A Human Factors Comparison of a Procedural
and a Nonprocedural Query Language.®

Charles Welty
David W. Stemple

COINS Technical Report 78-24
December 1978

*‘ This research was funded, in paft, by NSF Grant MCS78-07616.

ABSTRACT

An experiment tesfing the ability of subjects to write queries in two
différent query languages has been run. The two languages, TABLET and
SQL, differ only in their procedurality -- both languages use the
relational data model and their Hélstead levels are similar. Constructs
in the languages that do not affect their procedurality are identical.
Subjects were taught using manuals for the two languages that contained
identical examples and problems in identical order. The results of

the experiment show that subjects write difficult queries significantly
better using the procedural language than subjects using the non-
procedural'language do. The results of the experiment are also used

to compare corresponding constructs in the two languages and to

recommend improvements for these constructs.

INTRODUCTION

Structured programming concepts have led to the realization that the prime
element in computer systems is the human element. Although in terms of cost,
speed, reliability and most other "efficiency" measures, the machine is far
superior to the human, huméns remain a part of the system. Any efficiency in the
use of system resources is wasted if a system is not designed to match the needs
and abilities of its users. This fact has led to the exploration of new research
areas involving the human-oriented aspects of computer systems.

In the field of computer languages, human factors testing can be used to:

1. Test if a language is learnable. Failure of this test may dictate
a language's demise.

2. Eliminate minor difficulties in a language. This is used in the
planned evolution of the language.

Much of the work in human factors testing has been done on general purpose
languages. Language constructs [Gannon and Horning, 1975, Shneiderman, 1974,
Sime, Green and Guest, 1973, Weissman, 1974], flowcharting [Shneiderman, Mayer,
McKay and Heller, 1975], errors [Youngs, 1976], and debugging [Gould, 1975] have
been tested. These studies involve the testing of groups of programmers and
the statistical analysis of the results.

Basic research has also been done on non-programmers to study the relation-
ship between problem solving and programming [Miller, 1976 and Miller and Becker,
1974].

Query language users are generally considered to be non-programmers. The
querying of a data base is only an occasional part of the user's job. Because
of the user's lack of computer experience and intermittent use of the language,
it is necessary to determine that a query language is easy to learn, use and

remember. This determination may be achieved through human factors testing.

There have been several human factors studies of query languages. Gould
and Ascher experimented with IQF [Gould and Ascher, 1975, IBM, 1972]). Their
experiment showed the language to be difficult to learn. Zloof's Query by
Example‘[Zloof, 1974) was studied bbehomas and Gould [Thomas and Gould, 1975]
and found easy to learn and use. Reisner, et al [Reisner, Boyce and Chamberlin,
1975 .and Reisner, 1976] made a study of both SEQUEL [Chamberlin and Boyce, 1974]
and SQUARE [Boyce, Chamberlin, King and Hammer, 1975] with the result that SEQUEL
was found relatively easy to learn. This experiment helped in the evolution of
SEQUEL 2 [Chamberlin, et al, 1970]. Lochovsky [Lochovsky, 1978] studied various
data models and their associated data manipulation languages.

All of the query language testing was done without actual systems. The
languages were presented in classroom situations and testing was through classroom
exams. The reason for this was twofold:

1. The purpose of the testing was to study the language before
implementation.

2. Use of an actual system would have introduced the additional factors
of terminal availability, system response time, subjects' typing
expertise, etc.

Human factors research is readily applicable to query languages for several

practical reasons:

1. There are no entrenched query languages which would be either hard
or impossible to replace with a language of proven superiority.

2. Non-programming test subjects are in general supply.

3. Query languages are oriented toward individual use which is easily
tested. :

4. A realistic query problem is quite simple, allowing a large number of
them to be done on an exam of reasonable length.

5. Query languages have a small set of data and statement types. There
are usually no control structures. Thus, they are easy to learn.

6. Even with their simplicity and restricted problem domain, query
languages have the potential to reach a very large user community.

-2-

These reasons assume added potency when compared to human factors testing of
general purpose languages. General purpose languages have none of these attributes

but their study has yielded useful experimental results.

HYPOTHESIS

One of the major issues in database query languages concerns the procedurality
of query languages. An experiment has been run testing the learnability of a
nonproéedural query language and a procedural query language using human subjects.
The experiment tested the basic hypothesis: People more often write difficult
queries correctly using a procedural query language than they do using a non-
procedural query language. The languages chosen for this experiment must be
similar in all respects except in the independent variable -- procedurality --
since the experiment takes the reductionist approach [Shneiderman, 1978].

