T HE ANNOTATED ATE S TS S AN

A Step Towards Human Engineering

Andrew Singer*
Henry Ledgard*

Jon Hueras**

TR- 1%-10

* Computer and Information Science Dept.
University of Massachusetts, Amherst 01003

** Information and Computer Science Dept.
University of California, Irvine 92717

This work was supported by the National Science Foundation and the U.S. Army
Research Office at Durham, N.C.

~3 ~3 T3 .73 —% —3 ~§ 3 3

~4 ~3 3 ~3 ~3 3

1 T3 3

14

Alice had been looking over his
shoulder with some curiosity. “What a
funny watch!""S she remarked. "It tells
the day of the month, and doesn’t tell
what o'clock it is!”

“Why should it>”" muttered the Hat-
ter. “Does your watch tell you what year
it 52"

“Of course not,” Alice replied very
readily: “but that’s because it stays the
same year for such a long time together.”

“Which is just the case with mine,”
said the Hatter.

Alice felt dreadfully puzzled. The Hat-
ter’s remark seemed to her to have no sort
of meaning in it, and yet it was certainly
English. “I don’t quite understand you,”
she said, as politely as she could.

“The Dormouse is asleep again,” said
the Hatter, and he poured a little hot tea
upon its nose.

8. An even funnier watch is the
Outlandish Watch owned by the
German profcssor in Chapter 23 of
Sylvie and Bruno. Setting its hands
back in time has the result of set-
ting events themselves back to the
time indicated by the hands; an in-
teresting anticipation of H. G.
Wells's The Time Machine. But
that is not all. Pressing a “reversal
peg” on the Outlandish Watch
starts events moving backward; a
kind of looking-glass reversal of
time’s linear dimension.

One is reminded also of an ear-
lier piece by Carroll in which he
proves that a stopped clock i> more
accurate than one that loses a min.
ute a day. The first clock is exactly
right twice every twenty-four hours,
whereas the other clock is exactly
right only once in two years. “You
might go on to ask,” Carroll adds,
" ‘How am I to know when eight
o'clock does come? My clock will
not tell me.’ Be patient: you know
that when eight o’clock comes your
clock is right; very good; then you.
rule is this: keep your eyes fhxed
on the clock and the very moment
it is right it will be eight o'clock.”

— THE ANNOTATED ALICE

The Hatter's watch nicely illustrates the effect of idiosyn-
cracy in system design. Really, a watch could provide any
number of features, but most watches designed for people
put a high priority on telling the correct time of day.
Thus, the Hatter's watch is an excellent example of bad

human engineering. By human engineering we mean "the se-

lection among design alternatives so as to relate to

people." Carroll's stopped watch is the ultimate in poor
human engineering because the user must do all the work.

Introduction

Over the years many authors (Cooke and Bunt 1975, Cuandra 1971, Holt and
Stevenson 1977, Kennedy 1974, Mann 1975, Palme 1975, Parsons 1970, Sterling
1974, Vandenberg 1967, and Weinberg 1971) have made the case for human
engineering of computer systems.. As Sterling (1974) and Holt and Stevenson
(1977) have pointed out, human engineering.is something that must be integrated
into the deéign process, i.e. it cannot be grafted on later. We believe that
very few systems have been designed with first priority given to human factors.
The work described here reflects a conscious attempt to design a computer

system in which human considerations had top priority in the design process.

As part of our general attempt to limit the influence of implementation con-
siderations, at the start we chose to complete the design of every system
feature before undertaking any implementation. Thus far we have adhered to

that decision, and at pfesent we are working on a detailed formal description
of the entire system.

For a variety of reasons, we undertook the task of developing a standard
interactive environment for PASCAL programmers, although the use of PASCAL is

incidental to our design. We were interested in assisting both naive and
'sophisticated programmers.

The effort was motivated by several concerns:

1. the development of a moderately powerful system that makes users
more productive with less effort,

2. the need for a system that stimulates rather than dampens the
enthusiasm of potential users,

3. a desire to create a system without the trappings of conventional
computer concepts, terminology, and jargon,

4. the need for documentation embodying a light and friendly approach
' to users.
These goals are easy to talk about, but difficult to realize. After nearly
two years' work, we produced a design carefully documented in the form of a

User's Guide. This document itself was the result of considerable effort.

3 ‘—3 __3

4 -9 3 -3 3 1

3 3 — 3 3 3

.3

9 ~3F T® ~% 3 3

~a T3& T3 T3 —3 T3 —3 3% "3

—3

The final design represents a large number of rewrites, perhaps ten, aimed at
making the system more accessible to the user. We consider this document to

be an example of our overall concern with the human engineering of the system
as a whole.

In this paper, we present the User's Guide (with one appendix) in annotated
form. The notes are intended to illuminate the human enginnering design

considerations and to explain the principles motivating our decisions.

It is important to bear in mind that the state of our knowledge about what
constitutes a "good" decision from a human factors point of view is rather
primitive. Often our only guide is intuition based on experience. Ultimately,
we believe that the results of existing experimental investigatidns‘is psychology,
new human engineering experiments in computing will provide a solid basis for
designs. Nevertheless, even without much data we must give current systems the

benefit of the best knowledge that we have. This is the case here.

In a sense, whenever we build a system today we conduct a human factors
experiment. Unfortunately, we are rarely in a position to extract any valuable
data from these experiments because we do not set them up as such. In the
design of the Assistant, we developed a number of general principles to guide
our decisions. As people use the system we expect to discover that some of
these are wrong. But at the very least, we know we will be able to learn from
our experience. Given the limits of hard data, we believe that work must

proceed in this way if we are to advance the state of human engineering in

computer systems.

The Current Status of the Assistant

The design described here was frozen in the summer of 1976. Since then we have
been engaged in a variety of tasks related to it. Considerable effort has gone
into a full formal definition of the Assistant. At present, a complete defini-
tion of its interactive behavior is done, and a partial definition of the
semantics of data manipulation performed by the Assistant's editing requests
has been written. A text editor, HOPE, based on the Assistant' editing request
has been written in PASCAL and will soon be available from the PASCAL Users
Group. The stand-alone automatic prettyprinting program (also in PASCAL)
mentioned in the notes has been available from the University of Massachusetts

for the last year and a half and currently has been distributed to more than

seventy installations. Continuing efforts are aimed at completing the formal

definition of the Assistant and then building a prototype. All of these efforts,
notably the design of the Assistant and its human factors considerations, have

required about ten person-years on effort, which we consider as research.

In reading this paper, it is important to bear in mind that what we are

discussing is the design, not the implementation, of a system that we believe

will be well within the state of the art. Until the complete formal descrip-

tion or an actual implementation has been completed, it remains to be seen
whether this is the_case.

All of this activity has not been without its effects. Two recent papers

(Singer and Ledgard 1977, Ledgard and Singer 1977) describe some of our

emerging beliefs. A number of specific second thoughts concerning the design

of the Assistant have also emerged. Whether we will incorporate these into a

Rev1sed User's Guide remains to be seen; but for the sake of completeness, we

have included these thoughts in the following annotationms.

% Y 3 _3 ¥ _3 __3 _3

3

r*—?g‘ ,r*f?g r~:?§. ﬁ::€§ ﬂ“‘?% ﬂt—:g

o

~3 T2 73 "3 3 ~ 32

3

A USER'S GUIDE

to

THE PASCAL ASSISTANT

Introduction

" assistant ... 1. one who assists or gives
atd and support; a helper; ... "

- Random House Dictionary
of the English Language

" automation ... 1. a mechaniem that 1is
relatively self-operating; esp. ROBOT
2. a machine or control mechanism de-
signed to follow automatically a pre-
determined sequence of operations or
respond to encoded instructions 3. a
creature who acts in a mechanical
fashion ... "

- Webster's New Collegiate
Dictionary

1

The Assistant This section is your introduction to

a little robot we have created called
"The PASCAL Assistant.'" This Assistant can help you
create, manipulate, and execute PASCAL programs. Like
any creature, natural or artificial, the Assistant has
its own ideas about things. Unlike ourselves, however,
the Assistant's ideas are fairly fixed, and its intel-
ligence is limited. As with any assistant, your under-
standing of it will make for a smooth working relation-
ship.2
Terminals The Assistant exists as a collection
of computer programs that run on a
time-sharing computer. Since you and the Assistant
interact solely by means of a teletype or some other
interactive terminal, we will at times describe the
Assistant's behavior in terms of what the terminal
does. Because you may be using any one of a variety
of terminal devices, we can only describe what happens
in a general way. For specific details concerning
individual terminals, we refer you to "Appendix 1:
Sign-on Procedures and Terminals."

