
multiprocessors and computer networks. It is further assumed that
these systems are generally reconfigurable and consist of slow PE's.
That is,_each PE has medium to low memory-processor bandwidth.
Distributed computer systems as defined above are motivated by the
following objectives:
| 1. utilization of available low-cost minicomputers and
microprocessors; |
2. sharing of resources;
3. eﬁhancement of performance;
4. high reliability;
5. modular growth; i
6. use of distributed data bases.]

The distributed computer system models proposed and investigated in

the dissertation are based on the above definition and motivations.

Multiple-processor system development will continue to find
impetus from advances in hardware technology [FULL 73]. In particular,
the availability of potentially powerful yet inexpensive
microprocessors with local memory and control provides strong motiv-
ation to design multiple-processor systems utilizing these modules
as building blocks. By using these modules to design systems that
support the distributed control, storage, and execution of user

programs, we may obtain significant advantages in modularity, expan-

dability, reliability, and cost/performance.
2.2. Queueing Networks as Models for DCS

We are interested in the performance measures of distributed
computer systems. These measures usually consist of fhe average
system throughput rate, average job turnaround time, average length
of waiting lines for devices, processor utilizations, etc. To obtain
such measures one needs a model which can adequately describe the
behavior of the system. The behavior of a computer system depends
on the interaction between the workload and the system componenents.
The workload of a system is characterized by the job distribution
among system components, the job arrival pattern and their service
requirements. The system components include central processors,
input/output devices, storage, channels, and controllers.

Queueing models have proved helpful in modeling the behavior
of computer systems. Each component or group of components in a

distributed computer system can be viewed as a server with an associ-

ated waiting 1ine (queue). The job arrival pattern and the service

time of a server are both described as random processes. The service
process depends on the job characteristics and the system components
which represent the server. The scheduling discipline of each

queue is determined primarily by the server associated with the
queue. The control of job flow in the system can be characterized by
the job branching probabilities among system components. The control
is also calied the job routing policy.

We assume that a distributed computer system is modeled as an
multiple server queueing system. Sever/queue pairs are interconnected
to form a queueing network. Given the above descriptions of the
system components and workload, the behavior of the computer system
can be described as a discrete-state-continuous-time stochastic process.
The state of the system is a snapshot of the workload distribution
among the system components at time t and can be expressed as

S(€) = (ny (), ny(t), ...os 0 (t))

where ni(t) is the numbér of jobs in the ith queue at time t and m is
the total number of queues. The central problem in the analysis of a
queueing network is to solve for the state probabilities P(S(t)).
Performance measures of a system can be obtained if the P(S(t)) are
avaiiable:- If we are only interested in the steady state behavior of
the system, and the system does reach equilibrium, then we can
represent the equilibrium state probabilities P(S) as

P(S) = Tim P(S(t)). 1
t » =

P(S) are obtained by solving the equilibrium state equations that

describe the steady state behavior of the system.
2.3. Previous Work

Queueing theory [COX 61, KLEI 75, SAAT 61, TAKA 62] has provided
the basic framew0rk for stochastic models that have been successfully
used in evaluating alternative scheduling policies in time-sharing
systems [BABA 75, COFF 68, COFF 73, KLEI 70A, McKI 69], in predicting
the performance of memory subsystems in multiprogramming systems
[COFF 73, FULL 75], in understanding the interaction of CPU and 1/0
processors [COFF 73, HOFR 154 SENC 73] .and - in designing communication
subnetworks [FRAN 72, KLEI 70B, McGR 75]. The early queueing theory
results for networks of queues [GORD 67, JACK 57, JACK 63] have
been generalized to include a wider range of computer system models
[BASK 75, REIS 75].

The.desire to model the performance of computer systems effec-
tively has also generated interest in other modeling techniques.
Kobayashi [KOBA ?3] applied the diffusion method to the analysis
of queueing networks. Stone [SfON 77] formulated the problem of
scheduling jobs to processors as a combinatorial optimizacion
problem. Buzen [BUZE 76] took the operational approach to the
measurement and evaluation of real systems. Various approximation
techniques have slso been introduced to analyze the behavior of
some systems [MUNT 74, GELE 74]. Although significant progress

has been made in the modeling and analysis of computer system

performance, much more needs to be done before we can adequately

deal with the complexities of multiple-processor distributed
- systems. ﬁ

The existing]ite;ature in the modeling of computer systems
is rich. However, the specific problem unique to distributed computer
systems, state dependent job routing, seldomly has been addressed.
Koenigsberg [KOEN 66] first suggested and analyzed a join-the-shorter-
queue policy for two-processor systems with instantaneous jockeying
between queues. Using the transformation method, Flatto [FLAT 76]
analyzed a homogeneous two-processor model with a join-the-shorter-
queue job arrival policy. Towsley [TOWS 75] investigated queueing
models with job branching probabilities that belong to a special
class of state dependent functions. Kohler [KOHL 75] introduced
more sophisticated state dependent routing strategies for distributed
computer systems. In this dissertation we extend the above work
to covef a wider range of job scheduling policies in multiple-
processor computer systems.

As a by-product of the interest in modeling computer systems,

much effort has been devoted to the development of efficient analytical

and numerical solution methods. Transformation (Laplace transforms,

Z-transform, and etc.) is a traditional technique in the analysis of
computer systems [KLEI 75, KOEN 66, NAKA 7]}.. Wallace [WALL 66]
elaborated the péwer iteration method for computing the steady state
probabilities for queueing models. Jackson [JACK 63] first suggested
the product form solution for open models with exponential service

distributions. Gordon and Newell [GORD 67] extended this result to

closed queueing models with queue length dependent service distributions.
Chandy [CHAN 72] introduced the concept of local ba]ancé and showed

that networks with certain queueing disciplines satisfy local balance

and have product from solutions. Baskett, Chandy, Muntz, and Palacios
[BASK 75] extended these results to a broader class of queueing models.
Buzen [BUZE 73] developed efficient algorithm for computing the norm-
alizing constant for steady state probabilities that have product

from solutions. Muntz and Wong [WUNT 74] introduced a recursive sol-

ution technique which drastically reduced the complexity of computing

the equilibrium state probabilities of some queueing models. Part

of the effort in our research is also devoted to extending the existing
solution techniques for use in the analysis of distributed computer

systems.

12

CHAPTER 111
A DCS MODEL

In this chapter a simple DCS model will be formulated. This model
reflects many design objectives of distributed computer systems. Among
these imﬁ]ementation objectives are load balancing, resource sharing,
and reliability of the system. The mathematical representation of the
DCS model is described. Various solution methods are then discussed
to demonstrate the limitations of current modeling techniques for the

proposed DCS model.
3.1 Proposed Model

Consider a simple central server.-system as in Figure 3-1. The model

I: 170

1 Q ﬁk

()
CPU

Figure 3-1: A Simple Central Server System.

represents a basic closed queueing network in which servers are denoted

'_ by circles and queue; are denoted by rectangles. It is assumed that the
queueing disciplines are both first-come-first-served (FCFS) and the ser-
vice time distributions of CPU and I/0 are exponential with means 1/ and

1/a respectively. There are a fixed number of jobs in the system. A job

is transferred to the I1/0 upcn its completion of service at the CPU. This

model may be interpreted as an example of the central server model for a

multiprogramming system with fixed degree of multiprogramming [ADIR 72,

BUZE 73, KLEI 76].

Several questions arise when we consider putting two or more such

multiprogramming systems together to fdrm a DCS for the purpose of shar-

ing resources (for example, sharing the 1/0). Among them are:

1. How can these systems be interconnected to form a DCS?

2. How can the jobs in the DCS be distributed if we allow

each job to be executed on any CPU?

3. How will the performance of the DCS compare with the

individual systems?

4. How can we improve the total system performance by altering

the interconnection structure and/or the workload distribu-

tion policy of the system?

These questions lead us to consider a general two-processor DCS modes as

shown in Figure 3-2. The model represents two interconnected central

1/0
queue. 3 CPUT D
\ 1-p
queue 1
\ = channels
e B Vsl
dispatcher queue 2 / D
Vo b - /
| cpuz 1-p

Figure 3-2: A Two-Processor DCS.

14

server systems with shared 1/0. The job dispatcher serves to schedule
the jobs to both CPU's. %he scheduling policies may be state indepen-
dent, such as random scheduling and fixed probability scheduling, or
state dependent, such as a Jjoin-the-shorter-queue policy. Other
schedu]iﬁg policies may be job-dependent (e.g. special classes of jobs
are always scheduled on a particular CPU). The channels serve as job
transfer devices and can be viewed as processors. The job transfer

time distributions are also assumed to be exponential with means 1/8.

The transfer policies can be ejther state dependent or state independent

as in the job dispatcher case. The job dispatcher and channels are

added to the system for two reasons: first, to balance the work load;

and second, to satisfy particular applications of the DCS. This DCS

fits our definition of a distributed computer system as described in

- Chapter II. The design is motivated by the objectives of resource

; sharing, load balancing, and reliability (in this case, the probability

- that a job can be successfully processed).

3.2 State Equilibrium Equations

The state of a system is defined as the distribution of workload

- among queues. If we assume there are a total of N jobs in our system

| (Figure 3-2), a state can be described by the triple (n], Nys n3), where

] niis the number of jobs in queue i. It is more convenient to express

. the states as (n], n2) since ng is redundant and equals N - Ny = n,.

" Let us describe the state of the system at time t by the variables X(t)

“and Y(t), which denote respectively the number of jobs (in service and

S Waiting) in queue’ 1 and queue 2 at time t. If we now define

15
Py5(t) 2 prIX(t) = 1, Y(t) = §)1,

Then because we have assumed independent exponential interarrival and

service time distributions, the state is a Markov process and the state .

transition equations can be written as

d i}
at P1J(t) s (a + U1J * 813) P1J(t)
tagg,g Pion, () oy g Py ()
) (3-1)
tou Py (8 e Py
* Bia1,5-1 Pin, 5108 F By g Py, gn (8)
where
0 i.j=0
LB L 121, 5=00r i=0,321
U.lj = s s -

A ‘ . .
Pij(t) =0 whenever i or j <0 or i+ j >N

- and 045 Bij are dependent upon the job scheduling and transfer policies

L TRspRRvR Y .

We will usually be interested in the behavior of the system during statis-

. tical equilibrium (steady-state) and in this case we will let
R ;
Pij = Lim Pyz(t)

~ denote the stationary probabilities whenever they exist. The equilibrium

| equations are obtained from (3-1) by'septing é%’Pij(t) = 0 and substituting
b the appropriate stationary probabilities on the right-hand side. Thus, we

3§the set of equations

“*“ﬁ*su)%j=arujprhj+any1%JJ

+ u P,

1+T,‘j +u P

1sj+] (3-2)
E P Pi,301 P 4 By 50 Py g

}states:(i,j) which fully describe the steady state behavior of the

3.3 Parameterization of the Job Routing Policies

kT
z;débsin the system are routed through the job dispatcher and the
: We now consider a special

The routing rules are defined as

The dispatcher assigns an arriving job to the shorter queue;
2. If both queues have an equal number of jobs (inc]udfﬁg empty),
the arriving job is dispatched randomly to one of the two
queues with equal probabilities;
The comﬁunication‘chénnels initiate a job transfer from queue i
V‘to queue j whenever the number of Jobs in queue i is two or
fiore greater than the number of Jobs in queue j. The channels

can only service one job at a time;

§~ The transfer of a job is discontinued if the imbalance condition

}. in (3) changes before the channels complete the transfer.

routing rules imply that

17

0 i>3]
%3 =4 af2 i=3]
o 1<)
and
: 0 li-jl1s1
B.ij = {
B li-3]>1.

3.4 State-Transition-Rate Diagram

The behavior of the system can be equivalently described by means of

the state-transition-rate diagram shown in Figure 3-3. Here the (i,j)th

Figure 3-3: State-Transition-Rate Diagram.

18

node represents the state X(t) = i, Y(t) =j. The branches identify

the allowable state transitions and the branch labels specify the rate

at which the transitions proceed. The state transition equations (as

in (3-1)) can be written immediately by noting that the rate of change

of flow into state (i,j), i.e. é% Pij(t)’ must be equal to the difference
between the rate at which the system enters state (i,j) and the rate at
which the system leaves state (i,j). The state equilibrium equation
obtained by equating the total flow out of the state to the total flow
into the state is called the global balance equation (GBE) for the state.
Performance measures of the system can be computed if the state equilibrium
probabi]ities.Pij are known.

It can be seen from the state diagram that the total number of states
is (N + 1)(N + 2)/2. The job dispatching policy makes some of the states
unreachable, i.e., these states are transient states. Thus, the steady

.state transition diagram for the join-the-shorter queue dispatching policy

can be reduced to Figure 3-4A and 3-4B for even and odd N respectively.

3.5 Analytical Solution Methods and Their Limitations

Various analytical and simulation techniques exist for solving
queueing models. In this section we will discuss each solution method
and its apblicabi1ity to our models. Later we will show how some can
be generalized and used in analyzing distributed systems.

3.5.1 Power iteration method. The power iteration method is perhaps

the most straightforward way to solve for the state equilibrium probabili-

ties. It was first used by Wallace [WALL 66] for the analysis of computer

systems. Let A be the matrix of transition rates for the set of simulatan-

Figure 3-4A: State-Transition-Rate Diagram for Join-the-
Shorter-Queue Policy (N = even).

Figure 3-4B: State-Transition-Rate Diagram for Join-the-
Shorter Queue Policy (N = odd).

eous equations in (3—2)a@q m be a row vector of Pij' The system equations
in (3-2) can then be expressed in matrix form as

nA=0
After introducing a scalar constant A for convergence purposes, the

equations can be rearranged to yie]d the equivalent system

A A=20

r(AA+1)=mn

m=a0Q
where Q=A0A+1
‘and I is the identity matrix.
The power iteration method is used to calculate a solution 7. If Ty is

the kth iterate, then

M1 T Tk @
is the (k + 1)th iterate. The constant A is used here to ensure proper
convergence of the iteration process. '
Some of our models in Chapter IV are solved in this way. Theoreti-
cally the method can be applied to any closed queueing network with a fin-

ite number of states. For a closed queueing model with N jobs and m queues

N+m-1,
/

in the system, the exact total number of states can be expressed as (n-1

a large number even for reasonable N and m. This results in two potential
difficulties: first, we need a large amount of storage to represent the
matrix A; and second, the complexity of the computation increases exponen-

tially as N and m increase, Since the states in a system have transitions

21

to their neighboring states only, the matrix A is usually a sparse matrix
with many identical elements. Techniques to optimize the storage represen-

tation of A can be developed [WALL 66]. However,the power iteration method

is still limited to small and specific queueing models [CHOW 76].

3.5.2 Transformations. Transformation methods (transforms) have

been used in the study of many interesting physical systems. As mentioned
earlier the behavior of a queueing system can be described by the set of
state equilibrium equations. The number of such equations is usually
large and in an open system it is infinite. By defining a proper generat-
ing function, which is a function of the state equilibrium probabilities,
We can map the large set of simultaneous equations into a much simpler
form. If the solution of the generating function and its inverse trans-
form exist, we can derive expressions for the state equilibrium prob-
abilities from the generating function. This process will be illustrated

for the open queueing model shown in Figure 3-5. The model represents two

l-——_—7r__—§> departure

arrival channels

A,______&_;, = departure

queue

Figure 3-5: An Open Queueing Model with
State-Dependent Job Transfers.

22

CPU's sharing the load through a communication channel. Al1 distributions
are assumed exponential and the queueing disciplines are FCFS. The channel
is used to transfer a job from queue m to queue n, but the transfer pro-
ceeds only if QUeue m contains more than one job and queue n is empty.

The transfer is discontinued if this condition changes before the channel

completes the transfer. The state equilibrium equations can be written as
(2x +-pij + Bij)Pi' = . q 3 ¥ i])

sy Py sl

P

Bi-1,50 Ti-1,54

Bi+1,5-1 Pi+1,5-1

121,

otherwise

Pij 0> whenever i or j < 0.
A generating function Q(x,y) can be defined and used to simplify the
system equations. Let

Ax.y) 2 EndyIT = 3
i=0 j=0

2 Pij X'y (3-4)

23

where x,y < 1 and E represents the mathematical expectation function.

From the definition of Q(x;y) it can be seen that

iei |
P = [Q0y) 0 g (3-5) *
1] 1 J - Je

X Ay x=0
y=0

if the derivative exists. We also notice that

0(090) = POO,

Q(]s]) =1,]
Q(0,1) = } P, ;
]
= Pr[CPU 1 is idle], ?
Q(1,0) = 7 P, f
3=g~ 2 :
= Pr[CPU 2 is idle], I
d 3 Mf
and i
]
= 9 I
QX(],.I) ._ [ax Q(xsy)]x=y='l I
LIPS i IR 0P |
i=0 j=0 U !
= average queue length of queue 1, ?
i :
Qy(]s]) - [ay (xs.Y)]xzy:'l .
=1 I ib,. !

i=0 j=0 "

= average queue length of queue 2.

24

Given the definition of Q(x,y) in (3-4) we may multiply the equations for
hj in (3-3) by x'y? and sum over all values of i and j. We therefore
obtain, after collecting terms, the following simplified equation for

Q(x,y).
0 = [-2xy(h +) + axy(x +y) + ulx + y)] Q(x.y)
+ Lux(y-1) + sy(y-x)] Q(x,0)
+ [uy(x-1) + gx(x-y)] Q(0,y)
- 8(x-y)% Q(0,0)

The remaining job is to find an expression for Q(x,y) as a function of x
and y. Unfortunately there exists nolgenera1 approach for solving implicit
equations of this kind which involve more than one variable. However, we
do know the behavior of the system for two 1imiting cases:

1. 1im B » 0 gives us two independent systems; and

2. 1im B » = gives us two processors sharing a common queue.
‘In the first case we have two independent M/M/1 queues and

(A2

Qx,y) = :
(1—%X) (1-%5/)

is the solution to-(3-6). Pij can be derived using equation (3-5) and

becomes

) A2 1A]
Py = 0 - 2RI,

while in the second case we have an M/M/2 queue since we can view the

system as two processorssharing a same queue due to the instantaneous

channel transfer between queues. There exists standard solutions for
M/M/2 [KLEI 75]. |
Various transformatfonAtechniques (e.g. z-transform, Laplace
transform, etc.) can be used for the analysis of queueing models. In
particular, we have shown the z-transform method for the distributed
example above. Although the method seems simple, and if successful
yields closed form solutions, it has some major deficiencies:
1. The definition of the generating function is not unique;
2. There is no guarantee that the éystem equations can be
simplified through the defined generating function;
3. There is no general approach to solve for the generating
function with two or more variables;
4. The resulting generating function may not be rational and
thus the inverse transform does not exist.

