Compile~Time Analysis of Data List-Format List
Correspondences

Paul Abrahams*
and
Lori Clarke**

COINS Technical Report 78-11
April 1979

*Computer Science Department, New York University. This research was
supported in part by the U.8: Department of Energy under contract EY-

76-C-03-3077, and in part by Control Data Corporation under contract
C08AA.)

**Computer and Information Science Department, University of Massachusetts.
This research was supported in Part by AFOSR under contract AFOSR~77-3287,
and in part by the National Science Foundation under grant MCS77-02101.

ABSTRACT

Formatted input-output is available in a number of programming
languages. 1In the most general case, the correspondence between data
items and format items cannot be determined during compilation, and so
it is determined dynamically during execution. However, in most pairs
of data and format lists that occur in practice, determinatign of the
correspondence is in fact possible during compilation. Although some
commefcial compilers make this determination, there is little published
literature on the subject. In this paper, we brieflvy examine three
areas in which compile-time determination of the data-format correspondence
is useful: optimization, program validation, and automatic test data
generation. A formalism for stating the problem is given, and a solution
is discussed in-terms of formal language theory. Using this formalism,
an algorithm for determining the correspoﬁdence is given, and its appli-

cation is illustrated by examples in both PL/I and FORTRAN.

Keywords and key phrases: formats, compilers, Program optimization,
program validation, test data generation, input-output, static program

analysis.

1. Introduction

Formatted input-output plays an important role in FORTRAN and PL/I,
and is also provided in Algol 68 and in certain Algol extensions. A
formatted input-output operation is specified by providing a data list
and a format list. The data list specifies the items to be read or written,
while the format list specifies how the items are represented on the
input or output medium. In most cases that occur in practice, it is
possible to determine during compilation how data items are paired with
format items. That isn't too surprising, since the programmer should have
anticipated the correspondence when the data list and format 1ist were
composed. Consolidating the two lists into one list of pairs eliminates
the need for expensive execution-time linkage mechanisms, and moreover
makes it possible to derive information useful in program validation and
in automatic test data generation. In this paper, we present an algorithm
for converting the two lists into a single list of pairs. Although the
conversion is trivial if the lists are expanded by writing out all
iterations in full, it is not trivial if we desire to retain as much of
the origingl iteration structure as possible, which our algorithm does.

In some cases, our algorithm rejects the input because the correspon-
dence cannot be determined until execution. For example, consider the
FORTRAN statements:

WRITE’ (1,5) (A(I),I = 1,M),B

S FORMAT (El4.3,E12.3)

We cannot know prior to execution whether B will correspond to the format
El4.3 or to the format E12.3, since that depends on whether M is even

or odd.

In this paper, we shall consider the application of our algorithm
to Foftran and PL/I; we have not attempted to apply it to other languages.
The current status of our work is that the algorithm has been programmed
(in SNOBOL) and teéted, but it has not been incorporated into an actual
compiler. Although the SNOBOL implementation is effective for testing
and experimentation, a practical implementation would necessarily use
lists rather than éharacter strings as its underlying representation.

2. Applications

The major application of our algorithm is the optimization of
formatted input-output. Ordinarily the execution of a formatted inout-
output statement is implemented by a pair of coroutines, one for the
data list and one for the format list. Each coroutine keeps track of
tﬁe position in the list, and finds the next item when it is called.
Control shuttles back and forth between the two routines, and when a
data-format pair is obtained, the appropriate input or. output action is
taken. The code required for this conversation can be eliminated if the
correspondence is known in advance, since then the proper format can be
compiled directly into the data list. Knuth's study of FORTRAN programs
[10] found that about 25% of the overall execution time was spent in the
I/0 editing routines. Therefore, we expect compile—time'analeis to
produce a noticeable reduction in execution time.