Goals The Assistant's aim is to function

in a way that will be pleasant and
helpful to you. 1In this end, the Assistant follows
three general strategies:

1. An important part of the
human engineering of a sys-
tem is the physical display and
organization of its documents.
Throughout the User's Guide we
attempt to keep a layout that is
both visually appealing and yet
can be used for quick reference.
Because the User's Guide is short,
there is little need for an index.
Instead, keywords and key phrases
are given in the left margin of
the manual. (In the published
version of the User's Guide, they
occupy a separate column.) These
keywords also give the reader a
quick clue about the basic idea
being presented. We are indebted
to Child, Bertholle, and Beck
(1971) for this effective scheme.
Perhaps of most importance,
the scale of the manual is small.
Of course, this is reflected in
the smallness of the design it-
self. Nevertheless, a great
deal of care was exercised in
eliminating details that the
user should, in fact, find out
for himself on the system. This
is not to say that we believe
the manual is incomplete or
misleading; rather a great ef-
fort was made to present the
system in as concise a manner
as possible.

2. One of the most controversial

choices we made was to present
the Assistant to the user in a con-
sdiously anthropomorphic form. From
the beginning we describe the Assistant
as a creature, robot-like, with a goal
structure, consistent behavioral rules,
interactive strategies and deductive
capabilities. This idea was motivated
by several considerations.

In the course of a terminal
session, the user must keep track of
a great deal of information. For
example, the user must continually be
aware of the status of his files, his
current level of interaction with the
system, the consequences of actions he
has already taken, and the actions he
may legitimately take next. Further-
more, since the actions he may perform
are primitive, he must repeatedly
supply redundant information over a
long sequence of requests. Finally,
he must constantly be on guard against
destroying his own work by doing
something that might seem innocuous,
but results in disaster.

In most cases, the kind of
information at issue here is readily
available to the system. It was our
intent that the Assistant take full
advantage of the knowledge availabl-
to it, and relieve the user of much
of the burden of constantly juggling
that knowledge.

When we tried to describe a
primitive knowledge-based system in
a way that would be simple and non-
threatening to users, the natural
step was to deliberately exploit the
creature-like view which people in-
evitably apply to machines anyway.

However, what began as a con-
ceptual model for the documentation
quickly acquired a life of its own
and repeatedly suggested consistent
directions for various aspects of
the design. This interaction between
the documentation and the design was
not limited to the conceptual model
of the Assistant. In general, when-
ever we found a feature or concept
difficult to explain clearly, we took
this as a signal that the design
itself was likely at fault. Whole
versions of the editing requests were
rejected because we could discover no
simple way of explaining them.

We benefited in other ways from
this view of the Assistant as a
creature. For one thing, we were
able to avoid much of the dryness
associated with the normal type of
manual. And, as the opening para-
graph suggests, we were able to
introduce a light touch for the
reader, and thus make use of the
guide a more pleasant experience.

3. Only one of the three appendices
to the User's Guide is presented
in this paper. Nevertheless, it is
important to note that the complete
User's Guide (including all the ap-
pendices) comprises a document that
contains everything the user has to
know about the system. The reader
need refer to no other documents.
This is consistent with recommendations
made by Vandenberg (1967).

4. One of the advantages of an
interactive system for users
is that interaction can be used to
couple the system and the user. Un-
fortunately, few systems provide more
than negative feedback to a user, i.e.
error messages. Positive reinforce-
ment in the form of highly specific
confirmatory messages or an ongoing
"chatter" from the system can simul-
taneously teach the new user what to
expect and reassure the user that)
what he expects is, in fact, going on.
A wide body of evidence is psychologi-
cal reinforcement theory supports the
value of this strategy. A further
benefit of this interactive strategy
is that it allows the resolution of
potential ambiguities that may arise
in a request. Accommodating such
ambiguities permits more flexibility
in the language design, especially
as regards abbreviated forms.

_— 2 3

3 A

r— 3

B T

3

_ - -3

[“%

1. It provides you with continuous
information about its activity.4

2. It makes reasonable assumptions
about what you want to be done
when specific details are not
givenS

3. It checks with you before car-
rying out a potential damaging
operation.6

Interaction These strategies imply a large amount
with the of interaction between you and the
Assistant Assistant, especially when you call

on it for the first time. However,
you will find that interacting by means of a terminal
can become tedious, particularly if the terminal is slow
or if both you and the Assistant are capable of working
at a much quicker pace. As you become more familiar
with the Assistant, you may direct it to assume that
your interaction is to be more abbreviated, just as you
may at any time direct it to assume certain other things
about your working environment.?

Request Requests are made to the Assistant via
Language the terminal and are expressed in

terms of a "request language." This
language is designed to look very much like English and
consists entirely of imperative statements. Several
requests allow you to exchange information with the
Assistant concerning almost anything within the scope
of its knowledge.
Behavior At certain times, the Assistant may
be attentive, which means that it is
awaiting a response from you. At other times, the
Assistant may be active, which means that it is trying
to satisfy a request for you. Sometimes before a re-
quest is satisfied, the Assistant discovers that it
needs more information from you, in which case it will
ask you what it needs to know.

Attentive Attentive behavior is always signaled
Behavior by a prompting message, which consists

of two characters typed by the Assis-
tant on the terminal. The prompting message indicates
not only that the Assistant is awaiting a response from
you, but also what type of response is being asked for.

5. As Gilb and Weinberg (1977)

point out, extensive use of
"natural” defaults is inherent in
all natural language communication,
and such defaults may be explicit
or implicit. The Assistant is
designed to take advantage of both
types.

For example, if a program
is to be run and no compiled ver-
sion of it is handy, the Assistant
implicitly assumes that it must
first be compiled. Moreover, at
any time the user may explicitly
direct the Assistant to make ex-
plicit assumptions about future
requests. Thus, the user does
not have to continue to specify
file names, line boundaries, or
options for requests when the sys=-
tem can keep track of these details.

6. The philosophy of "security
checking" is not novel, but
is also not commonplace, and the
extent to which it is used by the
Assistant may seem extreme. A
frequent example is an attempt to
overwrite files. Unless told
otherwise, the Assistant will al-
ways inform the user that a file
is about to be destroyed, ask for
confirmation, and thus give the
user a chance to think twice be-
fore going ahead. Another, less
obvious, example is the warning
a user receives when a text de-
letion request threatens to
destroy a large part of a file.
These security checks are in-
tended to give the user confi-
dence that the system will warn
him before doing something
disastrous. A skilled user may
suppress most of these checks.

7. Ideally, we would like an
Assistant that knows what
level of detail the user needs
and adapts automatically; but
such intelligence is beyond the
limits of cost effectiveness that
we have set. The Assistant is
intended to be semi-intelligent,
only an incremental step toward
a truly intelligent system. What
we cannot accomplish with limited
intelligence we have tried to
accommodate with a user-driven
adaptive strategy. In some ways,
this is one of the least satis-
fying approaches that we have
employed in the Assistant. Not
surprisingly, the complexity of
the ASSUME request, our vehicle
for adaptation, reflects this.

Active
Behavior

in three stages:s

Interrupting
the Assistant

interrupt the Assistant in order to ask it for pertiment

When you send the Assistant a request,
it becomes active and attempts to
satisfy your request. It does this

1. Verification - The Assistant
determines whether or not your
request makes sense, and makes
any necessary assumptions that
it can when specific details
are not given.

2. Performance - If the verifica-
tion stage was completed suc-
cessfully, the Assistant will
satisfy your request. If the
operation requested is at all
time-consuming, the Assistant
may indicate its progress at
various intervals.

3. Completion - After your re-
quest has been satisfied, the
Assistant indicates the final
result of its actions and

again becomes attentive.

While the Assistant is active, you
may interrupt it at any time, causing
it to become attentive again. You

information or else to tell it to discontinue attempt-

ing to satisfy a request for you and to attempt to

satisfy a new one.

Error
Conditions

Immediate
Error

Correction

9

There are several conditions under
which a request cannot be satisfied:

1. If the request cannot be under-
stood or is inconsistent with
what is known,

2. if the Assistant asks you to
confirm a request and you do
not comply, or

3. if the performance of the re-

quest fails for some reason.

When a request cannot be satisfied,
the Assistant will identify the
problem and become attentive. If an
error is found in the verification

stage, no action will be taken. At this point, you may

8. There is a body of psycho-

logical evidence (see, for
example, Thorndike and Rock, 1934)
which suggests that people 'learn
without awareness.'" One implica-
tion of these results is that the
users of a computer system will
infer underlying principles even
if they are unaware of doing so.

The Assistant's behavioral
goals are not merely "sugaring",
but are accurately reflected in
its responses. These goals are
intended to help the user make
reasonable inferences about what
the Assistant will do with a
particular request. TFor example,
the first goal, verification, en-
sures that no request will be
executed unless it makes sense
semantically. In some cases,
this implies that significant
static prechecking must be per-
formed. This seems a small price
to pay for relieving the user of
the burden of correcting damage
done by a technically legal but
senseless request.