3.5.3 Product form solutions. Product form solutions for state

equilibrium probabilities exist for many classes of queueing networks.
A product form solution of a state means that the joint state prob-
ability can be expressed as the product of the marginal state prob-

abilities and a normalizing constant. That is

P(nl,nz,...,nm) = C x P(n]) X P(nz) % 2'a P(nm)

where n, is the number -of jobs in queue i and C is the normalizing
constant. Since marginal state probabilities are easier to compute,

this product form allows computationally efficient analysis of large

queueing networks.

The product form solution was first suggested by Jackson [JACK 63]
for open models with expdnéntia] service distributions. Gordon and Newell
[GORD 67] extended this result to closed queueing models with state depen-
dent service distributions. Chandy [CHAN 72] introduced the concept of
local balance and showed that networks with certain Queueing disciplines
(FCFS, Ps, LCFSPR) that satisfy local balance have product form solutions.
Baskett, Chandy, Muntz, and Palacios [BASK 75] further generalized these
results to networks with multiple classes of customers, Buzen [BUZE 73]
developed efficient algorithms for computing the normalizing constant.
Towsley [TOWS75] introduced station balance that explains why certain
- Queueing disciplines yield to product form solutions for queueing models
with nonexponéntiaT service time distributions.

Product form solutions imply a certain degree of independence among
queues. Unfortunately, many models that confront us have state dependent
routing policies. This_usua]]y results ip a different set of states, ?
since some states are not reachable and the local balance property does
not hold in these models. The method is not applicable for the'class of
distributed computer systems that we have investigated.

3.5.4 Norton's theorem. Often in the study of queueing network

models, one is interested only in the statistics of a particular queue.
It is thus desirable to construct an equivalent queueing network in
which all the queues except the one of interest are replaced by a single
composite queue. This concept and technique was developed by Chandy, 9

Herzog, and Woo [CHAN 75]. It is called the Norton theorem of queueing

theory due to its analogy with the Norton theorem of electrical circuit

theory. This method can be 11lustrated by the Tollwoing example in

~ which we are interested in analyzing the CPU queue of a central server

model with two 1/0Q's (Figure 3-6).

programming DMP = N

() ~| degree of multi-

Figure 3-6: Central Server Model.

. We wish to replace this model with an equivalent network (Figure 3-7)

Figure 3-7: Equivalent Central Server Model.

'1 in which the statistics for the CPU in the equivalent model are the

‘_ same as in the orginal system. The equivalent service rate u(n) of

the composite queue is a function of n, the composite queue length.

- This new service rate can be computed and found to be equal to the

throughput along AB in Figure 3-8 when AB is shorted. That is,
p(n) 2 Throughput AB (n jobs in the system).

tGiven y = 0.5 and N = 3 we get

1 _
5 ‘f’<:::>“"‘ﬁ’ DMP = Ny tn,=n
shorted 4 n
. 2
’l\% 9@6
2

Figure 3-8: Shorted Central Server Model.

’

0 n=2=0

L2 n=1
u(n) = 1

2/3 n=2

\ 3/4 n=3

CPU statistics can be more effectively computed from the model in
Figure 3-7. It has been shown [CHAN'75] that the queue length distri-
bution in the equivalent network is the same as in the original network
: ifor networks satisfying local balance. In the above example the branc-
hing probabilities are constants (1/2). It can be seen that thg through-
L-puta]ong AB in Figure 3-8 can not be derived if we choose a join-the-
shorter-queue branching policy, since we will get only one possible
state‘(n], n2) where |n]-n2| <1 and ny *+n, =n. Throughput u(n) will

be intractable. however, the Norton theorem is still valid for some

models with a special class of stochastic state dependent branching
" probabilities [TOWS 75]. In these cases the Tocal balance property

happens to exist.

The recursive solution technique was intro-

3.5.5 Recursive method.

" duced by Herzog, Woo, and Chandy [HERZ 75]. The main idea of the method

is that the state probabilities of a system can be expressed as linear

29

combinations of other state probabilities. Therefore by properly choos-
ing some boundary states:-ﬁt is possible to derijve expresseions for all
other state probabilities as functions of the boundary values. The
reduced system of equations for these boundaries can then be solved and
finally all system states can be\eva]uated and normalized. The set of
chosen boundary states will éffect the complexity of the computation and
is dependent upon the structure of the state diagram. This technique is
significantly different from traditional solution techniques for queueing
models in the sense that it manipu]étes the state diqgram regardless of
the orginal characteristics (distributions, queueing dfscip]ines, routing
strategies) of the system. We will demonstrate the method with a simple

closed central server model (Figure 3-9) in which one server has an

| e

dueue 1 queue 2

Ll . T T I §

hyperexponential
. server

Figure 3-9: Central Server Model with DMP = 3.

exponential service time distribution with mean 1/x, the other server

P P
has a hyperexponential service time distribution with mean (—l-+ —20,

~ L
and the degree of multiprogramming is three. The system state can be

defined as (ns) where n is the.number of jobs in queue 2 and s is either

1 or 2 depending on which server is being used. The state diagram is

shown in Figure 3-10. By choosing P3 = 1 (arbitrary constant) as the

Piu, ile

Pauy Pouy

Figure 3-10: State Diagram for Figure 3-9.

prenormalized probability for boundary state 31 and P3 = x (unknown)
. : S 2
as the prenormalized probability for boundary stqte 32’ the GBE's for

state (3]) and (32) can be used to derive expressions for state probabi-

lities P, and P, as linear combinations of P, and P, . These expre-
2] 22 3] 32
ssions are functions of x only. They are

2!
P -—
2] A
and
H2
P Eee=iK
22 "

Repeating the same process for the GBE's of states (2]) and (22) we obtain

_ 1 "
P'I] - [()\'*'il'l) i Pi¥y = p-ll-lzx:!
and P, = L [(A +u2) ——~U2x - - PouoX].
1~ A wel 3 Poky = PaliaXas:

Finally, PO can be expressed as a linear function of x by using the GBE

for state (11) and x can be evaluated from the GBE of state (12). The

initial assumption that P3 = 1 is arbitrary since all probabilities will
1 _

be normalized at the end of the process. The recursive solution
method is used in the analysis of many of our DCS models.

3.5.6 Appromation methods. The mathematical structures of

queueing theory that are used to describe real systems are often
idealized. Even with these simplifying assumptions, most queueing
models are difficult to analyze exactly. This inability of existing
solution techniques to yield exact analysis of complex system models
raises the important question of approximations. It is reasonable to
find approximate or bounding behavior for real systems.

Approximation methods have Tong been used in various aspects of
queueing models. Erlang and Cox [COX 55] used the staging method to
approximate the distributions of random processes. This staging method
is emp]oyéd in the later sections of our work. The heavy traffic condi-
tion of G/G/1 was studied by Kingman [KING 62] and Kobayashi [KOBA 73].
Kingman'developed upper and Tower bounds for the average waiting time
in the sy;tem. Kobayashi used the fluid approximation (diffusion

'process) to describe fairly adequately the behavior of single server
systems under heavy load and éaturated conditions. Approximation
methods for queueing networks have not gone unnoticed [[UNT 74, CHAN 75,
SAUE 75]. Muntz and Wong [MUNT 74] studied the asymptotic properties i
of resource utilization and mean response time for a general network 1
model of a time-sharing system. System saturation points can be esti-
mated from the approximate asymptotic characteristics of the systems.
Chandy, Herzog, Sauer, and Woo [CHAN 75, SAUE 75] used Norton's theorem

to approximate queueing networks that do not have local balance pro-

perties. They demonstrated that queueing networks with FCFS queueing

disciplines and non-exponential service distributions can be approximated

by first finding an equivéaent model under the assumption that all service
distributions are exponenfial and then solving the simplified model using

the approximate service distribution with equivalent mean and coefficient

of variation for the reduced server.

Although there is no general approximation technique to cover alj
classes of queueing models, it is our belief that approximation methods
will provide fruitfyl results in modeling system behavior. Qur study
of DCS models uses both exact and approximate approaches.

3.5.7 Simulation. Simulation has Tong been a usefyl tool for
- performance evaluation in computer systems [BOWD 73, MCDO 70]. It is
often used in verifying analytical results and sometimes is the only
way to approach system modeling due to the complexity of the analytical
analysis. Various simulapion techniques [BOWD 73, KLEI 69] exist for
performance prediction and analysis of computer networks. Theories
and developments [LAVE 75] are also available for estimating confidence
intervals when simulating stochastic system that have a regeherative
structure (a regenerative point is an instance of ‘a simulation which
can be considered as a pseudo initial cohdition of the simulation).

SimuTatidns will be used in our analysis of DCS models when analytical

solutions are intractable.

33
CHAPTER IV
HOMOGENEOUS SYSTEMS

4.1 Introduction

In recent years much attention has been focused on the deveiopment
of homogeneous multiple-processor computer systems [FARB 73, MANN 76].
This interest is motivated by the desire to share resources and the need ?
to achieve higher system performance and reliability. In this chapter
we will investigate the possibility of replacing a single central proce-
ssor with multiple slow processors in a c]oséd central server model. The
results indicate that multiple slow processors may sometimes be used to
replace a fast central processor without significant performance degra-
dation. We will also study the problem of scheduling of jobs among
homogeneous processors. The objective of the scheduling of jobs is to 1
achieve system balance, with a resultant performance increase, by
automatically shifting jobs from heavily loaded processors to lightly
loaded processors in the system. This load balancing can be doné i
statically at system configuration time by preassigning certain jobs or 1
classes of jobs to specific processors, or dynamically as the load and 1

state of the system changes by automatically transferring jobs from one

processor to another. The analysis shows that simple load balancing 1

policies can significantly improve system performance.
4.2 Closed Models for Multiple-Processor Central Server Systems

We are interested in what is to be gained (or lost) by using mul-

tiple slow processors to replace a single, fast central processor in a

multiple-processor computer system. This is illustrated by the analysis
of serveral multiple processor models. We consider again the basic central
server model as in Figure 3-1 except with the modification of a feedback
path as shown in Figure 4-1. If we interpret the model as a multiprogram-

ming system with fixed degree of multiporgramming, then service center 1

_.service center 2

service center 1 1-p

i

Figure 4-1: Basic Central Server System.

represents the central processing unit (CPU) where computation are
performed, and service center 2 represents the input/output (1/0) unit.
Each job residing in main mémory is in one of four states: waiting for
the CPU, computing, waiting for I/0, and performing I1/0 activity. A job
cycles through these four states until completed. The parameter p is the
probability that a job does not complete after its current service by the
CPU. When a job does complete, a new job immediately enters service
center 1. Me present five variations of the model each with equivalent
maximum processing power. Their job turnaround times and job throughput
rates are then analyzed and compared. Thisranalysis is described in

sections 4.2.1 to 4.2.7.

iq,zj System Models and Analysis

% Each of the five models is shown in Figure 4-2. Model 1 is the single

{lfagtCPU with a processing\rate of mu, i.e., the mean service time on the

: CPU is 1/mu. The speed factor m is introduced to compare this model with

. the other four which incorporate m parallel CPU's each of rate u. Model 2

: represents m parallel CPU's sharing a common memory. The common queue
ensures that no CPU is idle while some job is available for processing.

.; This model may not be realistic, since it ignores performance degradation

} due to memory contention among the CPU's. Model 3 assumes that each of

f the m parallel CPU's has its own Tocal memory and may be multiprogrammed.

i Jobs returning from service center 2.are dispatched to the shortest queue,

J%wiﬂlties broken randomly. This scheduling policy tends to balance the
‘Eload,but the model ignores the time required to switch.a job from one

» CPU to another. Model 4 is similar except that jobs do not switch CPU's.
. In this case we introduce m different classes of jobs. Although all jobs
| share service center 2, class i jobs can only be processed by the ith f
- processor in service center 1. Upon completion of a job, a new job of

. the same class immediately enters the network. The initial distribution
%ofjobs is such that each class has, as nearly as possible, the same

J number of jobs. This assumption offers some degree of load balancing. f
’;Mmml 5 has the same configuration as in Model 3 and Model 4, but in this
}lmdel no attempt is made to balance the load. A returning job joins any
E‘mw of the m queues ét random.

For each of the models, we can calculate the mean job turnaround time

| (TT) and mean job throughput rate (TP) as a function of parameters a,u,p,

im, and N, where N is the total number of jobs in the system. Consider

36

d) Model 4 - Multiple CPU's with
Local Memory and
Different Job Classes.

Model 2 - Multiple CPU's with m1
Shared Memory. | o e

chbosed///ﬁf [
—‘;—-"‘]_l :-_
| \ 20

randomly

hortest
queue

’ y

~ Model 3 - Multiple CPU's with
Local Memory and
Load Balancing. -

e) Model 5 - Mﬁf£§ﬁ1e7CPU'$ with
Local ‘Memory.

Figure 4-2: Five Central Server Models.

37

Model 1 as an example. By defining Wy as the average waiting time in

service center j, the mean time required by a job with n feedbacks through

service center 2 can be expressed as

T(n) 1 * n(m-l + mz)

Since pn(1—p) is the probability that a job requires exactly n returns

before completing, the mean turnaround time can be calculated as.

]

=1 p"(1-p) T(n)
n=0

n

DRLEUDICE)

= “1 + T% (m] +w2) (4-1)

This is similar to the analysis of the interactive system persented in
[NAKA 71]. With L defined as the average queue length and I the average
Jjob departure rate at service center j, it follows from L1tt1e s law

[KLEI 75] that ijj = Lj. We also know from the structure of Model 1

that I, = pI] and Ly + L, = N. Consequently, (4-1) becomes

—

L
=1, p (1,2
TT—I}+]-p(]+pI})

L] -i-L2

H—piiI

N :
= '('T:F)I—] . (4"2)

fl

The mean job throughput rate (job completion rate) is equal to the

traffic intensity along the (1-p) path. This can be expressed as

™ = (1-p) I (4-3)
comparing (4-2) and (4-3) we see that

TT*TP=N - (4-4)
This relation is similar to the Little's law (aw = L) for open systems
where TT, TP, and N correspond to w, A, and L respectively. By defining
U] as thé utilization factor of service center 1, i.e., U1 = 11/mp,

(4-2) and (4-3) can be reduced to

_ N
_ Ll (1—p5muU1 (4-5)
P = (1-p)mul, (4-6)

The derivations of equations (4-2), (4-3), (4-5), and (4-6) are slightly

different for other models. The details will be shown in the remainder

of this section where the five different configurations of service center
1 are analyzed. For each of the five models, TT and TP can be found if

either 11 or U] is determined. The following analysis primarily involves
solving for the equi]ibriym state probabilities of the models to obtain I]
or U]. A state 1is norma11y defined as a vector s = <n ,N ,...5N55.005N >
where ny is the number of jobs in the ith queue. A1l models can be fully
described by either a state-transition-rate diagram or a state-transition-
rate matrix. Each element 2,

J
flow from state i to state j. The non-zero elements are shown as directed

of the matrix represents the rate of job

branches in the corresponding state-transition-rate diagram. The equili-

brium state probabilities are the limiting (t+=) state probabilities

which are independent of the initial state distribution [KLEI 75].

4.2.2 Single CPU - Model 1.

This model as shown ‘in Figure 4-2(a) has only two queues. Since the
total number of jobs is fixed at N, the state s can be defined as s = <i>,
where i is the number of jobs in queue 1 (service center 1). The state-

transition-rate diagram is given by Figure 4-3. The state equilibrium

a o a
mup mup- mup tp

Figure 4-3: State-Transition-Rate Diagram of Model 1.

equations which form the state-transition-rate matrix can be obtained
from the state-transition-rate diagram with Pi defined as the equilibrium

probability of state <i>. The equations become

aPO = mupP]
(atmup)Py = aPy_y + mupPy g 0<i<N
mupPN = (I‘PN_'I

It is well known [KLEI 75] that for the above system, the Pi's
have the closed-forin solution
o (i

P.o= [1+ 2+ (2)2 4 5 (HQHJN]-l

0 mep | ‘mup. T tmup

40

The utilization of service Center 1, U], s the Probability that
queue 1 is not empty. Thus,

U] =1 - PO'

Using equations (4-5) and (4-6), TT and TP can be computed directly for

given q, Hs M, p, and N.

4.2.3 Multiple cpy's yitp shared memory - Moge] . -]

This mode] is similar to Mode] T, except the Processing rate of
service center 1 1s a function of its queuye Tength, Using the same

definition of a state, s = <i>, it can be seen that the equivalent

Processing rate e of service center 1 js

mll 3 i>m!

4
where i js the length of queue 1. Figure 4-4 is the state-transition- ﬁ

a a a a a a a a f
"l:I!lI[: ‘IEII’ : ‘i‘ililliillil' AQ!EHIIEIIIEIIII’ 1
up 2up 3yp (m=1)up mup Mup mup mup

Figure 4-4. State—Transition—Rate Diagram of Model 2,

rate diagram for this model and the equilibruim €quations can pe i

if“
expressed as 1

aPO = upP]

(a+iup) PT = aPi

41

i
(orl'ml,ip)P,i c::P_i_1 * mppPiﬂ 5 m<i<N i

i
mupP,, = oP A

N N-1

The simple M/M/m queueing system has a similar, but infinite, set of
state equations [KLEI 75] and it can be easily verified that the

equilibrium state probabilities are given by

mp y .
((?%J Po i i<m

Py = im o
E——m! PO ’ 1 >m, where p = m‘ g :
From the conservation relation on P. it follows that f
m-1 . N dim J
=] E
Po=[1+] '+ § el gl |
0 fey a4 g A ;

The average job departure rate from service center 1 is equal to the
summation over all states of the job processing rate during that state

multiplied by the state equilibrium probability. That is a

g |i:

I, = u P L

LI R

m-1 N ﬂ

= 1wy +] mupy i
i=t ' =]

Using equations (4-2) and (4-3) with I] defined as above, we have an

expression for TT and TP.

4

2

4.2.4 Multiple CPU's with local memory and load balancing - Model 3.V7

In this model (shown in Figure 4-2(c)) a state can.be defined as a

Vector s = <n],n2,...,ni,...,nm>, where n, is the number of jobs in the

; m
ith queue. Mm+1 1S redundant since Ny =N - igl n;. If we denote the
set of all states by S then number of states ||S]| = N;m) This result is

obtained by ana]ogy with the problem of computing the number of p0551b]e
arrangements of N indistinguishable balls in m+1 cells [FELL 68]. The
state-transition-rate diagram for a given state S, takes the general form

of Figure 4-5 where r. i is the transition rate from state S, to state sj

Figure 4-5: State-Transition-Rate Diagram of Model] 3.
and "L is the transition rate from s to S;- In equilibrium the input
flow must equal the output flow from each state. Consequently, the
equilibrium equations for any given state S; are obtained by equating

Y r..P(s.) to Y r .P(s,), where P(s) denotes the equilibrium
j 1 k ki "k

probability of state S;- Since this must be trye for all possible states,

the system equations can be written as

ri:P(s;) - 7 reiP(sE) =0, for all states ;. (4-7)
all 3: W anm g . R Yk |
rij#O rki#o

It can be shown that this system dées not exhibit local balance[CHAN

72}

43

and the equi]ibrium‘state probabilities do not have a product form solution
[BASK75, GORD67]. However, the equilibrium probabilities can be numeri-
cally computed by the power iteration method [WALL66] as described in
thapter ITI. |

If Model 3 is solved in this straightforward way, the total number
of states |[|S]|]| is (N;m), a large number even for reasonable N and m.
The size of the matrix Q thus becomes [|S]| x [[S|]. Since Q is normally

a sparse matrix and its elements usually have the same values, special

methods can sometimes be employed to reduce the required computation [WALL66].

