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Abstract
This paper describes a set of algorithms used to perform segmenta-
tion of natural scenes through boundary analysis. The techniques include
preprocessing, differentiation using a very simple operator, relaxation
using case analysis, and postprocessing. The system extracts line
segments as connected sets of edges, labels them, and computes features

for them such as length and confidence.
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I. Introduction

We describe in this paper a set of programs that are used to
perform a boundary analysis of images of outdoor scenes. Each process
can operate in parallel across the whole image, since the value computed
at a pixel is a function only of a small neighborhood around it.
Due to the modular nature of these programs, they can easily be 'unplugged"
and replaced by more sophisticated versions, or left out altogether,
if desired. The relaxation process in particular (described in Section
I1I1.4) was designed to be a minimal functional implementation of the
ideas behind the algorithm. A more sophisticated elaboration of these
ideas is describ;d in [3]. The techniques described in this paper have

been developed for use in the VISIONS scene analysis system [2].

I.1 Overview of the System

The goal of the system is to form a segmentation of an image, that
is, to delineate the boundaries of the objects in the scene. This is
done via differentiation using edge masks, a process which finds discon-
tinuities in the intensity image. Prior to this stage, however, pre-
processing is required to clean up the raw data somewhat. After differentia-
tion, a relaxation process will comsolidate the edges formed on the
basis of local consistency requirements. Individual edges are then
linked together during the binding stage to form extended line segments.
Finally, properties of these line segments such as confidence are computed,
allowing removal of lqw—confidence lines.

Conceptually there are four stages to our line-finding process.

Each of these is implemented as one or more computational modules.



(1) Preprocessing: This stage cleans up the raw data.

(1a) UNMIX corrects for "mixed pixels' introduced in digitiza-
tion.

(1b) CONDITIONAL AVERAGE smooths out random noise and fine
microtexture. :

(2) Generating the Edge Representation: This is the heart of the
whole process.

(2a) DIFFERENTIATION finds the apparent edge-strength at
each point in the image.

(2b) SUPPRESSION removes "multiple edges' formed by spatial
differentiation of boundaries which are composed of a
gradient across many pixels.

(2c) RELAXATION drives the probability of an edge at each
point to 1 or 0 on the basis of local support or inhibition.

(3) Grouping: This stage joins edges into line segments and finds
‘ features of these lines.

(3a) BIND joins contiguous edges together to form line segments,
and each line segment is given a unique label.

(3b) FEATURE EXTRACTION produces features such as length,
contrast, location for each line segment.

(4) Postprocessing.

(4a) TRIM1 removes selected line segments (e.g., short, low
contrast lines).

(4b) CONFIDENCE generates a confidence for each of the remain-
ing segments that actually is a meaningful line segment.

(4c) TRIM2 removes low confidence lines by thresholding
on their confidence level.

II. Stage 1 -- Preprocessing

We start with the image digitized into three arrays containing the
red, green, and blue components of the scene. These are now averaged

to form the black and white intensity image. Prior to differentiation,



this image undergoes two preprocessing stages which provide the black
and white image upon which the line-finding process works.

(Step la) UNMIX: The first process is designed to eliminate what

is known as ﬁhe "mixed-pixel" problem. This problem occurs whenever
images are digitized, and is due to the fact that boundaries in thejimage
will not in general fall in register with the digitization gﬁid. Thus,
the intensity recorded at a pixel might overlap two regions, and there-
fore represent a weighted average of them (see Figure 1).

The procedure must test to see if a two-step intensity gradient
occurs at the same place in all of the three colored images. If it does,
then a mixed pixel is assumed to have been formed (of course this assump-
tion might not be correct and then errors would be introduced). It is
consequently "unmixed" by assigning to it the values of its nearest
neighbor along the direction of the gradient. This has the effect of
shifting the boundary by a fraction of a pixel (see Figure lc).