9. Most interactive systems
have some form of interrupt,
but like other details, the in-
terpretation placed on it is often
inconsistent or counter—intuitive.
The Assistant's interrupt is like
a tap on the shoulder. Following
an interruption, the Assistant
suspends what it is doing, returns
with an explanation about what is
going on, and asks the user
whether he wishes to continue the
task. At this point, the user
may reply or request additional
information. If the user does
request additional information,
this request may itself be in-
terrupted, but such interruption
simply terminates the request for
additional information and re-
turns to the original level of
interruption. Again, the user
is reminded about his original
interruption and is asked what
to do. Thus, there is no con-
fusing "stacking' of interrupts
as, for example, in APL (Wiedmann,
1974), but interruption is always
a possible and meaningful opera-
tion. This possibility of in-
terrupting a task and carrying out
a dialogue concerning the task is
patterned after normal discourse.
(See Mann, 1976 and Palme, 1975).
From our view, it is one of the
cleanest features to emerge in
our design.

i

—

easily modify and reissue your request using a request
correction facility. Alternately, you may issue an
entirely new request.1

Files A file is a named collection of in-

formation that the Assistant maintains
for you. The Assistant's primary function is to provide

you with a means of creating, manipulating, and per-
forming various operations with files. Most files that
you will use will be files of text, and many of these
will be PASCAL programs. When you create a file, you
give it a name. From then on, both you and the Assis-
tant refer to that file by the file's name.ll

Preserving Any file that you create during a
Files session with the Assistant will be

kept for the duration of the session.
It may be kept for future sessions provided that you
specifically ask the Assistant to preserve it for you.
No file will be discarded without your prior approval.
Files previously preserved can be modified at any time.
However, at some point the Assistant must be told
whether or not these modifications are to be preserved
as well. Once a modified file has been preserved, its
previous condition is lost forever.l2

The Assistant retains information
about what you have done and what
you have explicitly asked it to assume. Initially,

the Assistant uses some basic assumptions about how
you, as a beginner, would want it to behave.l3 Assump-
tions, as we've said, enable the Assistant to reach
reasonable conclusions about what you want done when
certain details are omitted from a request. Thus, the

Assumgtions

use of assumptions frees you from having to supply
excruciating amounts of detail.

Limitations As we stated earlier, the Assistant
has a very limited understanding.

It can make only very simple deductions based on its
restricted knowledge. When you try to give it a re-
quest that it does not understand, it will tell you so,
but it cannot really inform you of the limits of its
own intelligence. This does not mean that its intelli-
gence is illusory. In fact, you may very well find its
perceptiveness surprising at times .14

10. It is a fundamental premise

in the Assistant's design
that users will make errors. Many
interactive systems have facilities
for deleting characters or lines as
they are being entered. Unfortu-
nately, a user may discover such an
error well after it is made. The
immediate correction feature is de-
signed to make it simple for users
to correct such errors quickly, and
without retyping the entire line.
If the user makes an error and, as
a result, the Assistant discovers
that a request is ill-formed, the
Assistant will report the error.
The user may then change the er-
roneous line with a conventional
edit request, and the Assistant
will automatically re-issue the
corrected request. While we have
never seen this simple feature
elsewhere, we believe that it is
especially useful for lengthy
editing requests and multiple
request lines where typing errors
are particularly frustrating.

In a similar vein, the UNDO
request is a means of erasing the
effect of a request that was per-
formed but did not produce the
result desired by the user. The
UNDO feature will likely be lim-
ited to editing and assume re-
quests where implementation will
not cause severe difficulties.

These are both examples of
the way the Assistant keeps track
of things; in this case, an im-
mediately preceding but unsatis-
factory request.

11. Wwhile a serious attempt was

made in the Assistant's de-
sign to avoid the terminology of
conventional systems, the concept
of a file seemed inevitable. 1In
a private correspondence, Hoare
(1976) suggested the alternative
notion of "books" or "folders"
supported by an appropriate
graphic display. Our decision to
support printing terminals ruled
this out.

12. The Assistant uses a simple
two-level file system. A
good deal of effort went into de~
signing this system so that its
operation is largely automatic and
transparent to the user. When the
user directly refers to a new file,
a current temporary copy of it is
created. All operations are per-
formed on the current version.
At the end of an interactive ses-
sion, the Assistant asks the user
what to do with files that do not
have equivalent permanent copies.
Although the user must be aware
that, potentially, there are two
copies of his file, the management

Grammatical
Notation

exception.

Some Notation

15

Every language has a grammar, and the
Assistant's request language is no

Because the Assistant

identifies your requests by their form, grammar is es-

pecially important in communicating with it.

In the

descriptions that follow, we employ a special notation

to describe the grammatical form of each request. The

rules for this notation are as follows:

Keywords 1.
Objects 2.
Alternatives 3.
Options 4.
Ordering S.

Words shown in upper case are
keywords. Keywords are like
guideposts to the Assistant.

They signal what to do and what
to expect. Except for PRESERVE,
RESTORE, and DESTORY, any keyword
may be abbreviated by its first
letter. If not abbreviated, a
keyword must be spelled out cor-

rectly. (See 17.)

Words shown in lower case and con-
nected with hyphens ('-") are

names for the objects of a request
that you supply to make the request
specific, such as the name of a
file, a mode of interaction or a
piece of text.

Keywords or objects that are grouped
together and separated by slashes
(""/") are mutually exclusive alter-

natives. For example:

n/ALL

means that either "n" (a number)
or the keyword "ALL'" may be speci-

" fied, but not both.

Keywords, objects, or any groupings
of these that are in parentheses
represent parts of a request whose

use is optional. For example:

QUIT (QUICKLY)
means that you may say "QUIT

QUICKLY" or simply "QUIT."

Keywords, objects, or groupings of
these may only be specified in the

order in which they appear in a rule.

‘language subset.

1V

of these files is left largely to
the Assistant. Specific file
manipulation requests enable a user
to preserve the current version

of a file or restore it to its pre-
viously preserved condition.

In retrospect, it is somewhat
surprising how much time we spent
designing this scheme. Yet, we
believe that the concepts of file
restoration and preservation in the
Assistant are unusually simple.

' é'

(

13. The assumptions for beginmers

take nothing for granted and
attempt to assure that no beginner
will be lost too easily.

14. We had reservations about
presenting the Assistant
as a semi-intelligent creature
with moderate self-consciousness
that understands a narrow natural-
There is always
the danger that naive users will
come to expect too much and thus
be frustrated., We have tried to
compensate for this by emphasizing
limits, but it may not be suffi-
cient. Nevertheless, we feel
that the benefits of an approach-
able conceptual framework for
people are significantly greater
than the problems it may create.

—3

g 8

‘ ‘tl
e

15. Despite our desire to keep
notation and terminology

to a minimum, we felt compelled

to resort to a kind of context-

free grammar, Notatioms, even

simple context-free grammars, can

at first be difficult for many ™
users. We attempt a gentle in- k
troduction to the use of a few -
grammatical notations. It is
likely that this complexity of =
the documentation reveals what i
is probably a weakness in design. =
)
!

~13

-3 3

~—3 —~3 3

—3 3 3

2

Request Language Summa;y16-17

General Requests

EXPLAIN
SHOW
ASSUME
GRIPE
UNDO

QUIT

(name)
(name)

assumption

(QUICKLY)

Editing Requests

NEXT
PREVIOU$
LIST
DELETE
TRANSFER
cory
INSERT

MAKE

File Requests

PRESERVE
RESTORE
DESTROY

(lines-of-text)
(lines~of-text)
(lines-of-text)
(lines-of-text)

(lines-of-text)

(lines-of-text) INTO file

(new-lines-of-text) (BEFORE/AFTER/OVER)

text new-text

(file-text)
(file-text)
(file-text)

Program Requests

RUN
VERIFY
FORMAT

BIND

(file-11st) (WITH parameter-file-|1st)

(file) (INTO file)
(file) CINTO file)

(file-list). INTO file

INTO fi1el8

12

16. , major concern in the de-

sign was to limit the scale
of the Assistant. This was one
of the most difficult issues to
confront. The tendency to expand
and enlarge, to add "powerful"
and "important" features was over—
whelming. As Miller (1956) pointed
out in a stimulating but incon-
clusive paper, "The Magical Number
Seven Plus or Minus Two", there
definitely seem to be small limits
on our capacity for dealing with
large numbers of conceptual ob-
jects, but these limits are ex-
tended by a phenomenon known as
"chunking", in which aggregates
can be formed. In spite of the
chunking phenomenon, we believe
there is a strong intuitive case
to be made for keeping things
small,

A common criticism voiced
over the Assistant's design is
that it is a "toy." This was
certainly not our intent. How-
ever, we have rigorously excluded
any feature which we felt would
be of use to only a small fraction
of users. We believe that the
Assistant is an uncommonly simple
solution to providing a pleasant
and productive working environment
for a majority of programmers.

From the request language
summary the small scale and sym-
metry of the Assistant are imme-
diately apparent. What is not so
apparent is the capability that
lies within this simplicity,

Users of HOPE, our prototype of
the Assistant's editing requests,
have been surprised by the power
of what they took to be a fairly
simple-minded editor.

17. Another major design de-

cision we made was to base
the Assistant's request language
on a limited English phrase struc-
ture. There were a number of
reasons for this choice. The
natural language of interaction
between people is natural lan-
guage. Even individuals excep-
tionally experienced with notation
have still greater training in
natural language. Thus, our aim
was to exploit this natural lan-
guage experience.