We used a different approach, one that reduced the number of states.

Since all processors in service center 1 are identical and no queue can

have a waiting 1ine longer than {ﬂ

m] due to load balancing, a new scheme

can be used to define a state. By using this scheme, the tota] number

N
of states is drastically reduced from (N;m) to at most (Lﬁ] ; m).

State s is defined as <q0,q],...,qi,...,q[N]>, where 9 denotes number
m

of queues in service center 1 that contain exactly i jobs. The total

number of states is then equal to the number of possible arrangements of
' ; N ; E.’-!-m
m processors into Lﬁ] + 1 groups, which is given by ([m i). Based on

this definition of s, the state-transition-rate diagram of a given state

m

<q0,q],...,qi,... q(N]>is shown in Figure 4-6, For a given state it is

44

"UOL3LULJD] 9IS MAN Y3LM
£ L9poy 40 weubelq 93BY-UOLILSURA]-230QS :Q-p DUNBL

fb ounzuou 3S414 4O Xapup = [o o<t nmm 0<C [1e 404

1

A_rlm._d.....F+~.+.H.U.T.H.U......on.uv_ g ATLU.....T_.’U,:.h..hv.n....omuv

0<'b o<t Ll doy (d-1)n (d-1)1
sajlels MEQM..MCGLP

O1e1S judisuedy (d-)M [d-p)n
b ouazuou 3sdL} JO Xspul = |

\14

T

A.—..m.._..?un...nﬁl.ﬁUa~.+_.l_..Ua...aQUv

APﬁ‘_c__o.....—._,_.}_d.ﬁt_.ca....ocv

(d=1)X\d-p)n /7 (d-L)
u
L 0 o\ 1
b oudzuoU 3suLy JO XapUL = L b ou4dzuou 3suly Jo xspul = |
i eyl i
< N Un...am+_.+.0nwl.U......OUv T, AT.LU....a~+~.+_.U.~.|.~Un....Ocv
dr
L drt L :
0<’b pue p<L ||e 404 dn 0<*b pue gzL-(le J404

i

Aﬁi@-.-.._.l“._Un_.Jr_.l_.U....uOUV A_..m_d.-...F+_.+_.U.—.|:ua...aocv

L

easy to find the next states, but rather tedious to find the previous states
from the state-transition-rate diagram. However, if all next states of
each state are computable, all the previous states of a given state can be
obtained by simple table lookup.

This will be illustrated by a simple example with N=5 and m=3. 1In
this case [%ﬂ= 2 and ||S|| = 9. For each state S;» Table 1 Tists the pos-
sible next states S5 and the transition rate ris into that state. For con-

venience the state vector is augmented by the parameter n, where n is the

[N/m]
number of jobs in service center 2, i.e., n =N - 121 iq;.
State S5 State Vector | (next state sj, transition rate rij)
<Gg1G750p5n>
] <3,0,0,5> (2,a)
2 <2,1,0,4> (Tsup)s (3,a), (2,u(1-p))
3 | <1,2,0,3> | (2,2up), (5,a), (3,2u(1-p))
4 <2,0,1,3> (2,up)5 (6,a), (3,u(1-p))
5 <033,0,2> (3,3up), (7,a), (5,3u(1-p))
6 <1,1,1,2> (4,up)s (3,up), (7,0), (6,u(1-p)), (5,u(1-p))
7 <0,2,1,1> (6,2up), (5,up)s (9,a), (7,2u(1-p)), (7,u(1-p))
8 <1,0,2,1> (6,2up), (9,a), (7,2u(1-p))
9 <0,1,2,0> 1 (8,up), (9,u(1-p)), (9,2u(1-p)), (7,2up)

Table 4-1: ‘States and Their Next States

The state equilibrium equations can be established by equating the flow

out of state 54 with the flow into state S5 For this example,

flow out = flow in

becomes

¥ ri3 P(si) = E rei Pls)

J
a+ (m - qO)“ , whenn#0
where Y Pig =
J (m - qg)w , whenn =0

The state equations can be written down more easily if we first invert
Table 4-1 to produce Table 4-2, which lists for each state S the previous

states Sk along with the transition rate kit Thus, the state equilibrium

State S Ezatg chtg: (previous state s, rki)
p2] 22
1 <3§0:0.55 (2,up)
2 <241 404> (1,0), (3,2up), (4,up)
3 <1,2,0,3> (2,a), (4,u(1-p)), (5,3up), (6,up)
4 %2, 0,3 (6,up)
5 <0,3,0,2> (3,a)s (65u(1-p))s (7,up)
6 <l,1,%,25 (4,0), (7,2up), (8,2up)
7 <0,2,1,1> (5,a), (6.a), (8,2u(1-p)), (9,2up)
8 <1,0,2,1> (9,up)
9 <051 42,05 (7,0), (8,a)

Table 4-2: States and Their Previous States

equations that represent the system can be written directly from Table 4-2

and become, using Pi as a shorthand notation for P(Si)

ap] = up P2
(a * U)PZ

@ Py ¥ 2up Py + wp Py

(o + 2u)P5 = Py + u(1-p)P, + 3up Pg + up Pg

(3 ¥ U)P4 up P6

(o + 3u)P. + q Py + u(1-p)Pc + up P4

(o + 2“)P6 o Py + 2up P, + 2up Pg

(a + 3u)P7 =aPg+a P6 + 2u(1-p)P8 + 2up Pg
(0 + 2u)Pg = up Py
(3U)P9

aP7+aP8.

The example above illustrates how the state equi]fbrium equations can
be derived when m and N are known. By applying the power iteration process
We can compute the equilibrium state probabilities, P(s), for a particular
choice of parameter values a. u;,ﬂnd.p. We will now show how the job turn-
around time and throughput rate can be obtained once the state probabilities
are known. |

Since each processor in service center'] is identical and a join-the-
shortest-queue routing policy is used to balance the queue]éngths, the
processor utilization, average queue length, and job departure rate of

each of the m parallel processor/queue pairs must also be identical, i.e.,

2 J m
L1 = L2 = = Lj = ,,, = Lm’
I] = 12 = = IJ = .., = Im

Using O] and L to denote the mean waiting time and queue Tlength res-

mt1
pectively in service center 2, equation (4-1) for the mean Jjob turnaround

time can be written as

48

T = 4. + —E~(w- + wm+1)

J o 1-p'%j

re g ‘
J P s
mL. + [

1]
-—y,
I
L=
=
Ty

Likewise, following equation (4-3)the mean job throughput rate can be

€xpressed as

TP = (1-p)mlj .

The quantity m IJ is the Mmean job departure rate from Service center Ts

This effective proceséing rate is the weighted average of the Processing

rates of a1 states and can be computed from the equilibrium state prob- 4
abilities P(s) as - ; |

ml, = y P(s) x (departyre rate given state s)
J all states

S=<q0,q],...,q[NJ>
m

i

P(s) x ('] y a;)
i=1

n

all states

m

Sz(qogq]‘,...,ql-ﬁ]> I.:

4.2.5 Multiple CPU's with local memory and different job classes - Model 4.

Model 4 is shown in Figure 4-2(d). For the purpose of comparison with
the other models, we will assume that the N jobs are evenly distributed
among the m classes. If N is a multiple of m, the distribution of jobs

will be ﬂ] = N2 = ... = N1= . Nm = N/m, where Ni is the total number

of class i jobs. Otherwise, there will be N - n1EH classes with E%] jobs

each and m[%] - N classes with E%} jobs each. We can define a state s as

the vector <N] - n], N2 - n2, S, Ni - ni, cens Nm = W2y ehere ni is the

number of class i jobs in service center 2 (queue m+1). Ni - N, is then
the number of class i jobs in the ith queue of service center 1. The

m
number of distinct states ||S|| becomes I (N, + 1),
. i=1

This model can be treated as a particular example of a general class
of models in which the state probabilities are known to have the product

from solution [BASK 75]

mt+1

P(s' = <_Y],,Y2,---s m+~|>) =C 12} g]'(y'i) (4-8)

- C is a normalizing constant and each component Y5 of the new state vector

] - -) " 3
s' is itself a vector (ni]? Nipseees Nipreees nim)’ where Nip 18 the

number of class r customers in the ith queue. For our example, Y; reduces

to

(0, s e 8 Og Ni'nig Og v e w8 0), fOY'i

1]

1,2,...,m

(n], Nys «vvs N) for i = mtl

m

In a closed queueing system, Yit] is redundant and the definition of

state s' for this model can be reduced to that of s.

Function g, (y,) in equation (4-8) is given by [BASK 75]

m n: n
g;ly;) = 0] ! LI Gple, T (DT

r=1 Tir i
m
where ny = } nj; = the total number of jobs in the ith queue
5=
and Cip = the relative arriva] rate of class r jobs in the ith queue.

From Figure 4-2(c) it can be seen that

1 5 7T=r and ¥=1,2500 M
€1 P i=mt1 and r=1,2,...,m
0 , otherwise.

Therefore,

N_i_n_i N-"n.

1]
—
=
1

-
—
5
—
L |
—t
| -

91'()’1') i"ny/¢

_ N0y , 1 F mHl
- (GH

and

m nytn,t...+n
(RPIR I L SRR
n,+n +...+nm)! {riI] (—n]_!) p '} (a)

(n1+n2+...fnm)!

n
_ (P 1
(&) A i n, Tl

P(s) becomes

(N]’rN2+...+Nm)—(n}+n2+...+nm) (n]+n +...+nm}!

2

| | |
n-'.n2. LI Y n]_n.

P(s)

n
ex(3) x &) ™ x

ntnot. .. +n (nytn +...+n_)!
- Cx(%ﬁ“ X (EEJ] =2 m 172 m

Wil o B0
a nyin, i

Since the equilibrium state probabilities must sum to one, the normaliza-

tion constant C can be computed as

N N N
o 1 2 m 1N EE_n1+n2+...+nm (n}+n2+...+nm)!
C =1} L omae J (=) =) L5l il n 1
ny=0 n,=0 n =0 L 1" "2F e W

After computing the equilibrium state probabilities by the above method,

TT and TP can be found using the approach outlined for Model 3.

4.2.6 Multiple CPU's with local memory - Model 5.

An analytical solution for this model (Figure 4-2(e)) can be derived
using the approach of Gordon and Newell [GORD 67]. They showed that the
state equilibrium probabilities for a particular class of models can be

expressed as

1 m+1 nj
P(S = <n} ,nz,...,nm>) = G_(N_,W jE] (XJ) ’ (4'9)
where nj is the number of jobs in queue j, G(N,m+1) is a normalizing
constant, and the xj‘s are the solutions to the set of linear equations
m+1
X, =)] = sCs... M+ . . &
M kgl ”kxkka s J= 1.2 m+1 (4-10)
Equation (4-9) is a specail case of equation (4-8) with only one class
of jobs. pkj is the probability that a job leaving processor k will join

queue j. Xj can be interpreted as the relative probability that a job will

Join the processor queue j. Since the x's may be normalized [BUZE 73] and

processors 1 ‘through m are identical, we may set X| % Xy == I 1 and !
[p s k = 132541 and § = md 4
i]—r;ﬂ . k=3=1,2,....m |
by =, = ..o= o =p . Withp, ., =) .
P! 2 m oL kemland 1,2,

0 . elsewhere

equation (4-10) becomes

1 o
E {mu(l'P) + axm{.]] Fl J = 1 el ecis: oL

=
aX 41 = Mup o) = el
Solving the above equations, we obtain R miﬂ .

Let Um+1 and Uj be the utilization factors of service center 2 and

processor j in service center 1 respectively. Then

Um+1 =1 - P(s[nm+] = 0)
=1 - Z) 1 (X)nm+]
all s and G{N,m+T) mt1
nm+1 =0
g (el |
m-1 G(N,m+1) -

Since under equilibrium the job departure rate at a service center must

be equal to the arrival rate, we have the following relation at service

center 2:
aUm-{-] = mupUj s J# ml .
Consequently,
= O
' Uj mup U1
_ o _ N+m-1 _ 1
T mpp (1 - Crpy) G(N,m+1)] (4-11)

The remaining work for this model is to compute the normalizing constant

G(N,m+1). It was shown in [BUZE 73] that G(N,m+1) can be evaluated recur-

sively as

m+1 n; m+1 n.
6Nm+1) = § o (x) '+ T T (x) !
nm+]:0 i=1 - nm+]>0 i=1
= G(N,m) + Xl G(N-1,m+1) (4-12)

For Model 5 it turns out that G(N,m+1) can be expressed in a simpler form.

Using the property of conservation of probability, it follows from (4-9)

that
m+1 n.
G(N,m+1) = ¥ I (x1)1
all s i=l
n n n
- x] 1 X, 2 X 41 m+1]
all s such that m
n1+n2+...+nm+]=N
Since Xp = Xy T een F R = 1, this can be expanded as
0 1
G(N,m+1) = } X e
n]+n2+ .+n_=N m+1 n]+n2+...+nm=N-1 m+1
N
+ X
. o m]
n1+n2+...+nm—0
N+m-1 N+m-2 m N-1
= m-1 Jis(m-1) m41 B deaitt (m-]) X+ ®
(B o (4-14)
- My
where xm+] bk

The turnaround time TT and throughput rate TP can be derived in the same

way as in Model 3 with Uj defined in (4-11).

4.2.7 Comparison of performance.

We have computed and plotted the turnaround time (TT) and throughput
(TP) versus N (the degree of multiprogramming) for each of the 16 combina-
tions of the following parameter values: u =1 sec_], a/p.=1,2,4,8, p =
0.5, m= 2,4,8,16. Figures 4-7 to 4-10 show the comparisons of the five
models when p = 1 sec_l, o/u =4, p=0.5, and m = 2,4,8,16 respectively.
The curves are marked by symbols 0, a, +, & and x to represent Models 1,
2,3,4, and 5. If we define TTk and TPk as the turnaround time and through-

put rate of Model k with parameter values a,u,p,m, and N, then for each

choice of parameter values

T s T, s T3 $ T, S 1T
and

TP] = TP2 2 TP3 2 TP, 2 TP5 .
This linear ordering can be supported intuitively by comparing the process-
ing rate of service center 1 under various customer distributions for each
of the models. When there are a total of ¢ 2 1 customers in service center
1, Model 1 has a processing rate of mu, while model 2 has an effective rate
of only min[cu,mu]. This rate is further reduced in the case of Model 3,
since one or more of the m processors may be idle while a customer is wait- |
ing without service at one of the other busy processors. This condition ;
is more probable for Model 4 since its load is not dynamically balanced as i
in Model 3. Model 5 gives the poorest performance because no attempt is

made to balance the load.

Figure 4-7 to 4-10 also show that the performance of model 3 closely ap- |

proximates Model 2 and Model 4, with Model 2 as its upper bound and Model 4 as

3.39) -

3.0]

20

2.0

THROUGHPUT (TP)
o

1.0y ©

DE
P=0.5

ALPHA/MU=4.0

0O 4 8 12 16 20 24 28 32 |
NUMBER OF JOBS (N)

4 e

- P=0.5

ALPHA/MU=4.0

— nN ny
(@] o -

p—
™o

TURNAROUND TIME (TT)

0 4 8 12 16 20 24 28 o
NUMBER QOF JOBS (N)
Figure 4-7: Comparisons of Five Models with m=2.

3.5 -

3.0 -

~No
.
(8]

~No
o
]

THROUGHPUT (TP)
o

sial
o
'

P=0.5

U2 ALPHA/MU=4.0

T ¥ T L

0 4 8 12 16 20 24 28 32
NUMBER OF JOBS (N)

305

28_ P:0.5
ALPHA/MU=4.0

241

20

TURNARCUND TIME (TT)

O9 4 & 12 16 20 2 28 32
.- NUMBER OF JOBS. (N) .
Figure 4-8: Comparisons of Five Models with m=4.

w
o

w
o

™~
[$a])

]
o
1

el

.

o
1

THROUGHPUT (TP)

P=0.5

—
o
L

ALPHA/MU=4.0 '

0.5 : I

o 4 & 12 16 20 2 28 32 '
NUMBER OF JOBS (N)

w
g

~n
=

P=0.5

ALPHA/MU=4.0

TT
e

TURNAROUND TIME

—
(]
L

4' A+

/

O T T T T T T T i
0 4 8 12 16 20 24 28 32 |
NUMBER OF JOBS (N) |

Fiéure 4-9: Comparisons of Five Models with m=8.

TURNAROUND TIME (TT)

P=0.5
ALPHA/MU=4.0

no
o
:

16 -

12 4

T Ld T =

4 s 12 16 20 24 28 32
NUMBER OF JOBS (N)

P=0.5

ALPHA/MU=4.0

T

0 i s 12 16 20 24 28 32

NUMBER OF JOBS (N))
Figure 4-10: Comparisons of Five Models with m=16.

its lower bound. In fact, the three models are identical when N < m.
This demonstrates the bepefits of the load balancing poiicy of Model 3
versus Model 5. Of the f{ve models only Model 3 does not have a closed
form solution. In general, both the TT and TP of Model 2, 3, and 4 are
close to Model 1 for medium to large loads (N = m). The performance of

Model 5 Tags far behind the other models until the system becomes satur-
ated for large N.

Figure 4-11 to 4-15 display the turnaround time and throughput rate
of Models 1, 2, 3, 4 and 5 respectively for parameter values u = 1 sec“],
of/u =4, p=20.5, and m = 2,4,8,16 (Symbols 0,A, +,.and x correspond
tom=2,4,8,16). It can be seen that the turnaround time increases
almost linearly with the number of jobs N, and that the throughput of
each system is ultimately limited by either the maximum processing rate
of service center 1 or service center 2. The structure of the five models
reveals that the maximum throughput rate is min[(1-p)mu,(1-p)a/p]l. We
also note that almost no improvement in turnaround time can be gained by
increasing m once the utilization of a processor in service center 1 equals
to utilization of the processor in service center 2.- This condition of
balance exists when @ = mup. Thus, for each system model with o, u, and
p known, we can select an N to achieve a desired throughput and turnaround
time while also minimizing m.

The comparison shows that the performance of the system decreases as
the degree of decentralization increases. However, the performance of the
three multiple processor models indicates that such systems may sometimes
be used to replace the faét single central brocessor without significant

performance degradation. This will become increasingly attractive as the

cost of minicomputers and microprocessors continues to decrease.

