R

THEORETICAL CONSIDERATIONS IN TESTING PROGRAMS
BY DEMONSTRATING CONSISTENCY WITH SPECIFICATIONS

Debra J. Richardson

COINS Technical Report 78-21
December 1978

Department of Computer and Information Science
‘University of Massachusetts, Amherst
Amherst, Massachusetts 01003

This work was supported by the National Science Foundation under grant
NSFMCS 77-02101 and the U. S. Air Force under grant # AFOSR 77-3287.

Abstract

Program correctness is described in terms of the consistency between a
program and a specification for the intended function of the ﬁrogram. Two
consistency properties - equivalence and isomorphism - are defined which dif-
fer in the degree of conformity of the program to its functional specification.
Given a correct specification for the program's intended function, the program
is correct if and only if it is equivalent to the specificatiom. When a strict
conformity to the functional specification is presupposed, isomorphism must
prevail. The program testing process can, therefore, be performed by deter-
mining the consistency between a program and a correct functional specification.
Methods for the comparison of certain classes of programs and functional

specificaitons are proposed, and examples of their utility are given.

Introduction

The ultimate goal of program testing is the determination of whether a
program is correct. In the absence of any tools to aid this process, the
demonstration of program correctness is mostly intuitive, based solely on the
obtainment of correct results for the pProgram when tested for a set of input
data that the tester considers representative of ‘the program domain. This
process is capable of detecting errors in a program, but not in general of
establishing the absence of errors (exhaustive testing is an exception to
this disclaimer). Vafious alternatives to the ad hoc efforts of the human

tester have been proposed.

Proofs of correctness employ figorous mathematical proofs in an attempt
to verify the consistency between a program and a specification describing the
intended function of the program. 1If a complete correct proof (including proof
of termination) is acheived, the program has been shown to be correct. This
process is, however, extremely complex, tedious, and expensive. Experience
has shown that the proofs generated are not always accurate, and as such, are
not usually worth the tremendous cost. In addition, proofs of correctness are
limited to conclusions about behavior in a postulated environment, whereas
testing has the advantage of providing well-founded information about a program's

behavior in its actual environment.

With this in mind, several attempts have been made to aid the human tester
in the selection of test data which éllow one to attach a meaningful degree of
reliability to a program as a result of correct test runs. 1In the absence of the
expedient ability to verify that a program is absolutely correct, this meaning-

ful degree of reliability is a practical goal for program testing.

This paper examines testing programs by demonstrating consistency with
specifications as an attempt to attach a meaningful degree of reliability to
programs which undefgo such a testing procedure. A formal notation for programs,
functions, and specifications is introduced and used to concisely represent
program correctness and consistency with specifications. Program correctness is
defined in terms of the consistency between a program and a correct specifica-
tion for the intended function of the program. A program and a functional
specification are equivalent if they provide the same output values for all input
data. A program is isomorphic to a specification if there is a one-to-one

correspondence between the two which preserves their symbolic equality.

'

Methods for the comparison of certain classes of programs and specifications
are presented; these comparison procedures may be used in an attempt to

determine the level of consistency which holds. Program errors are discussed

with respect to thefdiscrepancies between a program and a functional specifi-

cation. Symbolic execution and test data generation systems are considered

as methods of testing. Some possibilities of using decision tables in the

testing of programs .are examined. Also, an example of the determination of

equivalence .and isomorphism is provided. 1In conclusion, some areas of future
research are considered.

Programs, Functions, and Symbolic Execution

In this section, a formal notation for programs and functions is intro-
duced. This notation will later be generalized to represent specifications
and will be used in the sections which follow to define program correctness
and consistency between a program and specifications. 1In addition, the method

of symbolic execution is described using this notation.

Let P be a program which accepts M input variables (xl,xz,...,xM) and
produces N output variables (zl,zz,...,zN); To simplify the analysis, it is
assumed throughout this paper that the input variables are distinct from the
output variables. Let X denote the domain of the program P, The set X is a
cross product, X = X, X X_ X ... X XM’ where each XI is the domain for the

1 2

input variable xI. An element of X is a vector d with a specific value dI for
each of the M input variables X1s d = (dl’dz""’dM)’ and corresponds to a

single point in the M-dimensional input space X. Let Z denote the codomain
of the program P. ‘Likewise, the set Z is a cross product, Z = Zl X 22 XeooX ZN’
where each ZJ is the codomain for the output variable zy. Let P(d) denote the
values of the N output variables obtained from the execution of P on d. Then P(d)
is an element of Z and is a vector with specific valués for each of the N output

variables. P(d) corresponds to a single point in the N-dimensional output space 7.

The program P computes some funetion F which has the same domain and codomain
as does P; hence F is a mapping from X to 2, F: X + 2. 1In general, F is composed
of a set of partial functions which are defined over disjoint subsets of the

domain X. Suppose F = { Fl’ FZ""’ Fi}, 1l £ T < o, where each F_ is a partial

G
F
function defined over Dg and undefined elsewhere in X. This subdomain DG is

called the domain of definition of FG' The funetion domain DF, or domain of

definition of F, is the union of all such subdomains - that is

DF = Df‘U Dg U...U Dg. Each of the partial functions FG produces an N-tuple in the

codomain Z, FG may thus be represented as a vector of N component functions,

Fo = (Egpofeys-

F - -
z; Hence, for any d ¢ DG’ F@d) = FG(d) = (fGl(d),fGZ(d),...,fGN(d)) € Z and

fGJ(d) € Z

..,fGN), where the Jth component produces the Jth output variable,

J.

A program P has a construct similar to the partial functions of the
function F which P computes. Rather than performing the same computation
on all elements of the input space, P may compute different functions along
different program paths, which are executed for disjoint subsets of the domain
X. Suppose P specifies a set of program paths, { Pl’PZ""’PU}’ 1<U <,

where each PH is executed for a subset D of the program domain X. This sub-
domain D is called the path domain of P The program domain Dp, or the
domain of definition of P, is the union of the path domains - that is,

P P

D Dl U D U ... U DU' Each program path P performs a computation which

H
produces values for the N output variables. Let C denote the path computa-

tion which can be represented as a vector of N path functions, C

(le,sz,.. . pHN) where the Jth component computes the Jth output variable

ZJ.

Symbolic execution may be used to generate representations for the path

domains and path functions of a program. In order to describe these represen-

tations and how they are generated, a few definitions must be presented.

A program can be represented by a directed graph which describes the
possible flow of control through the program (this representation is typical
in data flow analysis algorithms). The nodes in the graph {nl,nz,...,nw}
represent basic blocks (linear sequences of instructions having one entry
point and one exit point), while the edges {(ni,nj), nk,n),...} represent
possible transfers out of a given basic block. Each edge is specified by an
ordered pair (ni,nj) of nodes, which indicates that a directed line (transfer
of control) exists from node n, to node nj. Associated with each transfer
of control are conditions under which sueh a transfer occurs. Let bp[ni,nj]
denote the branch predicate which governs traversal of the edge (ni,nj). For
the purposes of this paper, the control flow graph of a program is such a
directed graph which has a single entry point, the start node n_, and a single
exit point, the final node nf. Both the start node and the final node are
null nodes added to the graph to accomplish this single-entry, single exit

form without any loss of generality.

A path in the control flow graph is a sequence of basic blocks, (n

where there exists a possible transfer of control from nij to nij+1 for all

nodes nij in the path. A partial program path qu is a path which begins with

the start node - that is, qu = (nS’nkl’nkZ""’nkq)' Hence for any partial

i > = =
program path qu, with q =2 1, qu. (qu—l’nkq) and TkO (ns). A program path
PH is a path which begins with the start node and ends with the final node -
that is PH = (nS,nHl,nHz,...,nHr,nf). There is no guarantee that a sequence of
basic blocks representing a path is executable, some paths may be infeasible
due to contradictory conditions governing the transfers of control along the
path. The control flow graph is a representation of all possible paths through

the corresponding program.

i0°%41°° "

Symbolic execution algorithms utilize the control flow graph of a
program to propogate data descriptions along program paths. A description
of the program state is maintained at every point in the symbolic execution
of a path. The state of the program includes a description of the path
followed to reach the present point in the execution and a description of
the domain of data elements which will execute this path, as well as the
values obtained for all program variables following the execution of this
partial program path. Given a partial program path, qu = (ns’nkl’nkZ""’nkq)’
nkq represents the present execution point. Let VAL [qu] represent the
symbolic values of all program variables after execution of the partial
program path qu. VAL[qu] is a vector containing an element for each of the
M input variables Xps each of the L intermediate variables yK, and each of N
output variables z;. Hence, VAL[T] (s(x), ..,s(xM) s(y1 . ,s(yL)
s(z),...,s(z)), where s(v) denotes the symbollc value of the program variable
in terms of symbollc names assigned to represent the input values. Let
PC[qu] represent the path condition which is the conjunct of the evaluated
branch predicates which enable control to follow this particular partial
program path PCLqu] = s(bp[ns,nkl](TkO)) A s(bp[nkl’nkZ](Tkl)) A Loo A
3(bp[nk -1 nk](Tk 1)), alternatively, PC[qu] = PC[qu_ll A s(bp[nkq_l,nkq]
()), where s(bp[nk ,nk +1

predicate bp[nkj’nkj+l] when evaluated over the values of the program variables

](Tk‘)) denotes the symbolic value of the branch
J

preceding traversal of the corresponding edge - that is, over VAL[Tkj].
Finally, let STATE[qu] = (qu, VAL[qu],.PC[qu]) represent the program state
following symbolic execution of the partial program path qu.
The symbolic execution of any element of the control flow graph, a basic
block or a transfer of control, modifies the program state. Initially, the

program state is defined as:

Tko = (ns);

VAL[Tko] = (dl,dz"“’ dM’ AnoaA);
PCIT] = true;

STATE[TkO] = (TRO’ VAL[TkO] PC[Tko]).