Because a reasonable body
of experimental data (see, for
example, Weist and Dolezal 1972,
Epstein and Arlinsky 1965) sug-
gests that people have difficulty
in manipulating language-like
formation that violates normal
syntactic structure, we tried to

follow normal syntax as closely as;
and we tried to choose the shortest,
most apt, and most orthogonal set of
keywords. Short words were chosen
not out of typing considerations,

but because they occur more frequently
and are easier to recall.

While we tried to copy English
grammar closely, we did not allow the
meaningful reordering of phrases per-
mitted in English, e.g. "Into A, copy
B." We avoided this because of the
ambiguities it might introduce into
the request language, especially in
its abbreviated form. It seems more
desirable now to use a more relaxed
syntax and resolve ambiguities with
an interactive exchange with the
user.)

Seemingly at odds with the
decision to follow natural language
syntax strictly was the requirement
that the request language have an
effective abbreviated form. The
ideal, of course, would be to have
special function keys for each word,
but the real world of ordinary ter-
minals precludes that.

The solution was to introduce
the uniform abbreviation rule that
any keyword can be abbreviated by
its first letter. Furthermore,
abbreviated keyword sequences can
be typed without intervening spaces.
These two rules result in an ab-
breviated form of requests that is
fast and easy to type. Because the
rule is so simple, the user can
think in the long form while typing
its abbreviation. (Because of
their potential danger to the
user, the three file requests
were excluded from this general
rule and cannot be abbreviated.

This now seems paradoxically
inconsistent.)

A variety of data suggest the
first letter abbreviation rule. A
paper by Freedman and Landuaer (1966)
points to the usefulness of the
initial letter as a recall clue, and

some recent work by Selvin Chen-Chance
(197-) indicates the importance of the
initial letter (for adults at least)
as a discrimination cue.

This approach to abbreviations
is not a "minor" issue. One of the
least thought out philosophies of
almost every system we have seen is
its abbreviation strategy. Abbre-
viations, like other so-called
"details" of design are often very
critical, for such details may be
the most frequently encountered
features of a system. From the
user's point of view, ours is a
powerful convention. From a
designer's point of view, this
convention was almost impossible
to live with. On many nights we
took a thesaurus to bed.

13

An argument commonly advanced
against our abbreviation rule has
been that we could not easily expand
the keyword list, i.e. add new requests.
In rebuttal, we suggest that such
additions would be best accomplished
by a complete redesign, if all the
interlocking design aspects are to
receive the consideration they deserve.
Furthermore, as the ASSUME demonstrates,
any keywords within a request are free
from conflict from keywords within
other requests.

18. The TRANSFER and COPY requests

are good examples of our attempts
to follow a limited English phrase
structure. Rather than use conventional
notations like "TRANSFER, lines-of-text,
file", we borrow from natural English
phrase structure.

Unfortunately, we were not com-
Pletely successful in following English
grammar. From a grammatical point of

-view, the MAKE request would be better

as "CHANGE text TO new-text." However,
this suffers from the defect of requir-
ing two levels of delimiting, the string
delimiters that bracket text, and the
syntactical delimiter "T0." Of course,
all of this results from the clash
between notation (string delimiters) and
natural language, an impossible dilemma.

3 i3 .3 .3 ‘—3 ‘9 3 '_13

—3

v 3 i3

1

3

-3

® T3 T3 T3

'3

General Requests

The information requests EXPLAIN, SHOW,

and ASSUME ‘provide you with the means
of exchanging information with the Assistant. You may
direct the Assistant to make assumptions about your en-
vironment or you may ask it for information about current
assumptions, requests, the request grammar, and so on.
The use of these requests should make it unnecessary to
refer to this User's Guide while interacting with the
Assistant.

Explaining The EXPLAIN request is your means of
Concepts getting general information in order

to understand something about the
Assistant that is not clear. 1In order to ask about
something just say:

EXPLAIN (name)

- The "name' you give can be any one of a number of words

associated with the request language, error conditions,
the Assistant itself, or various concepts behind it,
like assumptions or files.

If you say EXPLAIN, omitting any name,
the Assistant will respond by giving you information
concerning the last thing that you have done or that has
happened to you. Each time you say "EXPLAIN" the As-
sistant will provide you with more information concern-
ing the topic at hand. In addition to its explanation
of the given topic, the Assistant may refer you to other
related topics.

If the Assistant does not have infor-
mation on a given name, it will tell you so. If all its
information is exhausted, the Assistant will, if possi-
ble, suggest external sources (consultants, references,
etc.) that you might seek out .19

Getting When you want examples of the request

Examples or
Specific Data

language or specific data concerning
files or your working environment, say:

SHOW (name)20

In addition to the normal names of
things you might ask about, there are several words
which will direct the Assistant to show you some special
things. These are:

TIME - The current time of
day.

14

19. A number of interactive sys-

tems now incorporate on-line
assistance features (e.g. see
Teitelman 1974)., To the best of
our knowledge some of these are in-
tegrated into the system so as to
take advantage of an awareness of
what is going on. The idea of an
integrated assistant feature fol-
lows naturally from the general
interactive strategy of the Assis-
tant and, as such, is simply a
request from the user for greater
amplification.

The benefits of this approach
are several, The user can directly
get information that in a conven-
tional system would only be avail-
able in a reference manual. Fur-
thermore, this information can be
specialized to his situation.
Finally, this information is pro-
vided in the context of an actual
circumstance where its teaching
value and reinforcement potential
is greatest. (See Bryan and Regan
1972.)

20. The SHOW request is also

meant to provide pedagogical
examples of the request language.
For example, if the user types
""SHOW MAKE", the Assistant will
give examples of the use of the
MAKE request. TFor both the EXPLAIN
and SHOW requests, it is expected
that over time more information
will be added to the Assistant's
knowledge base. Coupled with the
GRIPE request, this seems to be a
viable approach for improving the
Assistant's behavior as our
knowledge of what needs explana-
tion expands.

ASSUMPTION - All of your current
assumptions.
FI1LES - The names and informa-
tion concerning your
currently preserved

files.

In order to tell the Assistant to make
specific assumptions about your envi-

Giving
Assumptions

ronment say:

ASSUME assumption

Assumptions fall into several categories.
You can specify one of two modes of interaction by saying:

ASSUME INTERACTION IS TERSE/LONG21
These two modes are interpreted as follows:
TERSE - Gives highly abbreviated
messages or none at all.
Intended for the hotshot
user.
LONG - Gives loquacious meésages,

spelling everything out
from A to Z. Intended for
the naive or inexperienced
user.

Another category determines the amount
of interaction you want the Assistant to assume regard-
ing security checks for potentially dangerous operations.
You can specify how much security you want by saying:

ASSUME SECURITY 1S CAUTIOUS/R!SKY22

Other uses of the ASSUME request are given further on.

The Assistant, via EXPLAIN and SHOW,
is designed to help you as much as
possible within its limited knowledge.

Complaints,
Comments, and

Suggestions

However, sometimes this is not enough.
You cannot really tell the Assistant your problems and
get any kind of sympathy or advice from it. You can,
however, tell the people in charge your problems through

the Assistant by saying:
GRIPE

The Assistant will then go into a special attentive mode
where you may type in a message of any number of lines.

You leave this special mode of interaction by interrupting

the Assistant and making a new request. The text you

type will be stored, and at regular intervals all the

15

21. oOur original design was based

on three modes of interaction,

TERSE, MODERATE, and LONG. We are
grateful to Hoare (1976) for point-

ing out that with a good implementa-
tion of the EXPLAIN request two modes

should be sufficient.

22 . As Gilb and Weinberg (1977)

point out, at times and for
some users, automatic protection
and forced interaction may be a
nuisance.

—3 1

3

—_3 3 3

rﬂa

|
.
.
1

‘-3

3

3

g

3 T3 T3

—-‘-—J

™ = 3

messages sent by you and others will be sifted out and
examined by the people responsible for maintaining the
Assistant.23

One Last If you make a request and you wish you
Chance hadn't, you may undo the effect of that
request by saying:

UNDO

The effects of the most recent request made are cancelled
and you may then proceed as if nothing had ever happened.

Leaving the
Assistant

In order to dismiss the Assistant say:
QUIT (QUICKLY)

Before the Assistant will let you go,
it will tell you what files have been created or changed
and are still to be preserved, and ask you which of
those you wish to keep. Furthermore, it will ask you
whether or not you want to preserve any new assumptions
that you have given it. Finally, it will make doubly
sure that you wish to leave before it will let you go.

If you add "QUICKLY" to the request,
it will assume that you have already preserved everything
you want to keep and will let you go without any fuss .24

16

23. The importance of long range
user feedback in maintaining
a system cannot be underestimated,
In providing a specific request for
this, we emphasize its importance
and make spontaneous complaints
possible. Furthermore, we can take
immediate advantage of the system
itself to capture inside informa-
tion about the current state of
affairs, which may help us in in-
terpreting a user's complaint.

24. The QUIT request is a good

example of our desire to
make reasonable and safe assump-
tions about the user's behavior
and still allow more skilled users
to override these assumptions.