The correspondence between the data list and format list can be used
in program validation to detect certain types of programming errors. For
instance, we can cﬂeck whether the type of each data item agrees with

the type of the corresponding format item. When making this check, we

would want to ignore certain distinctions among format items. For
instance, in the example given earlier, the formats El4.3 and E12.3
would be treated as one and the same since they both match variables of
type REAL. Since formats are a major source of errors for beginning
FORTRAN programmers, this check would be valuable in diagnostic FORTRAN
compilers. In PL/I, however, all printable data types convert to all
other printable data types, so formats are always correct from this
viewpoint.

Once the correspondence between a data item and a format item is
known, then a range of permissible values for the data item is also known.
This infprmation can be useful for more sophisticated validations. For
example, suppose we have the FORTRAN sequence:

“ WRITE (5,10) N

10 FORMAT (12)

A warning should be issued if N is potentially greater than 99 or less
than -9. Recent work in static program analysis [1,4,5] should be
ﬁseful in this type of wvalidation.

In automatic test data genefation, a topic investigated by Clarke
in [3], an attempt is made to determine legal input data that will exercise
particular program paths. Knowing the format specifications of a data .

_item determines a range of potential values for the data item. This in
turn may limit the range of other variables. For example, in the following
FORTRAN seqﬁénce:

READ (5,10) I,J
10 FORMAT(I2,I10)

K=I+J

we note that the possible range of legal values for I is -9 to 99 and
for J is -99 to 999, while the possible range of values for K is -108
to 1098.

Current test data generation systems have ignored format information,
even though FORTRAN and PL/I have been the languages most frequently
analyzed by such systems (3,7,9,12,13]. Of course, it is possible to
compare the generated data with the corresponding format statements,
using the coroutines appréach mentioned in connection with optimization.
However, if the generated data is not consistentwith the corresponding
format, an expensive reanalysis is necessary. It would be more.economical
to extract the data-format correspondence before analysis.

The optimization aspect of formatted input-output is touched uvpon by
Lee in his FORTRAN-oriented book on compiler writing [11]. Moreover, the
IBM PL/I Optimizing Compiler [8] does match data lists with format lists.
However, the circumstances under which this matching is done, and the
method used to accomplish it, are proprietary.* Although other commercial
compilers also perform this matching, we are not aware of any published
literature about them. Torsun and Robinson [14] have developed a system
that preprocesses fofmats, but their system does not_performfany compile-
time analysis on data lists that contain iterations. Their discussion
deals mostly with the numerical encoding of formats, and has little to
say about the problems considered here.

3. Notation
From now on, we will refer to format items as F-items and to data

items as D-items. Similarly, a format list will be referred to as an

*We wish to emphasize that the methods developed in this paper were devised
without any knowledge of the IBM method, as neither of us has access to it.

F-list, and a data list as a D-list. We distinguish three kinds of
repetition factors: constant, variable, and infinite. Constant repetition
factors are written explicitly. Variable repetition factors are denoted
by Vl, V2, . Vs and infinite repetition factors by <. Essentiaily the
same formation rules, but with different individual items, can be used
for D-lists and F-lists:

(1) An individual item (i.e., a F-item or a D-item) is a component.

(2) If X,+X,s...,X are components, then [xl,x ,...,xk] is a non-

2

repeated sequence with subcomponents xl,...,xk.
(3) If xl,xz,...,xk are components and r is a constant, variable or
infinite repetition factor, thelr[xl,xz,...,xk] is a repeated

sequence with subcomponents xl,xz,...,xk. A rgpeated sequence
is a component.

(4) 1If [xl,xz,.f.,xk] is a nonrepeated sequence whosc individual
items are all D-items, then [xl,xz,...,xk] is a D-list. If
[xl,xz,...,xk] is a nonrepeated sequence whose individual items
are all F-items, then [xl,xz,...,w[¥k]] is an F-list.