(Step 1b) CONDITIONAL AVERAGE: The second process is an adaptation

of a smoothing process due to Rosenfeld [7] which helps eliminate noise
in the image. In this process, the intensify value at each point is
replaced by the average of itself and its neighbors, except that if the
difference between the value of the point and a neighbor is greater than
a certain value T, then that neighbor is not included in the average.
For the neighborhood {Ni} of the point Ny in Figure 2, its updated

value is given by:
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where § = {Ni : lNi - Nol < T} and n is the cardinality of S. Note
that S always contains NO. This procedure has the following effects:

(1) Within a homogeneous region, it smooths out small amounts of

noise (small relative to T).

(2) Near a region boundary whose contrast is greater than T it
includes no points across the boundary in the average. This
allows a smoothing of the points on either side of the boundary
without blurring the boundary as a nondiscriminatory averaging

process would do.

(3) Within an intensity gradient, the process averages a point
with roughly as many other points that have smaller intensity
as greater. This will smooth noise within the gradient, but

it will not destroy the gradient.

(4) 1In a textured region, if the texture elements differ little
in intensity (relative to T), they will be smoothed into a
homogeneous region. If the texture elements differ by more
than T, then no averaging will occur, except perhaps within

the texture elements themselves.

After experimental testing of the differential operator (to be
described later) on images that have selectively undergone the UNMIX
and/or CONDITIONAL AVERAGE passes, it was subjectively concluded that
an application of both processing techniques gives the cleanest results
(i.e., no loss of any important lines, Qr addition of extraneous ones).
Examples of the combined use of these preprocessiﬁg stages on intensity

images are shown in Figure 3.



Figure 3. Preprocessing. Figure 3a shows the original intensity data. Figure
shows the same data after the "UNMIX® and *CONDITIONAL AVERAGE® steps.
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TIII. Stage 2 —— Generating the Edge Representation

III.1 Representation of the Edge Image

The input consists of an array of numbers representing the light
intensity of each position in the image. Since each of these pixels
is to be in some fegion, it is reasonable to constrain the boundaries
of regions to fall only between pixels. Representing the image on a
rectangular grid and constraining edges to lie betwgen pixels imposes
a boundary that consists entirely of horizontal énd vertical edges

(as in [1] and [10]). This greatly facilitates further processing.

III.2 DIFFERENTIATION (Step 2a)

The standard technique for differentiation is to convolve edge
masks with the image. It can be generalized to apply a set of masks,
and to compute the output as some function of the responses of these
masks, often the maximum response.

In [5], experiments were performed with several combinations of
different masks, and it was found that on the preprocessed data, the
simplest possible mask gave the best overall results. This mask computes
the difference in intensity between two adjacent pixels and associates

the result with their common boundary.

III.3 SUPPRESSION (Step 2b)

One of the weaknesses of using masks is that wide gradients give
rise to multiple parallél indications of the same edge. A simple
technique for eliminating these unwanted edges is called non-maxima
suppression: in a sequence of parallel, immediately adjacent edges,

all but the strongest are eliminated. If, further, the total contrast



of all the edges across the gradient is collected into the remaining
edge, then the edge-picture resulting is much more representative of
the strengths of the gradients; this is the algorithm used in the system

described in this paper. For further discussion of these techniques,

see [3,5,6].

IIT1.4 RELAXATION (Step 2c¢)

III.4.1 Background

The edge strengths produced by the differentiation process depend
upon the local contrast in the image. Weak edges may arise from low-
contrast boundaries, gradients extending over many pixels, or from
texture internal to a region, or indeed from noise. The output‘of the
differentiation process is thus usually far from being clean. If the
strengths of edges are viewed as probabilities, or confidences, of the
existence of edges, usually few of them would be considered to have
probabilities of 0 or 1. An edge probability that is neither 0 nor 1
effectively is an ambiguous interpretation of the entity concerned.
However, the local context around each edge contains information for
updating the probability so that ultimately the ambiguity will be reduced
and interpretations will be locally consistent. The process of updating

these confidences in barallel will be called a relaxation process.