3.5 |

3.0

2.0 1 | - 4
g

P=0.5

[a%]
(Sa]

THROUGHPUT (TP)

p—
.
o
n

o
[$2]
i

ALPHA/MU=4.0

004 8§ 12 16 20 28 28 32
NUMBER OF JOBS (N)

32

~Ny
(0]

P=0.5
ALPHA/MU=4.0

- no no
(=] o Bl
i ! '

—
™
'

TURNAROUND TIME (TT)

0 P8 12 16 20 24 28 32
. NUMBER OF JOBS (N)
Figure 4-11: Performance of Model 1 with m=2,4,8,16.

J.07

w
o

no

.

o
L

<
>

——

.

(&)
L

THROUGHPUT (TP)

o
o

P=0.5

o
o
(!

ALPHA/MU=4.0

T T -

0 4 8 12 16 20 24 28 32
NUMBER OF JOBS (N)

32

ALPHA/MU=4.0

no
S

ro
e

—
™

TURNAROUND TIME (TT)
o)

o

T T T T

0 4 8 12 16 20 24 28 32
NUMBER OF JOBS (N) _
Figure 4-12: Performance of Model 2 with m=2,4,8,16.

>
S

AT

THROUGHPUT (TP)

@)

P=0.5

ALPHA/MU=4.0 1

00 4 & 12 16 20 24 28 32 |
NUMBER OF JOBS (N) |

| 0 |
P=0.5 !f
28- . A
ALPHA/MU=4.0 |
24 7 i
C 1
t:' i
w 20 |
= i
- i
216 g
=2 !
o i
& |
<C |
é 12 2 i
s | i
- _
8- ”
4 -
0 . ; ; " . , {
0 4 8 12 16 20 24 28 32 1
NUMBER OF JOBS (N) |
Figure 4-13: Performance of Model 3 with m=2,4,8,16. 1
i

W
(=]

™~
g

5
>

e
i

THROUGHPUT (TP)

2
o

P=0.5

o
()]

ALPHA/MU=4.0

T T T 1

0o 4 8 12 16 20 24 28 32
NUMBER OF JOBS (N)

32

P=0.5

)
®

ALPHA/MU=4.0

- N no
= B o =
L 1 1l

—
™o
'

TURNAROUND TIME (TT)

g 12 16 20 24 28 32
NUMBER OF JOBS (N)

Figure 4-14: Performance of Model 4 with m=2,4,8,16. 1

Q
I

3.59

THROUGHPUT (TP)

P=0.5
ALPHA/MU=4.0

O 14 8 12 16 20 24 78 32
NUMBER OF JOBS (N)

32,

281 P=0.5
ALPHA/MU=4.0

rno
o~

™
o

—d
[pS]
1

TURNAROUND TIME (TT)
[=))]

00 4 8 2ot T8 20) 32
' NUMBER OF JOBS (N)

Figure 4-15: Performance of Model 5 with m=2,4.8,16.

4.2.8 Application to the ready queue model. One of the assumptions made

in the previous models is that a new job will enter the system upon the
completion of a job. Of course this is not realistic and the computed
turnaround time TT is not the true turnaround time as seen by the user.

Let us consider an open model in which the job arrival is a Poisson process
and the system can accommodate at most N jobs at any time. If an arriving
job finds the system is available, i.e. the current number of jobs‘is less
than N, the job will enter the system immediately. Otherwise, it is put

in a ready queue and waits for execution. This ready queue model is shown

ready P

queue ,,,/’/’/;?’

Figure 4-16: Ready Queue DCS Model.

in Figure 4-16.

A

Given that there are currently n jobs in the system (notlinc1uding the
waiting jobs in the ready queue), we can obtain an equivalent system as

Figure 4-17 where the equivalent service rate u(n) is the average through-

ready
gueue n

"A_"—'b

v

Figure 4-17: An Equivalent System for Ready Queue Model.

put calculated for the closed models with degree of multiprogramming

DMP = n discussed in the previous sections. The state of the system can
then be defined as a tuple (m,n) where m and n are the number of jobs in

the ready queue and system queue respectively. The state transition diagram

can be obtained easily as Figure 4-18. This state diagram is a simple

M) w2) n@) w(M) e(N) RENPESHEN)

Figure 4-18: State Transition Diagram for Ready Queue Model.

birth and death process with state dependent death rates. The state
equilibrium probabilities Pmn have a product from solution.

n ﬁ
A .
Pon = 121 U_(_iTPO e nsN

N

- Al A |m . _ N
Vand PmN - iz] Ll(-|) [U(N)_ PO seee M 0, 1, e
where Py =) P A1'1 é
all states 'n_ ;

The true turnaround time as seen by the user can be computed from the :

steady state probabilities directly.

4.3 Open Models for System with State Dependent Job Routing Policies i

We have discussed and analyzed serveral closed multiple processor DCS

models. We have shown that the job scheduling strategy in a DCS system can

Fach circle in the diagram represents an exponential stage which generates
an exponential inter-arrival time. The arrival process will have an inter-
arrival time of é%—with probability (1—p])i-]p1. To obtain the inter-arri-
val time distribution we can first find the s-transform of the staging dia-
gram and then determine the inverse transform. Starting with the s-transform

of an exponential stage, 52%13 we can compute the overall s-transform A(s).

That is,

_ v i=1 2X i
A(s) = 1‘21 (.l'p'l) p](s+2A)
2p, A
_ “h 2) 32 20 42
=g [V F (o) gy + (e G0 + e
LB
s+2p]A :

The inverse transform of A(s) is an exponential distribution with mean 2p1A.
Thus, we have proved that processor 1 has an independent Poisson arrival pro-
cess with mean 2p]A. Similarily, the arrival process for processor 2 is also

Poisson with mean 2p2A. The average turnaround time TT for the composite

system is

i3]

Py x average turnaround time in processor 1
+ p, x average turnaround time in processor 2

. U L
- u-2p]1 u=2poh

It is obvious that average turnaround time is minimized when Py = Py i.e.

p]zpzzz-

4.3.2 Alternating job routing policy. We can do better in balancing

the job Toad for the two-processor system by sending all even numbered
Jjobs to processor 1 and all odd numbered jobs to processor 2. This is

called the alternating strategy. The idea is similar to the round robin .ﬁi
concept employed in many systems. For our particular model, the new
inter-arrival time becomes the sum of two exponential inter-arrival times.
This changes the exponential arrival distributionto. an Ez(two stage 1
Erlang) arrival distribution with mean A for each processor. The system
again is reduced to two independent EZ/M/l systems. Standard solutions

exist for Eo/M/1 [KLEI75]. The average turnaround time TT is given by

T] 5 st 1.1 |
w(l-¢) " u(l-0) ° ‘ H

where o is the unique root of ¢ = A(s) in the range of 0 < o < 1 and 1
S=u-uo i
A(s) = (E%%X)z is the s-transform of E, distribution. o can be directly com-

puted from the equation

N+ et ‘

| I
0—2+2 -3

= |>

In the case of general m-processor systems, the effect of the alter-
nating policy is simply m Em/M/1 systems. . This leads to an interesting
limiting case as m approaches infinity. Recall that for m processors the

s-transform of the arrival process for each processor is A(s) = (sTéx)m

As m approaches « we get

Tim _ lim , mx \m
M0 Als) = Mo (s+mA)

T
Tim (s mA)m

3

mi
” 1
Tim 1 mrA s
g ¢ —m)"s" »
S
_
S
by
.S
=eA
s/

The transform of e is the impulse function_UO(t - %J. This indicates
that we have a deterministic interafrival time of %—. Therefore E /M1
becomes D/M/1 when m + «. The solution for D/M/1 can be obtained by
finding o where ¢ = e~ (u-ua)/x |

4.3.3 Join-the-shorter-queue policy. We have discussed the random

and the alternating job routing policies. A job dispatcher using the
random strategy requires no knowledge of the system, but in order to use
the alternating strategy he needs to.rémember which processor received
the previous job. We now introduce a more sophisticated job scheduling
scheme, join-the-shorter-queue policy. The job dispatchihg strategy

depends on the current state of the system.

queue 1

job
dispatcher 'E’<:::::}__€3’

queue 2

Figure 4-21: Join-the~Shorter~Queue Job Routing.

;horter queue. Ifrboth queues have an equal number of jobs (including
empty), the arriving job is dispatched randomly to one of the two queues
with equal probability. The model was also studied by Flatto [FLAT76]

who used the generating function approach to solve for the equilibrium
state probabilities. The result is a complicated infinite sum for the
equi]ibriﬁm state probabilities. In this section we use the recursive
technique [HERZ75] described in Chapter III for the analysis of the model.
The system can be described by the two dimensional state-transition-rate
diagram in Figure 4-22. Since the system is an open model we have an
infinite number of states. However, if the system is ergodic, the equili-
brium state probabilities Pij(Pr[i jobs in queue 1 and j jobs in queue 2])
will approach ‘zero for large i and j. It is therefore reasonable to trun-

cate the infinite state diagram by assuming that the maximum queue length

is N.

Figure 4-22: State-Transition-Rate Diagram.

This will intrbduce a negligible error if N is properly chosen. The

total number of states is then (N +])2. Let PN i = Xj’ where the X's

are unknown variables for j = 0, 1, ..., N. Using the GBE for P we

N,J

can express PN-] j as a function of the X's. In turn all the Pij‘s, for

= N-1 down to O, can be expressed in terms of the X's. This process
reduces the unknowns from (N + 1)2 to N+ 1. Finally, we can use the GBE
for POj’ J=0,171, ..., N, to obtain a set of N independent linear homo-

geneous equations in the X's. Together with the conservation equation

Z f P;5 = 1, the set of N + 1 simultaneous equations can be solved
i=0 j=0

for the X's.

Additional properties exhibited by the model enable us to further
simplify the method. First, we recognize that the state diagrams (Figure
4-22) are symmetric about the diagona1re1ements (i,1) and therefore can

be folded over to obtain a triangle (Figure 4-23). From Figure 4-23 we

=

2

()= -
2}\11
‘ii' u EEI n
0@ Q
u

H H

%@e

Figure 4-23: A Folded State Diagram for N = 4.

now notice that if state probabilities PN,N and PN—],N-] were known, then
PN," for j = N-1 down to O, could be calculated recursively by using the
GBE for state (N,j+1). This property allows us to efficiént1y calculate all
the state equilibrium probabilities by proceeding recursively from top to
bottom and right to left in the state diagram. We may initially set PN,N to
an arbitrary constant, since the Pijls will be computed iteratively and
normalized at the end of the process. pN—l,N—] is initially unknown and
represented by the variable X, but can be found by solving the GBE for state
(N,0). The general method is described by the following algorithm and
illustrated in APPENDIX A for the sample system Qf Figure 4-23.

1. Set i =N, CONST = 1. |

2. Set Pi

= CONST, Pi-l = X (an unknown variable).

51 2 1-1

i down to 1, use GBE for state (i,j) to determine an

3. Forij

expression for P; as a function of X.

»J-1
4. Use the GBE for state (i,0) to solve for X.

5. With X known, compute Pij for g =0, ..., i-1.
6. Set i = i-1, CONST = X.

7. Repeat Step 2 through Step 6 until i = 0.

8. Set P,, = CONST.

00
9. Normalize all Pi"
X is the only unknown variable at any time during the iterations.
It can be seen that each Pij is expressed as a + bX, where a and b are

known numerical values and X is the unknown variable whose value is

subjected to change after each iteration. The algorithm can be imple-

mented by using complex numbers to temporarily represent the Pij’ with

I ——

real part and imaginary part of each complex number denoting a and b
respectively. Since the Pij are relative to one another, they must

be normalized at the end to satisfy the conservation relation
}
Pex = 1
i=0 j=0
The algorithm applies similarly to closed queueing models with the

Jjoin-the-shorter-queue load balancing policy. Figure 4-24 shows a clesed

1/0 Subsystem

—OHIC-

CPU
__9
job

dispatcher L

Figure 4-24: Closed Queueing Model with Join-the-Shorter- E
Queue Load Balancing Policy.
queueing model which can be interpreted as representing a distributed ’
multiprogramming system with fixed degree of multiprogramming 2N, or
a demand paging system in which the I/0 subsystem represents the acti-
vities of the paging system [CHOW76]. The definition of a state and
the state~trans%tion—rate diagram are the same as in the open model

except that the Pij are by definition identically zero whenever i > N ‘

or j > N.

4.3.4 Random arrival with channel transfer. Earlier in Chapter III

we introduced the idea of.balancing the Toad dynamically through the com-
munication channels. This dynamic load balancing scheme is essential in a
distributed system since job entries in a real system are normally initi-
ated from distributed sites. Figure 4-25 illustrates a simple DCS model
with state dependent job transfer policy. We assume that the communication

queue 1

=

queue 2

Figure 4-25: State Dependent Job Transfer. ' j

channel initiates a jobrtransfer from queue i to queue j whenever the ‘
number of jobs in queue i %s two or more greater than the number of jobs ;
in queue j. The channel‘can'only service éne job aﬁ a time and the job i
transfer is discontinued if the imbalance condition changes before the ;
channel transfer is.comp1eted. Only one bi-directional communication channel
is required in the model since the traﬁsfer to the shorter queue policy i?
excludes the possibility of two opposite direction transfers simultaneously.
The channel can be viewed as an input/output processor.‘ If jobs waiting

in queue i are interpreted as being resident in the memory system of central
processor i, then the model ignores the effect of memory contention between ﬁ

the input/output and central processors. This is a reasonable approximation

i
for systems with multi-port memory.]

The transfer of jobs between queues is sometimes called jockeying.

The special case of instantaneous Jjockeying (8 = =) between homogeneous

or heterogeneous queues has been studied by [KOEN66, DISN76] and they have
derived closed form solutions for Pij' There is no effective solution
method available for our model with 0 < g # ». The recursive technique

as outlined in the last section can not be applied here since the GBE for
state (i,j) involves transition inputs not only from its upper and right-

ward states but also from both state (i-1,j) and (i,d-1) (see Figure 4-26).

Figure 4-26: Transition of (i,j) to/from Neighboring States.

Neither state (i-1,j) or state (i,j-1) can be expressed only in terms of states
(1,3)» (1,3%1), (i+1,3), and (i+1,j-1). This makes it impossible to proceed

with the iterations from right to left and from top to bottom as described ‘i
in the recursive method. The analysis of the model is done through simula- '*

tion. The results and the comparison with other models are shown in the

4‘_____..

last section of the chapter.

4.3.5 Join-the-shorter-queue policy with channel transfer. One may

wish to balance the Job load through both the job dispatcher and the com-
munication channels. We now consider the ultimate case in which the Jjoin-

the-shorter-queue policy is used for both job arrivals and job transfers. {

The model and the state-transition-rate diagram are shown in Figure 4-27

g) channel f
Jjob
dispatcher /
i d' .‘
Figure 4-27: Join-the-Shorter-Queue with Channel Transfer. :
and Figure 4-28, respectively. I

.i} {

Figure 4-28: ‘State-Transition-Rate Diagram for Fiqure 4-27.

A transfer from state (i-1,j+1) or (i+1,j-1) to state (i,j) initiated when
li-j| > 1. The recursive algorithm in section 4.3.3 can be similarily applied ﬁ

to Figure 4-28. The transition of g poses no additional difficulty since the ‘

GBE of state (1,j)‘1n the folded state diagram (Figure 4-23) still involves
only one unknown state (i,j-1) at its bottom. Thus Pi,j—1 can be expressed
as function of P_;j and the probabilities of the states above and to the right
of state (i,j). This satisfies the property used in the algorithm (Section
4.3.3).

4.4 Comparison of Performance

Performance measures obtained by analyzing the above queueing models
include the utilization of the processors (U), the average queue length
(L), and the mean job turnaround time (TT). By definition.the utilization
of the processors in each of the open models is U 2 Mu for any given A
and y. The average queue length is directly related to mean response time
by Little's result, A x TT = L. Our comparisons are based on the analysis
of the mean job turnaround time TT of each model. We denote each of the

models by the following

Model A - random arrival with p = %

Model B - alternating arrival EZ/M/]

Model C - join the shorter queue arrival

Model D - join the shorter queue arrival and channel transfer

g = 1.0.

The state equilibrium probabilities Pij‘s of each model can be obtained

as described in the previous section. The average queue length L can then
N N N N
b .
be computed using L = } J i P L. I JP;s. The mean turnaround
i=1 =1 i=1 4=1 W

e

time TT is calculated directly from Little's law TT = L/x.

We also introduce two limiting cases (Model E and Model F) of the aoné
models for comparison purposes. Model E represents the M/M/2, the special
case when B = =». Model F is a M/M/T with same arrival rate 2x but only one
processor with twice processing speed (2u). The standard solution [KLEI75]

for turnaround time TT of Model E and Model F are given by

IS

TTE = T : |

_ 1 |
and TTF—m. ‘

Table 4-1 and Figure 4-29 show the comparison of the mean turnaround |

time TT for the six models (A, B, C, D, E, F) as a function of A. In each

Description
Model jof Model A .1 .2 3 ! .5 .6 .7 .8 .9
A |random arrival T

A T<11]1.25|1.43(1.67{2.0012,50{3.3315.00;10.00
H/M/1

B |alternating arrival TTB 1.0311.10{1.:22|1.3811.62|1.98{2.60{3.84| 7.59
E,/M/1
2

C |join the shorter TT.11.02({1.06{1.14{1.26]1.42|1.68[2.10(2.95| 5.47
queue without
jockeying

D |join the shorter T
queue with
jockeying, 8=1.0

D 1L0%{7.06] 1. 1211 .23:1.391 .63 2.05) 2.88| 5.35 |

E [M/M/2, B== TTg|1.0111.04/7.09{1.19]1.33|1.56{1.96 2.78} 5.26

F |processor with TTF 0.56{0.63{0.71]|0.83(1.00{1.25{1.67|2.50
twice the speed

.00

(8]

Table 4-1: Comparison of Mean Turnaround Time for Models A, B, C, D, E, F.

8.0 u=1.0

B= 1.0 (Model D)

~
o
L

)
=
[an]

C.D;E

o
L

s;TURNASgyND TIME (
= =
L L

~o
o
L

Vv

o T 2 3 1 5 % J 8 9 ‘
Figure 4-29: A plot of Table 4-1
case u is set of 1 and A varies from 0.1 to 0.9. The channel rate in

Model D is 8 = 1.0. The results indicate that for each choice of para-

meter A

TTA > TTB > TTC > TTD > TTE > TTF.

We also notice that under heavy load condftions the performance of the

distributed models with load balancing (Models C, D, E) is significantly

better than the system with random arrival policy. Furthermore, the

performance rapidiy approaches that of Model F, which is the best that k
can be achieved. The result that Model C closely approximates Model D

indicates that the channel is almost redundant due to the load having

- been balanced by the job dispatcher.

The case of random arrival with channel transfer discussed in section
4.3.4 is not directly compared in Table 4-1. The analysis of the model

~ was done with simulation. The results in Figure 4-30 show the average

I\

10.0 1 B =20

9,0

8.0

7.0 B3

™ ™

nn

Figure 4-30: Comparison of Mean Turnaround Time TT for the Model
. with Random Arrival and Channel Transfer.

turnaround time TT as a function of A and 8. ‘It indicates that a transfer

l channel with g = 1.0 achieves almost the same performance as the join-the-

shorter-queue.