The symbolic value of an input variable, s(xI), is the symbolic name, dI’
which is assigned to represent the input value X For the purposes of this
paper, all input will be assumed to occur in the start node n_ (this restriction
may be dropped without major modification, but the discussion is more straight-
forward under this assumption). All other variables have the undefined value

A at the start node. Throughout symbolic execution, all representations of

variable and branch predicate values are in terms of the initial symbolic

names of the input values. This is accomplished by substituting the

current symbolic value of a variable (input, intermediate, or output) into

the expressions wherever that variable is referenced. Once the initial program
state has been assigned, symbolic execution can proceed in a manner similar

to that of normal execution.

When executing a basic block, say node n the program state will be

.
updated in the VAL component only. The vectoSJof symbolic values of the
prograﬁ variables will be modified in each component which corresponds to a
variable which is assigned a new value within the basic block. For instance,
if the assignment statement zy « X * Yg occurs, then the zg
VAL vector will change from its former value to the algebraic expression

*
formed by s(xI) s(yK).

component of the

On the other hand, when a transfer of control, say edge (nkj’nk1+l)’ is
encountered during symbolic execution, the PC component of the progrém state
is updated. The branch predicate governing traversal of this edge will be

evaluated and the path condition,PC, will be augmented by this symbolic
value - that is, PC[Tkj+1] = PC[Tkj] A S(bp[nkj’nkj+l](Tkj))'

Following symbolic execution of a complete program path, the symbolic
representation of the program state defines the path functions and path

domain of that particular path. Given a complete program path P

0 the program

state éfter execution of the final node is represented as:
Pu = (gomgysmyps e eomy,00p)s
VAL[PH] = (s(xl),...,s(xM),s(yl),...,s(yL),s(zl),...,s(zN));
PC[PH] = s(bp[ns,nHl](THO)) A S(bp[nﬁl’nHZ](Tﬂl)) Aol A s(bp[nHr,nf](THr));
STATE[PH] = (PH’ VAL[PH], PC[PH]).

. . P _ .
The path computation and the path functions, CH = (le’pHZ"'°’pHN)’ which
compute the output variables(zl,zz,...,zN) are provided by Puy = s(zJ). Since
all symbolic representations are in terms of the symbolic names representing the

input values; is a symbolic computational expression for the output

p
variablezJ in terﬁi of the input values (dl,dz,...,dM). The path condition
PC[PH] provides a system of constraints on the program's input variables which
defines the path domain D;. The subset of elements of the program domain

which will cause execution of this program path is defined by DE ={zxeX

such that PC[PH] is true}l. The path computation and path domain can be

generated for any program path which is symbolically executed. A method for

using symbolic execution to demonstrate the cbnsisténcy between a program and

its specifications will be introduced shortly.

Program Correctness and Consistency with Specifications

A program is correct if it computes the intended output for all possible

inputs; otherwise it contains an error.

Definition - The program P for computing the function F over
domain X is correct if and only if for all = € X, P(x) = F(x).

P contains an error if there exists d € X such that P(d) # F(d).

In order to determine the correctness of a program, there must be some
mechanism by which the intended output can be recognized. A specification
deécribing the function that the program is to compute can be used to provide
this mechanism. In addition to correct input-output relationships, a functional
specification may furnish more extensive properties of the function for

comparison with the program.

Program correctness can be related to the consistency between a program
and a specification describing the program's intended function. There are
basically two techniques for functional specifications - imput/output assertions
and operational specifications (11). 1In either case, the function is formally
specified by relationships between the inputs and outputs. The technique of
assertions has been used extensively in the proof of correctness approach to
program verification (7). Assertions are assigned to various points in the
program, including initial assertions on the input and final assertions concern-
ing the output; rigorous mathematical proofs are employed to show that these
assertions are true whenever control reaches the associated points. 1In program
testing, the operational specifications appear to be more useful. An operational
specification differs from input/output assertions because the transformation
on the input variables is described explicitly by giving actions which compute
the intended output of the function. Operational specifications take on
several forms - program design, decision tables, input domains with associated

output computations, correct programs,

Abstractly, suppose R is a specification for the function F. In order to
describe the function F, the specification R must have the same vector of input
variables, x = (xl,xz,...,xM), and the same vector of output variables,

z = (z

""’ZN)'- Given a data element d = (dl,d ..,dM), the specification

Z .
1’72 2’
can be applied to obtain R(d), which provides the values of the output variables.

Definition - The specification R for the function F over domain
X is correct if and only if for all x € X, R(x) = F(x).

Given a correct specification for a function, a program for computing the
function can be compared with the specification for consistency. If the speci-
fication is correct and the program is consistent with the specification, then

the program is correct. A program is incorrect if it is inconsistent with

a correct specification.

Definition - If R is a correct specification for a function F
over domain X, the program P for computing F over X is correct
if and only if for all x € X, P(x) = R(x). P contains an error
if there exists d € X such that P(d) # R(d).

The correctness of a program can,therefore,be discussed in terms of its
consistency with a specification that is assumed to correctly describe the
intended function. In order to discuss consistency more completely, a more

formal representation of a functional specification is necessary.

. A functional specification R consists of a set of rules that are quite
similar to the partial functions of F and the program paths of P, which were
previously defined. 1In fact, the errors in a program will be categorized in
terms of the discrepancies between the paths in a program and the rules in a
functional specification for the program. A rule is actually an individual
relation between a subset of the domain and the output for this set of inputs.
Suppose the specification R designates a set of rules, {Rl,Rz,...,RV},

1 £V < o, The rule domain Dg for a particular rule RG is the subset of the
domain X for which the rule is applicable. The specification domain R is
Y UDyuU...uDy. The rule

2
domains must be disjoint and the specification domain must be the same as the

the union of the rule domains - that is,DR =D

function domain. This ensures that a unique rule RG

data elements for which the function F is defined. This requirement makes

is applicable for all

‘the functional specification R unambiguous and is necessary for describing
functions which are by definition unambiguous (recall the definition of a
function - a function f from a set A to a set B is a rule which assigns to
each element of A a unique element of B). The rule computation Cg is a
description of the function mapping specified by the rule RG.
If the specification is of the input/output assertion type, then the
rule computation is a system of constraints defining the range of the output

variables. If an operational specification is being analyzed, the rule

computation is a series of statements of the function computed by the sequence

10

of actions applied by the rule. In either case, the rule computation can be
represented as a vect) = ces
P vector of N rule funetions, Cg (rGl’rGZ’ ’rGN)’ where

the Jth component, which is either constraints or actions, provides the output of z_.
The similarity of the characteristics associated with program paths and

specification rules allows the comparison of a path and a rule for consistency.

The consistency between a program and a specification may be discussed in terms

of the consistency relationships between the paths in the program and the rules

in the specification. With this comparison in mind, there are three consistency

properties between a program and a spcification - compatibility, equivalence,

and isomorphism - which are useful.

The most basic form of consistency is the compatibility of a program and
a functional specification. Assuming that all logical inputs and outputs are
considered - that is, there are no hidden variables - in both the program and
the specification, this property must hold in order for any comparison of a

program and a specification to be meaningful.

Definition - A program P is compatible with a specification

R if P and R have the same vector of input variables

x = (xl’x2""’xM)’ the same vector of output variables

z = (zl,zz,...,zN), and the same domain X = X1 X X2 X ... X XM,

where XI is the domain of the input variable Xp-
The compatibility property is a reasonable restriction on the class of

related programs and specifications for further comparison. It requires that

information represented by a single input or output variable in one entity

(prograﬁ.or specification) be represented by a single variable in a comparable

entity - this eliminates packing or mapping several variables into one variable

in only one of the units for comparison.