These rules require that sequences always appear with repetition factors
except at the outermost level. Thus, an individual item with a repetition
factor must be replaced by a unit list with that repetition factor (e.g., we
replace 4Fl by 4[Fl]). The asymmetry in rule (4) is accounted for by the
facts that infinite repetition cannot occur in D-lists (except by error

in certain PL/I situations) and that any F-item following an infinite

repetition can just as well be ignored. For FORTRAN and PL/I, there are

further restrictions on F-lists. In FORTRAN, no variable repetition factor

can occur in th; F-list and only the rightmost level-one parenthesized
list has an implied infinite repetition factor. 1In PL/I, infinite repeti-
tion can be applied only to the entire F-list, so that k must be 1 in
rule (4).
Some éxamples are in order to show how the notation corresponds . to
reality. ’COnsider the FORTRAN example:
WRITE (5,100) ((A(1,3), J =1,7), NVAL(I), I = 1,Mj
100 FORMAT (7E10.1, I3, (7E12.2,I2))
The D-list and F-list are then:
tv, [7(D;1,D,1]
and
[70F,1,F,,=(7[F,],F,]]
respectively, with

1 5 = 13, F3 = E12.2, 1-‘4 =12, Vl = M.

We have chosen to treat A(I,J) and NVAL(I) as single items,. although for certain

D, = a(L,7), D, = NVAL(I), F. = E10.1, F
applications of test data generation, a finer distinction may be desirable.
A similar example in PL/I is:
PUT EDIT. (((A(I,J) DOJ =1 TO 7), NVAL(I) DOI =1 TO M))
(7 E(10,1), F(3), (M-1) (7 E(12.2), F(2)))
The D-list is represented as in the FORTRAN example, but the F-list is
[=[7[F,1,F,,V,[7[F,],F,]]]

where V2 = (M-1) and the other symbols are the same as before.

4. The Correctness Problem in Terms of Formal Language Theory

Provided that the F-list contains no variable renetition factors, the

correctness problem can be shown to be solvable using results from formal

language theory. If variable repetition factors are present in the F-list,
and nothing is known about them, then formal language theorv is of no
help. For consider:

D-list: [vl[nl],02]

F-list: [V2[Fl],F2]

Assume moreover that Fl and F2 are valid formats for Dl and D2
respectively. Even though the two lists have the same form, we cannot tell
whether they match correctly.

If there are no variable repetition factors in the F-list, then we
can transform both lists into regular expressions (see, for instance,
Hopcroft and Ullman {6]) as follows:

(1) If D, ,Di ,...,Di are the D-items for which F, is a valid format, then
12 j 4
replace Fj by the expression
(Di VDi V...V Di)
1 2 j
(2) Replace each variable or infinite repetition factor by *, indicating

Zero or more occurrences.

(3) Expand out each constant repetition factor.

We éﬁen have two regular languages, D and F respectively, for the D-list
and FP~list. We then see:

(1) If D < F, then the correspondence is valid.

(2) If D nF is empty, then the correspondence cannot be valid.

(3) 1In all other cases, the validity of the correspondence cannot be
determined.

These statements follow from the observation that the sentences in D are

all the possible sequences of D-items, while the sentences in F are

obtained by taking all the possible sequénces of F-items (a necessarily

infinite set) and replacing each F-item bv all possible D-items that i;
can match. Now the relation between D and F can be algorithmically
determined since the containment and intersection problems for regular
languages are solvable (again, see Hopcroft and Ullman). It follows that
the correctness problem is indeed solvable. Since FORTRAN has no variable
repetition factors in its formats, the correctness problem can be solved
for that language, in the sense that we can determine which of the three
cases given above is applicable. For PL/I, it cannot be solved except for
formats having constant reéetition factors.

Although formal language theory shows that the correctness problem
is solvable, and even provides an algorithm for solution, that algorithm
is not a practical one. The formal solution requires that all constant
repetitions be fully expanded, and moreover requires that we construct the
product of' two finite-state machines and then test the language defined
by the product for emptiness. For a practical algorithm, we use the same
methodg as we use for the other applications, and actually find the

correspondence between data items and format items.