SQL (formerly SEQUEL 2) [Welty, 1978a, Denny, 1977] and TABLET [Welty, 1978b,
Stemple et.al, 1978] exhibit the required properties. The similarities between
SQL and TABLET are:

1. They both use the same data model, Codd's relational model [Codd, 1970].

2. They are relationally complete [Codd, 1971b].

3. They have similar language levels [Halstead, 1977].

4., Their syntactic differences are a function of their procedurality.
Constructs that are independent of procedurality are identical.

5. They both use the same terminal equipment.
These similarities are detailed in [Welty, 1979].

The difference, again, is in the procedurality of the languages. A thorough
treatment of procedurality and the procedurality of SQL and TABLET is given by
ﬁelty [Welty, 1979]. Generally, a language is procedural if it specifies a
step-by-step method for achieving a result. Nonprocedural languages describe
the desired result without specifying how it is to be achieved. (The idea is
comparable to the difference between constructive and nonconstructive existence
proofs in mathematics.) SQL is similar to Codd's relational calculus [Codd, 1971a]
and TABLET (The Algebra Based Language for Enquiring of Tables) is based on Codd's

relational algebra [Codd, 1971b].

Codd's relational algebra consists of a set of operations defined on relationms.
An operation on a relation or relations always yields another relation. A relational
algebraic query specifies the ordered steps used in generating the result and, thus,
is procedural.

A relational calculus query describes the elements of the desired relation.
The query is purely descriptive, containing no method for achieving the desired
relation. This type_of query is nonprocedural.

Further discussion of the pfocedurality of the algebra and calculus is given
by Codd [Codd, 1971a].

A procedurality'metric, P, is suggested by Welty [Welty, 1979] for finding
the procedurality of the implementation of any algorithm. The measure is

defined as:

p = ho. of variable bindings , no. of operators
no. of possible orderings no. of possible orderings
of the bindings of the operators

A high P value denotes a high level of procedurality. For example, the FORTRAN
assignment statement

E = A*B+C*D
has one variable binding with only 1 possible order. A dependency diagram of the

expression is

Either multiplication may be done first, followed by the other and then the
addition. So, for the entire assignment statement
P=1/1+ 3/2 = 2.5,

Using this measure, TABLET is significantly more procedural than SQL(p<.001).

SUBJECTS

The subjects were 72 undergraduate students taking a 1 credit accounting
course. Most subjects were business majors. The subjects were divided into
two groups —- 35 subjects learned SQL and 37 subjects learned TABLET.

Subjects were also classified as "inexperienced" and "experlenced". Inexper-
jenced subjects had no previous experience with computers. Experienced subjects’
had a course in either BASIC or FORTRAN. A questionnaire showed that the subjects
were familiar with the operators >, <, =, etc as well as the set operators union
and intersection.

Subjects were motivated to take the course by the credif and a desire to

learn about computers.

THE EXPERIMENT

The languages were taught using manuals read outside class. These manuals,
one presenting SQL and the other presenting TABLET, contained identical examples
and problems presented in the same sequence. Each manual contained 12 lessons.
Concepts that were identical in the two languages were presented identically.

There were fourteen class meetings. These meetings were devoted to answering
questions on the lessons and to quizzes covering the material presented in the
lessons. No lecturing was done in the class meetings. Since no material was
presented in class, subjects learned the languages entirely from:the manudls.

A final exam was given immediately after the course. The final consisted of
30 English questions (e.g. How many suppliers supply item 19?) and the subjects
were required to write the corresponding query in their query language. The final
was an open book exam gnd the students grades were based solely on their final
exams.

A retention.test was given 3 weeks after the final. This test was of identical
format to the final. In fact, although the questions were different on the final
and the retention test, the correct response to each question on the final was
identical in structure to the corresponding query on the retention test. The
retention test was a closed book test. In addition, the subjects were discouraged
from studying for the retention test. The retention test did not affect student
grades, but it was a réquired part of the course. Students had to take the test
but had no motivation for studying. This delay and lack of studying was used to

model the intermittent use of query languages.