In this scheme, a label A is assigned to each position with an initial
probability P(A). The set of labels A can be a set of edge-descriptors,
such as "horizontal edge", "vertical edge", etc., and would typically
include a special label, the "null edge" label, which is an assertion
that there is no edge at that point. A is chosen so that the labels are

mutually exclusive, since it is desired that ultimately one label
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will be present with probability one,Athe others with probability zero
bat each point.  Ihe.label$‘may‘be regarded as competing at each position
in the image during relaxation._ In this process, each probability

for every label at every position is then updated in parallel according
to its compatibility with the labels at neighboring positions (in

some predefined neighborhood). Under quite restricted conditions
convergence can be guaranteed [11], although not necessarily to any
meaningful global interpretation.

A consideration of the relaxation model of Rosenfeld et al. described
in detail in [8] (and summarized above) leads one to conclude that the
heart of the scheme is in the setting of the (many) compatibility
coefficients. Not only are there many of these which need to be set,
but due to heavy interdependence of effects there is no direct correla-
tion between the setting of an individual weight and the performance of
the system. Thus, tuning can be very difficult, since it requires
optimization of many variables simultaneously. Furthermore, there is
no guarantee that it is possible to set weights such that all the desired
effects can be achieved simultaneously. While it is fairly straight-
forward to set the weights so that some of the more obvious cases are
taken care of, there is rarely enough leeway to adjust them so that the
more ''awkward" cases, such as when part of an edge's neighborhood supports
it and the other part inhibits it (case 0-1 described in III.4.5 below),
are managed correctly. Indeed, it is difficult to determine where the
system is failing, or how it is achieving its results.

It appears that one source of these difficulties arises when the

updating process employs a single formula that is used to take care of



the various very different cases that arise. In the next section, an
alternative scheme is proposed which will deal with each of the afore-

mentioned problems separately, in a clearly structured manner.

ITII.4.2 A Different Representation for Relaxation

In the scheme just described, a set of labels are competing for
each position in the image. Thus for a point on a diagonal boundary,
both horizontal and vertical labels will be competing. In our representa~
tion, we can allow both labels to coexist at a pixel since Qe are placing
edges at interpixel boundaries, not on top of the pixel. Therefore,
at each vertical pixel boundar& the only labels we need to consider
“are '"vertical edge" and "no edge", and similarly for horizontai edges.
In this way, the set of two probabilities at each edge location

{Pi(l)]l € A} can reduce to a single parameter P The probability

it
of an edge at position i is Pi’ while the probability of the null label
"no edge' at position i is 1 - P,. Relaxation is very much simplified
as a result of this representation.

We will use the notation of Figure 4 to describe the edge-configura-

tions under consideration.
An open rectangle will represent the edge to be updated.
A dotted line will represent an edge position with no edge present,
a thick solid line the presence of an actual edge,

a thin solid line an edge of undetermined strength.

Now let us describe the algorithm. Associated with each edge-
position will be a value indicating the probability or confidence that
an edge exists at that position. Every edge-position has two end-points
at which that edge could continue, and every end-point has three other
edge-positions incident upon it. Each edge end-point will be classified

as one of four "vertex-classes" according to the strengths of the incident
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edges. The vertex classes of the end-points of the edge-position under

examination will then determine how the edge-strength is to be updated.

I11.4.3 Cases for Updating Edges

An iterative procedure for updating the probabilities is described
below. We will denote the configuration of continuing edges at an
_end-point by an inﬁeger n in the range 0 to 3, representing the number
of such edges in the pattern. A configuration of n edges at a vertex
of edgg e will béfconsidered equivalent no matter which of the three
possible edge positions to that side of e that they take. These four
equivalencg classes of continuing edge patterns are depicted in Figure 5.

Now it will be remembered that few edges are present §r absent with
any certainty. Therefore the usual case is that each equivalence class
has a probability of being true which is a function of the probabilities
of the individual edges. The determination of which classes, or vertex
~ types are présent, computed as a function of the probabilities of the

three edges to either side is now discussed.

III.4.4 Computation of Neighborhood Patterns

We would like to classify the configuration of edges to each side
of e.as one of the four vertex types of Figure 4a-d. Consider one end-
point, say the left one, in Figure 4e. We will assume that the numerical
values associated with edges are in the range 0-1, representing probabil-
ities of the presence of an edge.