5. Method of Solution

A solution to the correspondence problem can be expressed by replacing
each Di in a data list by a pair <Di,Fj>, where F_i is the format that
matches Di' First, we define the inner cardinality of a repeated sequence
to be the number of individual items in the immediatelv contained nonrepeated

sequence, with repetitions counted. For instance, the inner cardinality of

3[2[Dl],5[D2]] is 7. The inner cardinality is variable if the scquence

contains any variable repetition factors. The inner cardinality can
be computed in an obvious way by analyzing nested repeated sequences from
the inside out.

We present the algorithm as a sequence of operations, using a semiformal
style of English adopted from the recent PL/I standard [2]. The algorithm
is executed by performing the operation match, whose inputs are a D-list
and an F-list, and whose output is a DF-list, i.e., a list of pairs. The
algorithm proceeds by a sequence of reductions. When both the D-list and
the F-list begin with a single item, we can remove those items from the
two lists and construct a new item for the DF-list. Moreovef, if both
the D-list and the F-list start with a repeated sequence, and the two
sequences both have the same repetition factor and the same inner cardinality,
then we can add a corresponding repeated sequence to the DF-list, applving
match recursively to obtain the inner nonrepeated sequence. (It is this
recursion that enables us to retain most of the iterative structure of
the original lists.) The rest of the algorithm is concerned with modifying
the D-list and the F-list so as to get them into a form in which the
initial components can be paired up as we have jgst described.

In certain cases, when variable repetition factors are encountered,
the correspondence between the D-list and thé‘F-list cannot be determined
until execution. In these cases, the algorithm rejects the input. To
see that variable repetition factors can cause this difficulty, consider
the case:

D-list: [Vl[Dll,Dzl

F-list: [Fl,F2]

10

This case is a translation of the example given in the Introduction; the
proper pairing of D2 depends on the value of Vl' On the other hand, some
cases involving variable repetition factors can be treated. ?or instance,
the pair:

D-list: [v,[D,]]

F-list: [°°[Fl]]

yields the DF-list [V1[<D1,F1>]].

match (ds,fs)
where ds is a D-list and £fs is an F-list

Result: a DF-list

Note: ds and fs will be maintained as nonrepeated sequences and fs will always
include at least as many items as ds.

Step 1. Let dfs be an empty list.

Step 2. Perform Step 2.1 repeatedly until ds is empty. Then return dfs

as the value of match.
'Step 2.1. Let cde and cfe be, respectively, the first component of ds
and of fs.

Case 2.1.1. cde and cfe are both individual items.

Append the pair <cde,cfe> to dfs. Delete cde from ds and

delete cfe from gg.

(/]

Example: ds
fs = [F),=[F,]]

= [D,,2[D,]]

new pair = <D_,F >

1’71

Case 2.1.2. Either cde or cfe is an individual item, while the other is
a repeated sequence with a constant or infinite repetition
factor. If cfe is the individual item, perform split (1,ds) to

obtain a new ds. Otherwise perform split (1,fs) to obtain'a

new fs,

11
Example: ds = [D,,2(D,]]
fs = [6[F],=[F2]]
new fs = [F,,5[F,],=[F,]] _
Case 2.1.3. Either cde or cfe is an individual item, while the other has
a variable repetition factor.
The input is rejected.
Example: ds = [vl[DI]]
fs = [F}, =[F,]]
Note that in this example, V1 may or may not be greater than 0.
Case 2.1.4. cde and cfe are both repeated sequences with the same inner
cardinality.
Let rd and rf be the repetition factors of cde and cfe
respectively.
Case 2.1.4.1, rd and rf are identical.
Let nsd and nsf be the nonrepeated sequences in cde and

cfe respectively. Perform match(nsd,nsf) to obtain a DF-

list, dfl. If rd is one, then append dfl to dfs; o;herwise;
append rd[dfl] to dfs. Delete cde and cfe from ds and fs
respectively.
Example: ds = [S[Dl,bZ]]
fs = [5[2[F,11,[F,]]
new component of DF-list = 5[<D1,F1>,<D2,F1>]
Case 2.1.4.2. rd and rf are different constants, or rf is infinite.
If rd < rf, perform split(xd,fs) to obtain a new fs.
Otherwise, perform split (rf,ds) to obtain a new ds. -
Example: ds = [4[D,],D,)
fs = [=[F,]]

new fs = [4[F,],~[F,]]

12

Case 2.1.4.3. 1rd is variable and rf is infinite.
Perform split(rd,fs) to obtain a new fs.
Example: ds = [Vl[Dll]
| fs = [=[F,]]
new fs = [Vl[FI],“[Fl]]
Case 2.1.4.4. (Otherwise.)