GRADING THE QUIZZES, THE FINAL AND THE RETENTION TEST
The grading method for queries in all the tests was similar to Reisner's
[Reisner, 1976]. Each solution was classified as one of the following:
correct — the solﬁtion was completely correct;
minornlanguage error (ML) - the solution was basically correct but had
a small error that would be found by a reasonably good translator.
minor operand error (MO) - the solution has a minor error in its data
sbecification, perhaps a mis~spelled column name.
minor substance error (MS) - the‘solution yields a result that is not quite
correct but its incorrectness is due to the statement of the problem.
correctabie (CO) - the solution is wrong but correctable by a good compiler.
major substance error (MS) - the query is syntactically correct but answers
a different question than the one specified.’
major language error (ML) - a major error in the syntax of the language
has been made.
incomplete (IN) —Vincomplete query.
unattempted (UN) - no sloution was attempted.
The fifst four categories -- correct, ML, MO, MS -~ were called essentially

correct responses. The other five categories were classified as incorrect. The

correctable solutions used knowledge specific to the database being used and would
not be correctable in the general case. If several errors were found in a query,

the error is categorized as the lowest one found in the above list.

THE LANGUAGES
The SQL and TABLET query languages are both based on the relational model of
data. SQL uses English keywords in a template-like manner for the expression of
queries against a database. TABLET specifies the operations that are performed
on a relation. Some sample queries follow. These queries all use the COLLEGE
database of Figure 1.
Ql. List the names of students from Ohio.
SQL: SELECT NAME
' FROM STUDENT
WHERE HOMESTATE = 'OHIO'
TABLET: FORM OHIOANS FROM NAME, HOMESTATE OF STUDENT
KEEP ROWS WHERE HOMESTATE = 'OHIO'
PRINT NAME
This SQL query is called a "simple mapping" and returns a value from the NAME
column of a tuple in the STUDENT relation for which the value in the HOMESTATE
coluﬁn is 'OHIO'. The TABLET query first forms a working table named OHIOANS
consisting only of the NAME and HOMESTATE columns of the STUDENT table. The KEEP
ROWS command specifies that the rows (tuples) of OHIOANS for which the HOMESTATE
columg contains 'OHIO' are retained. The other rows are eliminated from the table.
The values in the NAME column are then printed. Both SQL and TABLET eliminate
duplicates from the tuples printed. |
Q2. List the average salary of economics faculty members.
SQL: SELECT AVG(SALARY)
FROM FACULTY
WHERE DEPT = 'ECONOMICS'
TABLET: FORM ECONSAL FROM SALARY, DEPT OF FACULTY
KEEP ROWS WHERE DEPT = 'ECONOMICS'

PRINT AVG(SALARY)

data base - COLLEGE

STUDENT
ID NAME SEX HOMESTATE MAJOR REPID
I~ JOHN OONES ~M MASSACHUSETTS HISTORY -2
2 JANE DOE F OHIO ECONOMICS 9
TAKING
ID COURSE SECTION
T HIST101
1 HIST102 2
1 POLSCI1l5 1
2 ECON105 3
2 ECON202 1
2 MATH101 1
FACULTY
ID NAME SEX DEPT COMHEAD SALARY
312 BILL GRANT M ECONOMICS 216 20000
152 JOHN MILTON M HISTORY 312 14000
172 ANNE HALL F POLSCI 192 19000
DEPARTMENT
DEPT BUILDING HEAD
POLSCI BILLINGS 172
HISTORY BILLINGS 295
ECONOMICS KEYNES 312
ENGINEERING ENGINEERING 207
TEACHING
ID COURSE DEPT SECTION LIMIT SIZE
312 ECON105 ECONOMICS 1 35 31
312 MATH101 MATH 2 40 40
152 HIST101 HISTORY 1 28 28
152 HIST102 HISTORY 2 32 19
172 POLSCI115 POLSCI 1 32 30
COURSES
COURSE DEPT TITLE CREDITS
ECONI05 ECONOMICS INTRODUCTION TO ECONOMICS ~— 3
MATH101 MATHEMATICS COLLEGE ALGEBRA 3
HIST101 HISTORY AMERICAN HISTORY 3