Since we are treating perpendicular continuation as equivalent to
straight-line continuation (i.e., a and ¢ have exactly the same effect
on e as does b), we can assume without loss of generality that

azb =2c.
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Figure 4. Notatlon. 4a. Edge position with no odge. 4b. Edge position with
edge. 4c. Edge to ba updated. 4d. Edge of unknown strength. 4e . Conflguration

of edges around central edge e.
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Assuming independence of the edges (unfortunately, oftemn a bad

assumption), a simple calculation would give for vertex types 0-3:

Pr(type 0) = (1-a)(1-b)(1-c)
Pr(type 1) = a(l-b)(1l-c)
Pr(type 2) = ab(l-c)

Pr(type 3) = abc.
The case with the highest probability is then chosen as being the "state"
of the left side of edge e.

However, there are cases where, for example, b and c are very

low and a is considerably larger than them, but perhaps not close to
1.. In such situations we would like a strong indication of a type 1
vertex (see Figure 6a). The remedy would be as follows: instead of
subtracting a, b, and ¢ from 1 to form the no-edge probabilities, we
can subtract frﬁm m, where m = max(a,b,c) = a in this case. m thus
represents at a very local level the probability of a high-confidence

edge. Thus we have

Pr(0) = (m-a) (m-b) (m~c)
Pr(1l) = a(m-b) (m-c)
Pr(2) = ab(m-c)

Pr(3) = abec.

There is one difficulty with this formulation. It could occur
that a is much larger than b or c, but also be very close to zero (see
Figure 6b); our formula would calculate a larger value for Pr(l) than
Pr(0) when type O should actually be selected. This can be easily fixed
by anchoring m to some minimum value q. We need a lower bound for m
because there is always a chance that a stronger edge could be present.

This will guarantee type O to be the most probable vertex type when
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so clear IT e s weak.



17

all incident edges have very low strengths. Thus the final definition

¢

of m is

m = max(a,b,c,q) and

Pr(0) = (m~a) (m~b) (m-c)
Pr(1) = a(m~b) (m-c)
Pr(2) = ab(m-c)

Pr(3) = abc.

Siﬁce we will select vertex type i, where Pr(i) = m?x[Pr(j)],
we only need to know the relative sizes of the Pr(i), so we do not need
to normalize these probabilities. q can be calculated as a function of
edges in some'neighborhood of e in the image. A suitable such function
might be u-o0, where p is the average edge strength and ¢ its standard
deviation. We found that a constant value for q of about .1 performed

very well over several images.

I1T1.4.5 Calculation of Direction of Update

The following notation is used to depict the neighborhood characteris-
tics (or state) of an edge: the symbols i-j denote that configuration i
is at one vertex of central edge e, and j is at the other. Obviously,
i-j = j=i, so we need only consider the ten cases of i-j where i< j,
shown‘in Figure 7. |

Now in states 0-0, 0-2, and 0-3 one can quite confidently say that
there is no good support for e, and in 1-1, 1-2, and 1-3 one can quite
confidently say that there is. However, if e is in state 0-2, for example,
it is conceivable that the situation is really as in Figure 8. In such
a case, the current strength of e itself may be a determining factor

for the case that b and e should be grown in to complete the line.
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Figure 7. Representative combinations of vertex-types. This figure depicts
all possible cases, subject to symmetry and the equivalences noted in the text.
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Two points may now be made. First, in some of the above cases it
is clear how edge e should be updated. Therefore, the updating process
should explicitly increment or decrement the edge. Secondly, as informa-
tion may need to organize and propagate for some period of time over some
distance in the image, updating increments (decrements) should not drive
the probabilities to one (zero) too quickly. Rather, the increase (de-
crease) should be some small amount on each iteration. In this manner:
the influence of regions which are initially locally comsistent will
spread into "less confident" regions, much as "islands of reliability"
played a part in the Hearsay speech analysis system [4].

So in cases 1-1, 1-2, and 1-3 we will let e increase (see Figure 9a);
and in cases 0-0, 0-2, and 0-3 we will let e decrease (see Figure 9b).