Editing Requests

Text editing is a process of creating,

maintaining, and updating files of
text (such as programs, data files, chain letters, or
what have you). The Assistant's editing requests make
it possible to insert, delete, and substitute text to
change the layout and spacing of text, and even to move
blocks of text from one file to another.29

Editing text commonly requires that a
Rather

than repeatedly specifying the file to be edited in each

number of changes be made to a particular file.

request, the Assistant always assumes you want to edit
the currently assumed file. (For an explanation of the
"currently assumed file'" and how it works, see "File
Requests - File Assumptions.')

The Current In making editing requests, you must
Line always have some means of specifying

what it is you want changed. The

Assistant always assumes that a request is made relative
to a "current line." Initially, the current line is the
first line of the file.

references specific lines causes the last line referenced

Thereafter, each request that

to become the new current line.26

Specifying Editing may be performed on whole lines
Text or on pieces of text within a line.

Operations on whose lines may be speci-
fied by giving the number of lines from the current line
or by giving a piece of text which appears on a line.
References to pieces of text require a special notation

to describe the text. This notation has the form:

=texts=

The given "text'" is any actual sequence of characters.
The symbol "=" represents any special character which is
neither a letter, digit, space, or semicolon (";").
This special character is used to "bracket" the actual
character sequence. Since this character indicates both
the beginning and ending of the desired text, it must be
a character which does not appear in the text itself.27
An example editing session is given at

the end of this section.

Moving

Forward

To move the current line forward say:
NEXT (lines-of-text)

There are several ways of describing
how many lines of text to advance. The NEXT request

17

25. In most systems, editing must
take place in a special mode
or environment. These systems re-
quire users to shift levels. The
requirement that editing languages
be terse usually conflicts with the
large scale of the rest of the sys-
tem. A special editing environment
is the logical, if cumbersome, solu-
tion to this problem. Then again, ”
many editors are built as indepen-
dent subsystems and only later in-
corporated into the main system.

Various studies (e.g. see -
Turner 1974, Bois 1974) have shown
that editing usually accounts for
better than fifty percent of the
average interactive system's work.
Furthermore, the nature of the
program development process often
leads a user to ping pong between
editing and other tasks.

For these reasons, we believe
that a text editor must be designed
to be an integral part of an inter-
active programming environment.
Central to this belief is our feel-
ing that a user should have access
to all the capabilities of the
system while editing and vice versa.
The use of the "assumed" or default
file together with the small scale
of the Assistant enable us to keep
a single-level system for all re-
quests. We are indebted to David
Stemple (1975) for making the
strong case for this.

=

26. One of the larger and more

difficult decisions we made
was to orient the editing requests
of the Assistant around the con-
cept of a "current line." Some .
editors are '"'character based" (that
is, the user's position in the file
may occur in the middle of a line),
and others are page oriented (i.e.
the interaction is always in terms
of multiple lines of text).

Obviously, the kind of ter-
minals in use and the kind of text
to be edited enter into this de-
cision. We made a deliberate de-
sign decision to orient the
Assistant around moderate speed
(10-30 ecps), typewriter-based =
terminals without a graphic display
facility, as these are at present
the most commonly used. We also
concentrated primarily on the prob-
lem of editing programs. While we
did not rule out the possibility
that the editor might be used for
ordinary language text, the special
problems of editing such text were
not addressed. (See Lance Miller
1977.)

It might have been better to
design the Assistant for a more -

—3 1

—1

= N

3

has the following variations:

1. NEXT
The Assistant moves the current
line forward one line.

2. NEXT n
The Assistant moves the current
line forward n (where n is a
number) lines.

3. NEXT ALL
The Assistant moves the current
line forward to the last line
in the .file.

4. NEXT =text=
The Assistant moves the current
line forward to the next line
containing an occurrence of the
specified text.

5. NEXT n =text=
The Assistant moves the current
line forward to the '"n-th" line
containing an occurrence of the
specified text.28

6. NEXT ALL =texts=
The Assistant moves the current
line forward to the last line
containing an occurrence of the
specified text.

In all of the editing requests, "|ines-of-text" has the

same general form as shown above.29

Moving

To move the current line backward say:

Backward PREVIOUS (lines-of-text)

The PREVIOUS request is exactly the
reverse of the NEXT request. Note that PREVIOUS ALL
takes you to the first line in the file.

Displaying To display one or more lines of text
Lines just say:

LIST (lines-of-text)

The variations on the LIST request are similar to the
NEXT and PREVIOUS requests:
1. LisT
Only the current line is dig-
played on the terminal.

18

advanced type of high speed ter-
minal. Indeed, with a bit more
storage, some of the "intelligent"
terminals made possible by recent
advances in semi-conductor tech-
nology seem entirely capable of
supporting an Assistant locally,
The parallelism of display, cursor
facilities, definable function keys,
and the fast display rate afforded
by such terminals would make pos-
sible substantial improvements in
the design of the Assistant, par-
ticularly with regard to the edit-
ing requests and the management of
defaults.

In our opinion, most editors
based on the "current line" concept
suffer from the drawback that the
user must mentally keep track of
what the current line is. This
defect results from an inconsistent
Strategy with respect to line
pointer movement, In the Assistant
we have deliberately avoided this
possible confusion.

The current line is always
the last line seem by the user.
The advantage of this strategy is
that the terminal is always dis-
playing the current line. The
disadvantage is that the examina-
tion of text may force an extra
step, i.e. moving back to the
beginning of text which is to be
displayed. Clearly, there are
arguments on both sides. Here
again, we believe that the value
of the general rule outweighs
the merits of a special case.
Certainly, this issue deserves
some thoughtful experiments.

27. Here again, our use of

special notation reveals a
weakness of design. We remain
dissatisfied with this, but find
other alternatives even less
attractive.

28. 5 particularly sticky, but
important, detail. Should
it be the n-th o~currence or n-th
line containing an occurrence?
The former seems right for a
character-oriented editor, while
the latter seems more suited to
our line-oriented editor. End-
less hours were spent on this
issue, with no clear resolution.

2. LIST n/ALL
The Assistant displays the next
n (or ALL) lines including the
current line.

3. LIST n/ALL =text=
The next n (or ALL) lines con-
taining the specified text are

displayed.
Deletin In order to delete one or more lines
Zeeting
Lines of text you say:

DELETE (lines-of-text)

This operation is virtually identical to the LIST request

with the difference that the particular lines specified
are not displayed but removed from the assumed file .30

Moving To move one or more lines of text out
Lines of the assumed file and into another

file say:

TRANSFER (lines-of-text) INTO file

This request removes the lines of text you specify from
the assumed file and puts them into the other file that
you name. The lines that are removed will replace the

previous contents of the file.31

Duglicating

Lines

To make a copy of one or more lines of
text from the assumed file and place
them in another file say:

COPY (lines-of-text) INTO file

This request is exactly like the TRANSFER request ex-
cept that no lines are removed from the assumed file.
Instead, copies of the specified lines of text are
placed in the named file.

Inserting To insert new lines of text into the
Lines CURRENTFILE say:
INSERT (new-lines-of-text) (BEFORE/
AFTER/OVER)32

The variations on the INSERT request are as follows:
1. INSERT (BEFORE/AFTER/OVER)
The Assistant will continually
prompt you for lines of input
from the terminal until you
interrupt the Assistant. The
lines you type will be inserted

19

29 . Getting all the editing
requests to conform to the
same general format for target
text patterns was the result of
great attention to detail and
numerous debates about the proper
function of requests. In doing
s0, we significantly reduced the
amount of information a user must
learn and remember.

30 . An intended security check
confirms major deletions
with the user.

31. It is not obvious from the

User's Guide, but the TRANSFER
request is not only intended to
excise lines from a file but is the
basic mechanism for moving blocks
of text within a file. By trans-
fering lines of text to a tempo-
rary file, the user can later
insert the lines at another point
in the file using an INSERT request.
This two-step process seemed to
offer the user a great sense of
security for an operation which on
a typewriter-like terminal cannot
be visualized very well.

32. A typical question in many
text editors is whether to
insert new text before or after
the current line (or character)
position. The problem is espe-
cially troublesome at the begin-
ning and end of a file. The
Assistant takes the view that the
user should be able to do either,
as well as to be able to insert
one or more lines of text in place
of the current line. This elim~
inates the confusion associated
with inserting text at the be-
ginning or end of a file, without
requiring the user to be aware

of an imaginary line located at
the end of a file or before the
beginning of a file.

3 -3 3

QU

i
B

e 2 =

.

—3 T3 T3 3% T3 ~3 3 T3 T3 73 3 —3 3 —3 3

3 T3 T3

3

before, after, or instead of
the current line.33

2. INSERT =text= (BEFQORE/AFTER/

OVER)

The Assistant will insert the
lines specified by text before,
after, or instead of the cur-
rent line.34

3. INSERT file (BEFORE/AFTER/OVER)
The Assistant will insert the
contents of the named file
before, after, or instead of
the current line.
If BEFORE, AFTER, or OVER is not specified, AFTER is
assumed.