HIST102

HISTORY

EUROPEAN HISTORY

Figure 1
The COLLEGE database

-10-

4

Both languages allow functions in a query. 'The functions are MAX, MIN, AVG, SUM
and COUNT. These functions apply to the given column. Duplicates are not
eliminated from the column on which the‘function operates.
Q3. List the names of students taking ECON105.
SQL: SELECT NAME
FROM STUDENT
WHERE ID =
SELECT ID
FROM TAKING
WHERE COURSE = 'ECON105'
TABLET: FORM ECONSTUDENTS FROM NAME, ID OF STUDENT
ADD COLUMN COURSE OF TAKING BY ID = ID
KEEP ROWS WHERE COURSE = 'ECON105'
PRINT NAME
In thé SQL query the lower mapping returns a set of ID's to the upper mapping,
this is dalled chaining. In TABLET, the ADD columns statement joins [Codd, 1970]
the COURSE column of the TAKING table to the ECONSTUDENTS table using equal ID
values from the two tables. This operation results in ECONSTUDENTS containing
3 columns: NAME, ID and COURSE.
Q4. List the ID's of department heads who are also committee heads.
SQL: SELECT HEAD.
FROM DEPARTMENT
INTERSECT
SELECT COMHEAD
FROM FACULTY
TABLET: FORM HEADID FROM HEAD OF DEPARTMENT
FORM COMHEADID FROM COMHEAD OF FACULTY
KEEP ROWS OF COMHEADID WHERE COMHEAD IN HEAD OF HEADID

PRINT COMHEAD
-11-

SQL uses the usual set operators —- UNION, INTERSECT and MINUS. TABLET forms
two tables and then performs a restriction (KEEP ROWS) of the tuples in one table
using the contents of the other table. TABLET uses NOT IN corresponding to SQL's
MINUS. The ADD ROWS command is the TABLET analog of UNION.
Q5. List the average salary of faculty members in each department.
SQL: SELECT DEPT, AVG(SALARY)
FROM FACULTY
GROUP BY DEPT
TABLET: FORM DEPTAVG FROM DEPT, DALARY OF FACULTY
GROUP BY DEPT
PRINT DEPT, AVG(SALARY)
Both SQL and TABLET use GROUP BY to denote the partitioning of the relation (table).
In SQL, GROUP BY is a clause in the SELECT statement. GROUP BY in TABLET is a
command in itself. |
Q5. List the name of each student and the names of the courses he is
taking (eg. JOHN JONES HIST101).
SQL: SELECT NAME, COURSE
FROM STUDENT, TAKING
WHERE STUDENT.ID = TAKING.ID
TABLET: FORM NAMECOURSE FROM NAME, ID OF STUDENT
ADD COLUMN COURSE OF TAKING BY ID = ID
PRINT NAME, COURSE
The join operation is reqﬁired by both SQL and TABLET queries. NAME and COURSE
come from the STUDENT and TAKING relations, respectively. The ID columns in the
SQL WHERE clause are qualified to avoid ambiguity. The TABLET query uses the

same format as in Q3.

-12-

RESULTS
The mean number of essentially correct solutions as well as mean times to
take the final and retention tests, mean difficulty and mean study time for the
lessons are found in Table 1. The results are subdivided into various categories,
these are:
easy - 10 problems from lessons 1-5 of the manuals covering (in SQL terms)
simple mapping, simple mapping with arithmetic operations, simple mapping with
Abuilt—in functions, and composition (chaining).
hard - 20 problems from lessons 6-12 of the manuals. These cover GROUP BY, set
functions, joining and combinations of constructs.
group — 9 problems that require the GROUP BY comstruct.
join - 3 problems requiring joining in both SQL and TABLET.
chaining - 5 proBlems that require chaining in SQL (TABLET uses join).

set - 3 problems using UNION, INTERSECT and MINUS (SQL terms).

Statistical analysis

The results of the retention test were analysed using a fully crossed, two
way analysis of variance. The-two independent variables were the languages (SQL
and TABLET) and the experience level of the subjects (inexperienced and experienced).
The results are summarized in Table 2.

Using the values of the means from Table 1 we see that experienced subjects
required significently less study time than inexperienced subjects. SQL subjects
required significantly less study time then TABLET subjects (Table 2a).

Table 2b shows that inexperienced subjects found the lessons significantiy
more difficult than experienced subjects did.

The time required to take the retention test was significantly longer for
inexperienced subjects than it was for experienced subjects. TABLET subjects took

significantly longer than SQL subjects (Table 2c).