We have shown the impact of job routing strategies on homogeneous two-
processor DCS. The results of our analysis suggest that the performance
of distributed systems under heavy load can be improved significantly with
simple load balancing policies. Two characteristics of thermode1s with
join-the-shorter-queue arrival policy make it possible to use the recursive
method effectively for their analysis. First, since the systems are homoge-
neous we can fold the state-transition-rate diagram into a triangle. Second,
each state in the state diagram has at most one transition from states to
its left or one transition from states below. A similar method can be
applied to analyze non-homogeneous two-processor systems. This will be
described in the next chaptér. The overall system performance was improved
by dynamic load balancing, although the average arrival rate and service
rate remained unchanged. This is due to the fact that the state-dependent
job-routing policy has changed the interarrival distribution from exponential
to hypoexponential with the same mean. The hypoexponential distribution has
a lower coefficient of variation than the exponential distribution, result-
ing in more consistent inter-arrival times. The load of the system is thus
better balanced. This coincides with our intuition abou£ the join-the-shorter
queue load balancing policy. The results also indicate that the turnaround
time of the system depends not only on the mean and the coefficient of varia-
tion but also the higher moments of the equivalent arrival distribution. It

would be an interesting problem to model the effect of the higher moments of

arrival distributions on the system performance. :

CHAPTER V

HETEROGENEOUS SYSTEM

We have studied various homogeneous distributed systems in the
previous chapter. Although homogeneous systems are interesting, it
is often the case that we have to deal with systems which involve non-
identical processors. In this chapter we extend the idea of job rout-
ing to heterogeneous systems. Again, two classes of job routing
policies are presented: non-deterministic and deterministic. The non-
deterministic policies that we will ihvestigate include state independ-
ent routing and state dependent routing. The Coxian staging method will
be shown to be useful in describing the arrival processes associated
with non-deterministic routing policies. The deterministic policies
introduced in this chapter are the maximum ratio policy, the minimum
system time policy, and the maximum throughput policy. We will show
how these policies can be formally expressed as functions of the system
parameters. The recursive solution technique used for the analysis of
two—processbr homogeneous systems is generalized for two-processor hetero-
geneous systems with special properties. The models with the deterministic
job routing policies that we propose are shown to have such properties
and thus can be efficiently analyzed. Comparisons of performance based
on the solution of two-processor open models with various job routing
strategies are then presented. Lower bound models for average system
turnaround time are also introduced for comparison purposes. The analy-

sis shows that the maximum throughpﬁt job routing strategy gives the

best performance and it is conjectured to be optimal.

5.1 Models with Non-Deterministic Routing Policies

Consider the multipTé processor heterogeneous systemin Figure 5-1.

An arriving job is routed randomly to processor i with probability Pi'

() —
) —

Figure 5-1: A Heterogeneous System with Random Job Routing.

This is called the random job routing policy. p; can be chosen
arbitrarily or as a function of system parameters. A random job
routing policy is state independent if the branching probabi]it%es
Pjig are fixed at all times. On the other hand we say the job-
routing strategy is state dependent if pj.s are functions of the
workload distribution of the system.

5.1.1 State independent job routing. The state independent job

routing policy is the most commonly used arrival strategy in queueing
network analysis. For open models with the exponential distribution

assumption, the state equilibrium probabilities have a simple product

form solution [JACK 63, GORD 67]. In the case of closed models, the

local balance property exists for systems with exponential service
distributions or special priority rules and efficient solution tech-
niques have been found [CHAN 72, BASK 75, BUZE 73].

Using the Coxian staging method in section 4.3.1, we showed how an
m-processor homogeneous system with a fandom job routing policy could be
analyzed as m independent M/M/1 Systems, each with an equivalent job arrival
rate of AP - Applying the same method to our current model, the average
job trunaround time TT for the overall system can be expressed as the
weighted sum of the average job turnaround time on the individual

systems, which is

m
17T = Z ———f—*j°—~—— . (5—])

The minimum value for TT under the following constraints can be computed

analytically:
0<p; sl
)
_ p: = 13
i=1 i
Api < Uf.

The last constraint ensures that non of the queues will be saturated.
We note that in this state independent jdb routing strategy one might

foolishly choose a P such that AP; A uy, even though A is smaller than
i .

the total processing power) Hye This leads us to consider reasonable
I=1
values for the branching probabilities Piig: It is natural to select Py
such that it is directly proportional to the processing speed of processor
u.
i

I i.e. Py = =5 . Although this choice of p, may not result in mini-

1Y

j=1

mum job turnaround time, it does guarantee that all queues will never

m
be saturated as long as A <) My
J=1

This can be shown as follows:

it

L]
ne-13

Let Pn denote the marginal steady state probability of the ith M/M/]
i
system where n; is the number of jobs in the ith queue. Pn- can be
; i
expressed as

n
th_a;1po
£

It is interesting to notice that the global state equilibrium prob-

abilities Pn 0 have- the product form

12y
p C A Y o™ A)"m p
NqiN,...N) . 3 b A TP 00«5 40
12 m :) F 5 2]
\J J J : J
y r A _\ﬂ—l+n2+...+nm p
Z W 00 e 0
L

Using the standard formula for the average queue length Li for each M/M/1

queue, the Li are found to be identical and given by

| mack
1]'G_i
A ' A
= ‘where §. = ;
5 uj-’x 1 JE]Jj.

This state independent job routing policy with proportional job branching
probabilities will be compared with other deterministic state dependent

job routing strategies proposed in section 5.2.

5.1.2 State dependent job routing. The state of a $ystem is defined
as the workload distribution in the system. A job routing policy is state
dependent if the branching probabilities P;ig are functions of the queue
lengths. It is often desired to choose P; such that it is inversely pro-
portional to the queue 1ength of the ith processor, i.e. P; = G ?}T-where
G is the normalizing constant for all Pj- This policy is sometimes referred

to as a discouraged arrjva] policy [KLEI75] or as the functional job

routing [TOWS75]. It was shown [TOWS77] that the equilibrium state prob-

abilities in such systems take a modified product form solution if the

functional branching probabilities Py belong to a special class of
linear functions. However, there exists no efficient algorithm to cal-
culate the normalizing constant for the steady state probabilities.

In this section we will analyze a particular case of the discouraged
arrival model. Our reasons for analyzing this model are twofold. First,
we believe that the model reflects the actual implementation of some dis-
tributed systems. Second, we will show through the analysis that the
Coxian staging method is useful in describing the arrival process in

models with state dependent routing policies. Figure 5-2 is a special

i
_ 1
Py55eT
system 1
J
pZ"] "p'l ﬁ@‘)
system 2

Figure 5-2: A Special Model with State Dependent Job Routing.

case of the models with non-deterministic state dependeﬁt Jjob routing.
The model consists of two systems. The branching probability P to

system 1 ds set %o 7%T“ where i is the number of jobs in queue 1. We
can interpret the model as a system composed of one fast and cne slow
processor with mean processing rates ¥y and Mo respectively. Further-

more, although My is larger than Hos Processor 1 can accommodate fewer

1

jobs since the size of its fast memory is limited. By setting p, = =

the rate of job arrivals to system 1 is greatly reduced as the queue

length i increases. However, we want to send évery job to system 1 if

its queue is empty. Processor 1 can be viewed as a master processor K 1
which is independent of processor 2, while processor 2 is regarded as

a slave whose arrival rate is a function of i. The model can be decom- E
posed into two separate systems as shown in Figure 5-3. Systém 1 is an

independent single queue model with discouraged arrivals. Standard

i+l System 1 !
kSO i
i+l : : system 2 .

Figure 5-3: Separated Discouraged Arrival Model.

V

solution for the state equilibrium probabilities Pi's’ average queue 1

length L}, and mean turnaround time T have already been derived [KLEI 75]. |

Pi is given by . 1
- i :

(Ate !]

IJ] i

i |

! il - i

Since Pi is poisson, the average queue length L] can be expressed as 1

L =

1 i Pi = A/u]. Let Al denote the equivalent arrival rate to

t~18

i=0
queue 1. A] can be obtained by equating the arrival and departure rates

as follows: . !

A =y (1-Pg) ;
A

= u(1-e 1). gl (5-3) |
|

Using Little's law, the mean turnaround time T] for system 1 is given by

—

- = _7~_
T] = &
.] 2 —Il—_

U'[(]'e])

We will now show that similar results can be obtained by using the
Coxian staging method. Furthermore, the measures for system 2 will be
computed using the same approach. The overall system turnaround time
TT will be calculated directly from TT = (L] + L2)/A after L] and L2 are
determined. '

Recall that in chapter III we showed how an arrival process can be

described using a Coxian staging diagram. Figure 5-4 is the Coxian staging

L AR 0

1
s

~no

_h
N
>

)

8-

Figure 5-4. Coxian Staging Diagram for Arrival Process of System 1.

diagram represénting the arrival process for system 1. fi denotes the

probability that the inter-arrival rate is 7%7-. During a unit time

interval the average number of arrivals is Ay Let us assume that among

the arrivals, Ny of them arrive at rate

1

A i . .
53T Therefore, during this

unit time interval

n- .
f] :%
1
A T oA
=2-P./] =S5 P
L VP S
A
Ay U]
A (”1 T
T+ T/l -e)
i+
_]JL (l)'l-l
e 1 U'I
ST el >4
T1-e "1
AL
The s-transform of an exponential stage ki] is <1 Given the
| ST

probabilities f. in equation (5-4) and the staging diagram in Figure (5-4),

*
the s-transform A, (s) of the arrival process is

s
£ k+1

k A
0 S+T(—+T

A] (s) =k

I t~18

The inter-arrival time distribution a](t) can be found by inverting the

*
s-transform A] (s). This can be expressed as

@ il
o A k+1
a;(t) =) f, 37 e
1 ko K K+
+
U R
_ e |) k+1
e kZOW‘T—)_kH re
Ll
1-e

The average inter-arrival time T, is the expected value E[t] of the

inter-arrival time and becomes

n

T, = E[t] r £ a(t) dt

94&. (_A_)k
e ™M ‘)’f T
=X g My K

U
1-e L
& 1
A
"
U](]'e)

By taking the inverse of T] we get the equivalent mean arrival rate
A

A = up(1-e ¥1), which is the same as equation (5-3).

The arrival distribution a2(t) for system 2 can be derived similarly.

Figure 5-5 is the Coxian staging diagram. 9; is a function of Pi and

denotes the probability that the inter-arrival rate is ?%%z By analogy

with system 1 we define 9; = 1513 where N is the number of arrivals at

% (7 _
L o A

)

E

Figure 5-5: Coxian Staging Diagram for Arrival Process of System 2.

rate é%%—during a unit time interval. Given the state equilibrium prob-

abilities Pi for system 1, Nos becomes

i
n,. = — P.
21 i+l i "
Aad u
) 1
_ A &
i+] il

The equivalent mean arrival rate Ay to system 2 can be evaluated as

follows:
v ka
Ay =) 7P
2 k=0 k+1 "k
& f—)k e
kA 1 H
=7 X &
k2o K1 k!
A k(;’-‘—)k
H 1 A
=y e | J) d(
L =
. L
-]
=X - “1(] -e). (5-5)

Adding equations (5-3) and (5-5) we get Ay * X = A This confirms the

above derivations. Probability 9; is then given by

g - 2i
143
A Ay it |
_ e (”1)
B A (i) !
L_ (]_e u})

* I
The s-transform A2 (s) of the Coxian staging diagram in Figure 5-5 :

becomes
. - ¥ (;}1--)M D
_ e i
Ay (s) = Z A (i+1) | X
]"'0 A "u_ S + -I;-'-I-:—-
Ao (1-e M)
H

Finally, we get the inter-arrival time distribution az(t) for system 2 \

*
by inverting A, (s), which gives

Tj}) (UA)1+1 g
(t) - e | Z 1 1A & i+l
2 A b TTRTIT T
A (1-e ')

It can be shown that the mean inter-arrival time T, for system 2 is 3/A2

as expected from (5-5). |

By using the Coxian staging method we have shown that the discouraged

% {
T, = E[t] = J t ay(t) dt |
0 |

A A i+l |

T o ('”"") |

L gl A 7 |

A TP !

= - (1-e 1) ‘_‘

U] j

- 1 !

A

A= Ul(l‘e U}) E

5 11

arrival two-processor system can be reduced to two G/M/1 systems with

|
known arrival process distributions a](t) and a2(t). Although it may !
|
I

be tedious, it is theoretically possible to analyze any G/M/1 model.

The turnaround time for a G/M/1 system can be expressed as a function

of o, where o is the root of equation A*(u-uc) = o [KLEI 75]. Alter-
nately, the recursive solution technique used in Chapter IV for the M/G/1
models can be applied to these G/M/1 systems also. After the average
queue length L1 and L2 are calculated for each G/M/1 system, the average
turnaround time TT of the two-processor system is tﬁen given by

L+ L

L = x

The performance of this model is not directly compared with the other
routing policies since the restriction of faster processing rate and
smaller memory size placed on one of the processors is not éompétib]e with
our other models. However, the above derivation demonstrates and important
fact. Job routing strategies may create new arrival distributions. In
many cases these new arrival distributions can be derived by using the
Coxian staging method. - Therefore, not only may the mean, the coefficient
of variation, and other moments of the new distributions be computed,

but the system can be decomposed into separate G/M/1 models.
5.2 Models with Deterministic Routing Policies

Consider the multiple processor heterogeneous systém in Figure 5-6.
If an arriving job finds the system in state S = (n],nz,...,nm), then the
job will be dispatched (routed) to queue q(S,C), where q(S,C) is deter-
mined by a system criterion function C. We use the notation C(n],nz,...,
n1+1,...,nm) to denote the value of the function when the job is sent to

the ith queue. n represents the number of jobs in queue s. The job

() —

~ job
dispatcher

—=(n)—

Figure 5-6: A Heterogeneous System with Deterministic
Job Routing.

dispatching strategy is deterministic since an arriving job is always
routed to a processor in accordance with the deterministic criterion
function of the job dispatcher. We will investigate three state
dependent routing policies for the above model: the maximum ratio
policy, the minimum system time policy, and the maximum throughput
lpo]icy. We will expreés the criterion function C in terms of the
system parameters for each policy. It will be shown that two-processor
heterogeneous systems with these routing policies can be solved using a
generalized recursive solution technique to be described in section 5.3.

5.2.1 Maximum ratio policy. The policy can be stated as follows:

Assume the system is in state S = (n],nz,...,nm).
1) An arriving job is sent to queue i if the service rate to queue
length ratio pi/(n1+]) = max {uk/(nk+1)|k:1,2,...,m}.

2) If the maximum “1/(ni+]) is not unique, the job dispatcher

selects. from among the tied queues the one with maximum My

=

The choice of how to resolve ties when two or more queues have the same
u/(n+1) ratio was arbitrary. The above rule is standard for all policies
whenever a tie exists. fﬁe maximum ratio policy is based on an individual
user's view as how to improve performance since the inverse of the ratio
is the average turnaround time as seen by the arriving job. It is natural
for the arriving job to select a queue which has a maximum u/(n+1) ratio.
We will use the following notation to represent the maximum ration policy
(POLICY I).

POLICY I: Maximum Ratio Policy

p.
os 5 ; " - 1
i if max {C(n],nz,...nk+1,...,nm)]kml,2,...,m} = ni+]
L& i) .,
and —g # o3y for 170,
1 J
q(s,C) = 1 a Mk
where C(n1,n2,...,nk+1,...,nm) 2 nk+] .
g u .
j otherwise, where max {uk - E] =-E—%T} = My
g k j

Since the departure tr;nsitions in the stﬁte—transition—rate diagram

are independent of the routing policy, it is convenieht to simplify the
diagram by only showing the arrival transitions. Figure 5-7 shows a grid
which represents the simplified state diagram for a two-processor system
with Wy T 2 and My = 1. Each intersection represents a state (i,j). The
arrows indicate transitions from state (i,j) to (i',j') of rate) due to
an arrival: The departure transitions from state (i,Jj) to (i,j-1) and
(i-1.3) of rates uy and u, are omitted.. It will be shown in section 5.3

that the state diagram satisfies special properties and can be solved

efficiently by using a generalized recursive method.

queue 2 ' ; : " L : .
§ B S S
3 e e =
S R St s R W T |
S B J S
O="—"2——3 4 5 &

—= i queue 1

Figure 5-7: Simplified State Diagram for POLICY I
when uy T 2 and Hy = T

5.2.2 Minimum system time policy. The mimimum system time policy

is motivated by two goals, the desire to find an optimal routing
strategy and the need to model parallel processing. Our analysis shows
that although the policy does improve system performance it is not

an optimal job routing strategy. Given that the system is in state S =
(n1,n2,...,nm), the system time T(n]?nz,....nm) is defined as the

expected time to complete every job already in the system. This defi-

nition can be expressed recursively as follows:

'T(n],nz,...,nm) E[time to service every job]

I

E[time to service the next job] +

E[time to service the remaining jobs]

1 L My ,
= nz‘] + kz] nz_l T(n] 9n2, ,nk -Ig ,nm) 3
U U
51 3 mF0] g2
#0 .#0
n# ;7 i
Ny
T(0,0,-.-,nk;---,0,0)z .
k
m
The term 1/ Z u. represents the average time until the next job comp-
j=1,nj#0
letes its service given that the system is in state (n1,n2,...,nm). This
follows from the assumption that each server has an exponential service
m.
distribution. The expression i / z My is the probability that the
j=1,n.#0
J

next departing job is from queue k. If a job departs from queue k, then
the average remaining system time is T(nl,nz,...,nk-1,...,nm). Thus, the
average system time can be defined recursively using the first equation.
The second equation defines the boundary conditions for the recurrence
relation. If we choose T(n],nz,...,nm) as our criterion function, then
the mimimum system time policy (POLICY II) can be eépressed formally as

POLICY II: Minimum System Time Policy

.

i if min {C(nl,nz,...,nk+1,...,nm)‘k=1,2,..,,nm} =
T(nl,nz,...,ni+1,...,nm) and T(n],nz,...,ni+1,nmf
T(n],nz,...,nj+1,...,nm) for i#j, where C(n],nz,...,

q(s,C) = nk+1,...,nm) = T(nlfn2""’nk+]""’nm)'

. . I =
j otherwise, where max {ukiT(n],nz,...,nk+1,...,nm)

T(n1,n2,...,nj+],..,,nm)} =y

For the special case of a two-processor system, we have

T(n,,sn,) = L -;, u T(n,-1,n,) + ——Eg——w-T(n n,-1)
122 p.]'i'uz u.l*l'uz 1 2 1_|-I+].12 172 i
; n]
T(n] ,0) = ‘q N
L
and T(O,nz) = EE

The simplified state diagram for this policy when uy = 2 and o = 1 is

given by Figure 5-8.