In all other cases the context is not very clear. Leaving aside case

0-1 for the moment, we see that in none of the cases 2-2, 2-3, 3-3 (see
Figure 9c¢) is the presence OT absence of e critical for the continuation
of a neighboring edge since they have alternative directions for continua-
tion. It will not introduce or eliminate "oracks" -- edges terminating

at an indeterminate point. Whether e should exist or not depends largely
upon its contrast strength, as well as continuity properties on either
border, and little else, at least until more globalviewsand higher level
knowledge is available.

Case 0-1 is really the only problem. The neighborhood on one side
strongly supports e, yet the other suggests that e should be absent. As
no sensible decision can be made, no action is taken here (or in cases
2-2, 2-3, and 3-3). This is a very important decision: it implies that

in the updating process, the 0-1 case remaining constant will prevent a



20

-an e

=3

8-1

[ N—N —— ——— ——— -
1-t 8-8 l‘z-zl
. 5 |
L N — —— .
i -2 :0-2 |2_3I
| o | I |
-;l:= — ---;=l— -l=l—
'l-sl 'a-s 3-3
INCREMENT DECREMENT UNCERTAIN
Sa b 8ec
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line from growing into noise or from being eaten away at its terminating

point.

I11.4.6 Performing the Update

The operation of the system in updating an edge may now be described.
Let Pet be the probability or confidence (in the range 0-1) of edge e

at time t. Then the upating formula depends upon the situation as follows.

Increment case: Pet+l = Min(1, Pep+k)
Decrement case: P el Max (0, Pet-k)
Uncertain case: Pet+l = Pet

where k is a constant. A large k gives fast convergence, but does not

permit information to propagate very far before the probabilities of

edges converge to 0 or 1. For small k the opposite is true. By experimenta-
tion on several images, values in thekrange .15 to .20 were found to

be most suitable. Typical results of using this relaxation process

are given in Figure 10.

IV. Grouping
IV.1 BIND (Step 3a)

The next stage is to deciée which neighboring edges link up to form
extended line segments. It is clear that those points in the current
representation which have 1, 3, or 4 edges entering them, i.e., vertices
of degree 1, 3, or 4, are natural termination points for these line
segments (see Figure 11). Breaking boundaries in these places will
tend to form segments which lie between only two regioms. This is a

highly desirable effect, since there will then be less variation of
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Figure 18b. Results after S iterations of relaxation opplied to Figure 10a.
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Figure 18c. Differentiated version of Figure 3b. Edge strengths have been
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Figure 11. Three kinds of vertices. (a) Order-1. (b) Order-3. (c) Order-4.
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properties (such as intensity) on either side of the segments. This
was a major design consideration in the RSE representation of low-level
output in the VISIONS system [2].

The first stage of the binding process, then, is to mark all
vertices which terminate segments as in the configurations in Figure 1ll.
Following this computation, it is straightforward to track all segments

between vertices and assign a unique label (line-number) to each boundary

segment.

1v.2 FEATURE EXTRACTION (Step 3b)

For each unique line-segment a set of properties can be established,
some requiring recourse to the original intensity image, or at least,
the intensity image that was differentiated. Typical properties to be
associated with the segment label are: |

(1) coordinates of end-points;

(2) N-length (defined as the number of edges that comprise
the line);

(3) E-length (defined as the Euclidean distance between the
end-points);

(4) frequency with which the edges that comprise the line change
direction;

(5) mean and variance of contrast across the line, computed
along its length;

(6) mean and variance of difference between neighboring points
on either side of the boundary computed along its length.

Properties 2 and 5 can be used to give a measure of confidence
that the extracted segment represents a meaningful unit of a visible
boundary. Property 6 gives an jndication of the homogeneity of a thin
peripheral strip of the regions that the line bounds. Properties 1,
2, 3, and 4 can be used to compute a measure of the straightnessof the

line. These properties are important for later use in the interpretation
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phases of processing.

V. Postprocessing

V.l TRIML

Most unwanted line segments can be eliminated on the basis of low
confidence (see V.2), but it turns out that certain kinds of low-confidence
edges result as a consequence of the idiosyncracies of the particular
relaxation procedure employed. In particular, spurious edges are some-
times formed because multiple edges on a gradient are mistakenly believed
to be distinct boundaries, and any noise points remaining despite the
earlier preprocessing stages get bounded by "bubbles'" (see below);
these unwanted edges are best removed by a distinct process. Since they
can be detected by their '"topological" nature, they can be removed before
the confidence generation process in V.2. This improves the latter
procedure, as is explained in that section.