-13-

final score

final time (minutes)

retention score

No.
problems

30

30

retention time (minutes)

easy final
easy retention
hard final

hard retention
group final
group retention
join final

join retention
chaining final
chaining retention
set final

set retention

average study time

(minutes, lesson 1-12)

average difficulty (lessons
1-12; l-easy, 10-hard)

10

10

20

20

of

SQL mean
(all 35 subjects)

18.314
116.71
13.600)
66.457
8.&286‘
7.8286
9.943
'5.7714
3.2286
1.0857
1.3714
. 5429
3.2571
3.1111
2.600
2.1143

29.324

4.1694

Mean number of essentially correct responses and other results

TABLET mean
(all 37 subjects)

18,514
120.35
14.784
76.351
8.1081
7.4054
10.405
7.3784
4.1892
2.6486
1.8108
1.4865
3.3514
3. 0000
1.7027
. 9459

36.214

4.1789

Table 2

SQL mean

(17 inexperienced
subjects)

16.824

123.54

12.412
69,412
7.9412
7.2353
8.8824
5.1765
2.8824

. 8824
1.1765
0.5294
2.9412
2.5294
2.5294
1.9412

33.378

4.5041

according to subject experience and query category.

TABLET mean

(20 inexperienced
subjects

17.000

124.10

12.800

78.050
7.5000
6.7500
9.5000
6.0500
3.4000
1.7000
1.7500
1.4000
3.1000
2.3500
1.9000
1.0000

39.138

4.5885

SQL mean

(18 experienced
subjects)

19.833

110.28

14.722
§3:778

8.8889
8.3889
10. 944

6.3333
3.5556
1.2778
1.5556
0.5556
3.5556
3.1111
2.6667
2.27778

25.496

3.8533

TABLET mean

(17 experienced
subjects)

20.294
115.94
17.118
74.353
8.8235
8.1765
11.471
8.9412
5.1178
3.7647
1.8824
1.5882
3.6417
3.0000
1.4706
.8824

32.775

3.6971

degrees of freedom F ratio significance degrees of freedom F ratio significance

experience 1,68 4.76 <,05 experience 1,68 8.62 <. 005
language 1,68 3.99 <, 05 lanquage 1,68 6.72 <,05
experience * language 1,68 .05 - experience x language 1,68 1.53 -
a Mean study time of Lessons 1-12. f Retention, hard problems.
degrees of freedom F ratio gignificance degrees of freedom F ratio significance
experience 1,68 11.33 <.001 experience 1,68 10.68 <. 005
language 1,68 .02 B languaqe . 1,68 19.27 <.,001
experience * language 1,68 .27 - experience x language 1,68 4.92 <.05
b Mean difficulty of Lessons 1-12. g Retention, group problems.
degrees of freedom F ratio gignificance degrees of freedom F ratio significance
experience 1,68 1.44 - experience 1,68 .33 -
language 1,68 6.10 <. 05 language 1,68 26.53 <.001
experience * language 1,68 .06 - experience * language 1,68 .19 -
¢ Time to take retention test. h Retention, joining problems.
degrees of freedom F ratio significance degrees of freedom F ratio significance
experience 1,68 10.96 <.001 experience 1,68 4,42 -
language 1,68 2,03 - language 1,68 .25 <.001
experience * language 1,68 .97 - experience * language 1,68 .01 -
d Retention score (essentially correct) . i Retention, set problems.

degrees of freedom F ratio significance

experience 1,68 8.91 <.01
lanqguage 1,68 +65 -
experience x language 1,68 .10 -

e Retention, easy problems.

Table 2
Summary of analysis of variance for study time,

Lesson difficults and retention scores.
(See Table 1 for means.)

-15~

The overall retention score was significantly higher for experilenced than
for inexperienced subjects. The total scores for SQL and TABLET subjects were not
significantly different (Table 2d). The same 1s true for the easy problems (Table
2e).

The experienced subjects did significantly better than inexperienced subjects
on the hard problems. TABLET subjects outperformed SQL subjects on the hard
problems (Table 2f). This result supports our basic hypothesis.

Experienced subjects outperformed inexperienced subjects on the group
problems (Table 2g). TABLET subjects outperformed SQL subjects. In this case,
the interaction term (experience x language) is significant. This means that while
the TABLET mean is higher than the SQL mean overall as well as for both the
inexperienced and experienced subjects,Aexperienced TABLET subjects did much
better than experienced SQL subjects but inexperienced TABLET subjects did only
a little better than inexperienced SQL subjects. Therefore, the significance of
the TABLET over SQL subjects in the analysis of variance is due primarily to the
experiénced subjects.

Interestingly, the experience level makes no difference for join problems
(Table 2h) or set problems (Table 2i). SQL subjects outperform TABLET subjects
in the set problems. TABLET subjects outperform SQL subjects in join problems.