The second property of consistency is the equivalence of a program and a
functional specification. The class for which this property can be applied is
the class of compatible programs and specifications. If the specification R

is correct, the program P is correct if and only if this property holds.

Definition - A program P is equivalent to a specification R if
P is compatible with R and for all x € X, P(x) = R(x).

This property can be stated in terms of a relationship between the paths

P
in a program and the rules in a specification. Let d € X and suppose that d € DH

11

in the program P and d € Dg in the specification R - that is, d causes

execution of the path PH and the rule R, is applicable to d. Then P(d) = R(d)

if and only if C;(d) = Cg(d). Since a data element d is a member of one and only
one of the U path domains and one and only one of the V rule domains, the domain X
may be represented as the union of the intersections of all path domains and all
rule domains (this assumes that the program domain DP and the specification domain
DR are both equal to the domain X). Let D(PH,RG) = DE n Dg denote the intersection
of a path domain and a rule domain. Then, X = u D(PH,RG) over 1 < H < U and
1<G<V, A path computation C; and a rule computation Cg are equivalent

over the intersection of their domains D(PH,RG), if each of the path functions
computes the same value as the corresponding rule function r __ for each

Pus GJ

element of that domain. Thus Cg Cg if and only if for all x € D(PH,RG),

pHJ(x)'= rGJ(x), 1 £ J < N. The equivalence of a program and a specification

can be redefined with these expanded definitions of domains and computationms.

Definition - A program P is equivalent to a specification R if
P is compatible with R and for all D(P,,R.) = Df Dy, LSHSU
P _ R
< < =
and 1 £ G <V, CH = CG over D(PH,RG).

Equivalence is certainly the most important consistency relation between
a program and a functional specification, since it holds whenever the program
is corréct (provided the specification is correct). Equivalence is sometimes,
however, very difficult (if not impossible) to determine. Isomorphism is a
restricted concept of equivalence, and as such an easier property to determine.
In addition, it is often helpful to know, not only whether or not a program and
a specification yield the same output for all inputs, but whether or not the

program and the specification produce this value in the same manner.

This stricter form of consistency is the isomorphism of a program and a
functional specification. This property is applicable to a more restricted
class of programs and functiénal specifications. If the specification R is
correct, this property is sufficient, but not necessary, for the program P

to be correct.

Definition - A program P is isomorphic to a specification R if
P is compatible with R and there exists a total bijective (one-to-one

and onto) mapping I: R -+ P (from the rules in the specification

R to the paths in the program P), such that if I(RK) = PK’ then
the rule RK is "identical to" the path P_ - that is, PR is
P K / K
"identical to" DK and C§ is "identical to" Ci. The isomorphism

= R P = .
may be defined by I = {(.) such that I(R,) PK}

12

The property of isomorphism is contingent on the notion of "identical to", which
will vary depending on the form of the functional specification. The identical-
ness of the actions applied by the specification and the sequence of statements
executed by the program is legitimate only if the functional specification is

an operational specification. In this case, identicalness can be interpreted

as the symbolic equality of the afore-mentioned functions (which will be symbolic
representations of the output variables in terms of the input variables) and
domains (which will be represented as symbolic constraints on the input variables).
This symbolic equality gives evidence that the output was produced in similar
manners by both the program and the specification, and will be discussed more
formally by proposing a method for its determination. The bijective mapping
defines a one-to-one correspondence between the paths in the program and the

rules in the specification. This implies that the program has the same number

of paths as there are rules in the specification. A less restrictive mapping

from a specification to a program might be defined in which a specification rule

is mapped into a set of program paths which differ only in the number of iterations
of a loop. This would allow a specification to contain a recurrence relation

as a description of a loop. Cheatham (2) has suggested the use of recurrence

relations in loop analysis.

The distinction between equivalence and isomorphism as consistency
properties allows the attachment of differing requisites on the conformity
of a program to a specification. An isomorphism might be desirable when the
specification is a program design and the program is to be coded directly from
the specification. In many cases, however, this strict conformity is relaxable,
allowing the program merely to serve the purpose of realizing the function that
the specification describes. This might occur when the specification was designed
for simplicity and the program was implemented with efficiency in mind. In this

case, the property of equivalence, but not isomorphism, must prevail.

13

Comparison of Programs and Specifications

The definitions of the equivalence and isomorphism of a program and a
functional specification suggest methods for determining whether these consis-
tency properties prevail. The compatibility of a program and a functional
specification is easily determined (as such, this property will be assumed to
prevail and will not be considered further). A program and a functional speci-
fication can be checked for additional consistency by comparing the characteristics
of the program paths with those of the specification rules, the path domains
with the rule domains and the path computations with the rule computations. In
most cases, complete consistency (either equivalence or isomorphism) of a
program and a functional specification is decidable only if there are a finite
number of paths and rules. In general, a program (or specification) which contains
indefinitely-iterated loops will contain an effectively infinite number of paths.
In this case, when finiteness is not met, partial consistency of a subset of
the paths and rules may be considered. (in the indeterminate loop case, this
might be approached by choosing specific iterations of the loop for testing).
Another approach, which was mentioned earlier, involves the specification of
loops by recurrence relations which might then be compared with the correspond-
ing loops in the program. In the discussion that follows, however, the class
of programs and specifications considered is limited to those which satisfy the
finiteness requirement. In addition, the class of specifications is constrained
to those which provide explicitly-stated actions to be applied - that is, the

class of operational specificatioms.

Symbolic execution of a program path can be used to generate the path
condition - a system of constraints on the program's input values which
describes the path domain. A set of expressions describing the path computa-
tion - symbolic representations of the program's output variables in terms of
the input values - can also be constructed through this symbolic execution of
the path. Since the specifications being considered are operational in form,

a similar procedure can be used to construct representations of the rule domains
and rule computations of the specification. Then, if the paths in a test
program could be "paired up" with the rules in the operational specification,
the symbolic representations of the path domains and computations could be
compared with those of the rule domains and computations for either equivalence

or isomorphism. First, the concept of canonical forms for the representations

14

of the domains and computations must be considered.

A path or rule domain is represented by a set of constraints on the input
variables x, which defines the subset of the function domain for which the path
or rule is applicable. A path or rule domain is composed of those data elements
of the domain X which satisfy all of the constraints. The constraints defining

the path domain D result from the generation of the path condition PC[P 1.

The rule condltlon RC[R] defining the rule domain DG can be obtained from a
similar procedure and, therefore, both the path domain Dg and the rule domain

Dg may take on the same canonical form.

The canonical representation of a domain is a simplified conjunctive
normal form of constraints. The expressions within the constraints are in
some determined canonical form, the individual constraints are in conjunctive
normal form (CNF is a conjunct of disjuncts of literals), and the individual
constraints are conjoined together and ordered in some determined (but arbitrary)
fashion to form one condition defining the subdomain. 1In addition, the
conjunction may be simplified by deletion of any duplicate or redundant constraints
and substitution of any equalities into other constraints in which the expres-
sion occurs. The program verifier developed by Deutsch (6) has incorporated
these transformations. This simplification process may be as complex or as
simple as desired, as long as the resulting canonical form is well-defined.
The more extensive these transformations are, the more thorough and accurate

the comparison of a path domain and a rule domain can be.

A path or rule computation is represented by a vector of formulas for the
output variables. Each formula is a symbolic expression in terms of the input
variables x, and represents the computation of one of the N output variables z
Any path computation Cg is represented by the vector of path functions

s . . R
(le’PHZ""’pHN)’ where z Likewise, any rule computation CG is

_ J 7 Puy
represented by (rcl’rGZ""’rGN)’ where 2; = Tope

may be transformed into the same canonical form.

These computational formulas

The canonical representation of a path or rule computation is a set of
canonical functions. The transformation of the functions must be deterministic
and might very well be the same reduction process used for the expressions in
the constraints. If the functions are multivariate polynomials, this reduction
might be performed by SYMPLR, a system for SYmbolic Multivariate Polynomial

Linearization and Reduction (15). 1In the least, the transformation of the

15

expressions into canonical form must include combination of common terms and

expansion of operations to obtain simple terms.

With these canonical forms for the representations of path and rule domains
and computations, comparison of the path characteristics and rule characteristics
can be treated, in an attempt to determine the level of comsistency which holds.
The isomorphism of a program and an operational specification is easier to
determine than their equivalence, so a method for determining the existence

of isomorphism will be considered first.

A program is isomorphic to an operational specification if there is a one-
to-one correspondence between the paths in the program and the rules in the
specification such that the corresponding domains are identical and the corres-
ponding computations are identical. Identicalness, is an easily decidable
property when the representations have been transformed into a canonical form,

since identicalness has been defined as symbolic equality.