In order to change a piece of text in
one or more lines you say:

Changing Text
Within a Line

MAKE (n/ALL) =text= =new-text=

This request is different from all the previous requests
in that it operates on text within lines rather than
whole lines themselves. Starting from the current line,
the next n (or ALL) occurrences of the text given are
replaced by the new text given.

If no new text is given between the
second pair of brackets, each occurrence of text will
be deleted. The two bracketing symbols between the text
and the new text may be compressed into a single bracket
for brevity's sake.35

Just as all the editing requests de-
pend on the assumed file for editing,
there are other kinds of assumptions
that affect editing. The first kind of assumption al-
lows you to give special meanings to certain symbols
when you include them in text. These 'special-symbols"
can make it easier for you to describe text.

Editing
Assumptions

Sometimes it is useful to refer to

Referring

to a Line text at the left or right margin of

Boundary a line. To do this you must first
define a special symbol to represent
either margin by saying:

ASSUME MARGIN IS special-symbol
If "$" is your margin symbol, then
=§XXX=

refers to a piece of text '"xxx" at the beginning of a

20

33. The use of the interrupt to
terminate continuous text
input is consistent with the general
semantics of interrupts and allows

for easy input of empty (blank)
lines, by far the most frequently
entered line of text. Empty lines
can be entered by simply typing a
carriage return.

34. The second form of the INSERT

request allows quick inser-
tion of a short text fragment as a
line. When combined with the mar-
gin symbol, this feature also al-
lows rapid insertion of several
short lines of text.

35. Again, the difficulty of
reconciling notation and
natural language is apparent.

line,
=YYY$=

refers to a piece of text "YYY'" at the end of a line,
=YYY$EXXX=

refers to a piece of text "YYY" at the end of a line fol-
lowed by a piece of text "XXX'" at the beginning of the
next line, and

=$ABCSH=

refers to a piece of text "ABC'" that makes up a whole
line .36

The special symbol consists of one to
three characters. You may select any character provided
that it is not a letter, digit, space, or semi-colon.
You may redefine the margin symbol at any time, or you

can say:
ASSUME MARGIN 1S NULL

which means that no character will be interpreted as a
MARG I N.

Using Ellipses When referencing a long piece of text,

it is tiresome to have to type it all
out when only a few details identify it uniquely. 1In
prose we use three dots as an ellipsis to indicate that
a piece of text has been omitted. TFor example, we might
indi-
With the
Assistant you may omit pieces of text using a special

quote the previous sentence as: 'In prose we

cate that a piece of text has been omitted."

ellipsis symbol.

For example, if you have defined "..."
as your ellipsis symbol, then =XXX...YYY= refers to any
pilece of text starting with "XXX" and ending with "vvyy",
and =XXX...YYY...ZZZ= refers to any piece of text
starting with "XxX'", ending with "ZZz", and having
"YYY'" somewhere in between. You define the special

ellipsis symbol by saying:
ASSUME ELLIPSIS IS special-symbol

The ellipsis may be redefined at any time, or you can
say:

ASSUME ELLIPSIS IS NULL

in which case no special symbol will be defined as the
ellipsis.

Referring to Sometimes when referencing existing

Character text, it is necessary to be able to

Position refer to a character position rather

37

21

36. We feel that the concept of

a margin symbol is important
in a program editor, especially
for easy reference to text at the
beginning or end of a line. Never-

theless, there is a rather difficult

question about text overlapping
lines.

For example, should there be
two distinct symbols for the mar-
gin characters: one for the left
margin and one for the right mar-
gin; or should a special end-of-
line symbol be introduced? And
what about searching for text
without regard to line boundaries?
In the design of the Assistant
there is a single symbol to denote
either the left or right margin.
Two margin symbols are required
for text that overlaps lines,
and the presence or absence of
line boundaries in the pattern
must be matched in the text. The
matter is far from satisfactorily
resolved.

37. A small but important detail

in the human engineering of
the Assistant: The user can actu-
ally use the familiar "..." to
denote an ellipsis.

Kot

r“vﬂ% r—~—§ rﬁ-—a f——~§

|

than a snecific character. For exam-

ple, suppose you wanted to find misspellings of the word

"PASCAL." You might want to refer to something like
"P_SC_L", where the underscores ("_") indicate that any
single character is acceptable. You can define a spe-
cial symbol which has this '"wild card" meaning by
saying:

ASSUME JOKER IS special—symbol38
The joker may be redefined at any time, or you can say:

ASSUME JOKER 1S NULL

in which case no symbol will be defined as the joker.

Assuming The second kind of assumption that
Limits affects the editing requests enables

you to limit the range of all sub-
sequent editing requests. Its form is:

ASSUME UPPERLIMIT/LOWERLIMIT
1S CURRENTLINE/NULL

If CURRENTLINE is specified as the UPPERLIMIT or the
LOWERLIMIT, then the current line becomes a boundary
that all subsequent editing requests may not cross.
If the UPPERLIMIT or LOWERLIMIT is specified as NULL,
then that boundary is removed.

Assuming a new limit voids any previ-
ous one. Assuming a new CURRENTFILE voids all limits.

22

38. While the joker can be used

in conjunction with the mar-
gin character to refer to column
positions in a limited way, it is
far from being a satisfactory solu-
tion. Although this is an impor-
tant problem in text editing, we
did not pursue it very far because
its importance seemed limited for
programmers.

39. we believe that users learn-
ing a complex task (for

example, a new computer system or
a new natural language) are helped
by examples. This page of the As-
sistant's manual gives an example
of an entire user dialogue. We
believe that even this example is
not really sufficient for proper
understanding of the Assistant's
editing behavior, and that the
User's Guide as a whole should
probably be more example-based.

23

TEXT EDITING SESSION: The user wishes © edit an existing file called POEM.

(—= indicates the current line)

-=ASSUME CURRENTFILE IS POEM
What am I? -

-=LIST ALL
What am I?

They choose me from my brothers: "That's the
actual number of lines
Nicest one,” they said,
Candle in my head;
And they carved me out a face and put a
Night was dark and will
But when they lit the fuse, then I jumped! —<
~--PREVIOUS /actual/
actual number of lines -«
-<DELETE 1
Nicest one," they said, —
~=NEXT 1
Candle in my head; -=
-<TRANSFER 1 INTO HOLD~-FILE
and they carved me out a face and put a -«
==INSERT HOLD~FILE AFTER
Candle in my head; —«
--ASSUME MARGIN IS §
~-ASSUME ELLIPSIS IS ...
~~INSERT /$S/
o~

==~INSERT
++And they set me on the doorstep. Ch, the
++
And they set me on the doorstep. Oh, the —=
~=~NEXT 1
Night was dark and will —<
--MARE /will/wilpqrs/
Night was dark and wilpqrs —<
-=UtDo
Night was dark and will ==
-=MAKE /will/wild;/
Night was dark and wild; —
=-=NEXT 1
But when they lit the fuse, then I jumped! —<
~=-MAKE /fuse...jumped!/candle, then I $$Smiled!$/
Smiled! -
-=<PREVIOUS ALL
What am I? —=
-=LIST ALL
What am 1?

They choose me from my brothers: "That's the
Nicest one," they said,

And they carved me out a face and put a
Candle in my head;

And they set me on the doorstep. Ch, the
Night was dark and wild;
But when they lit the candle, then I
Smiled! —

~=-PRESCRVE POEM

Figuxfe 1: Text Editing Session39

*4¢The current line is the first line of POIM,
**The entire file is displayed.

**This is one blank line.

#**The current line is moved backward.

*#*The current line is deleted and the line
**following becomes the new current line.

**The current line is advanced one line.
**lOLD-FILE contains "Candle in my head;"

**The contents of HOLD-FILE are inserted
*#after the current line,

**A blank line is inserted and becomes
**the current line.

®4New lines are requested.

**The Assistant is interrupted.

**The last line inserted is now the
#**current line.

**One word is changed (incorrectly).

**The previous request is undone.

**The word is changed again (correctly
*%this time).

*#The last line is altered and another line
*+ig added by using the MARGIN symbol.

**Tha current line is moved back to the first
**)ine in POEM, and the entire file is listed.

**The new version of POEM is preserved.

3 _3

i3

3 % 3 __3 "_3

. B |

3

- |

File Requests

Preserving Files are normally preserved only
Files during the dialogue at the end of

your terminal session. However,
if you are wary of erratic behavior on the part of the
Assistant or do not feel at all confident of reaching
the end of your session, then you may explicitly pre-
serve files at any time by saying:40

PRESERVE (file-list)

If any of the files named in the file list do not exist
or have not been changed since last preserved, then no
action will be taken. You should either correct the
Téquest or enter a new request. (See "Robot's Rules of
Order - Immediate Request Correction.")

Restoring If any files that have been previously
Files preserved are changed in any undesira-

ble way, then you always have the re-
course to restore those files to their most recently
preserved condition by simply saying:

RESTORE (file-lis+t)

If any of the files in the file list
have not been previously preserved or if any of them
have not been changed since they were last preserved,
then none of them are restored, and you should proceed
as above to correct or reissue the request.