Generally, experienced students outperformed inexperienced students. SQL
subjects‘took less time to learn their language, found it less difficult to learn,
finished the retention test faster and did better on set problems than the TABLET
subjects did. TABLET subjects outperformed SQL subjects on hard problems, group

problems and join problems.

Interpretation of the results
Table 2 shows that the performance of the SQL and TABLET subjects showed

significant differences in the following categories:

—~16-

1. Average study time for lessons 1-12.

2. Time required to take the retention test.

3. Hard problems on the retention test.

4., Join problems on the retention test.

5. Set problems on the retention test.

6. Group problems on the retention test.

TABLET subjects required more study time and more time to take the retention
test than SQL subjects did. TABLET has ' more complex syntax and semantics than
SQL has. It takes extra time to learn and write TABLET. TABLET subjects are
required to learn how to manipulate tables, SQL subjects are directed mainly by
SQL's syntax.

TABLET's complexity yields a reward in the writing of hard queries. The skill
acquired in table manipulations is put to use. The skill is analogous to the skill
of riding a bicycle, once learned it i1s easily retained. SQL does not require
this sort of skill of its users.

TABLET uses the join construct (ADD ROWS) where SQL uses two constructs,
chaining and joining. While SQL subjects used chaining, TABLET subjects acquired
experience with joining. On the problems in which both languages used joining,
TABLET squects had an advantage and performed significantly better than SQL
subjects.

SQL subjects out performed TABLET subjects on set problems. Set concepts
as well as set operators, UNION and INTERSECTION, were familiar to all the subjects
due to the new math. SQL uses these familiar concepts. TABLET uses concepts

novel to the subjects.

-17-

TABLET subjects outperformed SQL subjects on the group problems. This

is an interesting result because both languages use the same construct -
GROUP BY column name.

TABLET has many commands that perform operations on relations, but SQL queries
are more tuple-oriented. The GROUP BY specifies an operation on a relation, so
it is more TABLET-oriented. Also, GROUP BY is an imperative conmstruct, but
appears as a subordinate clause within SQL's SELECT. In TABLET the GROUP BY is
a separatev(imperative) command. Finally, two SQL subjects said that the GROUP
BY was in the wrong position in the command, suggesting it occur before the
SELECT because the output specified in the SELECT is dependent on the GROUP BY
clausé. The SELECT clause is analogous to the PRINT in TABLET and GROUP BY does

occur before the PRINT in TABLET.

~18~

RECOMMENDATIONS FOR LANGUAGE CHANGES

The results of this experiment show that there are problems with the
following language elements:

1. Join in SQL.

2. Sets in TABLET.

3. Grouping in SQL.

Recommendat hons concerning jjoin problems in :SQL

The difference between SQL and TABLET for join problems is primarily due
to the experience TABLET subjects received in using the ADD COLUMNS command while
SQL used chaining.

Lochbvsky [Lochovsky, 1978] recommends eliminating the join from the where
clause and adding an explicit join specification to SQL. At present, the correct
response to the query, "List the names of people who have exceeded their credit
limit and the item number of items they have charged," is

SELECT NAME, ITEMNO

FROM CHARGEACCTS, CHARGED

WHERE CHARGEACCTS.ACCTNO = CHARGED.ACCTNO

AND TOTALBILL > LIMIT.
The joining is done by the

CHARGEACCTS.ACCTNO = CHARGE.ACCTNO
in the where clause. A possible substitute query would be

SELECT NAME, ITEMNO

FROM CHARGEACCTS, CHARGED

JOINED BY CHARGEACCTS.ACCTNO = CHARGED.ACCTNO

WHERE TOTALBILL > LIMIT.

-19-

The JOINED BY could be simplified to
JOINED BY ACCTNO
since this is unambiguous. This syntax makes SQL even less calculus-oriented

and more algebraic.

Recommendations concerning set problems in TABLET
TABLET should make use of the set theory background that is so common today.
Explicit use of the UNION, INTERSECT and MINUS operators is recommended. For
example, the correct response to the query, "List the account numbers of accounts
with credit rating of 10 who have charged item 19," was
FORM RATING10
FROM ACCTNO, RATING OF CHARGEACCTS
KEEP ROWS WHERE RATING = 10
FORM ITEM19
FROM ACCTNO, ITEMNO OF CHARGED
KEEP ROWS WHERE ITEMNO = 19
KEEP ROWS OF RATING10 WHERE ACCTNO
IN ACCTNO OF ITEM19
PRINT ACCTNO
The KEEP ROWS command, above, would be replaced by
. FORM BOTH
FROM ACCINO OF RATINGlO
INTERSECT ACCTNO OF ITEM19.
The query is still not as succinct as the SQL equivalent but is based on the

same concepts.