TRIM1 detects two kinds of unwanted edges: short e&ge-segments
with at least one order-one vertex —— called "spurs', and some or all
of the edges surrounding one-pixel regions -- called ''bubbles'". For
example, all edges marked with a cross in Figure 12 will be removed.

Results of applying this process are shown in Figure 13,

V.2 CONFIDENCE GENERATION

The confidence associated with a line segment will be based upon a
measure of how dissimilar the points in the regions on either side of the
line are to each other. While each line segment has been generated from

edges which in turn were formed on the basis of local discontinuities,
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Figure 14, BD should be eliminated as a |ow-conf 1dence edga. AB and AC should
be merged to form AC which, being longer, will be more confident than AB or BC.
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13a

Figure 13. Postprocessing. In Figure 13a the short edges ond most of the

smallest (1-pixel) regions have been removed from the data in Figure 18b.



Figure 13b. Postprocessing applied to the data in Figure 10d.
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thg line confidence will reflect the global difference between the regions
in the neighborho;d of the line.

For any line segment L we consider sets of pixels Sl and S2 on either
side of L. We now test the hypothesis Hl that the points in S1 and 82
belong to different regions, against HO that points in Sl and S2 belong
to the same reéion. This statistical test is an extension of Yakimovsky
[10], but the manner in which it is employed differs in an important
respect. Yakimovsky used the test to form the edges which comprise
his boundaries. For each edge calculation, a predetermined neighborhood
was used for selecting the points in Sl and 82. Each edge was proceésed
independently of each other, so the sets Sl and S2 taken each time did
not necessarily accurately reflect the region structure formed by the
boundary as a whole. In our case, on the other hand, the entire boundary
is available for processing, and this allows a better determination of
the pixels which are to contribute to the analysis.

Let S0 be S1 U SZ' Under hypothesis Ho, S0 is one region and will
be modelled by the normal distribution N(uo,co); under hypothesis H,,
51 and 82 can be modelled by N(ul,ol) and N(uz,cz) respectively. A

maximum likelihood analysis leads to

2."0
(047)
P(L) = n n
(0,2 o,
1 2
as a measure of the confidence of L, where IS.| =n,, 1i=0,1,2,
i i
and ny = my + n, [10].
Let Si = {(Xij’Yij’Iij)’ J=1...ni}, i =0,1,2, where Iij is the

intensity of pixel (xij’Yij) in set Si’ The model described above assumes
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the Iij are normally distributed about mean Hes independent of their
location in the image, i.e., it is supposed that the readings Iij are

governed by the probability distributions

2
l _ (Ii._ui)
e 2
Y2mo Zoi

ij)' We can improve the test procedure by using

a more sophisticated statistical model of the regions on either side of

independently of'(Xij,Y

the putative segment L.
Rather than assume that there are no spatial dependencies in the
gaussian distribution of the Iij in each region, we will improve the model

by assuming that W, can vary linearly across the region. This leads

i
us to the concept of a dynamic mean u*, which is a function of the

spatial coordinates, and represents the expected value of the intensity

at a given point in the region. Our model should be better than the simpler
one since object brightnesses in real world images are not usually constant
but vary across the surfaces concerned. We will suppose that at each

point (xij’Yij) the intensity is normally distributed about the dynamic

mean ui*(j) =u + aixij + biYij' This assumes that there is a constant
gradient of intensity (strength a, in the X-direction, b, in the Y-direction)
across the region, which will be fairly realistic, at least over small

parts of the region. To ensure the accuracy of the analysis, then,

we see that the sets S1 and S2 should be composed of pixels lying within

a short distance of L.

The values of a, and bi for i = 0,1,2 will be determined by a

least squares fit. In those cases where there are no intensity gradients,
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a; and bi will evaluate to zero, showing that our approach covers all

those cases where the simpler analysis would have been sufficient.

