FORMAL DEFINITION AND DESIGN

Henry F. Ledgard
Andrew Singer

COINS Tech. Report 78-01
February 1978

This work was supported by the U.S. Army Research Office and the
National Science Foundation.



ABSTRACT

This paper discusses some of the issues resulting
from extensive experience with formal definition and makes
the case that the right place for formal definition is during

the design process.



"Another grave difficulty was the utter impossibility of
remembering all the variety of motions brought simultaneously
into action. Obviously, nothing but the most complete harmony
and precise order among such a system of movements could avoid
an obstruction among the parts, and he soon found the need for
some aid to the memory, as well as the ability to see what
every moving part of machinery was doing at each instant of
time. This formidible obstacle, which might have tried the
courage or baffled the ingenuity of most men, proved only an
incentive to further effort on his part, for he realized that
unless he could devise some means of adequate pre-vision, he
would have to abandon the scheme altogether.

'"He soon. felt that the signs of ordinary language
were far too diffuse to admit of any expectations
of removing the difficulty and being convinced
from experience of the vast power which derives
from the great condensation of meaning in the
language it employs, he was not long in deciding
that the most valuable path to pursue was to have
recourse to the language of signs.'

This system he called the mechanical notation, and it was appli-
cable to all machinery. It consisted of an arrangement of signs
which enabled him, by directing his eye along a line, to trace

the motion of every piece of the machine from affect to cause.

The signs included the Arabic and Roman alphabets, capital letters,
lower case letters, letters in italics, and dotted and broken
lines ..."

Irasible Genius
The Life of Charles Babadge

Maboth Moséley




1. INTRODUCTION

The reader may recall the "Sampler of Formal Definitions"
[1]. 1In this paper, four different formal definition
techniques were applied to the definition of a small language,
ASPLE. Like many formal definitions, these were written after
the language had been completely developed: for ASPLE this

meant an already published subset of ALGOL 68.

2. AN EXAMPLE

Over the past year we have been using formal definitions
as a practical aid in the design of computer systems. This
is part of a more general effort to promote better human
engineering of computer systems. Formal definitions allow
the designer to capture and explore even the most "trivial"
design decisions. As we have pointed out elsewhere [2], many
of these seemingly trivial decisions have great impact on the
human factors of systems.

Our effort was based on a small but moderately powerful
interactive editor. As our first design document, we produced
a user's manual for the editor. We next attempted a complete
formal definition. It was not our intent in this effort
to stick with one existing formal notation, but rather to use

off-the-shelf schemes like productions systems, VDL, and



axiomatic approaches wherever they were convenient for a particular
aspect of the problem. The formal definition itself was attempted
before any coding.

During the writing of the definition, we discovered several
difficult problemé with conventional techniques. For one thing,
there were several aspects of the system that were very difficult
to define in an easily understandable way. These were mainly
the "interactive" parts; for example, the sequence of events
in a user dialogue and the mechanisms for dealing with interrupts.
For another, the attempt to do a truly complete definition was
suspended because of the apparently excessive detail. This
problem was exaggerated by the difficulty of specifying general
rules of behavior, which instead were often described on a case-
by-case basis.

As a result, we became quite aware of the limitations in
using current definition techniques. It is our belief that,
except for syntax (including context-sensitive rules), such
techniques are not yet ripe for easy definitions of complete
systems. We estimate that roughly half of the full definition
was finally completed. Our standard of "completeness" is rigorous,
for we attempted to define the entire system as seen by the user,
including all special cases and message interactions. The
partial definition comprises about ten pages of text. The
full implementation comprises about eighty pages of code.

The major consequence of the effort, however, was a

deepening belief in the need for formal definitions as a



practical design tool. As we wrote the definition of the editor,
we gained a much deeper insight into a system we thought we
understood well. The definition was especially helpful in
treating special cases. Null strings, null patterns, empty
line sequences, missing files, text boundaries, ends of lines,
and the use of replacement strings were exposed in detail.
The difficulties in these areas are known, but rigorously
dealing with these problems before coding was a major benefit.

Most importantly, the definition allowed us to develop a
high level and uniform view of the entire editor. In any effort
there can be deep problems in organizing a view of the system
that leads to a simple integration of all of its parts, including
the special cases. At every rewrite of the definition, we
developed a clearer idea of a sensible organization. Getting
the semantics of pattern matching to work uniformly in each
request,Aspecifying the complete state before and after each
request, and insuring that both forward and backward scanning
have a simple symmetry were typical of our concerns. Formaliza-
tion of our intent had a great effect on our thinking.

Finally, the definition was used heavily during the

entire implementation where it considerably simplified the work.
Not surprisingly the structure of the finished product mirrored,
to a degree, the definition ifself. Also not surprisingly, the
issues left out of the definition posed severe problems. The
handling of interrupts and the user-editor message interaction
proved especially difficult. Moreover, controlling the imple-
mentation on points not spelled out in the definition was
difficult. If you don't say what you want to do, you may get

surprises, and we did.



3. CONCLUSION

As mentioned in the Sampler, the following reasons have

traditionally been given to justify the use of formal defini-

tion techniques:

1.

Unambiguous definitions. There is a need to find a
single source for answers to questions and, in
particular, questions about the details of a
language or system. User manuals and reference
manuals, almost always written in English, do not
serve this purpose very well.

Manufacturing specifications. At present, we have
no precise mechanisms to serve as‘manufacturlng
specifications for use with vendors. It is impos-
sible to make a contract with a vendor and be
assured that the product will conform to our
expectations.

Standardization efforts. Standardization efforts
have been impeded by lack of an adequate formal
notation. While it is true that there are larger,
non-technical considerations in developlng standards,
the lack of suitable formal notations is certainly

a major obstacle.

Study of languages. There is a need to study the
implications of language design decisions carefully.
It is claimed that with a common meta-language, we
can analyze and compare several source languages

in terms of a common definition mechanism.

Resolution of detail. The use of a formal definition
mechanism exposes many design decisions. It is
claimed that use of formal definition techniques
forces one to resolve details that would otherwise be
overlooked in an informal specification.

Detection of design flaws. In writing a formal
definition of a language or system, many constructs
may be difficult to define. It is claimed that with
a suitable definition mechanism, the inconsistencies
of a system will be more ea511y detected. This is a
somewhat risky claim, for a given notation may be
more sultable to one language or system than another.




Each of these reasons points out some of the benefits of a
formal definition, and we support them. However, the task of
defining a language or system formally is so difficult (at
present) that it is unlikely one would resort to a formal
definition to resolve one of two of the above problems,

Because of our experience with the editing system, we
now believe that the major benefit of formal definitions is
as a basis for the detailed design of computer systems. It
is our contention that writing a formal definition serves system
designers and implementors much as the development of an
architectural blueprint serves in the design aﬁd construction
of a building. If precise definitions are developed during the
design proceés, a much deeper understanding of the entire
system results. Furthermore, the definition readily points out
the difficulties and special cases that must be resolved before
implementation. Finally, the definition allows one to develop
a view of the entire system, including special cases into a
coherent wh@le.

In a sense, the writing of formal definitions is a design
tool for programming at the very highest level. It provides a
view of the system from which actual implementation can proceed
at a much more rapid rate, and most importantly, with a much

higher quality.



REFERENCES

[1] Michael Marcotty, Henry Ledgard, and Gregor Bochmann
"A Sampler of Formal Definitions"
COMPUTING SURVEYS, Volume 8(2), June 1976, p. 191-276.
[2]

Andrew Singer and Henry Ledgard
"The Case for Human Engineering"

COINS Technical Report #77-11, University of
Massachusetts, 01003