-20-

Recommendations concerning group problems in SQL

it is tempting to use the student comments referred to earlier and put the
GROUP BY clause earlier in the SELECT. It should appear before the SELECT itself.
Making this change has ramifications that result in a procedural, TABLET-1ike
language.

The simplest change is to make the GROUP BY a sﬁbordinate clause. Using the
participle, GROUPED or GROUPING has this effect. For example, the correct
response to the query, "For each supplier list the supplier name and the average
wholesale price of the items he supplies,” is

SELECT SUPPNAME, AVG(WHOLESALE)

FROM SUPPLIES

GROUP BY SUPPNAME
This query becomes

SELECT SUPPNAME, AVG(WHOLESALE)

FROM SUPPLIES

GROUPED BY SUPPNAME
or

SELECT SUPPNAME, AVG (WHOLESALE)

FROM SUPPLIES

GROUPING BY SUPPNAME.

The GROUPED BY seems to read better than GROUPING BY, especially if a HAVING

clause were to follow.

-21-

LANGUAGE USE

The experiment used a population in which about half the subjects were
experience& and half the subjects were inexperienced. Given this population mix,
TABLET should be used if the application requires writing difficult queries and
enough learning time is available. SQL should be used if easy queries are to be
written and only a short time is available for learning the language.

Table 1 implies that TABLET is the language of choice for either experienced
or inexperienced users writing difficult queries. SQL is the language of choice
for either experienced or inexperienced users writing easy queries. If the hard

problems are primarily set problems, then SQL is the language of choice.

-22-

SUMMARY

A human factors experiment testing the ability of subjects to write queries
in two different query languages has been run. One purpose of the experiment was
to test the hypothesis: People more often write difficult queries correctly
using a procedural query language than they do using a non-procedural query
language. Another purpose of the experiment was to compare corresponding constructs
in the two languages and recommend improvements for constructs that were found
difficult.

The two languages chosen were SQL and TABLET. Both languages use the
relational model of data and are relationally complete. They have similar Halstead
levels. They also use the same built-in functions. The languages differ in their
procedurality -- SQL is non-procedural and TABLET is procedural.

The subjects of the experiment were 72 undergra&uates at the University of
Massachusetts taking an accounting course. The subjects were divided into two
groups -- 35 learning SQL and 37 learning TABLET. Subjects in each group were
classified as inexperienced (having no previous computer experience) and
experienced (having had a course in BASIC or FORTRAN).

The languages were taught using language manuals that presented the same
examples and problems in the same order for each language. There were 14 class
meetings in the course, each of which was devoted to answering questions and
quizzing the students. At the end of the course a final was given. Three weeks
later a retention test was given. Both tests required students to write queries
in the language they learned.

The results of the retention test are the main results of the experiment.
These query languages were designed as an aid to the casual user, a user who uses
the language intermittently. The delay between the end of the course and the
retention test models this intermittence. It was also felt that the delay would
bring out differences in the retention of the languages.

-23-

The results of the retention test supported the hypothesis: Subjects
using the procedural language (TABLET) wrote significantly more correct responses
to difficult questions than were written by subjects using the non—procedu;al
laﬁguage (SQL). Comparing the results for corresponding constructs in the
1anguagé suggested several changes to those constructs:

1. Changing the method of joining tables used in SQL.

2.A'Using the set operations UNION, INTERSECT and MINUS in . TABLET.

3. Rephrasing the GROUP BY clause in SQL.

~24-

REFERENCES

BOYCE, R.F.; CHAMBERLIN, D.D.; KING, W.F. and HAMMER, M.M. Specifying
queries as relational expressions: The SQUARE data sublanguage.
CACM, Nov. 1975. p. 621-628.

CHAMBERLIN, D.D.; ASTRAHAN, M.M.; ESWARAN, K.P.; GRIFFITHS, P.P.; LORIE,
R.A.; MEHL, J.W.; REISNER, P. and WADE, B.W. SEQUEL 2: A unified
approach to data definition, manipulation, and control. IBM Journal of
Research and Development. Vol. 20, No. 6, Nov, 1976. p. 560-575.