34\':55':':‘:'::
4 =

queue 2 ey -1 -
?2 >l =
| N\
L et I O N ! \
0 = :

o 1 2 3 4 . . Z —= i queue]

Figure 5-8: Simplified State Diagram for POLICY II
when g = 2 and uy = 1.

The recursive definition of the average system time T(nl,nz,...,nm)

can be expressed in an alternate way. If we consider the system time t
as a réndom variable, the average system time can be computed from its
distribution. We will show how this distribution can be obtained.
Given that we have n. jobs in queue i, the distribution of the time to

i
complete all jobs is the same as the service time distribution for a

single job to pass through n; stages of servers. This is illustrated

by the diagrams in Figure 5-9.

n.
i

o
e

Figure 5-9: Systems with Equivalent System Time Distributions.

The service time distribution is a n; stage Erlang distribution and is

given by
n, n.-1 -u.t
by Tpd g
08 = o

The probability that all jobs in queue i are completed before time t is

t “ust n-1 (u:t
f.(t)dt=1-¢e | —.
i L k!
0 k=0

Fo(t) = | "

The overall system time distribution can be expressed as

f(t) = Pr(last completion occurs at time tJ

[}
3

Pr{1ast completion occurs at time t
i=1
last completion is on processor i]

Pr[last completion is on processor i]

for the two-processor case

f(t) = f,(t) F(t) + f(t) Fy(t)
ny n.=-1 -p,t _
) Ll-l]t 1 e 1 ']Jzt n2 1 (U]t)k
i =) D e LY W
n, n,-1. -u,t ,
by £ el gt M7 gk
¥ (n,-1)1 1 =he T
Ml k=1

The average system time can be found using the above distribution.

This becomes

o) n n2§1 " Wt (ng * k)
ny,n,) = — - ‘ -
12 ST LT TR]

(u]+92)
n, MM K (nyek)
& el w 5
Wo kg (nz—l)!k! nytk+
(u]+u2)

Although this expression for T(nl,nz) is cumbersomé, it yields the same
result as the recursive definition of T(n],nz) presented earlier.

An interesting related application of the minimum system time policy
is the modeling of parallel processing systems. Figure 5-10 shows a simple
parallel processing model. Jobs in the ready queue can be partitioned
into independent tasks to be executed separately and in parallel on diff-
erent processors. A new job is executed only if all tasks of the previous
job are completed by the multiprocessor server. The tasks of a job

are scheduled in such a way that the average service time of the job is

minimized. This scheduling policy is similar to our minimum system

) e@ﬂ

...%, : i
ready . . i
queue ‘ SieRs :

1] * I

: —z-@—'>
(] 1

[}

A I B T B e I
multiprocessor server
Figure 5-10: Parallel Processing Model.

time strategy. The system time distribution becomes the service distri-

bution of the equivalent system in Figure 5-11. The equivalent mean

Py
Sl ————E>‘IIII’rn;r~%;>

ready equivalent
queue server

Figure 5-11: Equivalent Parallel Processing Model.

service rate is the inverse of the average minimum system time, where

the minimization is done over all possible assignments of the tasks,

; u _ : : .

LPCTIRE (PN PP 1/m1n.{T(n1,n2,...,nm) all possible assignments}.

The reduced system is a simple M/M/1 model with job dependent service rate.

5.2.3. Maximum throughput policy. The two routing policies discussed

above are functions of the system queue lengths and processor service rates

only. The job dispatcher may also have information available on the job

U

arrival rate. Inlthis section, we will show how this additicnal
information can be used to improve the performance of the system.
Consider an equivalant single queue model for the multiple processor
system as shown in Figure 5-12, where By is the equivalent service

rate. uedepends on the workload distribution among the queues

IO

composite equivalent

queue server

Figure 5-12: Equivalent Single Queue Model.

although this distribution is not explicityly shown in the composite
queue. The function of the job dispatcher is to update the workload
distribution after an arrival so that the minimum average turnaround
time can be achieved. It seems intuitively correct that if we can
increase Mo We can shorten the job turnaround time. We define the
equivalent average service rate Hy during an inter-arrival time as the
average system throughput duriﬁg this interval since the workload
distribution can be updated by the dispatcher only after a job arrival.
The méximdm throughput job routing policy is a strategy that assigns
an arrival to a queue such that the expected throughput of the system
during the next inter-arrival period is maximized.

The throughput of the system is the sum of the individual through-

puts of each processor in the system. The average throughput TP(ni) of

processor i during an inter-arrival period can be derived as follows.

Let Qik = Pr[k jobs leave processor i during an inter-arrival
period of length =]
Since the service distribution of processor i is exponential, Qik is

Poisson and
i
() e
Qi = K1 ’ bgked

The throughput of processor i during t 1is the average number of jobs
that are serviced and is equal to) k Qik/T’ where n, is the number
k=1

of jobs in queue i. Because of the Poisson arrival assumption, the

probability that the inter-arrival time is t is given by f(1) =

e =, Thus, we can express the average throughput of processor i as
n.
Ik Qs
N k:] 1 .r h Y
TP(ni) = J — T{t)dr
0 '

k -ut
ni : (giT) e

k=1 k! , -AT
T hdr

Y n ‘ d
o T) kT &

= 1 gy

LI

Given that the system is in state (n],nz,...,nm), the overall average
throughput TP(n],nz,...,nm) during the next inter-arrival period is

the sum of all the individual TP(ni). This can be expressed as

TP(nysnys...sn =) 4 i ui.)
j

We now express more formally the maximum throughput routing policy
(POLICY III) as we did for the other two policies.
POLICY IIl: Maximum Throughput Policy

i if max {C(n],nz,...,nk+1,...,nm)[k=1,2,...,m} =
TP(n],nz,...,ni+1,;..,nm) and TP(n],nZ,...,n1+l,..,nm) #

q(S,C) = < TP(n],nZ,...,nj+],...,nm) for i#j, where C(n],nz,...,

)

nk+1,...,nm) = TP(n],nz,...,nkﬂ,..,nm

j otherwise, where max {“kITP(nl’HZ""’nk+]""’nm) =

TP("I’"Z""’nj+]""nm)} = il

\

Figure 5-13 shows the simplified state diagram for a twc-processor system.
The arrival transitions which are indicated by arrows, are a function of
s Hys Moo nys and Ny The major difference between POLICY III and the
other two policies (POLICY I and POLICY II) is that it depends on A.

5.3 Recursive Solution Techhique for Two-Processor Systems

We have shown in Chapter IV that the recursive solution method is

queue 2 e B e s :;) ‘;--
R
=TT & F
'IF=ER A A AR AT
0

Figure 5-13: State Diagram for POLICY III
when x = 1.5, uy = 2, and Wy = | &

an efficient numerical technique for the analysis of two-processor homo-
geneous systems with a join—%helghortest-queue arrival policy. This
method can be extended to some classes of heterogeneous systems. In
this section we will develop a recursive technique for solving two-
processor heterogeneous systems with special properties. The hetero-
geneous models with deterministic state dependent routing policies dis-
cussed in sections 5.2.1 through 5.2.3 will be shown to satisfy these
properties. The efficient analysis of sUch models thus becomes possible.

Consider the state-transition-rate diagram in Figure 5-14 which
represents a two-processor heterogeneous system with arrival rate A and
service rates My and Mo The state diagram is not symmetric because of
the arrival job routing policy and i # Mo The job dispatching strategy

is deterministic, i.e. for each state (i,3) the transition with arrival

rate A always leads to one next state, (i+1,3) or (i,j+1). The Jjob

108

A

% | 1.
queue 2 4 e ;: et (N1,N2)

L L i

\] !)
R VI 2

= i queue 1

Figure 5-14: Arbitrary Two-Processor Heterogeneous System.

dispatcher assigns the next arriving job to one of the two queues
depending upon a predefined deterministic criterion. A well defined

job routing policy partitionzlihe state diagram into three classes of
states. Figure 5-14 is an example of one such partition. The chain of
dark transitions with raté x will be called the lejgx_ligg.oflthe system.
The states connected by the chain are called balanced states. The states

above and the states below the chain are upper unbalanced states and

Jower unbalanced states respectively.

If the equilibrium state probabilities Pij of the system exist, we
can truncate the infinite state diagram to an (N1+1, N2+1) rectangle,
with the policy line ending at state (N1, N2). This will introduce
negligible error if the system is unsaturated and N1 and N2 are large
enough, since Pij will rapidly approach_zero for i>>0 and j>>0.

The generalized recursive so]ution.method for two-processor

heterogeneous systems is described by the following algorithm and

illustrated by a simple example in Appendix B. Let X be a variable

representing an unknown boundary state probability and prev(i,j) a
function which maps a balanced state (i,j) into its previous balanced
state on the policy line; e.g., prev(Nl, N2} = (N1, N2-1) in Figure 5-14.
1. Set (i,3) = (N1,N2).
2. Set Pij = CONST (some arbitrary value).

3. For K= N1 + N2 down to 1 do steps 4 through 15.

4. Set (i',J") = prev(i,j).

B If i = i' then do steps 6 through 8.

6. Set POj = X.

) For I =1 to i - 1 use the GBE of state (I-1,J)

to find an expression for Prjasa function of X.

3

8. Use the GBE of state (i-1,j) to solve for X.

9. If j=j' then do steps 10 through 12.

10. Set P10 = X.

1. For J=1 to j-1 use the GBE of state (i,J-1) to find

and expression for P, ,as a function of X.

3

12. Use the GBE of state (i,j-1) to selve for X.
13. Use the GBE of state (i,j) to solve for P., g
14. Set (i,3) = (i',3').

15. Continue.

16. Normalize all Pij'
The_ important characteristics of the state-transition-rate diagram

in Figure 5-14 that enable us to efficiently compute the state probabi-

lities are that each upper unbalanced state (i,j) transits right to state

(i+1,3) upon an arrival, while each lower unbalanced state (i,j) goes up

to state (i,j+1). This means that eéch.upper unbalanced state has an

L

excess of jobs in queue 2 and therefore jobs are dispatched to queue 1
whenever possible. The gomp]ement is true for the lower unbalanced
states. N

For two-processor systems it is more convenient to use a relational
operator R to replace the max and min functions used previously in
the definitions of job routing policies. Let C(i+1,3j) and C(i,j+1)
be the values of the criterion function after a job is dispatched to
queue 1 and queue 2 respectively, and assume Hy > Hp- The routing
strategy of méx {C(i+1,3), C(i,j+1)}, with ties broken in favor of

the faster processor, can then be described as

1. d.e., (i,3) =+ (i+1,3), if C(i+1,3) R C(i,j+1) = true
q(S,C) = : o _
2. i.e., (i,3) » (i,3*+1), otherwise, where R is >.

The special properties:of a job routing policy that enable the
above recursive solution technique to be used for the two-processor
heterogeneous systems will now be stated formally.

Property I: The job routing poIicy is determjnistic, i.e., if the
system is in state (i,j) Jjust prior to an arrival, it
moves to state (i+1,j) if C(i+1,3) R C(i,j+1) is true.
otherwise, the system goes from state (i,j) to state
(i,j+1).

Definition: The policy line of a routing strategy is the chain

‘ of arrival transitions starting at state (0,0) given
that no departure occurs.

Property II: The policy line partitions the states of the state-

transition-rate diagram into two regions. For each

state (i,j) in the upper unbalanced region

C(i+1,j+n) R C(i,j+n+1) = true ¥ n 20,
while for each state (i,j) in the lower unbalanced

region
C(i+n,j+1) R C(i+n+1,j) = true ¥ n 2 O.

The policy line is by definition a continuous chain. Theorem I
below shows that any system satisfying Property I and Property II

can be solved using the recursive solution method.

Theorem I: Property I and Property II are sufficient conditions for
using the recursive solution method.

Proof: It follows from property I that the system has a policy
line which is a continuous chain of states running from
state (0,0) to the last boundary state (N1,N2). Therefore
for each column i in the state diagram, there exists a j
such that the transition from state (i,j) to state (i+1,j)
lies on the policy line. This implies Ehat

C(i+1,j) R C(i,j+1) = true.
Using this relation and property II, we know that
C(i+1,j+n) R C(i,j*+n+1) = true ¥ n 0.

This indicates that every arrival transition above the
policy line points from left to right. Therefore,

the GBE for an upper unbalanced state (i,j) in the

recursive algorithm can be expressed as

(uphup)Pis = WPy, % WP,y * 4P e

Since the recursive algorithm proceeds with the
computations from top to bottom and from left to

right for the upper unbalanced states, we can express

P as

i+,
= L. |) _
Pis1,5 T [Otugtup)Pyg = APy 5 = woPy 5 ds

which involves only the known states to the left and
above state (i+1,j). A similar analysis applies to the
lower unba!aﬁcvd,sxatﬁﬁ. This shows that the recursive

solution technique is applicable.

B.E.D.

We now show that the maximum ratio, minimum system time, and
maximum throughput policies for two-processor heterogeneous systems
satisfy the above properties. Property I follows from the definition

of each policy. Property II will be established by the next three

theorems.

Theorem II: The maximum ratio policy satisfies Property II.

Proof: Let R be z and > Mpe By definition of the policy, we have

e H . Ho
C(‘H’] ,J) = EFa and C('I,J‘H) = 3:—‘

e T M
If ¢(i+1,j) 2 C(i,3+1) then —~ 2 3T

T
s _n i A
Therefore, C(i+1,j+n) - C(i,j+n+l) = 7y Ml o 0 ¥n2 0.
R X .. e 2 .N
Likewise, if C(i,j+1) > C(i+1,j) then T T
Therefore, C(i+n,j+1) - C(i+n1,§) = w2r « =5 0, ¥n 2 0
erefore, C(i+n,j - L+l) = 557 - T ’ LR
Q.E.D.

Theorem III: The minimum system time policy satisfies Property II.

Proof: Let R be £ and Uy > - By definition of the policy we have

C(i+1,3) = T(i+1,3) and C(i,5+1) = T(i,311}.

We will first show that
if T(i+1,3) < T(i,j+1)
then T(i+1,j+n} < T(i,j#n+1), ¥n >0
i.e., all the arrival transitions above the policy line go from

left to right as ‘shown in Figure 5-15.

p

[e — — S
e - p—— —
P B P o

L,J+|
= =

ol Y -

i Lt

L) J
- -_—
.
—_—

Figure 5-15: Arrival Transition Diagram for Upper
Unbalanced States.

We may proceed inductively with the proof as follows.
For i = 0 there exists a j such that T(1,3) s T(0,3+1). This is due to
the transition on the p01T;y line for column i = 0. It then follows
that

T(1,3+1) - T(0,j+2)

1 . | . .
= + + + -
U]+U2 [] U] T(OsJ]) UZ T(}:J)] T(OSJ+2)
-1 A - .
g [V + g T(0,3+1) + u, T(0,341) - A - T(0,j+2)
...... A = positive
_ 1 . . _ _ . .
T - A +] s l
U]+U2 (U]+U2 UZ) = s

By repeating this process, we can show that

Ti3dEn0]

A

T(03j+n+])s ¥n > 0.

Similarly, for i = 1 there exists a j such that T(2,j) < T(1,j+1).

Therefore,

T(29j+]) - T(]!j+2)

= — 1 [T(1,541) - T(0,542)] + —2— [T(2,5) - T(1,3+1)]
by *ug utup

= 0%

In general,

i

T2, 3tn) = T <Jentl) ¥nz0.

Assume i k and T(k+1,j+n) < T(k,j+n+1), ¥n>0.

For i

k+1 we have T(k+2,j) < T(k+1,j+1) for some j.

Therefore, T(k+2,j+1) - T(k+1,j+2)

i : . 2 : .
= + + - + = -
ey [T(k+1,3+1) - T(k,j+2)] + T [T(k+2,3) - T(k+1,3+1)]
< 0.
The general case becomes T(k+2,j+n) g T(k+1,j+n+1) ¥n->0.

We have now proved by induction that if T(i+1,j) < T(i,j+1) then
T(i+1,j+n) < T(i,j+n+1). The other half of the proof, that if
T(i,j+1) < T(i+1,j) then T(i+n,j+1) < T(i+n+1,j), can be shown analo-
gously. Thus, the minimum system time policy satisfies Property II.
E.D.
Theorem IV: The maximum throughput policy satisfies Property II.

Prcof: Let R be > and uy > up- By the definition of the policy we have

g (2)k
C(i+1,j) = Z A({ A= g
111 k j‘ﬂ 112 k
+ S .
PRl g Mm +k£1)
YRR SO IR 1
C(i+1,3) 2 C(i,j+1) implies (A+u]) - (A+u2 2 .
Therefore, C(i+1,j+n) - C(i,j+n+1)
FEARR K X i wa' Jtntl
" Ha
vy Jintl uo J+1
z 0, since W) < (3\;’;2“)

Similarly, if C(i,j+1) 2 C(i+1,])

U? J'H U‘I i+l

then (""*j““) - (T"'—}JT) Z

Therefore, C(i+n,j+1) - C(i+n+1,j)

Mo 547 - "1 Litn+l
l(x;;;) - (Iiﬂ?)

Q.E.D.

One special case of the general state-transition-rate diagram for
two-processor heterogeneous systems is when the policy 1ine partitions
the state diagram into a set of upper unbalanced states and an empty

set of lower unbalanced states as in Figure 5-16. This system has an

3 ===
3 I, (N, IR BT SO
1 =>r—= o
0 b i
0 1 2 3 4 K

Figure 5-16: State-Transition-Rate Diagram for the
Limited Storage Model.
interesting interpretation. The state diagram represents the limited
storage two-processor system shown in Figure 5-17. The model is like
the diséouraged arrival model except that the job routing is determinis-
tic and processor 1 can accept no more than K jobs. The job dispatcher
sends all arriving jobs to queue 1 as 1bng as the number of jobs in

queue 1 is less than K. A job is dispatched to queue 2 only if queue 1

is full. This limitation occurs commonly in real systems. The system

117

- K
i @34:::::}———2»
A queue 1
dispatch
jobs to queue § j =
if 1 < K
queue 2

Figure 5-17: Limited Storage Model.

can be analyzed using the recursive technique.