Destroying If you no longer wish to keep a pre-
Files served file or if you run out of stor-

age space and must discard some files,
then you may completely and permanently annihilate any
file by saying:

DESTROY (file=-list)

Beware. Once a file is destroyed,
there is no way of getting it back very easily. Spare
yourself some agony and make sure that you want a file
destroyed before you destroy it.41

File All of the editing requests in the
Assumption previous section depend on having a
"currently assumed" file to edit. In

order to specify what file is to be assumed simply say:
ASSUME CURRENT FILE IS file

Except where noted, all other requests use the assumed
file if a file is not given explicitly.

24

40. PRESERVE also provides the
user with a defense against
an unreliable environment. How-
ever, if a system is subject to
frequent crashes and the user must
frequently interrupt his dialogue
to save his work, the result will
be a considerable waste of both
the computer's and the user's time.
Thus, reliability is also a sig-
nificant human engineering concern.

41. A secondary protection fea-

ture that might make this
warning unnecessary would be the
automatic archiving (for a time)
of every file to be destroyed.
This was one of the few instances
in which implementation considera-
tions were allowed to restrict the
design. The archiving of destroyed
files now seems to be a less
formidable requirement.

File

Renaming

In order to change the name of the
CURRENTFILE, all you have to say is:

ASSUME NEWNAME 1S new-file-name

25

~3 7%

~—3 ~s —31 —31 ~—3 3 —3

—3 3

Program Requests

Executing ' In order to execute a PASCAL program
Programs say:42
RUN (file-list) (WITH parameter-
file-1ist)

The "parameter-file-list" is a list of file names that
are to be substituted for the formal file parameters in
the program header of your PASCAL program. If a file
exists in your program header but is omitted from your
parameter-file-list, then the file name assumed is that
of the formal parameter in the program header. For ex-
ample, if your program header is:

PROGRAM DUMMY(FILEI,FILEZ,FILE3,
FILE4,FILES);

and you type:
RUN DUMMY WITH XYZ,,ABC,DEF
then your request will be interpreted as:

RUN DUMMY WITH XYZ,FILE2,ABC,DEF,
FILES

If more than one file name is given in
the file list, the first file named is assumed to con-

tain the main program segment, and all the others to con-

tain external procedures. For further information on
the linking of externals to PASCAL programs, see "Appen-
dix 2: Linking External Procedures to PASCAL Programs."

If a PASCAL error exists in your pro-
gram, you will be told so, and your program will not be
executed. To see a listing of those errors use the
VERIFY request described below.

Verifying In order to get a summary of errors
Programs in your PASCAL program just say:

VERIFY (file) (INTO fite)

Depending on whether you have assumed a TERSE or LONG
mode of interaction, you will get either a brief sum-
mary of error messages, a more detailed summary of
errors, or a full listing of your program with error
messages. If "INTO file" is specified, the verifica-
tion will be put into the file instead of being dis-
played at the terminal 43

Formatting In order to format your PASCAL pro-
Programs gram according to standard pretty-

printing conventions say:

FORMAT (file) (INTO file)

26

42. The spirit of the RUN request
is that it runs a PASCAL
program. The form that the program
is in is irrelevant. If need be,
the program will be compiled, but
this is transparent to the user
unless errors are found. The me-
chanics of keeping track of source
and object versions if they are
distinct is managed automatically
by the Assistant. Of course, com-
plete control of the computer
passes to the user's program and
the Assistant disappears. From
our point of view, this is bad;
but the alternative, incorporating
a kernel Assistant into the run-
time program, seemed overwhelming
Building a kernel of the Assistant
into the PASCAL run-time system
now seems inescapable, despite the
implementation difficulties.

43. Complementary to RUN, the

VERIFY request is strictly
for checking a program. Object
code might be generated but that
is the Assistant's business, not
the user's.

If "INTO file" is specified, the results of the format
will be put into that file; otherwise, they will be
displayed at the terminal.

The FORMAT request takes a text file
containing a PASCAL source program and reformats it
according to a set of standard spacing conventions.
FORMAT in no way affects the logical ordering of the
program; it merely rearranges the file into a standard
format. The standards have been developed so that the
reformatted program is aesthetically appealing, logi-
cally étructured, and above all, readable.

Extra spaces and extra blank lines
found in the text are kept. You may improve the reada-
bility of your program even more by adding extra spaces

and blank lines beyond those inserted by the Assistant 44

For example, if your currentfile
looks as follows:

TYPE SCALE = (CENTIGRADE, PAHRENHEIT):;

FUNCTION CONVERT((* FROM *) DEGREES: INTEGER;
(* TO *) NEWSCALE: SCALE): INTEGER;

DEGIN IF (NEWSCALE = CENTIGRADE) THEN

CONVERT s =ROUND((9/5*DEGREES) + 32) ELSE
CONVERT :=ROUND (5/9* (DEGREES - 32)) END;

and you then type "FORMAT", the reformatted program will

be printed at your terminal as follows:

TYPE SCALE = (CENTIGRADE, FAHRENHEIT):

FUNCTION CONVERT((* FROM *) DEGREES: INTEGER;
(* TO *) NEWSCALE: SCALE): INTEGER;

BEGIN
IF (NEWSCALE = CENTIGRADE)
THEN
CONVERT := ROUND((9/5*DEGREES) + 32)
ELSE

CONVERT := ROUND(S5/9*(DEGREES ~ 32))

Binding There may come a time when you simply
Programs won't be modifying a program any fur-

ther, but executing it very often.
For execution efficiency you may bind your program into
an execute-only file by saying:

BIND (file-list) INTO file%5

If there are any PASCAL errors in any of your programs,

the programs will not be bound and you will be informed
of your situation.

Lt

44, The FORMAT request is based
on a program that automati-
cally prettyprints PASCAL text. A
detailed description of this pro-
gram appears in Hueras (1976).
This program contains several fea-
tures that we believe are unique.
For one, the program needs no
information from the user other
than the file itself. For another,
the program handles even program
fragments. Our initial feeling
was that developing an automatic
formatting program was easy. This
did not turn out to be the case.

45. A vestigial concession to

manual program management
strategies. On a high level ar-
chitecture like the Burroughs
B7500 it would be irrelevant. (We
may have been shortsighted as it
now seems to us that even a con-
ventional loader environment
could probably be effectively
managed automatically by the
Assistant.)

I

3

3

-

B B

3

—

Robot's Rules of Order

Prompting l. Two prompting characters are al-
Messages ways printed by the Assistant to

indicate its attentiveness. The
characters indicate what type of response is expected
from you.

Prompting Response
Characters Type
(Note: "B" signifies a space)
.46 Requests
++ New-Text Input
// Caution Checks
78 PASCAL Program Input
Information 2. An information request may be is-
Requests sued whenever the Assistant is

attentive, regardless of what
prompting message has been given. The only exception is
the "?§" prompt, which is issued by a PASCAL program,
not the Assistant .47
File Names 3. File names may be of arbitrary
length, but no less than two
characters. The characters that may be used are let-
ters, digits, and the blank character '"-". The first
character must be a letter and the last cannot be the
break character 48
For example:

SQUARE-ROOT-PROGRAM
SINE~COSINE-FUNCTION

are legitimate file names, while names such as:

30X (does not begin with a letter)
A (contains too few characters)
H3.1 (contains an illegal character)

are not.

Abbreviations 4, All words in requests, with the
and Request exception of file names and the
Spacing request names PRESERVE, RESTORE,

and DESTROY may be abbreviated by
their first letter 49 Spaces in a request may be omitted,
with the exception that files and file lists must be
preceded and followed by a space.50
For example:

TRANSFER 3 INTO ALPHA
NEXT 5

28

46. Another detail. We spent

a lot of time trying to
choose meaningful and distinctive
graphics for these prompting sym-
bols because they will be seen so
frequently.

47. Probably our darkest hour.

48. The break character for com-

pound names in natural lan-
guage is the hyphen. Thus, for the
request language we use the hyphen
to connect compound names. We be-
lieve this convention 1is easy to
use and well-founded.

49. There are a number of two-

word keywords, like CURRENT-
FILE, in the request language. It
is certainly not clear how to ab-
breviate them.

50. The requirement that spaces

delimit file-names was in-
tended to eliminate ambiguity.
Ambiguity now seems rare enough to
be worth tolerating.

29

may be abbreviated as:

T31 ALPHA

N5
Multiple 5. You may type in more than one
Requests request on a line any time by

separating each request by a

semicolon ('";").51 51. Allowing multiple requests
on a line enables the more
experienced user to build compound

Interaction 6. Each of the words TERSE, LONG, requests. In an environment with
slow reaction time it may give the
EQEEEQl CAUTIOUS, or RISKY may be append- user more satisfaction to work with
ed to any request on a line to longer request lines and adapt to
: ; " the slower pace. As Palme (1975)
temporarily override the currently assumed mode of in- g4 wathrs haverneiated out. sush
teraction for the duration of the request.52 For ex-- adaptation is comparable to the

adaptation that takes place in

ample, if you are currently assuming LONG messages but natural human dialogue

would rather not see a LONG message for an EXPLAIN re- This feature is not novel,
lieat. ‘then we ould . but the Assistant's interactive
quest, PR ype: "chatter" during execution of a
EXPLAIN (name) TERSE request line and the immediate

request correction facility make
it more effective.