CHAMBERLIN, D.D. and BOYCE, R.F. SEQUEL: A structured English query
language. Proc. 1974 ACM SIGFIDET Workshop, Ann Arbor, Mich., April,
1974. p. 249-264.

CODD, E.F. A relational model of data for large, shared data banks. CACM,
Vpl. 13, June 1970. p. 377-397.

CODD, E.F. A database sublanguage founded on the relational calculus. Proc.
1971 ACM SIGFIDET Workshop on Data Description, Access and Control, San
Diego, CA., 1971la. p.35-68.

CODD, E.F. Relational completeness of database sublanguages. Courant Computer
Science Symposia, Vol. 6: Data Base Systems, Prentice-Hall, NY, 1971b.
Po 65-980

DENNY, G.H. An introduction to SQL, a structured query language. IBM Research,
RA 93, San Jose, CA, May, 1977. '

GANNON, J.D. and HORNING, J.J. The impact of language design on the production
of reliable software. IEEE Trans. on Reliable Software, Vol. 1, No. 2,
1975- pc 10-22.

GOULD, J.D. Some Psychological evidence on how people debug computer programs.
Int'l. Journal of Man-Machine Studies, 1975, 7. p. 151-182.

GOULD, J.D. and ASCHER, R. Use of an IQF-like query language by non—programmers.
RC 5279, IBM Watson Research Center, Yorktown Heights, NY 10598. 1975,

HALSTEAﬁ, M.H. Elements of Software Science. Elsevier North-Holland, Inc. NY,
. 1977.

IBM Interactive Query Facility User's Guide. GH-1223, 1972.

LOCHOVSKY, F.H. Data base management system user performance. Technical Report
CSRG-90, Computer Systems Research Group, Univ. of Toronto, April 1978.

MILLER, L.A. Programming by non—programmers. Int'l. Journal of Man-Machine
Studies, 6, 1974. p.273-260.

-25-

MILLER, L.A. and BECKER, C.A. Programming in natural english. RC 5137,
Watson Research Center, Yorktown Heights, NY 10598, Nov. 15, 1974.

REISNER, P. Use of psychological experimentation an an aid to development of a
query language. RJ 1707, IBM Research, San Jose, CA 95193, Jan. 13, 1976.

REISNER, P.; BOYCE, R.F. and CHAMBERLIN, D.D. Human factors evaluation of two
data base query languages - SQUARE and SEQUEL. NCC, 1975. p. 447-452.,

SHNEIDERMAN, B. Improving the human factors aspect of database interactions.
ACM TODS, Vol. 3, No. 4, Dec. 1978. p. 417-439.

SHNEIDERMAN, B.; MAYER, R.; MCKAY, D. and HELLER, P. Experimental investigations
of the utility of flowcharts in programming. T.R. No. 36, August, 1975,
Computer Science Department, Indiana Univ., Bloomington, Indiana 47401.

SIME, M.E.; GREEN, T.R.G. and GUEST, D.J. Psychological evaluation of two
conditional constructions used in computer languages. Int'l. Journal of
Man-Machine Studies 5. p. 105-113. 1973.

STEMPLE, D.W.; BECKER, M.; WELTY, C. and MAYFIELD, W. TABLET: The algebra
based language for enquiring of tables. T.R. 78-19, Computer and Information
Science Dept., Univ. of Mass., Amherst, MA, Nov. 1978.

THOMAS, J.C. and GOULD, J.D. A psychological study of query by example. AFIPS
Vol. 44, National Computer Conference, 1975. p. 439-445.

WEISSMAN, L. Psychological complexity of computer programs: an experimental
methodology. SIGPLAN Notices, June, 1974. p.25-35.

WELTY, C. SQL manual. Univ. Computing Center, University of Massachusetts,
Amherst, MA, Nov. 1978a.

WELTY, C. TABLET manual. Univ. Computing Center, University of Massachusetts,
Amherst, MA, Nov. 1978b.

WELTY, C. A study of the effects of procedurality on the 1earnability of two
relational query languages. PHD thesis, Computer and Information Science

Department, Univ. of Massachusetts, Amherst, MA, 1979.

YOUNGS, E.A. Human errors in programming. Int'l. Journal of Man-Machine Studies,
1974, 6. p. 361-376.

ZLOOF, M.M. Query by example. Proc. 1975 NCC AFIPS, Vol. 44. p.431-438.

-26-