When the canonical representations for the domains and computations of a
program and of an operational specification are available, the question of
whether the program is isomorphic to the specification is determined by
attempting to "pair up" identical rules and paths. A rule and a path are
identical if the representations of their domains and the representations of
their computations match symbolically. A symbolic match is acheived by a term-
by-term comparison of each expression for identity. If either match cannot
be made, the isomorphism property does not hold. If the "pairing" is complete
and the corresponding domains and computations are identica;,then the program

and the specification are isomorphic.

The isomorphism property might be desired when a program is to conform as
closely as possible to an operational specification which has been provided. The
procedure above is capable of determining when a program does conform strictly
(in the manner described) to an operatiomal specification (provided the finite-
ness restriction holds). In many cases, however, this strict conformity is
relaxable, alowing the program to merely serve the purpose of realizing the func-
tion which the specification describes. In this case, the property of equivalence,

but not isomorphism, must prevail.

A program is equivaleht to an operational specification if for each non-
empty subset of the function domain formed by the intersection of a path domain

and a rule domain, the path computation is equivalent to the rule computation

16

over this intersection. The decidability of this property hinges on the deter-

mination of the equivalence of computations over a specific domain, which is not

always possible.

Attempting to decide whether a program and an operational specification are
equivalent starts with the canonical representations of the path domains and the
rule domains. The intersection of each path-rule domain pair must be constructed
by conjoining the two representations. If any intersection is empty, then the
path-rule pair may be discarded, since they are not mutually satisfiable - no
data element exists which causes execution of the path and for which the rule
is applicable. For any non-empty intersection, the corresponding path compu-
tation and rule computation must be compared for equivalence over the intersec-
tion. Two computations are equivalent over a subset of the function domain 1if
their symbolic difference has zero value over this domain. If the path compu-

tation and the rule computation are equivalent over each non-empty path-rule
domain intersection, then the program.and the specification are equivalent.

One of the difficulties in this procedure is involved in deciding whether
an intersection of a path domain and a rule domain is empty or non-empty,
which cannot in general be determined. If all the constraints are linear,
the domain may be checked for emptiness by attempting to find a solution using
linear programming techniques - if the system of constraints is infeasible, then
the conjunct of constraints defining the domain is unsatisfiable and the inter-
section is empty. In addition, deciding whether the path computation C is
equivalent to the rule computation Cﬁ over the intersection of the path domain
and the rule domain, D(PH,RG), is a hard problem. This decision amounts to
determining whether the symbolic differences (pHJ - Toph 1 £ J £ N have zero
value over D(P ,R) This decision can be made in certain situationms.

A stralght forward method for trying to determine whether the symbolic
difference of two functions is zero over the intersection of their domains
is that of solving the equation (pHJ - Ig) = 0 and then deciding whether the
domain D(P »R) is a subset of this set of solutions to the symbolic difference
equation. There are several mathematical packages which contain routines for
finding the zeroes of polynomials and systems of nonlinear equations, for
instance (16). Determining whether the intersection domain D(PH,RG) is
contained in the solution set of the symbolic difference equation (pHJ - rGJ) = 0
may be done by showing that the intersection of these two sets is equal to
D(PH,RG).

17

If the constraints in the intersection domain D(PH,RG), as well as the
symbolic difference (pHJ - rGJ)’ are linear, then linear programming techniques
can be used to show that the symbolic difference equation is zero over D(PH,RG).
This is done by determing whether (pHJ - rGJ) = 0 is valid over D(PH,RG).
Validity implies that for every data element x € D(PH,RG), (pHJ - rGJ) = 0.
If (pHJ - rGJ) # 0 has no solution in D(PH,RG) - this is the case when the
condition [((PHJ - rGJ) #0) A D(PH’RG)] is infeasible - then Pyg
to T,y Over the domain D(PH,RG). If it is found, however, that (pHJ - rGJ) =0

is equivalent

is not wvalid over D(PH,RG), linear programming techniques can be used to deter-
mine whether or not Puy = Taj is satisfiable over D(PH,RG). Satisfiability
implies that there exists a data element d ¢ D(PH,RG) such that Py = Tgy
If the condition [((pHJ - rGJ) =0) A D(PH,RG)] has a feasible solution, then
Puy = rGJ is true for some elements of D(PH,RG). When the symbolic difference
equation is completely unsatisfiable, a gross error has occurred and will be
easier to detect, whereas when it is merely invalid (satisfiable), it may be
more difficult to find the error (this will be discussed somewhat in a later

section).

Another situation in which attempts can be made at showing that Py and
roy are equivalent over the domain D(PH,RG) occurs when the intersection domain
is discrete. 1In this case, each data element x ¢ D(PH’RG) can be substituted
into the symbolic difference equation (pHJ - rGJ) = 0; any element for which
the value of this expression is not zero will not result with equal values

under the functions Pyj and r If for all data elements x ¢ D(PH,RG),

GJ®

GJ
is satisfiable if there exists a d ¢ D(PH,RG) such that

(pHJ - rGJ) = 0, then Py; = T is valid over D(PH,RG). Otherwise, the equality

of Pz and ey
(pHJ - rGJ) = 0; if no such data element exists, the symbolic difference

equation is unsatisfiable over the intersection domain.

Steps toward determining whether the computations are equivalent over the
intersection domain might also be gained by comparing the measure of the inter-
section domain D(PH,RG) with the measure of the domain over which the symbolic
difference is zero. A measure of a set is suggested by the common notions of
length, area, volume, and so forth; an elementary treatment of measure theory
appears in (1). If D(PH,RG) has a larger measure than the solution set of
(pHJ - rGJ) = 0, then D(PH,RG) cannot possibly be contained in the domain over
which the path and rule functions are equivalent. The pursual of research in

defining measures of the domains being considered and methods for dgtermining

18

values of these measures 18 necessary.

In case none of the methods above are applicable or successful, some
random test data elements out of the intersection domain may be substituted
into the symbolic difference equation, checking for non-zero values. If any
random data element d € D(PH,RG) is such that (pHJ - rGJ) # 0 then the func-
tions pHJ and r,y are not equivalent over the intersection domain. Evaluation
of the symbolic difference equation over a limited number of random test points
in D(PH,RG) enables the attachment of a higher probability that the path and
rule functions are equal over that domain. The number of test points required
to assure that the functions are equivalent is dependent on the degree of the
symbolic difference equation when this equation is a polynomial. For instance,
if the symbolic difference is a univariate polynomial of maximal degree t
which has the value zero for t + 1 unique data elements, then it is identically
zero. Howden (10) has extended this property to multivariate polynomials,
although for a polynomial in k variables of maximal degree t, this method
requires its evaluation for 0(tk) unique test data points. DeMillo and Lipton
(5) have presented probabilistic results on limiting this exponential number of
evaluations. Another area of research is the approximation of equivalence

acheived by choosing random test points for other types of functions.

Program Errors and Inconsistency with Specifications

Program errors can be discussed in terms of the inconsistency between a
program and an operational specification, just as program correctness was dis-
cussed in terms of consistency. Any discrepancy between a program and a speci-
fication may be considered from either of two perspectives - cause or effect.
The effects of a program error are the inconsistencies which testing discloses,

whereas the cause of an error is the actual source which debugging will hope-

fully discover.

If a program is inconsistent with an operational specification for the in-
tended function of the program, then there must be at least one path which is
inconsistent with the corresponding rule(s) in the specification. The effects
of a program error can therefore be related to the effects on the path domains
and path computations of the program. These effects are representable in terms
of the. inconsistencies of the path characteristics with the rule domains and
‘computations of an operational specification. Any inconsistency of a program
and an operational specification might be a non-equivalence or a non-isomorphism.
Lack of equivalence implies that the program is incorrect - that it does not
realize its intended function - while lack of isomorphism only implies that the
strict conformity of the progrém to the operational specification mentioned
previously does not prevail. As with determining consistency, however, much

more can be decided when the presence or lack of an isomorphism is considered.

Suppose a ﬁrogram P and an operational specification R (both as previously
defined) are expected to conform so closely as to be ismorphic. Yet, upon apply-
ing the procedure for determining whether P and R are isomorphic, a complete
one-to-one correspondence between identical rules in R and paths in P cannot be
found. TFour simple classes of discrepancies can be defined in terms of the
partial correspondence which can be obtained. These differences between the
program's path characteristics and the specification's rule characteristics are
called discrepancies as opposed to errors in order to emphasize the fact that
they do not imply that the program is incorrect. Similar treafments of the
classification of program errors have been presented by Goodenough and Gerhart
(7) and Howden (8).