The input is rejected.

[/}

Example: ds = [V,[D,]]
£s = [3[F,],[F,]]

Case 2.1.5. cde and cfe are both repeated sequences with different, but
constant, imner cardinalities, nd and nf resbectively. Let lcm
be the least common multiple of nd and nf, and let ._m_d_ =
lem/nd, mf = lem/nf.* Let rd and rf be the repetition factors
of cde and cfe respectively. Let nr = min(rd/md,rf/mf) if

neither rd nor rf is variable, and let nr be undefined otherwise.

Case 2.1.5.1. nr is defined and nr > 1.

Step 2.1.5.1.1. If rd > nr*md, perform split (nr*md,ds) to obtain a new ds.
If rf > nr*mf, perform split (nr*mf,fs) to obtain a new fs.
(ar will be the new repetition factor for the first component
both of ds and of fs.)

Note: It is possible that zero, one or two split operations will be

performed in this step.

Step 2.1.5.1.2. If md > 1, replace the first component of ds by nrimd[s]],

where s is the nonrepeated sequence of cde.

*We use "/" to indicate integer division with the remainder discarded.

e e el TRTRL

13

Step 2.1.5.1.3. If mf > 1, replace the first component of fs by gt;[m_f[g]],
where s is the nonrepeated sequence of cfe.
Note: On the next step, Case 2.1.4.1. will apply, since both ds and fs
will start with a component having repetition factor nr and inner

cardinality lem.

1]

Example: ds = -[8[D1,D2]]
fs = [“[2[F1],F2]]
nd=2, nf=3, lem=6, md=3, mf=2, rd=8, rfew, nr=2
new ds = [2[3[D,,D,]],2[D,,D,]]
new fs = [2[2[2[F1],FZ]],“’[Z[F]_],FZ]]
Case 2.1.5.2. nr is defined and nr < 1.
If nd > nf, perform split(l,ds); otherwise perform split(l,fs).

Note: In this case, one or both of the first components of ds and fs contains

too fgw elements to allow us to extract a common repeated part, so
we expand the longer ome. If necessary, the shorter one wj.ll be
‘expanded on the next iteration. |
Example: ds = [3[D1]]
fs = [=[F,,4[F,]]
nd=1, nf=5, leme5, md=5, mf=1, rd=3, rf=s, nr=0
‘mew fs = [F,,4[F,],=[F,,4[F,]]]

Case 2.1.5.3. rd is variable, rf is infinite, and nd is a mult;'iple k of nf.
Let s be the nonrepeated sequence of cfe. Replace cfe by
rd[k[s]],=[s].

Note: Both ds and fs now start with a component with repetition factor

rd and inner cardinality nd.

Example: ds = [V, [D,,D,]]

fs = [=[F,]]

new fs = [Vl[ZFFI]],wlFIJ]

14
Case 2.1.5.4. xd is variable, but Case 2.1.5.3 does not apply.

Reject the input.

®

Example: ds = [V1[D1]]
£s = [=[F,6[F,]]]
Note: Although in practice it may be possible to solve this case, the

solution cannot be expressed in our formalism. ‘The solution would

be:
[°°[<D1,Fl>,6[<Dl.F2>] 1]

with an auxiliary test needed to ensure that only V

1 elements are

processed.
Case 2.1.6. (Otherwise.)

Reject the input.

split(k,s)

where k 1s an integer or a variable and s is a nonfepeated sequence.
Result: a modified nonrepeated sequence.