We have shown that each of our deterministic routing policies
satisfies Property I and II. It is thus possible to use the general-
ized recursive solution method for the analysis of these two-processor
heterogeneous systems. In section 575 we will compare the average job
turnaround times of the systems as functions of the routing policy and

the system parameters A, uy, and iPe
5.4 Lower Bounds on the Average Job Turnaround Time

The average job turnaround time of the single fast processor model

in Figure 5-18 can serve as a lower bound for the two-processor hetero-

)
——m _ME}GSEE;}—__E;

Figure 5-18: Single Fast Processor Model.

geneous models discussed in this chapter. The average turnaround time
TT is given by

B e

HptHpA

1o

For the homogeneous models in Chapter IV we used a standard homo-
geneous M/M/2 model as a lower bound. A similar heterogeneous M/M/2

model would look like Figure 5-19. This is not a standard M/M/2 system

L

processor 1

B2 =
processor 2

Figure 5-19: Heterogeneous M/M/2 Model.

since an arriving job can choose éithér processor 1 or processor 2 when
the queue is empty. In order to minimize the average turnaround time,
we make the assumption that an arrival always selects the fastest pro-
cessor if the system is empty. If uy > Hp e have the state-transition-

rate diagram of Figure 5-20. P, represents the equilibrium probability

Figure 5-20: State-Transition-Rate Diagram for the
Heterogeneous M/M/2 System.

that i jobs are in the queue. Py denotes the joint probability that

J -
there is exactly one job in the system.and it is being served by

LI

processor j. It follows from Figure 5-20 that Pi can be expressed as

_ A Gi-2

where P2 can be obtained as a function of P0 by solving the boundary
equations

APy = wp Pyt Py

1 2

(*+“1)Pz]= o Py

(A+u2)P] =x P P

+u
2 0 1

2 -

Using the conservation relation) Pi = 1 and the above equations,
all i

all Pi can be found. Our analysis shows, however, that the turnaround
time of this model is not a lower bound on the other models. For example,
under very light load conditions with up > My, the maximum throughput
policy berforms better than this heterogeneous M/M/2 model. This is due
to the fact that the héterogeneous M/M/2 model always assigns one job

to each processor when there are exactly two jobs in the system, while

the maximum throughput policy will send both jobs to the fast processor.
The average turnaround time turns out to be better in the latter case
under some conditions. The single fast processor model will therefore

be used to compute a lower bound on the turnaround time for comparison

with the heterogeneous systems.

5.5 Comparison of Performance

The average job turnaround times (TT) of the propdsed two-processor
heterogeneous models are compared in this section. We label these
models as follows:

Model A: state independent routing with proportional branching

probabilities,

Model B: minimum system time policy,

Model C: maximum ratio policy,

Model D: maximum throughput policy,

Model E: single fast proceséor..

In section 5.1.1 we showed that the average turnaround time of Model
A can be expressed in closed form as 2/(u1+u2-k). Models B, C, and D
are solved by using the recursive solution technique. The computed

.'s) are then used to evaluate the

J
average job turnaround time. Model E serves as a Tower bound on each

state equilibrium probabilities (Pi

model. The model is a standard M/M/1, and the average turnaround time

is given by

1

Kkl = a;;ﬂg:x ;

It is interesting to compare the effect of the different state
dependeﬁt job routing strategies on the state-transition-rate diagram.
Figure 5-21 compares the policy lines of Models B, C, and D when uy = 4,
Mo = 1, and » = 2.5. The policy lines of Models B and C are functions

of My and My only, while that of Model D also depends on A. Each policy

line favors processor 1 since uy > My and the job dispatcher naturally

L

‘G'2 =Y ‘| = Cr ‘v o= L usym q pue 9 g S|Spojy 40} SauUL] ADL|04 JO uostaedwo) :|[Z-G 3unbLy

L S
oz 6L gL Ll 9L SL vl €L z1- 1L OL 6 8 L 9 S ¥ € 4 L oo
L
dwLy ¢
(s *uLw
g €
A Xew
J 17
G
bnouay3l g
" Xeuw .
a L
8
6
A
0L

=

ey

(44

‘Gop “G'z °G'0 = Y 40} (L3POW 0 sauL] Adtlod 122§ aunb L
Ly
| e=— .
0z 6L 8L /L 9L SGL vl €L gzt LL ol e ¢ L 0O
L
Z
€
17
g
G 0=X
9
L
G 2=
G =X 8
6
Ot

=

1£o

schedules more jobs on the fast processor. Figure 5-22 shows the po1icy
lines of Model D for several values of A, The policy lines shift slightly
towards processor 2 as X increases. This indicates thaf for larger
arrival rates both processor can be kept busy most of the time.

As expected, the maximum throughput policy achieves the best average
job turnaround time. If we denote TTk as the average turnaround time

of model K, the analysis of the models indicates that

T, 2 TT

A2 > T17T

2 TTD R

B C E7

for each choice of X. Table 5-1 and its plot in Figure 5-23 shows the
results of the same comparison. Three data points for models B,C, and

D are not shown in the table when A = 4.5, This.is due to the difficulty
of accurately approximating an open system by a small finite state
diagram when the l/(u} + “2) ratio approaches one:

Several conclusions can be drawn from the comparison. Under light
load conditions, models B, C, and D closely approximate the Tower bound
Model E. The performance of Models B and C degradé more than that of
Model D as A increases. This is due to the fact that the minimum
system time (Model B) and maximum ratio (Model C) policies fail to
consider the effect of the arrival rate. These two policies tend to
schedule more jobs to the fast processor while leaving the slower
processor idle. Although this strategy is effective for low arrival
rates, the system achieves better performance under heavy load conditions
when the overall processing power is more utilized. The comparison of

the policy lines in Figure 5-21 and the results in Table 5-1 explain

this phenomenon.

1 T

Model! Description 1 A ; 0.5/1.0{1.5/2.0|2.5| 3.0 | 3.5 4.0 | 4.5
| — 1 1 | | 1 i
A Pr0p0rt1ona]%TTA’.444 500! .5711.667!.800|1.000{1.333/2.000{4.000

routing ; |
minimum ;
B |system time TTB;.286 .333|.399|.491:.622| .806(1.070/1.477; --
| policy 1 |
; . | i |
e ratio 17| .286|.332|.390 64! 550 .687| .875(1.175] -
[potey |
maximum E {
D |throughput TTD§.285 .330|.385.446.522| .627| .786 1.050; --
ipo]icy 1 |
| [|
single fast ; |
E processor TTE&'ZZZ .250|.286|.333|.400| .500] .667 1.000;2.000

Table 5-1: Comparison of TT's for Models A, B, C, D, E.

1
o0 A
3.0
L
=
=2.0 B
O
g
=
o
o
<
e
('l
=S
1.0
[]0 =)

Figure 5-23: Comparison of TT's for Models AsBsCsDsEs

| e

Model D gives the best performance and is extremely close to
Model E, since the maximum’throughput policy is adaptive to all system
information available to the job dispatcher. The performance of Model
C is superior to Model B since it attempts to minimizing the individual
job turnaround time while the routing strategy in Model B (minimum system
time policy) is not directly related to the minimization of the average
job turnaround time.

We have shown that state dependent job routing policies can be
used to improve the system performance significantly. Among all the
job diapatching policies analyzed, the maximum throughput policy is
the most attractive one. We conjecture that it is the optimal
strategy for the job dispatcher given that the available information
consists of the system parameters A, Hys Mo and the current state (i,J)

of the system. One of our future research problems is to formally

verify this conjecture.

CHAPTER VI
RELIABILITY RELATED PERFORMANCE EVALUATION

One of the most important design considerations of a distributed
computer system is to provide high reliability. The reliability of
computer'systems has long been an active research area [BOUR 71, MATH 71,
RENN 73, SPRA 74]. The research is usually concentrated on the direct
modeling of the reliability of systems and components. In this chapter
we present a different view of system reliabiiity. The study is motivated
by the recent work of Sauer and Chandy [SAUE 76] in which the problem
of performance evaluation of systems that may fail is addressed. We
are interested in the performance measures of distributed computer
systems. Usually these measures are the average throughput rate (over-
all system criteria) and the average job turnaround time (overall
user criteria). We will investigate how the reliability of system
cemponeﬁts effects overall system performance by embedding the question
of reliability into other performance measures.

Consider a repairab]e computer system. Either a hardware or soft-
ware system failure may occur during the execution of a job. The repair
of the system is immediately begun after each failure and the terminated
job 1is restarted after the repair is finished. Under this assumption,
we will show that the effect of failures and repairsonsystem performance
can be taken into account by defining a reduced equivalent service rate.
We call this approach reliability related performance evaluation, and in

the following sections we will use it to analyze the average job turnaround

time and the average system throughput of an open and a closed system.

1o/

6.1 Average Job Turnaround Time of An Open Model

In section 5.1.2 wé'&emonstrated that a job routing policy can
create a new job arrival time distribution and how this distribution
can be obtained by using the Coxian staging method. The same approach
will be used to derive an equiva]ént service time distribution that

takes system failures and repairs into consideration. Figure 6-1

O

Mo A equivalent service rate of processor
with failures and repair

Figure 6-1: Single Server Model with Failures.

shows a simple single server model with possible system failures and
repair. The arrival, service, failure, and repair inter-event time
distributions are assumed exponential with mean rates X, p, a, y res-

pectively. In particular,

arrival time distribution a(t) = xe "~,
service time distribution f(t) = pe'“t,
failure time distribution g(t) = we™®F,

..—Yt

and repair time distribution h(t) = ye

Taking the possibility of failure and repair into account, the equivalent
service time of a job can be expressed by the Coxian staging diagram in
Figure 6-2. Each circle denotes either a service or repair stage with

mean time 1/u and 1/y respectively. Pf denotes the probability that a

failure occurs before the completion of a job. PS =1 - Pf is the

Figure 6-2: Coxian Staging Diagram of the Equivalent
Service Distribution.
probability that a job is completed safely during its service time
interval. The probability that a job passes through the system with
n failures (and n restarts) is Pfn x P.. Pg can be evaluated as

follows:

0
1]

Pr[a job is safely completed]

J Prlservice time = t] « Pr[no failure during time t] dt
0

T t -0T
J g Hir, [1 - J ae dt] dt
0 0

. _H
aty’

Pf is then given by

*
With Ps and Pf known, the s-transform B (s) of the equivalent service

distribution represented by the Coxian staging diagram can be expressed

as

120

129

* _ 2 2
() = Py g+ PPy (B2 + P e (B3P 4

- p M 1

S sty YuPe
1 & <S+Y§(S+u5
= uz Sty 5
otu :
b (s + 1o

atu

*
Since B (s) can be expended and expressed as the sum of two first order terms,

i.e., 2

B (s) = X

(C D
aty

stA & s+B) 2

*
the inverse transform of B (s) is a hyperexponential distribution with

two parallel exponential stages (Hz). The equivalent mean service rate

e of the new service distribution is given by

1
B (s)]
3s |s=0

2
2 —tH) =
potyatyp (6-1)

. *
Two limiting cases of B (s) are of interest.

Case 1). Perfect server: o = 0.

"B(s) = a i = A
' W (stu)(s+y) s+

The service time distribution is exponential with mean
service time 1/y.

Case 2). Immediate repair: vy = .
* 2 2 2

s/y + 1 Y
B (s) = ¢) - z " a+u L8 & a+u)'
gl g /Y+uS/Y+S+g:;

The service time distribution is exponential with mean

Pou
. 2
service time (a+u)/u".

We have shown that the equivalent service time distribution of a
system with possible failures can be derived by using.the Coxian staging
method. The system becomes an M/H2/1 model, where H2 represent the
hyperexponential service distribution with two parallel exponential
stages. The new service distribution has a lTower mean service rate
and a higher coefficient of variation. The average job turnaround time
can be analyzed using the Pollaczek-Khinchin formula [KLEI 75] and
expressed as a function of the new mean service rate and coefficient
of variation.

An interesting question to ask is : How does the degradation of
the average turnaround time in an m-processor system with failures and
repair compare with that of a single processor system of equaivalent
total processing rate? Figure 6-3 shows such an m-processor system
with failures and repair. Assume that the processors in both systems

have the same failure and repair distributions and, furthermore,

Figure.6-3: A m-processor System with Failures and Repair.

131

simultaneous repairs are allowed in the multiple processor system.

These assumptions are pessimistic and may be unjustified; however,

it provides an interesting comparison. Under these assumptions, the
m-processor system degrades gracefully under failures and the probability
of tota]lsystem failure is much less than that of the single processor
system as defined later in section 6.2. The equivalent service rate Mo
of the single fast processor can be obtained by substituting mu for u

in equation (6-1) and is given by

2
. v (mu)
S mua * ya + mpy °

u

The equivalent service rate o of the m-processor composite system is
m times the equivalent processing rate of each individual processor,
and can be expressed as

2
= Yi

m F
m pwa + ya + yu

It can be seen that u_ > u_ for m > 1. This indicates that although
the multiple processor system has higher availability, its performance
will degrade more than the single processor system as the failure rate

increases.
6.2 System Throughput Rate of A Closed Model

Consider the m-processor central server model consisting of m

CPU's and an I/0 processor as shown in Figure 6-4. We are interested

I/0

Figure 6-4: m-Processor Central Server Model.

in finding the average throughput of the system when the m CPU's are
allowed to fail. We can define the average system throughput TP as

m - -

=] TRI) 00

3=1
where TP(j) is the average throughput given that exactly j processors
are available and Q(j)_is the probability that j processors are avail-
able. The TP(j) for a closed multiple processor system can be computed

as discussed in Chapter IV and Q(j) can be derived from the state diagram

in Figure 6-5. State j indicates that j CPU's are currently available,

a 20, 3a Jja (j+1)a mo,
ORONROEENOEEEEN0
-
My (m-1)y (m-2)y (m-j+1)Y (m-j)Y Y

Figure 6-5: State Diagram for Failure and Repair.

and o and y are the mean failure and repair rates respectively. The

state diagram assumes that failed CPU's are simultaneously repaired.

199

The steady state availability Q(j) can be obtained by solving the

equilibrium state equations:
mQ(0) = aQ(1),
(Jo + (m-32v)Q(3) = (m-3+1)¥Q(3-1) + (3+1)eQ(d+1), 0 <J <m,
maQ(m) = yQ(m-1),

m
where § Q(j) =1. Q(Jj) has a closed form expression of
j=0

Q) = 7T (9 (o)

The average throughput of a single processor system with failures and
repair can be found by setting m = 1 in equation (6-2).

We also can analyze these system by finding equivalent CPU service
distributions as illustrated in the previous section. However, this
approach gives us m H2 servers in the queueing network with turns out

to be tedious to analyze.
6.3 Discussion of the Approaches

We have presented two different approaches for the performance
evaluation of systems with failures and repair. The method discussed
in section 6-1 gives performance measures as functions of the equivalent
service distributions which in turn are functions of the failure and
répair distributions. The second approach in section 6-2 provides
the performance measures as functions of the system availability, which

dependes on the failure and repair rates. There is a basic difference

between the two models. The former method may schedule a job on a

134

processor even if the processor has already failed, since the failure
of the processor is invisible to the user job, while the latter method
computes the throughput using only the available processors. If we are
to find the equivalent service distribution of each processor in an
m-processor system, the assumption of simultaneous repairs makes the
analysis tractable. In the second approach the availability Q(j) can
be computed as a function of the number of repairers. The assumpfion
of the number of repairers is crucial in the performance analysis of
multiple processor systems.

We have shown that the consideration of system failures and repairs
can be emhbedded into otherlperforﬁance measures. The particular example
in section 6.1 indicates that we may obtain an equivalent service distri-
bution with lower mean service rate and higher coeffiéient of variation.
An interesting study by Sauer and Chandy [SAUE 76] compares the system
throughputs of a dual processor and a single processor system as a
function of the coefficients of variation of the processors. They
computed the system throughputs of closed central server models with
single and dual CPU's for various coefficients of variation of the CPU
service distribution. Their results indicate that the dual processor
system achieves better system throughput than the single processor system
when the coefficients of variation of the CPU's are high. This result
is usefd] for our comparison of the performance of single and multiple
processor systems with failure assumptions. Since the failure and
repair processes will increase the coefficient of variation of the server,

the results of the comparison of throughput will favor the multiple

processor system as the failure rate increases. This conclusion seems

L

to contradict our analysis of the open model in section 6.1; however,
it is true under certain,ppnditions. In the central server model,
the overall system throughput is directly proportional to the utili-
zation of the I/0. Since the svstem is closed, there are a finite
number of jobs in the system. If the coefficient of variation is high,
the long jobs will tie up the CPU in the single processor system and
therefore idle the 1/0. In the multiple processor case, the short jobs
have a better chance of being serviced when some CPU's are busy serving
long jobs. This increases the utilization of the I/0. Their results
also indicate that the advantage of the multiple processor system will
disappear when the degree of multiprogramming 1is high and the I/0 to
CPU speed ratio is extremely low and when the I/0 to CPU speed ratio is
high. Under the first condition, the 1/0 will become a bottleneck.
The utilization of the I/0 then becomes less sensitive to the variation
of job departures from the CPU's. In the case of high 1/0 to CPU speed
ratio, the I/0 will be mostly idle and again the utilization of the I/0
js insensitive to the coefficient of variation of.the CPU's. This reason-
ing explains the results shown by Sauer and Chandy. In general, for
closed systems the average throughput of a multiple processor model can
be greater than that of the single processor model if the service
distributions of the CPU's have high coefficients of variation.

In multiple processor systems with failures and repairs, a state
dependent job routing strategy would play an important role in improving
the system performance. A job routing policy that takes failures and

repairs into account would be adaptive to changes in the system. Our

brief study in this chapter represents an initial investigation of the

150

relationship between system reliability and performance. It is expected

to be a fruitful research area.

197

CHAPTER VII
CONCLUSIONS

The main contributions of this research were in three different
areas:

1. the presentation of a more general approach to the problem

of load balancing in a distributed computer system;

2. the development and analysis of queueing models for

distributed computer systéms; and

3. the generalization of some solution techniques for efficient

analysis of the pfoposed models.

First, we presented the concept of dynamic load balancing in
distributed computer systems. State dependent job roﬁting policies
for homogenecus and heterogeneous systems were introduced and we
demonstrated that system performance can be improved significantly
by balancing the workload at the job arrival stage and/or through
communication channels. .

Queueing models with features that reflect desireable properties
of real distributed computer systems were proposed. These models were
evaluated on the basis of overall system throughput rate and average
job turnaround time. The conclusions drawn from the comparisons can
be fed béck to influence the implementation of such systems. We have
shown that many existing analytical techniques can be simplified or
generalized for the analysis of multiple processor computer systems.

In the analysis of large homogeneous systems we were only interested
Y C

in the overall system performance. Since all processors are identical

the state definition could be simplified and the complexity of the
evaluation of steady state probabilities and their norﬁa1izing
constant drastically reduced. We also illustrated that the Coxian
staging method is useful in obtaining the job arrival and service
distributions when the effects of job routing policies and system
reliability are taken into consideration. The recursive solution
technique was generalized for the analysis of two-processor distribu-
ted systems with job routing policies that satisfy certain properties.
Some state dependent job routing policies were suggested and
formally defined. Among these, the makimum throughput policy is
of particular interest. We conjecture that this job routing strategy
is optimal under the condition that the system parameters and current
state are the only information available to the job dispatcher. Our
comparisons show that the maximum throughput policy does achieve the
best overall system performance among thpse policies studied.
Directions for future research can be divided into two categories:
short term and the long term. Topics of immediate short term interest
include the proof of the conjecture that the maximum throughput policy
is optimal and the generalization of the recursive solution method
for systems with more than two processors. More ambitious long term
research projects should focus on extending the work to larger multiple-
processor systems, reliability related performance evaluation, and the
development of approximation methods for distributed computer systems.