When a condition requires a unique sequence of computationg to be processed

properly, but the program fails to test for this condition, then the program is

L2

20

missing a path. A missing path discrepancy occurs when the function computed
along a path is proper for only a subset of the domain which causes the path to
be executed, and the path for which the rest of the path domain should cause
execution is not present in the program.

Definition - Let P be a program intended to compute a function
F on domain X and let R be a correct operational specification.
Suppose there is an isomorphism I between a subset of the rules
in R and all of the paths in P, such that for all (RK,PK) e I,
C; is identical to CR, b;t for some (RH,PH) € I, D: is a proper

P P R .
subset of DH’ and DH = DH U DG for some rule RG which is not in

I'. Then P contains a missing path discrepancy.

On the other hand, the program may process a condition improperly due
to treating it as a unique case, while the specification does not discern
between this condition and another. An extraneous path discrepancy occurs
when the function computed along a path is proper for the domain which causes
this path to execute as well as proper for the domain which causes yet another

path to execute, and the additional path is not specified in the operational
specification.

Definition - Let P be a program intended to compute a function

F on domain X and let R be a correct operational specification.

Suppose there is an isomorphism I between all of the rules in R

and a subset of the paths in P, such that for all (RK,PK) e I,

Ci is identical to CR, but for some (RC’PG) e I, Dz is a proper

subset of Dg, and Dg = Dg U Dg for some path PH which is not in

I. Then P contains an extraneous path discrepancy.

When a path selection predicate is expressed differently causing a series
of actions to be performed (or omitted) under conditions not included in the
specification, the path domain is a variant of the rule domain - that is, not
identical to the rule domain. This may also occur as a result of an unspeci-
fied or missing action which affects a path selection predicate and hence the
flow of control in the program. A domain discrepancy occurs when the proper
function is computed along a path, but a subset of the input domain different

from that indicated in the specification causes the path to be executed.

21

Definition - Let P be a program intended to éompute a function
F on domain X and let R be a correct operational specification.
Suppose there is an isomorphism I between all of the rules in R
and all of the paths in P, such that for all (R »P) e I, C is
identical to C ,» but for some (RH PH) e I, Dg 1s not identical to
DE, but nelther domain is a subset of the other. Then P contains

a domain discrepancy.

When an unspecified action is executed or a specified action is missing
(along a path in a program) which affects the output of the program, the path
computation is a variant of the rule computation - that is, not identical to
the rule computation. A computation discrepancy occurs when the correctsubset
of the input domain causes a path to be executed, but the function computed

along the path is discrepant.

Definition - Let P be a program intended to compute a function

F on domain X and let R be a correct operational specification.

Suppose there is an isomorphism I between all of the rules in R

and all of the paths in P, such that for all (’PK) €T, D?

is identical to D , but for some (R P) e I, - p is not identical

to CR " Then P contains a computatzon dzscrepancy.

The types of discrepancies defined above can be related directly to the
procedure for determining whether a program and an operational specification
are isomorphic. When a program contains a computation discrepancy, a bijective
mapping from the rule domains to identical path domains can be found, but one
pair of corresponding rule and path computations are not identical. When a
program contains a domain discrepancy, a missing path discrepancy, or an
extraneous path discrepancy, a mépping from the rule computations to the path
computations can be found. This mapping is one-to-one and onto in the case of
a domain discrepancy, but at least one pair of corresponding rule and path
domains are not identical. In the case of a missing path discrepancy, this
mapping is onto the set of paths, but not defined for one of the rules, and
for one pair of corresponding domains, the rule domain is a subset of the path
domain. Conversely, in the case of an extraneous path discrepancy, the mapping
from the rule computations to the path éomputations is one~to-one but not onto,
and for one rule-path pair, the path domain is a subset of the rule domain.

Note that in terms of the identicalness of domains under consideration, the

22

representation of a subset of a domain will be missing at least one constraint

which occurs in the conjuction which represents the larger domain.

As stated previously, the presence of a discrepancy of the type classified
above does not necessarily imply that the program is incorrect. The disclosure
of an inconsistency of this kind simply acknowledges the absence of strict
conformity between the program and the specification. When a discrepancy is
uncovered, however, in a program which was intended to conform exactly to an
operational specification, the rule-path pair for which the discrepancy occurs
should be examined more closely. At this point, the discrepancy could be

corrected, or perhaps a check for the equivalence of the variant characteristics

could be performed.

When a program is not designed for strict conformity with an operational
specification which describes the intended function, it is not legitimate to
draw conclusions about errors (or even discrepancies) from a subjection of the
two entities to the procedure to determine whether isomorphism holds. It may,
however, be helpful to apply this procedure and note all rule-path correspondences
which satisfy identicality. An isomorphic rule-path pair need not be considered
in the application of the equivalence determination procedure, because isomorphic
rule-path pairs are certainly equivalent. In addition, the rule domain and path
domain of any isomorphic rule-path pair need not be intersected with other path
and rule domains when applying the equivalence procedure, since the correspondence
implies that the rule domain is identical to the path domain and all path domains
are disjoint and all rule domains are disjoint (due to the determinism of programs
and specifications). More formally, if tge path PK

DK’ but for all H# K, 1 < H < U,

D_n DP = ¢,and for all G # K, 1 £ G <V, DR n DR = ¢, therefore for all H # K,
PK RH K G

DH n DK = ¢ and for all G # K, D; n Dg = ¢. Deciding upon the prevalence of

is isomorphic to the rule

P . . R P
, then DK is identical to DK’ SO DK-

isomorphism is much easier than the desision of whether or not equivalence holds,
hence any gains which can be made through application of the isomorphism procedure
aré extremely beneficial. After noting any identical pairs of rules and paths,
the procedure for determining the equivalence of the program and the specifica-

tion must be applied to check for errors among the remaining paths and rules.

In considefing a lack of equivalence between a program and an operational
specification, the errors which may occur have not been uniquely defined in

terms of their effects on the path domains and computations. In general, an

error occurs on any péth for which the path computation is not identical to
the computation of a rule whose corresponding domain is not disjoint from

the path domain. The same division into four errors can be made in terms of
the inconsistencies between a program and an operational specification which
are not equivalent. Precise definitions for these in terms of the differences

between rule and path characteristics should be researched in more depth.

The ¢lassification of inconsistencies presented does not encompass all
possible variant programs. The variant programs considered contain only
single inconsistencies rather than combinations of inconsistencies. In
addition, variants caused by incorrect declarartions are not considered,
although declarations in a program might also be compared with any similar
construct in the functional specification in order to detect such differences.
A discrepancy befween the variables (declared or not) in a program and a
specification would imply a lack of compatibility between the two entities,

and thus neither equivalence nor isomorphism could hold.

23

Error Detection With Symbolic Execution

and Test Data Generation Systems

The effects of errors can also be considered as the actual discrepancies
between the outputs of the program and the intended values of the corresponding
function outputs. With actual execution, an error is detected when an output
value is incorrect. Unaided actual execution has long been the only practical
method of attesting to the correctness of a program. Automatic test data
generation is a valuable aid to the human tester by replacing the floundering
selection of test data. Test data generation is most often accomplished by a

symbolic execution system which also provides another facility for error

detection.

Symbolic execution systems, such as ATTEST (3), symbolically execute the
paths in a program to create symbolic representations of the path domains and
path computations. A program may be tested by examining these representations.
Whenever a domain-type error or a computation error occurs, the symbolic
representation of the path domain, or path computation respectively, will be
incorrect. Hence, symbolic execution systems will, in some sense, uncover
all errors in a program of the four classes defined. It isoften difficult,
however, for a system user to determine when a symbolic representation is
incorrect. The comparison techniques discussed may provide some advances in

the detection of errors by this approach.

In the absence of automated comparison of the path characteristics with
;ule characteristics of a specification, test data must be relied upon to
disclose errors. By finding a solution to the symbolic representations of a
path domain, test data is generated which will cause execution of the path.
In most current automatic test data generation systems, an approach called
path testing is used, in which a single data element is pfovided for the test-
ing of a path. A set of test data whose elements will cause different paths
in the program to be tested will be generated. Ideally, this test data set
includes a data element for each path in the program;. a problem arises, however,
when the number of paths is infinite or effectively so, and heuristics
must be used to select a subset of the paths for testing. For example, an
infinite number of possible paths in a program occurs when a loop exists which
has an indeterminate loop iteration count. Automatic path selection heuristics
might choose paths which execute this path the minimum number of times, the

maximum number of times, and a few intermediate number of iterations. The

24

25

techniques of path testing cannot reliably detect all errors, but does provide

a high degree of assurance that the program has been well-tested (8).

A computation error will always be detected if the error occurs for all
elements of the path domain. If the error occurs for only a subset of the path
domain, however, coincidental correctness may result by exercising the path on

an element for which the path computation happens to be correct.