Step 1. Let ¢ be the first component of s. ¢ must be a repeated sequence,

so it has repetition factor r and contains a nonrepeated sequence cs.

Note: split is called in such a way that if k is a variable, then r is e,

Step 2. Let k2 be r ~ k. (Note that » minus anything is «.)
.. Replace ¢ by the two components _ls[g] »k2{cs].
Step 3. 1If either k or k2 is 1, replace the corresponding cbmponent by cs,
i.e., delete the repetition factor. l
An example of the algorithm applied to a compound case is shown\

in Figuré 1. Two smaller examples, omitting the intermediate steps, arve:

Step ds
1 '[20[D1,02]]
2 F5[3[D1,D2],5[D1,D2{?'

2.1 [3[Dl.D211
2.2 [Dl.Dz.ZIDl,Dzll
2.3 [2[01,021]

2.4 [D,.D,,D. ,D,]

17727172
3 [5[91,0211
4 [5[01,02]]

. 4.1 [DI.DZ]

4.2 [Dl'Dzl

+ e s
'A' indicates an empty list

 fs

[10[F,,F_,F],w[F4ll

1273

[5[2[F1,F

’

2

[Flle IF3 'Fl'FZ 'F3]

(F3,F, /F,,F,l
[F3,F1,F2.F3]
[=[F,1]
(5(2(F,1],=[F,1]
[2(F,]]

(Fy F]

[=[F,1]

.F3]].°[F4l]

afs Case
-+
A 2.1.5.1
A , ; - 2.1.4.1
A - 2.1.5.2
A 2.1.1
(2 times)
[<Dl'Fl>'<D2'F2>] 2;1.2
f<p,,F.>,<D,,F_>] 2.1.1
272
11 (4 times)
[<D1'Fl>'<D2’F2>'<D1'F3>'<D2'F >,<D1,F2>,<D2,F3>] 2.1.5.1
[5[<D1,Fl>,<Dz,F2>,<Dl,F3>,<D2,F1>,<D1,F2>,<02.F3>]] 2.1.4.1
[5[<D1,F1>,<D2,F2>,<D1,F3>,<D2,Fl>,<Dl,F2>,<D2,F3>]] 2.1.2
[5[<D1,F1>,<DZ,F2>,<Dl,F3>,<DZ,F1>,<Dl;F2>,<D2,F3>]] 2.1.1
(2 times)
[5[<Dl,Fl>,<Dz,F2>,<Dl,F3>,<p2,Fl>,<Dl,F2>,<D2,F3>],
5[<DI,F4>,<D2,F4>]]
’—
v

Figure 1

16

Example 2

data list: [3[5[D1,D2],D3,D4]]

format list: [4[6[F1,F2]],“[6[Fi,F21]]

‘resulting list: [3[5[<D1,F1>,<D2,F2>],<D3,F1>,<D4,F2>]]
Example 3

‘data list: ' [200[D1,5[D2],5[D3]]]

format list: [m[Fl,5[F2],5[F3]]]

resulting list: [200[<D1,F1>,5<D2,F2>,S<D3,F3>]]

6. Treatment of Control Formats

The formal model we have presented does not account for control formats,
e.g., hollerith fields in FORTRAN formats and skips to the ne*t record.
However, control formats are easily accounted for by associatiﬁg them with
data formats. For applications other than optimization, control fofmats
are irrelevant and can be ignored. |

In associating control formats with data formats, we must distinguish
between control formats that are executed only if a following data format
is used, and those that are executed whenever the preceding data format is
used. In FORTRAN, the rule is that following control formats are
executed unless the end of the entire format is encountered. 'Thus, if
we execute:

WRITE(u,10)A,B

10 FORMAT(1H1, I5, 1H*, I5, 1H%)
both stars are printed. Hence the first I5 has two controlrformats (1H1 and
1H*) associated with it, while the second I5 has the second 1H* associated

~with it.