The models presented in the dissertation consist of only simple distri-

buted systems. In a larger network, load balancing strategies for

several stages of queues may be desirable. The topic of reliability
related performance evaluékion is an important new research area.
Difficulties with the exact analysis of complex queueing networks
lead us to consider the potential pf approximation methods. A good
approximation method can facilitate the efficient evaluation of the

system and may also provide more direct insight into the system

behavior.

APPENDIX A

Solution steps for the sample system in Figure 4-23.
1. Set P44 = 1.
2. Set P33 = X.

3. Use the GBE for state (4,4) to determine P43,

=2x P

uPyyq 43

=K
Pz = 22
4. Use the GBE for state (4,3) to determine Pap-

+ 2XP

(2x + Zu)P43 uP44 + AP

33 42

1 u
Pao = ?X'[(ZA + 2u) 7y M - Ax]

1 u2
zx [-

5. Use. the GBE for state (4,2) to determine P4].

(2a + Zp)P42 = pp43

+ 21P4]

¢ 2

- LIS ' L H
[(2x + 2u) 57 (5 -2 x) - 53]

] (zwzx“2 .
Z;? L e - ax) - po)

1
Pi = 2%

1

Lo P00+ B - a2+ 2]
a4 A

6. Use the GBE for state (4,1) to determine P40.

(2x + Zu)P41 = uP + 2AP

42 40

2 2

40 ~ 2at 21 2A

P, = L (2ne2y) ol (2020) (B - ax) - u7] - e -)]
4

141

1 | 2 u2 2 uz
= —s{(2+2u)" (5 -) - w (2a+2u) - 2w (5 -)]
8
1 2 il 2 .3 2 2
= —3{(2)&211) p—); - (2x+2p)u” - 2u" - (2a+21)° ax + 2x%ux].
8
7. Use the GBE for state (4,0) to solve for X.
(21 +u)Pyq = WPy
2
iﬁligl{(2A+zu)2 i (222 - 23 - (2x20)% ax + 222]

- S LA+ - @ s 2]
A
2 2 .3 3
y (2ah)[(2a+2u)” 5 - (2a+2u)p” - 20”1 - 27 (A+2u)
(2D (22n? - 228 - 22%u(2k2y)

8. Substitute the value of X into equations in Steps 2, 4, 5, & to

obtain numerical values for P33, P42, P41, and P40.

9. Since P33 and the state equilibrium probabilities in column 4 are
now known, the same process may be repeated for column 3 to obtain

P22 and all P3j's. This is repeated in turn for columns 2 and 1.

10. Use the relation Pji = Pij to find the state probabilities for the

other half of the state diagram.

11. Normalize all Pij by setting

APPENDIX B

Solution steps for a sample example using the algorithm in section 5.3.

[—

1\ — k___\. | M A
J' 3 — s - {3:3)
L~*~7QP*—- L"—;jl ep—i)uz _ibll

2 = = S

1 3l A
g,-‘) L) N1=N2=3
0 8 Y o
0 2 =y
1. Set P33 =]
2. Set P03 = X
3. Use the GBE for state (0,3) to determine P]3
(up + MPg3 = 1y Py3
P = (u, + A)X
13y Ho
4. Use the GBE for state (1,3) to determine P23
(uy * uy ¥A)Py3 = APz + g Py
= uotd -
P23"E_I—[(U]+U2+;\) u'l X“)\X]
+ (1)
o L i X
B P

il

5. Use the GBE for state (2,3) to solve for X
(uy +up #2) Pyg = APz + 3q Pyg

2
(g * up + M)luqup + (uy + 2)7]
] 5 : X = o (up #2) X+
Ul 1

.3
X = 1

(U] * Uz + K)[U]Uz + (Uz T A)ZJ = AU](UZ + k)

6. Substitute the value of X into equations in steps 2, 3, 4 to obtain

numerical values for P03, P13, and P23.
7. Use the GBE for state (3,3) to determine P32

(g + up) Pyg = APpy + A Py

1
Pap = 5 [y + 1wy = A Pysl

8. P32‘is now known since we have the numerical value for P23.

| 9. Set P30 = X

10. Use the GBE for state (3,0) to determine P21

(uy +2) Pgg = uy Py

1
Pyy = LE'(“1) X

11. Use the GBE of state (3,1) to solve for X

(uy + up + 1) Py = AP
1 2

31 30 * ¥ P32

pa A

12.

13.

14.

15,

16.

i 2 Pz
(U‘l + U2 *)‘)(1—'1 * }‘) = ;\UZ
2

Hp o Pgo

2
ko * (uy * 1)

Substitute the value of X into-equations in steps 9, 10, to

obtain numerical values for P30 and P31.

Use the GBE for state (3,2) to determine P22
(uy +up ¥ A) Pgy = & Poy + 1wy Pag #2 Pyy
P

-k '
22 = 3 [lug +up + 1) Pgp = uy Pag = 2 Pyl

We now have the numerical value for P22 since P33, P32, and P3]

are known.

tle have reduced the 4 x 4 state diagram to 3 x 3 with P22 known.

The same process may be repeated to solve all other state prob-

abilities.

Normalizing all Pij by setting

144

[ADIR 72]

[ANDE 75]

[BABA 75]

[BAER 73]

[BARN 68]

[BASK 75]

[BOUR 71]

[BOWD 73]

[BUZE 73]

[BUZE 76]

BIBLIOGRAPHY

Adiri, I., "Queueing Models for Multiprogrammed Computers,"
Proceedings of the International Symposium on Computer
Communication Networks and Teletraffic, Polytech Press,
Brooklyn, N.Y.,1972, pp. 441-448.

Anderson, G.A., and E.D.Jensen, "Computer Interconnection
Structures: Taxonomy, Characteristics, and Examples,"
Computing Surveys, vol.7, No.4, December 1975, pp. 197-213.

Babad, J.M., "A Generalized Multi-Entrance Time-Sharing
Priority Queue," J.ACM, Vol. 22, No. 2, April 1975,
pp. 231-247.

Baer, J.L., "A Survey of Some Theoretical Aspects of Multi-

processing,” Computing Surveys, Vol.5, No.1, March 1973,
pp. 31-80.

Barnes, G.H., R.M. Brown, M. Kato, D. Kuck, D. Slotnick,
R. Stokes, "The ILLIAC IV Computer," IEEE Trans. Computers,
Vol. C-17, No. 8, August 1968, pp. 746-757.

Baskett, F., K. M. Chandy, R. R. Muntz, and F. G. Palacios,

"Open, Closed, and Mixed Networks of Queues with Different

Classes of Customers," J.ACM, Vol. 22, No. 2, BpPil | 187
pp. 248-260.

Bouricius, W.G. and et al., "Reljability Modeling for
Fsult-Tolerant Computers," IEEE Trans. on Computers,
Vol. C-20, No. 11, November 1971, pp. 1306-1311.

Bowdon, E.K.,Sr., S.A. Mamrak, and F.R. Sélz, "Simulation -
A Tool for Performance Evaluation in Network Computers,"
Proc. AFIPS 1973 Natl. Comp. Conf., Vol. 42, pp. 121-131.

Buzen, J.P., "Computational Algorithms for Closed Queueing
Networks with Exponential Server," C.ACM, Vol. 16, No. 9,
September 1973, pp. 527-531.

Buzen, J., "Operational Analysis : The Key to the New

_ Generation of Performance Prediction Tools," COMPCON 76

[CHAN 72]

[CHAN 75A]

Fall, Washington D.C., September 1976, pp. 166-171.

Chandy, K.M., "The Analysis and Solutions for General
Queueing Networks," Proc. Sixth Annual Princeton Conf.,
1972, pp. 224-228.

Chandy, K.M., U. Herzog, and L. Woo, "Parametric Analysis
of Queueing Networks," 1.B.M. J. Res. Develop., Vol. 19,

Ne. 1, January 1975, pp. 36-42.

[CHAN

[CHOW 76]

[COFF 68]

[COFF 73]

[COLE 73]

[cOoSE 75]

[coX 55]

[cox 61]
[ENSL 76]

[FARB 73]

[FELL 68]
[FLAT 76]

[FRAN 72]

[FULL 73]

758B]

Chandy, K.M., U. Herzog, and L. Woo, "Approximate Analysis
of General Queueing Networks," I.B.M. J. Res. Develop.,
Vol. 19, No. 1, January 1975, pp. 43-4S.

Chow, Y., and W.H. Kohler, "Analysis and Comparison of
Several Queueing Models for Multiprocessor Multiprogramming
Systems," Technical Report ECE-CS-76-2, Dept. of Electri-
cal and Computer Engineering, University of Massachusetts,
Amherst, July 1976.

Coffman, E.G., Jr., and L. Kleinrock, "Feedback Queueing
Models for Time-Sharing Systems," J.ACM, Vol. 15, No. 4,
October 1968, pp. 549-576.

Coffman, E.G., Jr., and P.J. Denning, Operating System
Theory, Prentice Hall, Englewood Cliffs, N.J., 1973.

Coleman, M.L., "ACCENT - A Corporate Computer Network,"
Proc. AFIPS 1973 Natl. Comp. Conf., Vol. 42, pp. 133-140.

Cosell, B., P. Johnson, J. Malman, R. Schantz, J. Sussman,
R. Thomas, and D. Walden, "“A Non-trivial Example of
Computer Resource Sharing," Submitted to 5th Symp. on
0.5. Principles.

Cox. D.R.. "A Use of Complex Probabilities in the Theory
of Stochastic Processes," Proceedings Cambridge Philoso-
phical Society, 1955, pp. 313-319.

Cox, D.R., and W.L. Smith, Queues, Methuen, London, 1961.

Enslow, P.H., "What Does 'Distributed Processing' Mean?"
Brown Univ. Work Shop on Distributed Pwocessing, August
1976.

Farber, D.J., et al., "The Distributed Computer System,"
Proc. 7th Annual IEEE Computer Society International
Conference, Feb. 1973, pp. 31-34.

Feller, W., An Introduction to Probability Theory and Its
Applications, Volume 1, John Wiley % 5ons, Inc, N.V. 1968,

Flatto, L., and H. McKean, "Two Parallel Queues with Equal
Serving Rates," 1BM Research, RC 5916, March 1976.

Frank, H., R.E. Kahn, and L. Kleinrock, "Computer Communi-
cation Network Design: Experience with Theory and Practice,"
Networks, Vol. 2, 1972, pp. 135-166.

Fuller, S.H., and D.P. Siewiorek, "Some Observations on
Semi-conductor Technology and the Architecture of Large
Digital Modules," Computer, Vol. 6, No. 10, October 1973,
pp.

15-21.

[FULL

[GELE.

[GORD

[HEAR

[HERZ

[HEWL

[HOFR

[JACK

[JACK

[KAHN

[KING

[KLEI

[KLEI

[KLEI

[KLEI

75]
75j
67]
73]

75]

74]

75]

57]
63]

72]
62]

69]

70A]
708]

75]

157

Fuller, S.H., and F. Baskett, "An Analysis of Drum
Storage Units," J.ACM, Vol. 22, No. 1, January 1975
pp. 83-105.

Gelenbe, E., "On Approximate Computer System Models," J. ACM
Vol. 22, No. 2, April 1975, pp. 261-269.

Gordon, W.J., and G.F. Newell, "Closed Queueing systems
with Exponential Servers,” Operation Research, Vol. 164
1967, pp. 254-265.

Heart, F.E., S.M. Ornstein, W.R. Crowther, and W.B. Barker,
"A New minicomputer/multiprocessor for the ARPA NETWORK,"
Proc. AFIPS 1973 Natl. Comp. Conf., Vol. 42, pp. 529-537.

Herzog, U., L. Woo, and K.M. Chandy, "Solution of Queueing
Problems by a Recursive Technique," IBM J. Res. Develop.,
Vol. 19, No. 3, May 1975, pp. 295-300.

Hewlett-Packard, "HP Distributed Systems Technical Data,"
Sales Literature, September 1974.

Hofri, M. and M. Yadin, "A Processor in Series with
Demand Interrupting Device--A Stochastic Model," J.ACM,
Vol. 22, No. 2, April 1975, pp. 270-290.

Jackson, J.R., "Networks of Waiting Lines," Operations
Research, Vol. 5, No. 4, July-August 1957, pp. 518-b21.

Jackson, J.R., "Jobshop-Like Queueing Systems," Management
Science, Vol. 10, No. 1, October 1963, pp. 131-142.

Kahn, R., "Resource-Sharing Computer Communications
Networks," Proc. of the IEEE, Vol. 60, No. 11, Nov. 1972
pp. 1397-1407.

Kingman, J.F.C, "On Queues in Heavy Traffic," Journal of
the Royal Statistical Society, Series B, 24, 1962,
pp. 383-392.

Kleinrock, L., "Models for Computer Networks," Proc.
1EEE International Conference on Communications, 1969.

Kleinrock, L., "A Continuum of Time-Sharing Scheduling
Algorithms," Proc. AFIPS 1970 Spr. Joint Comp. Conf.,
Vol. 36, pp. 453-458.

Kleinrock, L., "Analytic and Simulation Methods in
Computer Network Design," Proc. AFIPS 1970 Spr. Joint.
Comp. Conf., Vol. 36, pp. 569-579.

Kleinrock, L., Queueing Systems, Vol. I: Theory, Wiley

Interscience, New York, 1975.

[KLEI

[KOBA

[KOEN

[KOHL

[LAVE

[MANN

[MATH

[McCR

[McDO

[McGR

[McKI

[MoDU

[MUNT

[NAKA

76]

3]

66]

75]

75]

76]

71]

73]

70]

75]

69]

75]

74]

7]

Kleinrock. L., Queueing Systems, Volume II: Computer
Applications, Wiley Interscience, New York, 1976.

Kobayaski, H., "Applications of the Diffusion Approximation
to Queueing Networks: Part II," Proc. Seventh Annual
Princeton Conf., March 1973, pp. 448-454.

Koenigsberg, E., "On Jockeying in Queues," Management
Science, Vol. 12, No. 5, January 1966, pp. 412-436.

Kohler, W.H., "Queueing Models for Distributed Computer
Systems," Research Proposal to NSF, University of
Massachusetts, September 1975.

Lavenberg, S.S., and D.R. Slutz, "Introduction to Regener-
ative Simulation," IBM Journal of Research and Development,
Vol. 19, No. 5, September 1975, pp. 458-462.

Manning, E.G. and Peebles, R.W., "A Homogeneous Network
for Data Sharing - Communications," Computer Communications
Network Group, Report E-12, University of Waterloo, July 1976.

Mathur F.P., "On Reliability Modelling and Analysis of
Ultra-reliable Fault-tolerant Digital Systems," IEEE Trans.
Cemputers, Vol. C-20, No. 11, Nov, 1971.

McCredie, John W., "Analytic Models as Aids in Multiprocessor
Design," Proc. Seventh Annual Princeton Conf., March 1973,
pp. 186-191.

MacDougall, M.H., "Computer System Simulation: An Introduc-
tion," Computing Surveys, Vol. 2, No. 3, September 1970,
pp. 191-209.

McGregor, P.V., and R.R. Boorstyn, "Optimal Load Sharing
in a Computer Network," Proc. 1975 International Conference
on Communications, Vol. III, June 1975, pp. 41:14-19.

McKinney, J.M., "A Survey of Analytical Time-Sharing Models,"
Computing Surveys, Vol. 1, No. 2, June 1969, pp. 105-116.

Modular Computer Systems, Inc., "MAXNET - The Software
Operating System for Distributed Computing Networks," Sales
Literature, June 1975.

Muntz, R.R., and J.W. Wong, "Asymtotic Properties of Closed
Queueing Network Models," 8th. Annual Princeton Conf. on
Information Science and Systems, 1974, pp. 348-352.

Nakamura, G., "A Feedback Queueing Model for and Interac-
tive-System,” TFJCC, Vol. 39, 1971, pp. 57-64.

[REIS

[RENN

[SAAT

[SAUE

[SAUE

[SENC

[SPRA

[STAB

[STON

[STON

[TAKA

[THOM

[TOuWS

751
73]
61]
751
76]
ia
74]
74]
751
P

62]

731

751

Reiser, M., and H. Kobayaski, "Queueing Networks with
Multiple Closed Chains: Theory and Computational
Algorithms," 1.B.M. J. Res. Develop., Vol. 19, No. 3, May
1975, pp. 283-294.

Rennels, D.A. and A. Avizienis, "RMS: A Reliability
Modeling System for Self-Repairing Computers," Dig.
of Pap. 3rd IEEE Int. Symp. on Fault-Tolerant Comput.,
1973, pp. 131=135.

Saaty, T.L., Elements of Queueing Theory, McGraw-Hill, New
York, 1961%.

Sauer, C.H., and K.M. Chandy, "Approximate Analysis of
Central Server Models," IBM Journal of Research and
Development, Vol. 19, No. 3, May 1975, pp. 301-313.

Sauer, C.H., and K.M. Chandy, "Parametric Modeling of
Multi-miniprocessor Systems," IBM Research Report,
RC-5978, May 1976.

sencer, M.A., and C.L. Sheng, "An Analysis of Multi-
programmed Time-Sharing Computer Systems," - Proc: AFIES
1973 Natl. Comp. Conf., Vol. 42, pp. 87-91.

Spragins, J.D., "Reliability Models for Computer Comm-
unication Systems," Conf. Res., 7th Annual Asilomar
Conf. on Circuits, Syst. and Comput., 1974, pp. 302-307.

Stabler, G.M., "A Ststem for Interconnected Processing,"
Ph.D. Dissertation, Division of Applied Mathematics,
Brown University, October 1974.

Stone, H.S., and W.H. Kohler, "Laboratory Equipment for
Graduate Research in Computer Engineering," Equipment
Proposal to NSF, March 1975.

Stone, H.5.. "Multiprocessor Scheduling with the aid of
Network Flow Algorithms," IEEE Transactions on Software
Engineering, Vol. SE-3, No. 1, January 1977, pp. 85-93.

Takas, L., Introduction to Theory of Queues, Oxford Univ.
Press, New York, 1962.

Thomas, R.H., "A Resource Sharing Executive for the
ARPANET, " Proc. AFIPS 1973 Natl. Comp. Conf., Vol. 42
pp. 155-163.

Towsley, D.F., "Loacal Balance Models of Computer Systems,"

Ph.D. Dissertation, University of Texas at Austin, Dec.
el

[Tows 77]

[VAND 74]
[WALL 66]

[WULF 72]

10U

Towsley, D.F., "Queueing Network Models with State
Dependent Routing," Submitted to JACM, June 1977.

Van Dam, A., "Computer Graphics and Its Applications,"
Final Report, NSF Grnat GT-28401x, Brown Univ.,
May 1974.

Wallace, V.L., R.S. Rosenburg, "Markovian Models and
Numerical Analysis of Computer System Behavior," SJCC,
Vol. 28, 1966, pp. 141-148.

Wulf, W.A., and C.G. Bell, "C.mmp - A Multi-mini processor,"
Proc. ARIBS 199 Falll Joint Comp. Gonf., Vol. 41, Part L1,

pp. 765-777.

	Chow 1977001
	Chow 1977002
	Chow 1977003