Immediate 7. Whenever a request is given and
Request not satisfied due to an error, 52. There is some doubt in our
Correction you may correct the error by modi- WLkl 8a o e SIE ne Ok

this.
fying the request, rather than re-

typing it entirely. To do so simply type:
=old-text=new-text=

In this case, "new-text" will replace the first occur-
rence of "old-text" found in the erroneous request, and
the Assistant will then automatically attempt to satisfy
the request again for you. If old-text is not found in
the erroneous request, then nothing is done, but you
still have the option of trying to modify the request
once more. "=" may be replaced by any character other
than a letter, or ";", which is neither in old-text or
new-text. It is used simply as a separator and is not
considered part of either old-text or new-text.

3

3 3

3

% ~3 —131 ~3 —3 T3 —3 —3 T3 3

—3 T3 T3

General Requests:

EXPLAIN
SHOW

ASSUME

GRIPE
UNDO

QUIT

Editing Requests:

NEXT
PREVIOUS
LIST
DELETE
TRANSFER
coPy
INSERT

MAKE

File Requests:

PRESERVE
RESTORE

DESTROY

Program Requests:

RUN
VERIFY
FORMAT

BIND

30

Appendix 1: The Assistant at a Glance
Request Modifiers:

(name) TERSE / LONG

CUATIOUS / RISKY
(name)
INTERACTION IS TERSE / LONG Request Correction:
SECURITY IS CAUTIOUS / RISKY zold-text= text=
CURRENTFILE IS file Fold-Text=new-Text=
NEWNAME IS new-file-name
MARGIN IS special-symbol / NULL Request Spacing:
ELLIPSIS IS special-symbol / NULL
JOKER IS special-symbol / NULL Requests - - Spaces in a request may be omitted,
UPPERLIMIT IS CURRENTLINE / NULL with the exception that files and
LOWERLIMIT IS CURRENTLINE / NULL file-lists must be preceded and fol-

lowed by a space.

File-names - A file-name must be comprised of at
least two characters. Characters
that may be used are letters, digits,

(QUICKLY) and the break character ("-"). The
first character of a file-name must
be a letter, and the last character
cannot be a break character.

(n/ALL) (=text=) File-lists - A file-list is a list of file-names
separated by commas (,").

(n/ALL (=text=)

Multiple - More than one request may be typed

(n/ALL) (=text=) Requests on a line provided that each request
is separated by a semicolon (";").

(n/ALL) (=text=)

(n/ALL) (=text=) INTO file Prompting Characters and Response Types:

(n/ALL)Y (=fext=) INTO file - Requests

(stext= / file) (BEFORE / AFTER / OVER) b New Text Input

(n/ALL) =text= =new-text= 1/ Caution Checks

78 PASCAL Program Input

Conventions

(file=list)

1. Uppercase letters denote reservedkkeywords.

(file-list)

2. Lowercase letters denote objects.

(file-=1list)

3. Parentheses denote optional keywords or

objects.

4. A slash ("/'") denotes mutually exclusive

(file-list) (WITH parameter-file~iist) alternatives.

(file) (INTO file) 5. "g" denotes a space.

(file) (INTO file) 6. All keywords may be abbreviated by their

first letter, except for PRESERVE, RESTORE,

(file-list) INTO file and DESTROY.

31

Acknowledgments

We would like to express our appreciation to Dr. Conrad Wogrin and the
University Computing Center for their generous support and interest in
this project.

Many students have also contributed to this work. Daryl Winters, Randy
. Chow, Peter Haynes, Gary Madelung, and Dave Tarabar helped design and
build early prototypes of major system components. The students of
COINS 790T and 7900 have all contributed to the ideas in this work.

Finally, our thanks to Michael Marcotty, who has continually stimulated

our efforts to develop a pleasant environment for users.

We are gratefﬁl to the National Science Foundation and the U.S. Army
Research Office for their support of this effort.

3

~3

~—3 773 ~3 —3@ T3a T3 3 3

—3 T3 T3

32

References

[Boies 1974])

Steven J. Boies
"User Behavior on an Interactive System,"
IBM Systems Journal, No. 1, 1974.

[Chen~Chance 197-]

Selvin Chen-Chance'

Doctoral Dissertation, University of Hawaii, Department of Educational
Psychology

[Child et al. 1961]

Julia Child, Louisette Bertholle, and Simone Beck
MASTERING THE ART OF FRENCH COOKING
Vol. 1, Alfred A. Knopf, New York, 1961.

[Cooke and Bunt 1975]

John E. Cooke, and Richard B. Bunt

"Human Error in Programming: The Need to Study the Individual Programmer,"
Department of Computational Science Technical Report 75-3, University of
Saskatchewan, Canada, 1975. '

[Cuandra 1971]

Carlow A. Cuandra

"On-Line Systems: Promise and Pitfalls,"

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, March-April,
1971. .

[Freedman and Landauer 1966]

J. L. Freedman, and T. K. Landauer

"Retrieval of Long-term Memory: Tip-of-the Tongue Phenomenon,"
PSYCHOLOGICAL SCIENCE, Vol. 4, No. 8, pp. 309-310, 1966.

[611lb and Weinberg 1977]

Thomas Gilb, and Gerald Weinberg

HUMANIZED INPUT
Winthrop Publishers, Cambridge, Mass., 1977.

33

[Hoare 1976]

C.A.R. Hoare
Private communication, 1976.

[Holt and Stevenson 1977]

H. 0. Holt, and F. L. Stevenson
"Human Performance Considerations in Complex Systems,"

[Hueras and Ledgard 1977]

Jon Hueras, and Henry Ledgard
"An Automatic Formatting Program for Pascal,"
SIGPLAN NOTICES, Vol. 12(7), pp. 82~84, July 1977.

[Kennedy 1974]

T.C.S. Kennedy

"The Design of Interactive Procedures for Man~Machine Communication,"
INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, Vol. 5, pp. 309-334, 1974.

[Kid and Van Cott 1972]

Jerry S. Kid, and Harold P. Van Cott

"System and Human Engineering Analyses,"

Chapter 1 in HUMAN ENGINEERING GUIDE TO EQUIPMENT DESIGN, H. P. Van Cott
and Robert Kinkade, editors, US GPO, Doc. D4.10:EN3, Washington, D.C., 1972.

[Ledgard and Singer 1977]

Henry Ledgard, and Andrew Singer
"Formal Definition and Design,"
in preparation.

[Mann 1975]

William C. Mann

"Why Things Are So Bad for the Computer-Naive User,"
PROCEEDINGS OF THE NATIONAL COMPUTER CONFERENCE, pp. 785-787, 1975.

[Miller and Thomas 1977]

Lance Miller, and John C. Thomas, Jr.

"Behavioral Issues in the Use of Interactive Systems: Part I. General
System Issueg,"

Thomas J. Watson Research Center, Yorktown Heights, N.Y., 1977.

™

3 3 "4

3

34

[Palme 1976]

Jacob Palme
"Interactive Software for Humans,"

Research Institute of National Defense, Stockholm, Sweden, NTIS NO.
PB-245 553, July 1976.

[Parsons 1970]

Henry M. Parsons

"The Scope of Human Factors in Computer-Based Data Processing Systems,"
HUMAN FACTORS, Vol. 12, No. 2, pp. 165-175, 1970,

[Singer and Ledgard 1977]

Andrew Singer, and Henry Ledgard

"The Case for Human Engineering,"

Computer and Information Science Department Technical Report 77-11,
University of Massachusetts, Amherst, Mass., September 1977.

[Stemple 1975]

David Stemple
Private communication, 1975.

[Sterling 1974]

Theodor D. Sterling

"Guidelines for Humanizing Computerized Information Systems: A Report
From Stanley House,"

COMMUNICATIONS OF THE ACM, Vol. 17, No. 11, November 1974.

[Teitelman 1974]

Warren Teitelman

"Interlisp Reference Manual,"

Xerox Corporation, Palo Alto Research Center, Palo Alto, Calif, 1974.
[Thotndike and Rock 1934]

Edward L. Thorndike, and Robert T. Rock, Jr.

"Learning Without Awareness of What is Being Learned or Intent to Learn It,"
JOURNAL OF EXPERIMENTAL PSYCHOLOGY, Vol. XVII, No. 1, 1934.

35

[Turner 1974}

Rollins Turner
"Interaction Data From CS/2,"
Digital Equipment Corporation, Maynard, Mass., 1974.

[Vandenberg 1967]

J. D. Vandenberg

"Improved Operating Procedures Manuals,"
ERGONOMICS, Vol. 10, No. 2, pp. 114-120, 1967.
[Weinberg 1971]

Gerald Weinberg

TEE PSYCHOLOGY OF COMPUTER PROGRAMMING

Van Nostrant Reinhold Company, 1971.

[Wiedmann 1974]

Clark Wiedmann

HANDBOOK OF APL PROGRAMMING
Petrocelli Books, New York, 1974.

b]