A domain error on a path will always be detected if the path domain in the
test program is disjoint from the correct path domain. If the two domains
intersect, then coincidental correctness may result by exercising the path on
an element of the intersection, causing the correct path to be executed and no

error to occur.

A missing path error may not be detected (no restrictions on the domain
will insure its detection). This is due to the fact that test data generation
systems may choose an element of the path domain which is in the correct domain
and should not be a member of the missing path's domain. The error will be
detected if an element of the missing path's correct domain happens to be selected

for a test data element.

An extraneous path error will always be detected, provided the path is in
the selected subset of paths tested and the path computation is distinct from
the computation which should be executed. Extraneous implies that the path
should not be executed for any element of the input domain. Hence, exercising

the path on any element of the path domain will reveal the error.

Test data generation systems are capable of selecting more than one test
data point per execution path, and this approach might enable a more reliable
detection of these classes of errors. For example, checking the boundaries of
path domains might enable a better chance of revealing domain-type errors.

Cohen and White (4) have developed a domain-testing strategy based on this idea.
As mentioned in comparingbcomputations for equivalence over a domain, the choice
of a certain number of random test points might enable a greater assurance that

a computation is correct over a path domain.

Possibilities of Decision Tables in Program Testing

A decision table provides a convenient form for expressing any conditional
alternatives, where a particular computation to be performed is dictated by the
outcome of a combination of conditions. A decision table (13) is a tabular
representation of an operational specification and the comparison techniques
discussed previously can be readily applied to the decision table structure.

In addition, another method for using decision tables in program testing is
proposed Below, which can be generalized to a technique for using other forms

of operational specifications.

The basic structure of a decision table is shown below.

CONDITION CONDITION
STUB | ENTRIES
ACTION ' ACTION
STUB ENTRIES

A decision table is divided into four quadrants. The condition stub in
the upper left quadrant contains all those conditions which have bearing on
the decisions in the particular problem. The upper right quadrant contains
the condition entries which specify the relevant outcomes of the combination
of conditions. The action stub in the lower left specifies explicitly the
actions that may be applied in obtaining output for the problem, while the
action entries in the lower right specify the actions to be applied under
certain conditions. A rule is a column in the decision table, which represents
the relationship between an outcome of the combination of conditions and a

set of actions. The meaning of these different sections is shown below as an

if-then construct.

26

RULES 1 2 v
IF
AND | = CONDITION CONDITION
. STUB ENTRIES
AND
THEN
AND"
. ACTION . _ ACTION
’ STUB ENTRIES
AND

Two types of decision tables will be considered. The major difference

between the two is the variables on which the decisions can be made.

The first type of decision table contains decisions based on the input
variables only. All conditions on the input variables which are considered
relevant to the problem are written in the condition stub. Each column of the
table represents a specific interpretation of these predicates - a particular
combination of conditions. In the action stub of the decision table, the
transformations to be applied are explicitly stated as either symbolic computa-
tions or individual actions which should be performed in an ordered sequence.
The action entries specify the actions which should be performed for the
corresponding combination of conditions specified in the condition entry

aof this rule.

The second type of decision table contains decisions based on both the
input variables and the local variables. All conditions on the program
variables (both input and local) considered relevant to the problem are written
in the condition stub, and each column represents an interpretation of these
predicates. The action stub of this type of decision may represent the actions

in either of the ways mentioned previously.

The two forms of specifying the actions are equivalent. Indicating a

27

28

sequence of actions to be performed provides a better program specification -
more of a design that could be translated into a program. A sequence can
however be transformed into computations similar to the other form by a technique
like symbolic execution, and this symbolic computation appears to be easier to

handle in program testing.

As for the different methods of specifying conditions and decisions - with
input variables only or including local variables as well - they too are essential-
ly equivalent. As with the two types of action representations, one method -
conditions on both the input and local variables - provides a program design
approximation. Conditions on the input domain only provide specifications for
the input domain of a specific rule. Both methods can be more useful in
particular situations. Conditions on the input domain alone can be obtained

from conditions on both input and local variables by the symbolic execution

technique.

There are several ways in which decision tables can enhance the process
of testing a program. The simplest method (which applies only to decision
tables containing predicates on the input variables only) is obtaining test
data for each rule by solving the combination of conditions which determine
the domain for which the rule applies. For a particular rule, the appropriate
computation (determined by the action entry) can be applied to the test data
obtained. The program itself can be run on the test data, and the output
obtained from both can then be compared for equality. Any incorrect values

obtained by the program should be noted and the programmer should take a closer

look at the path executed.

‘Other methods include the application of the isomorphism and equivalence
procedures presented earlier. The procedure for determining whether the
program and the decision table are isomorphic can be applied when the decision
table was intended as a design to which the program should conform. If a one-
to-one correspondence can be created between identical rules in the decision
table and program paths, then the isomorphism property prevails. This can be
determined by defining the rule domains by the conjunction of conditions
specified as true in the condition entry and the rule computation as that
obtained by applying the actions indicated in the action entry. If there is a
bijective mapping from each rule in the decision table to a path in the program

for which the rule domain is identical to the path domain and the rule computa-

29

tion is identical to the path computation, then the two are isomorphic and the

program is correct.

If isomorphism does not or was not intended to hold, the procedure for
determining whether the program is equivalent to the decision table may be
attempted. For a particular path in the program, some combinations of conditions
in the decision table ought to be consistent with the path domain. 1If no
composite predicate is consistent, then an error is present in the program
(assuming the decision table is a correct specification for the intended
function). For each of the combinations of conditions which is consistent with
the path domain, determine the intersection of the two domains. At this point,
the path computation can be compared to the computation in the rule determined
by the combination of conditions. If these are found to be equivalent over the
intersection domain, no errors have been detected. If this computation equiva-
lence holds for all of the composite predicates which have non-empty intersections
with the path domain, no errors have been detected along this path. If the
computations are not equivalent over one of the intersection domains, an error
has been disclosed. Performing this for each path in the program will allow

the determination of the equivalence between the test program and the decision

table specification.

A further method begins with the rules in the decision table specification.
Given a particular rule, the combination of conditions can be used to select
a path in the program during symbolic execution of the program., At each branch
point in the program, each interpretation of the path selection predicate will
be tested for consistency with the combined conditions of the rule (plus any
other conditions which have been added). If one interpretation is consistent
and all others are not, then the decision at this point is determined and
symbolic execution continues along the path in the direction of the branch
selected. If none of the interpretations are consistent (this can only happen
with an incomplete computed go to or case statemeﬁt), then an error is present
in the program (again, assuming the decision table is a correct operational
specificaﬁion). At this point, the comparison may stop and the tester informed
of the error, or symbolic execution may be continued along all branches in
order to analyze the error in some way. Suppose, on the other hand, that more
than one interpretation is consistent with the combination of conditions, then
symbolic execution should be executed along all consistent branches. Along

each consistent branch (when there is more than one), the current combination

30

of conditions must be supplemented by the interpretation of the branch
predicate, this will provide the intersection of the decision table rule
conditions and the path domain which causes execution of the path. After

an entire path has been selected - that is, all branch decisions have been

made down to an exit statement - the path has been symbolically executed,

and symbolic expressions for the output variables in terms of the input
variables have been obtained. These path computations can then be compared

with the action rules in the decision table. If these are equivalent over

the domain determined by the combination of conditions (the rule conditions

plus any indeterminate branch decisions chosen), no errors have been detected
along the path. If the computations are not equivalent, an error is present and
a closer look at the path (both computations and predicates) should be suggested,
If the lack of errors can be shown for each rule in the decision table with

each consistent path selection, the program is equivalent to the decision

table specification.

There are problems inherent in this procedure. In addition to the un-
decidable properties of computation equivalence, there is a problem with
expanding the symbolic execution along all consistent branchés when a decision
is not determined by the conditions - namely, indeterminate loop iterations.
If all consistent branches are taken (in the case of loop iterations, this
implies another iteration and leaving the loop), the number of paths under
symbolic execution for a single decision table rule (with indeterminacy) will
quickly explode. This problem could be approached by applying the heuristics
of automatic path selection, as mentioned above, and comparing the path

computation of these paths with the actions specified in the decision table

rule.

Decision tables provide a good example of the form of an operational
specification, and the methods for using decision tables can be generalized
to techniques for using other forms of operational specifications in program

testing.

31

An Example of Equivalence and Isomorphism

The specification below 1s rather abstract, yet it is a complete

operational specification for a 3 X 3 matrix multiplication routine.

13 "kgl Ajk * Byy))

If there were a symbolic interpreter for this type of specification, the

FOR 1=1,3 (FOR j=1,3 (C

rule computations which would result would be those shown below, which are
already in simplest terms.