17

In FORTRAN, we must also account for the peculiar behavior 6f end-of-
line. An end-of-line is generated whenever the right end of the format is
encountered. Hence a line skip must be associated as a post—fo?ﬁat for the
last data format in the list. A line skip also occurs at the completion of
the entire operation, unless one has just been produced; this final ékip
can be generated independently of our algorithm.

In PL/I, control formats are not used unless the following data format
is also used. Hence in PL/I, all control formats are associated as pre-
formats with data formats.

7. Actual Experience

To demonstrate the effectiveness of the algorithm in detérmining data-
format correspondence, a group of programs were analvzed. Thirteen programs
were chosen, all written in FORTRAN., The programs were selected rd#domlv;
listings were obtained from the graduate students available one Saturday
afternoon. Some of the programs were large and had been coded bv nuﬁerous
people. In all, the programs were the work of about 25 programmers.

Two hundred and fifty-one data and format statements were exémined and
only fifteen could not be completely analyzed by the algorithm. Thﬂs, this
technique failed in only six percent of the cases examined.

A few observations about the formats are also of interest. ' About 25
percent of the data lists were empty and, thus, the format.lisi bad only
format control information. About 40 percent of the data and format lists
examined could be analyzed completely by using just Case 1 of ;he»aigorithm.
None of the examined lists were as complex as those presented in thélprevious
examples; none required the use of Case 2.1.5. Though PL/I programs‘were
not analyzed, we have no reason to believe the results would be substantially

different.

. Acknowledgement

. : . . ' 3 . : i
We wish to thank the referees for several helpful criticisms of an -

it

'earlier'd:aft of this paper.

18

References

(1]
[2]

(3]

(4]
(5]
(6]
[7]
(8]
(9]
[10]
{11]
(12]

[13]

(14)

F.E. Allen, and J. Cocke, "A Program Data Flow Analysis Procedure,"
CACM, 19,3, March 1976, pp. 137-147.

American National Standards Institute, "American National Standard:
Programming Language PL/I," ANSI X3.53-1976.

L.A. Clarke, "A System to Generate Test Data and Symbolically Execute
Programs," IEEE Trans. Software Engineering, Vol. SE-2, Sept. 1976, -
pp. 215-222.

L.D. Fosdick, and L.J. Osterweil, "Data Flow Analysis in Software
Reliability,"” Vol. 8-3, Sept. 1976, pp. 305-330.

W.H. Harrison, "Compiler Analysis of the Value Ranges for Variables,"

-IEEE Trans. Software Engineering, Vol. SE-3, May 1977, pp; 243-250.

J. Hopcroft, and J. Ullman, "Formal Languages and Their Relation to
Automata," Addison-Wesley, Readlng, Mass., 1969.

‘W.E. Howden, "Methodology for the Generation of Program Test Data,"

IEEE Trans. Comput., Vol. C-24, May 1975, pp. 554-559.

IBM Corporation, "0S PL/I Checkout and Obtimizing Compilers: Language
Reference Manual," Order Number GC33-0009-3.)

J.C. King, "A New Approach to Program Testing," in Proc. Int. Conf.
Reliable Software, April 1975, pp. 228-233.

D.C. Knuth, "An Empirical Study of FORTRAN Programs," Software-Practice

.and Experience, Vol. 1, 1971, pp. 105-133.

J.A.N. Lee, “The Anatomy of a Compller,“ 2 ed., Van Nostrand Reinhold,
New York, 1975.

E.F. Miller, and R.A. Melton, "Automated Generation of Test Case i
Datasets," in Proc. Int. Conf. Reliable Software, April 1975, pp. 51-58.

C.V. Ramamoorthy, S.F. Ho, and W.T. Chen, "On the Automated Generation
of Program Test Data," IEEE Trans. Software Engineering, Vol SE-2,
Dec. 1976, pp. 293-300.

I. Torsun, and S. Robinson, "Non-'Interpretive' FORTRAN Input/Output,”
Software-Practice and Experience, 7(2), March-April 1977, pp. 205-213.