.)} we perform the following

For each of the sets Si = {(Xij’Yij’IiJ

computations:

1) Determine constants a bi’ uy which minimize

i’

2
g [1ij - (g + aixij + biYij)]
i

*
2) Determine the variances (ci )Z‘by

(1;mn, G

n

(0,9)% =

jes, i

1

The measure of the confidence of L is now given by

2n v

*70
CA
2n

Yo,

P(L) =

* 2n2

(0,
or, alternatively, but preserving the ordering of the confidences of the

various line segments,

N * 1 * *
P@)—n&n@' ogo; - 9 *

0 - n

1 nzlogc

V.3 TRIM2 -~ Low Confidence Line Removal ’

Line Segments'can be removed on the basis of their relative confidence
ratings by removing lines with confidences less than some.threshold T.
This process should be performed conservatively (with a low threshold)
for the following reason. Consider Figure 14 and.suppose that AB and BC
have  average confidences, while that of BD is relatively low. Any
reasonable threshoid should get rid of BD, but if it is set too high

there is a danéer that either AB or BC could be removed as well.
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This is to be avoided because as soon as BD is gone, ABC ﬁigﬁt become
a single line segment with a much higher~confidence~than that of either
AB or BC alone.

The process of removing weak and uncertain line segments may be
performed iteratively. Instead of immediately adjusting threshold T
to what is thought to be an optimal level, it can first be set to a lower
level T'. Lines of confidence < T' will be removed, stage III grouping
reapplied, T' increased somewhat and the whole process repeated until
the desired level is reached. In fact, regrouping could occur after

each line segment is removed.

VI. A Heuristic Confidence Measure

In order to determine if there was any way of speeding up the confidence
analysis presented in V.2 we examined the relative effectiveness of a
simple heuristic confidence measure.
Let L be the length of a line segment, and L* the length of what
one would call a "long" line -- say & the width of the image. Let C, be
the average contrast across the line and C* the maximum average contrast
one would expect to see in an image -- say 3/4 of the difference between

the extremes of the intensity scale. Then define

i

1., = normalized length

* %
i Mln(Li,L )/L

A

Ci = normalized contrast

* %
Our heuristic confidence measure for the line is given by
f = Li + Ci - Lici°
This value is 1 if either Li or Ci alone equal 1, zero if both are zero,

and is monotone increasing in Li and Ci for all other values.
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In Figures 15-18 we cdmpare this confidence measure with that
. described in.V.2. The pictufeg display all those line segments with
confidenée gre;ter than a suigably scaled threshold value. It will
be seen that both methods do equally well with regards assigning high
confidence measures to long high-contrast lines, such as the sides
of windows or houses, and low-confidence values to many of the boundaries
of texture elements in the trees and shrubbery.

This does not mean that the "sophisticated" analysis of V.2 is
no good. On the contrary, it sets a standard with which our heuristic
measure may be compared. The heuristic shows itself to produce very
acceptable results, and if it proves to be generally reliable, it is

recommended over the other method due to computational efficiency.
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Figure 15. Edge images which are used to compare the two confidence measures
described in the text. In Figures 16 - 18 these images are shown thresholded
ot different levels. Due to the different scales produced by the two measures,

on exact comparison Is Impossible, but sequences of comparable threshold values
were chosen for the two algorithms.



Figure 18. Successive thresholdings of the edge Image In Figure {Sa. Figures
16a = 18d show |Ine-segments with statistical confidence measures under
successively decreasing thresholds, Flgures 10e -~ 1th show the same with
heuristic confidence measures.
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{7a {7e

I7b 17f

Figure 17. Successive thresholdings of the edge Image In Figure 15b. Figures
{7a - 17d show |ine-segments with stotistical confidence measures under
successively decreasing thresholds. Figures 17e - 17 show the same with
heuristic confidence measures.
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Figure 18. Successive thresholdings of the adge Image In Figure 1Sc. Figures
18a - 18d show |ine-segments with statistical confidence measures under
successively decreasing thresholds. Flgures 18e - 1&h show the same with

heur istic confidence measures.
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