C(1,1) = A(1,1)*B(1,1) + A(1,2)*B(2,1) + A(1,3)*B(3,1)
C(1,2) + A(1,1)*B(1,2) + A(1,2)*B(2,2) + A(1,3)*B(3,2)

€(1,3) = A(1,1)*B(1,3) + A(1,2)*B(2,3) + A(1,3)*B(3,3)
C(2,1) = A(2,1)*B(1,1) + A(2,2)*B(2,1) + A(2,3)*B(3,1)
C(2,2) = A(2,1)*B(1,2) + A(2,2)*B(2,2) + A(2,3)*B(3,2)
€(2,3) = A(2,1)*B(1,3) + A(2,2)*B(2,3) + A(2,3)*B(3,3)
C(3,1) = A(3,1)*B(1,1) + A(3,2)*B(2,1) + A(3,3)*B(3,1)
. C(3,2) = A(3,1)*B(1,2) + A(3,2)*B(2,2) + A(3,3)*B(3,2)
C(3,3) = A(3,1)*B(1,3) + A(3,2)*B(2,3) + A(3,3)*B(3,3)

The FORTRAN suBroutine shown below implements thdis specification in the
most straight-forward manner. This subroutine is both equivalent and isomorphic
to the specification given, as one would expect.

SUBROUTINE MM3X3(A,B,C)

'DIMENSION A(3,3),B(3,3),C(3,3)

DO10I = 1,3

" D010 J=1,3

c(1,J) = 0.0
DO 10K = 1,3
C(1,J) = C(I,J) + A(I,K)*B(K,J)
10 CONTINUE

RETURN

END
A symbolic execution system like ATTEST (3) provides path functions ' !
which are exactly like those produced from symbolic interpretation of the
specification. The symbolic difference between the corresponding path and
trule functions is identically zero, and hence these two entities are equiva~-
lent. In addition, since they match symbolically, the isomprphism property

holds as well. '

The next FORTRAN subroutine is a correct implementation of a 3 X 3
matrix multiplication, but uses Laderman's algorithm which performs only 23
multiplications (as opposed to the 27 performed in the usual algorithm).

32

SUBROUTINE LADER(A,B,C)

DIMENSION A(3,3),B(3,3),C(3,3)

REAL M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13

REAL M14,M15,M16,M17,M18,M19,M20,M21,M22,M23
M1=(A(1,1)+A(1,2)+A(1,3)—A(2,l)—A(Z,Z)-A(3,2)-A(3,3))*3(2,2)
M2=(A(1,1)-A(2,1))*(-B(1,2)+B(2,2))
M3=A(2,2)*(-B(1,1)+B(l,2)+B(2,l)-B(2,2)—B(2:3)-B(3,1)+B(3,3))
M4=(-A(1,1)+A(2,1)+A(2,2))*(B(1,1)-B(1,2)+B(2,2))
M5=(A(2,1)+A(2,2))*(-B(1,1)+B(1,2))

M6=A(1,1)*B(1,1)
M7=(-A(1,1)+A(3,1)+A(3,2))*(B(1,1)-B(1,3)+B(2,3))

‘M8= (-A(1,1)+A(391))* (B(1)3)-B(2’ 3))
M9=(A(3,1)+A(3,2))*(-B(1,1)+B(1,3))
M10=(A(1,1)+A(1,2)+A(1,3)-A(2,2)-A(2,3)-A(3,1)~A(3,2))*B(2,3)
M11=A(3,2)*(-B(1,1)+B(1,3)+B(2,1)-B(2,2)-B(2,3)-B(3,1)+B(3,2))
Mi2=(-A(1,3)+A(3,2)+A(3,3))*(B(2,2)+B(3,1)-B(3,2))

Ml3=(A(1s 3)-A(393))*(3(2:2)"3(39 2))

M14=A(1,3)*B(3,1)

M15=(A(3,2)+A(3,3))*(-B(3,1)+B(3,2))
Ml6=(-A(1,3)+A(2,2)+A(2,3))*(B(2,3)+B(3,1)-B(3,3))
M17=(A(1’3)-A(2’3))*(B(293)-3(3:3))
M18=(A(2,2)+A(2,3))*(-B(3,1)+B(3,3))

M19=A(1,2)*B(2,1)

M20=A(2,3)*B(3,2)

M21=A(2,1)*B(1,3)

M22=A(3,1)*B(1,2)

M23=A(3,3)*B(3,3)

C(1,1)=M6+M14+M19

C(1,2)=M1+M4+M5+M6+M12+M14+M15

C(1, 3)=M6+M7+MO+M10+M14+M16+M18
C(2,1)=M2+MI+M4+ME+ML4+ML6+M17

C(2,2)=M2+M4+M5+M6+M20

C(2,3)=M14+M16+M1 7+M18+M21

C(3,1)=M6+M7+M8+M11+M12+M1 3+M14

C(3,2)=M12+M13+M14+M15+M22

C(3,3)=M6+M7+M8+M9+M23

RETURN

END

Symbolic execution of this subroutine provides the path cemputation - vector

of path functions — which appears on the following page. Using a polynomial
simplification system such as SYMPLR (15), these symbolic representations
reduce (convert to a canonical form) to the same functions produced by the
operational specification for a 3 X 3 matrix multiplication. Thus, after

the transformation to camonical form, the path functions of LADER are equiva-
lent as well as symbolically identical to those of the subroutine MM3X3 and

the rule functions of the specification. The program LADER is, therefore,

both equivalent and isomorphic to the operational specification given. The
fact that there is only one path through the subroutine has made the determina-

tion quite easy. In addition, this is the reason that a program which is so

33

seemingly different from the specification is still isomorphic to it; for if
isomorphism did not hold, the program would not be equivalent to the specifi-
cation, and thus not a correct program. Since the domain over which the two
computations must be equal is the entire domain, any discrepancy between the

two symbolic computations would correspond to an error.

C(l,l)
€(1,2)

(A(1,1)*B(1,1) + (A(1,3)*B(3,1)) + (A(1,2)*B(2,1))

(A(1,1)*B(2,2)+A(1,2)*%B(2,2)+A(1,3)*B(2,2)-A(2,1)*B(2,2)
-A(2,2)*B(2,2)-A(3,2)*B(2,2)) + (-A(1,1)*B(1,1)+A(1,1)*B(1,2)
-A(1,1)*B(2,2)+A(2,1)*B(1,1)-A(2,1)*B(1,2)+A(2,1)*B(2,2)
+A(2,2)*B(1,1)-A(2,2)*B(1,2)+A(2,2)*B(2,2) + (-A(2,1)*B(1,1)
+A(2,1)*B(1,2)—A(2,2)*B(l,l)+A(2,2)*B(1,2)) + (A(l’l)*B(lpl))
+ (-A(1,3)*B(2,2) - A(1,3)*B(3,1)+A(1,3)*B(3,2)+A(3,2)*B(2,2)
+A(3,2)*B(3,1)-A(3,2)*B(3,2)+A(3,3)*B(2,2)+A(3,3)*B(3,1)
'A(3’3)*B(3’2)) + (A(l,B)*B(3,1)) + ('A(3,2)*B(3’l)
+A(3,2)*B(3,2)-A(3,3)*B(3,1)+A(3,3)*B(3,2)

(A(1,1)*B(1,1)) + (-A(1,1)*B(1,1)+A(1,1)*B(1,3)-A(1,1)*B(2,3)
+A(3,1)*B(1,1)-A(3,1)*B(1,3)+A(3,1)*B(2,3)+A(3,2)*B(1,1)
-A(3,2)*B(1,3)+A(3,2)*B(2,3) + (-A(3,1)*B(1,1)+A(3,1)*B(1,3)
-A(3,2)*B(1,1)+A(3,2)*B(1,3) + (A(1,1)*B(2,3)+A(1,2)*B(2,3)
+A(1,3)*B(2,3)-A(2,2)*B(2,3)-A(2,3)*B(2,3)-A(3,1)*B(2,3)
-A(3,2)*B(2,3)) + (A(1,3)*B(3,1)) + (-A(1,3)*B(2,3)-A(1,3)*B(3,1)
+A(1,3)*B(3,3)+A(2,2)*B(2,3)+A(2,2)*B(3,1)~-A(2,2)*B(3,3)
+A(2,3)*B(2,3)+A(2,3)*B(3,1)-A(2,3)*B(3,3)) + (-A(2,2)*B(3,1)
+A(2,2)*B(3,3)-A(2,3)*B(3,1)+A(2,3)*B(3,3))

('A(la 1) *B(l,2)+A(1’ 1) *3(2)2)+A(2’ 1) *B (I ’ 2)"A(1,2)*B(29 2))

+ (=A(2,2)*B(1,1)+A(2,2)*B(1,2)+A(2,2)*B(2,1)-A(2,2)*B(2,2)
- =A(2,2)%B(2,3)-A(2,2)*B(3,1)+A(2,2)*B(3,3)) + (-A(1,1)*B(1,1)
+A(L,1)*B(1,2)-A(1,1)*B(2,2)+A(2,1)*B(1,1)-A(2,1)*B(1,2)
+A(2,1)*B(2,2)+A(2,2)*B(1,1)-A(2,2)*B(1,2)+A(2,2)*B(2,2))
+ (A(1,1)*B(1,1)) + (A(1,3)*B(3,1)) + (-A(1,3)*B(2,3)-A(1,3)*B(3,1)
+A(1,3)*B(3,3)+A(2,2)*B(2,3)+A(2,2)*B(3,1)-A(2,2)*B(3,3)
+A(2,3)*B(3,2)+A(2,3)*B(3,1)-A(2,3)*B(3,3)) + (A(1,3)*B(2,3)
-A(1,3)*B(3,3)-A(2,3)*B(2,3)+A(2,3)*B(3,3))

(-A(1,1)*B(1,2)+A(1,1) *B(2,2)+A(2,1) *B(1,2)-A(2,1) *B(2,2))

+ (-A(1,1)*B(1,1)+A(1,1)*B(1,2)-A(1,1)*B(2,2)+A(2,1)*B(1,1)
-A(2,1)*B(1,2)+A(2,1)*B(2,2)+A(2,2)*B(1,1)-A(2,2)*B(1,2)
+A(2,2)*B(2,2)) + (-A(2,1)*B(1,1)+A(2,1)*B(1,2)-A(2,2)*B(1,1)
+A(2,2)*B(1,2)) + (A(1,1)*B(1,1)) + (A(2,3)*B(3,2))

(A(l, 3)*B(3’l)) + ("A(l’3) *3(233)-A(l’3) *B (331)+A(1s3) *3(333)
+A(2,2)*B(2,3)+A(2,2)*B(3,1)-A(2,2)*B(3,3)+A(2,3)*B(2,3)
+A(2,3)*B(3,1)-A(2,3)*B(3,3)) + (A(1,3)*B(2,3)~A(1,3)*B(3,3)
-A(2,3)*B(2,3)+A(2,3)*B(3,3)) + (-A(2,2)*B(3,1)+A(2,2)*B(3,3)
-A(2,3)*B(3,1)+A(2,3)*B(3,3)) + (A(2,1)*B(1,3))

]

c(1,3)

c(2,1)

€(2,2)

n

c(2,3)

c3,1)

€(3,2)

C(3,3)_

(A(lsl)*B(lsl)) + (-A(l,l)*B(l,l)+A(l,l)*B(l,3)—A(l,l)*B(2,3)
+A(3,l)*B(l,1)-A(3,l)*B(l,3)+A(3,1)*B(2,3)+A(3,2)*B(1,1)
-A(3,2)*B(1,3)+A(3,2)*B(2,3)) + (-A(1,1)*B(1,3)+A(1,1)*B(2,3)
+A(3,1)*B(1,3)-A(3,1)*B(2,3)) + (-a(3,2)*B(1,1)+A(3,2)*B(1,3)-.
+A(3,2)*B(Z,l)—A(3,2)*B(2,2)—A(3,2)*B(2,3)—A(3,2)*B(3,1)
+A(3,2)%B(3,2)) + (—A(l,3)*B(2,2)—A(l,3)*B(3,1)+A(1,3)*B(3,2)
+A(3,2)*B(2,2)+A(3,2)*B(3,l)—A(3,2)*B(3,2)+A(3,3)*B(2,2)
+A(3,3)*B(3,1)-A(3,3)*B(3,2)) + (A(1,3)*B(2,2)-A(1,3)*B(3,2)
_A(3a3)*3(2,2)+A(393)*B(392)) + (A(lsB)*B(3sl))

(—A(l,3)*B(2,2)—A(1,3)*B(3,l)+A(l,3)*B(3,2)+A(3,2)*B(2,Z)r._
+A(3,2)*B(3,l)—A(3,2)*B(3,2)+A(3,3)*B(2,2)+A(3,3)*B(3,l)
-A(3,3)*B(3,2)) + (A(1,3)*B(2,2)-A(1,3)*B(3,2)-A(3,3)*B(2,2)
+A(3,3)*B(3,2)) + (A(1,3)*B(3,1)) + (-A(3,2)*B(3,1)+A(3,2)*B(3,2)
_A(333)*B(3’1)+A(3’3)*B(332)) + (A(Ssl)*B(ls 2))

(A(L,1)*B(1,1)) + (-A(1,1)*B(1,1)+A(1,1)*B(1,3)-A(1,1)*B(2,3)
+A(3,l)*B(l,l)-A(3,l)*B(l,3)+A(3,1)*B(2,3)+A(3,2)*B(l,l)
"A(3,2) *B(la 3)+A(332)*B (2,3)) + ('A(l’l) *3(1’3)+A(1’1) *3(2’3)
+A(3,l)*B(l,B)—A(3,1)*B(2,3)) + (—A(3,1)*B(l,l)+A(3,l)*B(l,3)
-A(3,2)*B(1,1)+A(3,2)*B(1,3)) + (A(3,3)*B(3,3))

34

Future Research

Several areas have been mentioned in which research in the field of
program testing is necessary. With regard to program correctness and con-
sistency with functional specifications, several open questions were presented
in the consistency properties and the procedures for determining whether they
prevall. How "identical" are programs designed to conform to an operational
specification? Can comparisons be made between loops in a program and recur-
rence relations in a functional specification? When can the determination of
emptiness of a domain be decided? When can the equivalence of computations
over a domain be determined? With what types of computations can approxima-
tions of the determinism of equivalence be acheived by choosing a certain num-
ber of random test points? The applicability of both measure theory and approx-
imation algorithms should be pursued. In addition, it may be helpful to place
further restrictions on the classes of programs and speicications analyzed. For
instance, the complexity of determining equivalence of Ianov and free schema
programs to specifications and approximation algorithms for this decision should
be examined. With regard to program errors, a more extensive classification of
program errors is required, including definitions of errors in programs which
are not equivalent to functional specifications (without regarding the lack of

isomorphism). Empirical studies of common programs, operational specificationms,

35

programmlng errors, and the implication of the procedures presented for determining

isomorphlsm and equivalence must be conducted.

9.

10.

11.

12.

13.

14.

15.

16.

36

References

Bartle, Robert G., The Elements of Integration, John Wiley and Sons, Inc.,
New York, 1966.

Cheatham, Thomas E., Jr., and Deborah A. Washington, "Program Loop Analy-
sis by Solving First Order Recurrence Relations', SIAM-SIGSAM Computer
Algebra Symposium, May, 1978.

Clarke, Lori A., "A System to Generate Test Data and Symbolically Execute
Programs", IEEE Transactions on Software Engineering, September, 1976.

Cohen, Edward I., and Lee J. White, "A Finite Domain-Testing Strategy for
Computer Program Testing", Ohio State University CISRC Technical Report

DeMillo, Richard A., and Richard J. Lipton, "A Probabilistic Remark on
Algebraic Program Testing", School of Information and Computer Science
Technical Report, Georgia Institute of Technology, May, 1977.

Deutsch, L. Peter, "An Interactive Program Verifier", Ph. D. Dissertationm,
University of California, Berkeley, May, 1973.

Floyd, Robert W., '"Assigning Meaning to Programs', Proceedings of the
American Mathematical Society Symposium on Applied Mathematics, Vol. 19,

1967.

Goodenough, John B., and Susan L. Gerhart, "Toward a Theory of Test Data
Selection", IEEE Transactions on Software Engineering, June, 1975.

Howden, William E., "Reliability of the Path Analysis Testing Strategy",
IEEE Transactions on Software Engineering, September, 1976.

Howden, Williaw E., "Algebraic Program Testing", Acta Informatica, to
appear. :

Liskov, Barbara H., and Valdis Berzins, "An Appraisal of Program Speci-
fications", MIT Technical Report, April, 1977.

Manna, Zohar, Mathematical Theory of Computation, McGraw-Hill, Inc.,
New York, 1974.

Pooch, Udo W., "Translation of Decision Tables', ACM Computing Surveys,
June, 1974.

Richardson, Debra J., ''Some Aspects of Program Testing', Masters Thesis,
University of Massachusetts, Amherst, May, 1978.

Richardson, Debra J., Lori A. Clarke, and Debi L. Bennett, "SYMPLR,
SYmbolic Multivariate Polynomial Linearization and Reduction', University
of Massachusetts COINS Technical Report #78-16, July, 1978.

University of Wisconsin Academic Computing Center, "Mathematical Routines
Directory'.

